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A B S T R A C T

Despite increasing evidence suggesting mixed-species plantations promote biodiversity, a comprehensive
quantitative analysis of this knowledge is lacking. We systematically reviewed 71 studies to evaluate the effects
of mixed versus pure tree plantations on biodiversity. Using descriptive statistics and meta-analyses, we explored:
a) the effects of mixed plantations on forest-related biodiversity; b) variations in these effects with climate, stand
age, and with the richness, relative abundance, and functional diversity of the planted species; and c) differences
in responses across taxonomic and functional groups. Our meta-analyses revealed a significant positive effect of
mixed-species plantations on taxonomic diversity. However, most observations (64%) reported no significant
effects. Positive effects are more frequent in mixtures with more than two species (49%), compared to two-
species mixtures (29%), and were strongest in tropical climates (78%), followed by temperate (26%) and con-
tinental climates (14%). Among taxonomic and functional groups, positive mixing effects are most frequent for
birds (75%), followed by litter microbiota (47%), understory plants (40%), and above-ground arthropods (29%),
while soil-dwelling micro-organisms (22%) and soil mesofauna (4%) appear less sensitive. Mixing conifers and
broadleaves does not enhance biodiversity benefits, suggesting higher functional diversity may be better ach-
ieved by targeting specific species and traits. The limited effects of mixing observed in some cases may reflect the
young age of plantations studied (11±9.4 years on average), which may limit the time for biodiversity to
respond. The variability in biodiversity outcomes highlights the need for tailored mixing strategies and further
research across broader plantation ages, settings, and underrepresented taxonomic groups to optimize biodi-
versity benefits in mixed-species plantations.

1. Introduction

Owing to a growing demand for a larger variety of goods and services
from forests, and to an increased vulnerability of forest ecosystems to
climatic extremes, the last decades have witnessed an increasing interest
in diversifying forest structure and composition (Scherer-Lorenzen et al.,
2005; Allen et al., 2010; Puettmann et al., 2012; Seidl et al., 2017;
Messier et al., 2022). Tree species diversity, in particular, is expected to
enhance ecosystem functioning and stability in the provision of goods
and services (Gamfeldt et al., 2013; Bauhus et al., 2017a). This idea is
supported by a growing body of evidence, including systematic reviews
of scientific literature (Zhang et al., 2012; Castagneyrol et al., 2014;

Liang et al., 2016). However, much of this knowledge is derived from
studies with a focus on ecosystem productivity as a response variable,
which is often used as a proxy for ecosystem functioning in general.
Other ecosystem functions and properties, such as the diversity of forest-
related taxa, have received less attention, likely due to the complexity of
its assessment given the variety of different life forms involved, as well
as their spatial and temporal variability (Loreau, 2000; Bauhus et al.,
2017b).

As foundational species, trees provide habitat for a wide range of
other species. The relationship between tree species diversity and forest-
related biodiversity, however, is complex and often shaped by site
conditions and the ecological interactions among species (Tedersoo

* Corresponding author.
E-mail address: klaus.kremer@waldbau.uni-freiburg.de (K. Kremer).

Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

https://doi.org/10.1016/j.biocon.2025.111182
Received 13 December 2024; Received in revised form 14 April 2025; Accepted 19 April 2025

mailto:klaus.kremer@waldbau.uni-freiburg.de
www.sciencedirect.com/science/journal/00063207
https://www.elsevier.com/locate/biocon
https://doi.org/10.1016/j.biocon.2025.111182
https://doi.org/10.1016/j.biocon.2025.111182
https://doi.org/10.1016/j.biocon.2025.111182
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2025.111182&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Biological Conservation 307 (2025) 111182

2

et al., 2016). The overall notion of higher ecosystem functioning and
stability through higher species diversity is mainly based on the
complementarity, insurance, and selection hypotheses. According to the
complementarity hypothesis, a higher number of species can enhance
ecosystem processes through positive interactions among species, either
through competitive reduction or through facilitation among species
(Tilman et al., 1997; Loreau, 2000; Hooper et al., 2005). According to
the insurance hypothesis, in a species-rich ecosystem the loss of one
species may be compensated by the presence of another species with a
similar or redundant role, thereby providing for stability in the provision
of the related function (Loreau, 2000; Hooper et al., 2005; Bauhus et al.,
2017b). Finally, the selection hypothesis states that certain species
might have a disproportionally large effect on ecosystem properties or
functions. Consequently, a higher species richness would imply a higher
likelihood that those species are included in the community (Huston,
1997; Loreau, 2000; Hooper et al., 2005; Bauhus et al., 2017b).

Tree species that are complementary in the use of resources may use
the available growing space more efficiently, thereby increasing their
chances to provide habitat for different life forms. Furthermore, they
may also be complementary in the resources they provide for forest-
related taxa, which is particularly the case when they exhibit different
structural and functional traits (Cadotte et al., 2011; Cavard et al., 2011;
Ampoorter et al., 2020). Forest stands with a higher trait diversity are
likely to sustain a wider range of environmental conditions, resources,
and microhabitats, thereby supporting a higher diversity of forest-
related taxa (Ampoorter et al., 2020; Juchheim et al., 2020). This is
often reflected in the presence of species-specific interactions between
tree species and their related biodiversity, highlighting the importance
of species identity in maintaining overall biodiversity (De Groote et al.,
2017).

While studies addressing the effects of tree diversity on overall
biodiversity are becoming increasingly abundant, they vary widely in
their methodological approach and in the taxonomic groups on which
they focus to evaluate biodiversity (e.g., Barsoum et al., 2014; Staab
et al., 2015; Ji et al., 2020; Beason et al., 2023). In addition, the effects of
tree diversity on ecosystem functioning are known to vary significantly
in space and time (Paquette and Messier, 2011; Forrester and Bauhus,
2016). Despite the efforts by Cavard et al. (2011) and Ampoorter et al.
(2020) to comprehensively describe the effects of tree diversity on the
diversity of forest-related taxa, we still lack a quantitative systematic
approach to synthesize evidence on these effects, particularly addressing
their variation across different environmental and stand conditions. In
this context, planted tree diversity experiments offer a valuable frame-
work for evaluating general trends in the effects of tree diversity on
biodiversity, as they control for key confounding factors at local and
regional scale (Verheyen et al., 2016; Bauhus et al., 2017b). Moreover,
the intended large-scale expansion of forest cover driven by global
commitments to restoration and climate change mitigation and adap-
tation, is expected to strongly rely on planting, since this method can
ensure rapid establishment of desired species, particularly when natural
regeneration is insufficient (Holl and Aide, 2011; Simonsen, 2013;
VanBijsterveldt et al., 2022). While this massive drive for new tree-
plantation has been proposed as an efficient method to restore land-
scapes and increase sequestration of atmospheric CO2 as nature based
solutions (Griscom et al., 2017), single-species afforestation remains a
subject of debate (Seddon et al., 2020). As a consequence, there is
growing advocacy for mixed-species plantations to achieve this expan-
sion, as they are expected to provide broader ecological benefits
(Messier et al., 2022). Thus, evidence-based guidelines for establishing
diverse planted forests to ensure that they provide the anticipated
benefits are increasingly needed.

In this study, we conducted a systematic review to examine the ef-
fects of mixed vs pure plantations on tree- or forest-related biodiversity,
using indices of taxonomic diversity as a proxy for biodiversity as a
whole. Our aim was to identify both global and regional patterns in the
response of biodiversity to mixed plantations, considering overall

taxonomic biodiversity as well as specific taxonomic groups. In addition,
we examined variations across different regions, climates, and ecolog-
ical and management conditions. Specifically, we addressed the
following questions: a) What are the effects of mixed-species plantations
on the biodiversity of forest-related taxa?; b) how do these effects vary
with climate, stand age, and with the richness, relative abundance, and
functional diversity of planted species?; c) how do these effects vary for
different taxa?

With the purpose of maximizing both the representativeness and the
accuracy of our analyses, we combined two different approaches to
address these questions: a) an analysis based on the general trends
informed by a larger number of studies; and b) meta-analyses based on
specific quantitative variables provided by a smaller sample of studies.
These analyses will provide insights into the underlying processes that
drive the effects of mixed-species plantations on biodiversity, while
summarizing the current knowledge base relevant for developing
biodiversity-friendly forest restoration practices.

2. Methods

This study was conducted following the PRISMA guidelines for
adequate reporting in systematic reviews (Page et al., 2021), and the
extended guidelines of Synthesis Without Meta-Analysis (SWiM), to be
used in systematic reviews when estimating effect sizes is either not
possible or fully adequate (Campbell et al., 2020). Furthermore, since
the literature search was conducted in June 2022, only studies published
up to that date were included in the analysis.

2.1. Literature search

We organized the search on the basis of the main components of the
review question (Table 1). Each of the column names represents a
different component, and the terms within it, either a synonym or a
concept related to it. Along the search string, the different components
were linked with the Boolean operator “AND”, whereas the different
terms within each component category were linked with “OR”.

Analogue searches were conducted in Web of Sciences (WOS), Wiley
Online Library, and Ovid, on the 28th of June 2022, using the search
fields described in Table 2 (see Table S1 for the corresponding search
strings).

To assess the suitability of the search string, we compared the search
outcomes against a sample of four pre-selected studies published up to
2021, when this study was formulated (Table S2). Specifically, we
verified whether these studies, which were preliminarily selected as
representative examples of relevant research, appeared in the search
results of at least one search engine. If any were missing, we refined our
search terms by incorporating overlooked synonyms of key research
components or adding wildcards to capture alternative word endings.

2.2. Study selection

After removing duplicates, we screened the complete list of studies
by reviewing title and abstract, and discarded those studies that did not

Table 1
Components of the research question and their corresponding synonyms or
related terms. The wildcard or asterisk symbol (*) stands for alternative word
endings.

Intervention Comparison Outcome

Pure plantation Mixed plantation

Plantations Pure Mixed Biodiversity
Planting Mono* Polyculture Diversity
Reforest* Single Multiple Shannon
Afforest* Multi-spec* Simpson
Restor* Richness

K. Kremer et al.
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address the research question or were not peer-reviewed articles from
scientific journals, or for which no full-text version could be obtained
either online or from the authors. Subsequently, we conducted a full-text
assessment of the remaining studies to evaluate the following inclusion
criteria: (1) the study was based on a field experiment (either manipu-
lative or observational); (2) a relevant comparison was conducted, (i.e.,
pure even-aged tree plantations vs mixed-species even-aged tree plan-
tations of same or similar age (<20% difference among them)); (3) a
relevant outcome was provided (i.e., indicators of biodiversity such as
richness and diversity of taxa); (4) means and standard deviations of the
biodiversity indicators, or results of statistical tests were provided.
Forests were considered plantations, if the canopy trees were planted or
sown, meaning that plantations could also include naturally-regenerated
understory trees. Additionally, planted forests were considered mixed if
they included two or more species among the canopy trees. For studies
requiring subscription to a specific journal to be accessed, we addressed
the authors directly to request a digital copy.

2.3. Data extraction

As expected, different studies used different indicators and taxo-
nomic or functional groups to quantify biodiversity. The output for each
indicator reported in a single study for a given taxonomic or functional
group was deemed as an individual observation. Several studies re-
ported multiple indicators of biodiversity, and these were evaluated
either on a single or on multiple taxonomic or functional groups. Thus, a
single study could report multiple observations, and consequently, the
total number of observations was larger than the number of studies
included.

In addition to including multiple indicators of biodiversity and
taxonomic or functional groups, studies often included not just one, but
different types of monocultures composed of different tree species.
Similarly, some studies included different mixed-plantation treatments,
involving either different sets of tree species, or different relative
abundances of the same set of species. In addition, in some studies the
effects of mixing were evaluated in plantations at different experimental
sites, at different tree ages, or at different soil depths, and separate re-
sults were provided for each of these specific cases. The results reported
for each of these different possibilities and their combinations were
treated as sub-observations.

Based on the data provided, each observation and sub-observation
was classified as reporting a significant or a null effect, and significant
effects (p<0.05) were classified as positive or negative.

For conducting meta-analyses of the effects of mixed plantations on
biodiversity, we extracted the means and standard deviations, standard
errors, or confidence intervals of the reported biodiversity indicators for
both the pure and the mixed plantations under comparison, as well as
the sample sizes involved, whenever this information was provided.
When only available in graphical format, the means and standard de-
viations were extracted using WebPlotDigitizer (Rohatgi, 2022). When
values of standard errors were provided, these were transformed into
standard deviation by multiplying them by the square root of the sample
size. Alternatively, when 95% confidence intervals were provided, these
were transformed into standard deviation by dividing the length of the
confidence interval (i.e., the absolute difference between the upper and
lower limits) by 3.92, and multiplying the result by the square root of the
sample size.

2.4. Data synthesis

To assess the effects of mixed-species plantations on biodiversity, we
employed two complementary approaches: a trend analysis and meta-
analyses. The trend analysis examined the frequency with which
studies reported significant effects of mixed-species plantations on
biodiversity and whether these effects were positive or negative. This
approach required minimal data for inclusion, allowing for broader
literature coverage. However, it did not account for effect sizes or dif-
ferences in statistical power, which could introduce biases. To address
these limitations, we conducted meta-analyses, which require studies to
report means, standard deviations, and sample sizes. While this restricts
the number of studies that can be included, it provides a more robust
quantitative output by using these data to account for effect sizes and
statistical power.

2.4.1. Data for trend analyses
We classified the reported biodiversity indicators into four main

types: species richness, species diversity, functional diversity, and
phylogenetic diversity. Similarly, due to the large number of reported
taxonomic or functional groups and the similarities among them, we
grouped them into corresponding categories (Table S3). We recorded
the frequency of null, positive, and negative effects of mixed vs pure
plantations overall, for each type of biodiversity indicator, and for each
of the categories of taxonomic or functional groups (Page et al., 2021).
To prevent biased results towards studies with sub-observations (i.e.,
with more than one output for a biodiversity indicator for a given
taxonomic or functional group), the output for each sub-observation was
weighted by the total number of sub-observations addressed in the
corresponding study.

Additionally, to assess whether the occurrence of significant effects
was influenced by study sample size, we calculated the point-biserial
correlation coefficient between study sample sizes and the frequency
of significant effects (whenever sample sizes were reported). This coef-
ficient quantifies the strength and direction of the relationship between
a binary variable (i.e., whether an effect was significant or not) and a
continuous variable (i.e., study sample size). A positive correlation
would suggest that larger studies tend to report more significant effects,
potentially indicating sample size bias (Tate, 1954; Kornbrot, 2014).

We evaluated the influence of context-related factors (hereafter
moderators) on the effects of mixed plantations, by comparing the
overall frequency of null, positive, and negative effects of mixed-species
plantations on measures of biodiversity reported by studies in different
climate types (temperate; continental; tropical; dry), addressing plan-
tations of different ages (<5 years; ≥5 and <20 years; >20 years), and
involving mixed plantations with varying degrees of tree species rich-
ness (2 species; 3–5 species; >5 species), relative abundances (even vs
uneven abundance of the component tree species), and functional di-
versity (i.e., including both conifers and broadleaves vs including only
conifers or broadleaves) (Table 3). We considered the presence of both
conifers and broadleaves in a mixed plantation as an indicator of a
higher functional diversity. Species in a mixed plantation were consid-
ered unevenly abundant if their share differed by >10%.

Some moderator classes (e.g., specific climate types, age classes,
levels of tree species richness, etc.) may have been biased towards
plantations with a higher number of species, which eventually may
result in a higher functional diversity. To prevent this bias, we explored
the number of species involved in the mixed plantations across the
different moderator classes. This bias was confirmed for the climate
types. While 70% of mixed plantations in tropical regions included more
than two species, only 13% and 14% of mixed plantations in temperate
and continental regions did so. It was also the case for the functional
diversity classes (i.e., mixing either broadleaves and conifers, or mixing
only broadleaves or conifers). While 91% of the mixed plantations with
both conifers and broadleaves includedmore than two species, only 45%
of the plantations including only conifers or broadleaves did so

Table 2
Search fields in which each of the string components were searched for in each
database, and the number of records retrieved in each case.

Database Search fields Outcome (n◦ of studies)

Web of Science “All fields” 684
Wiley Online Library “Abstract” 1024

Ovid “Title”; “Abstract”; “Identifiers” 280

K. Kremer et al.
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(Table S4). In these two cases, we controlled for the influence of the
number of species mixed by selecting studies with only two-species
mixtures. Accordingly, since all studies from dry regions (n=3)
involved mixed plantations with >2 species, they were excluded from
this analysis.

Meaningful comparisons among climate types and functional di-
versity classes for mixed plantations with a number of species higher
than two were not possible due to the low number of studies.

2.4.2. Meta-analyses
We conducted multiple meta-analyses in R (version 4.4.1) (R Core

Team, 2022) to evaluate the effect of tree species mixing. As an general
input for these analyses, we calculated Hedges’ d (Hedges and Olkin,
2014) for each study, using the reported means, standard deviations and
sample sizes, employing the “Metafor” package (Viechtbauer, 2010).
Since some studies included multiple observations, we aggregated the
corresponding effect sizes into a single combined effect size per study
using the “aggregate” function from this package. We assumed the
multiple outcomes from the corresponding study to be independent from
each other (Viechtbauer, 2010). For the meta-analyses, we used random
effects models to estimate the mean effect sizes, in order to account for
both the within-study variance (i.e. the sampling error) and the
between-study variance of the effect size (Borenstein et al., 2021). We
conducted an overall meta-analysis, including all studies grouped
together, and specific meta-analyses for each of the main biodiversity
indicators reported by at least five studies. In addition, we conducted
separate meta-analyses for effect sizes grouped according to the
moderator classes described above (Table 3) and the taxonomic/func-
tional group categories for which biodiversity levels were reported,
whenever the corresponding number of studies was equal to or greater
than five. In these cases, however, we grouped the effect sizes by
moderator class and taxonomic/functional group categories, respec-
tively, before aggregating them by study, as opposed to for the overall
meta-analysis. This enabled us to retain the information form sub-
observations before grouping, allowing us to refine the scale of anal-
ysis by classifying not only whole studies according to moderator clas-
ses, but also specific sub-observations. As for the trend analyses (2.4.1),
for the moderators climate type and functional diversity, we controlled
for the influence of the number of species mixed by selecting studies
with only two-species in mixed plantations.

3. Results

From the 7009 studies obtained from the different databases, 635
were discarded as duplicates. Of the remaining, 6175 were discarded
after title and abstract screening. The remaining 199 studies were sub-
jected to full-text reviewing. Following the inclusion criteria for this
stage, 71 studies were finally considered relevant and were included in
the review (Fig. S1; Table S5).

3.1. Overview of the evidence base

The studies finally included in this review span from 1997 to 2022.
However, the majority was published after 2006. During this period, the
number of studies published per year indicates an increasing trend in

time (Fig. 1).
Most of the studies were conducted in Eastern and South-Eastern

Asia (34%), Central and South America (28%), and Europe (23%), and
only a few in Africa (7%), Oceania (6%), and North America (1%)
(Fig. 2). More than half of the studies (54%) were conducted under a
temperate climate type, and 31%, 11%, and 4% under tropical, conti-
nental, and dry climate types, respectively, according to the Köppen
classification (Figs. 2 and 3).

Regarding the nature of the experiments, the age of plantations
evaluated ranged between 1 and 100 years, with an average of 11±9.4
years. In most studies (70%), the mono-specific and the mixed planta-
tions under comparison were of similar age. In these cases, observations
were relatively evenly distributed among the pre-defined age classes
(≤5 years; >5 and ≤20 years; >20 years), with a higher proportion of
studies (41%) focusing on the early stages (Fig. 3). Most studies (82%)
involved multiple pure plantations, each consisting of a different spe-
cies. Similarly, 65% of the studies compared different varieties of mixed
plantations, either by varying the number and identity of the species, or
their relative abundance. Fifty-four percent of the studies included only
two species in the mixed plantations, while the rest included two or
more species, and 23% includedmore than five species (Fig. 3). From the
studies informing the composition of the mixed plantations, 42%
involved both conifer and broadleaved species, while the rest (58%)
involved either conifers or broadleaves (Fig. 3). Additionally, 61% of the
studies had an even distribution of species abundances in the mixed
plantation (e.g., 50% of species A, and 50% of species B at the time of
planting), whereas in 39% of them, the species in the mixed plantations
had uneven abundances (e.g., 30% seedlings of species A, and 70% of
species B).

3.2. Categories of taxonomic and/or functional groups

In the 71 studies included, responses of 27 different taxonomic and/
or functional groups were reported. Based on their similarities, we
grouped them into six main categories (Table S3). Soil micro-organisms
(fungi, bacteria, and archaea) were the most frequently surveyed groups
(41%), followed by understory plant species (28%), above-ground ar-
thropods (14%), birds (9%), soil mesofauna (5%), and litter micro-
organisms (4%). Apart from birds, no other vertebrate group was
addressed (Fig. S2). In terms of the indicators provided, most of the
observations reported species richness (48%) or diversity (as Shannon-
Wiener, Simpson, Chao, or Fischer’s alpha) (42%), while a minor part
of the observations reported measures of phylogenetic diversity (6%)
and functional diversity (4%).

3.3. Effects of mixed-species plantations on biodiversity

In total, 137 observations were obtained. According to the trend
analyses, 33% of the observations reported significant positive effects of
mixed-species plantations on biodiversity, 3% reported significant
negative effects, and 64% of the observations reported no significant
effects. In terms of the type of indices reported, only species diversity
indices (Shannon-Wiener, Simpson, Chao, or Fischer’s alpha) and spe-
cies richness had >10 observations. Species diversity indices show a
higher sensitivity to mixing than species richness, with 38% vs 25%

Table 3
Analyzed moderators of the effect of mixed- vs pure plantations.

Climate Age class1 Types of mixed plantations used

N◦ of species1 Relative abundance of mixed species1 Types of species used1

1) Temperate 1) <5 years 1) 2 1) Even 1) Both conifers or broadleaves
2) Continental 2) ≥5; <20 years 2) >2; ≤5 2) Uneven 2) Either conifers or broadleaves
3) Tropical 3) >20 years 3) >5
4) Dry

1 Moderators for which comparisons were possible both among and within single studies.

K. Kremer et al.
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significant positive effects. Significant negative effects, however, were
similarly infrequent among both types of indices (3%). According to the
few observations reporting effects on phylogenetic and functional di-
versity, these indicators are the most sensitive to mixing, with 58% and
39% significant positive effects, respectively, and no negative effects
(Fig. 4).

In line with the overall trend, when comparing outputs based on the
different moderator classes, the significant effects were mostly positive,
while negative effects were either absent or negligible, with significant
negative effects ranging from 0 to only 7% of the total number of ob-
servations in each case (Fig. 5). Studies conducted under tropical cli-
matic conditions show a considerably higher proportion of significant
effects on biodiversity with 75% of observations showing significant

effects, when compared to those in temperate and continental climates,
with 26% and 14%, respectively. Yet, for the tropical climate type there
were only eight observations. The proportion of significant effects shows
a slightly decreasing trend with increasing plantation age, with 41% in
plantations≤5 years old, 32% in plantations>5 and≤ 20 years old, and
25% in plantations >20 years old.

The frequency of significant effects on biodiversity is higher in mixed
plantations with more than two species than in those with only two
species. For two-species mixed plantations, the effect of mixing is sig-
nificant in 29% of the cases. In contrast, for mixed plantations with three
to five species, and with >5 species, the proportion of significant posi-
tive effects is 51% and 49%, respectively. Furthermore, for mixed
plantations with >5 species, the effects of mixing are exclusively

Fig. 1. Number of studies included in our analyses per publication year. Since the literature search took place in June 2022, the actual number of studies published in
that year was likely higher than is depicted here.

Fig. 2. Location of the studies included. Light blue, red, green, and purple dots represent studies conducted in continental, dry, temperate, and tropical regions,
respectively, according to the Köppen climate classification (for interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).

K. Kremer et al.
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positive, whereas in mixtures with fewer tree species, a small proportion
of negative effects (3–5%) is observed.

In contrast, the influence of the relative abundance of tree species in
the mixture is limited. Plantations with even abundances of planted
species have a slightly higher frequency of significant effects compared
to those with uneven abundances (36% vs 31%). Finally, mixing seems
considerably more effective when using either conifers or broadleaves
instead of combining conifers and broadleaves in the same mixture, with
36% significant positive effects in the first case, and 18% in the latter.

In terms of the main taxonomic/functional groups (Table S3), all
groups had >10 observations except for litter microbiota (n=5) and soil
mesofauna (n=6). The frequency of significant effects shows consider-
able variation among the groups. The highest proportion of significant
effects was registered for birds, with 75%, and the lowest, for soil
mesofauna, with only 4%, all of which were positive. For litter micro-
biota, understory plant species, and above-ground arthropods, the pro-
portions of significant effects were similar, with 47%, 40%, and 38%,
respectively. Yet, for above-ground arthropods the significant effects
were partly negative, with 10% significant negative effects, while for
litter microbiota and understory plants, all significant effects were
positive. Soil microbiota showed a relatively lower sensitivity to mixing,
with 26% significant effects, with 22% positive effects, and 4% negative
effects (Fig. 6).

The point-biserial correlation between the sample size of the studies
and the frequency of significant results was 0.26 (p<0.01), indicating a

moderate positive association between the variables.

3.4. Meta-analyses

Of the 71 included studies, 47 provided the necessary information for
inclusion in meta-analyses (Table S5). Of these, 40 studies provided
suitable data for analyzing the effects of mixed plantations on species
richness, and 30 for the effects on indices of species diversity (Shannon-
Wiener, Simpson, Chao, or Fischer’s alpha). Neither phylogenetic nor
fuFnctional diversity had at least five observations, and thus, no specific
meta-analyses were conducted for these indicators. According to the
overall meta-analysis, in which all the observations were grouped
together, mixed-species plantations have a significant positive effect on
biodiversity. The specific meta-analyses for both species richness and
species diversity indices showed consistent results, indicating significant
positive effects in each case, with a higher effect size estimate for species
diversity indices (Fig. 7).

When dividing observations among moderators, the corresponding
meta-analyses were consistent with the overall results, showing positive
effects in each case. However, according to these results, the positive
effects of mixed plantations were only significant for younger stands (0
to 5 years), when mixing more than two species, and when mixing
species in even proportions (Fig. 7). The influence of climate could not
be evaluated due to the lack of observations for the specific climate
types.

Fig. 3. Distribution of the observations based on a) climate types; b) age classes; c) tree species richness of the mixed plantations; and d) species types present in the
mixed plantations.

Fig. 4. Frequency of observations indicating positive, negative, and null effects of mixed-species plantations on biodiversity, for the different types of indices re-
ported. Values within the bars indicate the frequency (%) of each effect type. Values on the right indicate the number of observations in each case. The percentages
shown resulted from calculations based on the output either of whole observations or of sub-observations, depending on the nature of the studies.

K. Kremer et al.
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Fig. 5. Frequency of observations indicating positive, negative, and null effects of mixed-species plantations on biodiversity. Values on the right indicate the number
of observations in each case. The percentages shown resulted from calculations based on the output either of whole observations or of sub-observations, depending on
the nature of the studies. 1For these moderators, the analysis was restricted to studies with two-species mixtures. This was due to the uneven distribution of the
number of species mixed across the corresponding classes: mixtures in continental and temperate climates were mostly two-species mixtures, whereas mixtures in
tropical climates were in most cases >2-species mixtures. Similarly, mixtures involving both conifers and broadleaves were in most cases two-species mixtures,
whereas mixtures involving only conifers or only broadleaves were split more evenly between two-species and >2-species mixtures (see Table S4).

Fig. 6. Frequency of observations indicating positive, negative, and null effects of mixed-species plantations on biodiversity, for each of the taxonomic/functional
groups. Values within the bars indicate the frequency (%) of each effect type. Values on the right indicate the number of observations in each case. The percentages
shown resulted from calculations based on the output either of whole observations or of sub-observations, depending on the nature of the studies.
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Regarding taxonomic or functional groups, only understory plants,
soil microbiota, and above-ground arthropods had enough observations
for conducting meta-analyses (≥5), with 18, 16, and 10 observations in
each case, while litter microbiota, soil mesofauna, and birds did not have
a sufficient number of observations. All the surveyed groups suggest a
positive effect of mixed plantations on biodiversity. However, this trend
was significant only for understory plants (Fig. 7).

4. Discussion

4.1. Overall patterns

Our systematic review of scientific studies on the effects of mixed- vs

pure tree plantations on forest-related biodiversity reveals an overall
positive effect of mixed plantations on biodiversity. The trend analyses
indicated that whenever significant, the effects of mixing are almost
exclusively positive, with only a minor proportion of negative effects.
Similarly, the overall meta-analysis indicates a significant positive effect
of mixing, which is consistent with the trends shown by the specific
meta-analyses for the different indices, moderator classes, and taxo-
nomic/functional groups. Yet, according to the trend analyses, mixed
plantations in most cases have no significant effects on biodiversity.
Given the moderate positive correlation between the sample size and the
occurrence of significant effects, this low frequency of significant effects
may be partly explained by the relatively low sample size of the studies
included (low power in the statistical analysis), with most studies (78%)

Fig. 7. Forest plot of the meta-analyses on the effects of mixed-planting on biodiversity, for the different indices, moderator classes, and taxonomic or functional
groups. Only categories or classes with ≥5 observations were included. The centroids of the polygons indicate the point estimate of the combined standardized mean
difference between pure and mixed plantations for each group of studies or observations, while their outer edges indicate the 95% confidence interval limits.
Polygons not intersecting the null effect axis (represented by the vertical line) indicate a significant difference between pure and mixed plantations (Viechtbauer,
2010). For this moderator, the analysis was restricted to studies with two-species mixtures. This was due to the uneven distribution of the number of species mixed
across the corresponding classes: mixtures involving both conifers and broadleaves were in most cases two-species mixtures, whereas mixtures involving only conifers
or only broadleaves were split more evenly between two-species and >2-species mixtures (see Table S4).
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involving <6 replicates. Alternatively, it may be related to the nature of
the experiments. At the young age of the plantations monitored (11±9.4
years in average), most mixed stands may not have developed a signif-
icantly higher structural complexity than their pure counterparts, that
can provide for a higher habitat diversity (Bradford and Kastendick,
2010; Juchheim et al., 2020; Stein et al., 2014). It should also be kept in
mind that many tree-diversity experiments were not originally designed
to study the effects on biodiversity, but focused primarily on produc-
tivity and other indicators of tree performance (Depauw et al., 2024). As
a result, the size of the treatment plots with mono-specific or mixed tree
communities is often relatively small and therefore not well suited to
study the effects on forest-dwelling species such as birds or flying in-
sects, with habitats or activity-ranges that are often substantially larger
than the plot size. This may partly explain the low number of studies on
certain taxonomic groups and the preponderance of studies on taxa with
relatively lowmobility, such as soil microbiota and understory plants. In
addition, some studies might have focused on mixed plantations of tree
species with redundant functional traits, with each of them consequently
contributing little to ecosystem properties and functioning. Finally, it is
also possible that in some of the studies the biodiversity-ecosystem
functioning relationships sustaining forest-related taxa may be primar-
ily driven by abiotic factors, such as climate or soil conditions (influ-
enced, for instance, by previous land-use), rather than by biotic factors
like tree species composition (Hooper et al., 2005).

Negative effects of mixed plantations were reported by a variety of
studies of different nature (i.e., involving plantations of different ages,
evaluating different biodiversity indicators, and focusing on different
taxonomic groups). This suggests that, although rare, negative effects
may in fact arise under a range of conditions. Yet, in most of these
studies (9 out of 11) the mixed plantations under study were two-species
mixtures. As we have shown, positive effects of mixing on biodiversity
appear to be more frequent in studies with a higher number of species in
mixed plantations. Furthermore, 39% of the observations reporting
negative effects stemmed from a single experiment with young planta-
tions (0–4 years) that was repeatedly surveyed in different studies
evaluating soil microbiota diversity (DaSilva et al., 2012; Bini et al.,
2018; Pereira et al., 2021; Santana et al., 2021). The experiment had
been established on lands managed for nearly 50 years as pure eucalypt
plantations. An additional 17% of the observations indicating negative
effects of mixing also stemmed from plantations established on former
agricultural or clay extraction sides, and focused on soil microbial di-
versity. At these sites with long-term intensive land use, there may have
been a much reduced pool of species that could potentially respond to a
more diverse habitat in a short time (Jangid et al., 2011).

4.2. Indicators

Both the trend analyses and the meta-analyses indicate a higher
sensitivity of diversity indices than of species richness to mixed plan-
tations. This may be related to aspects of the sampling process. Theo-
retically, both richness and evenness in the community of forest-related
taxa should increase as a result of mixed plantations, due to an
enhancement in habitat heterogeneity and increased overall resource
availability (Hooper et al., 2005; Ampoorter et al., 2020; Juchheim
et al., 2020). However, it is possible that common sampling techniques
are less sensitive to changes in richness than in evenness, as newly
established species in the mixed plantations might initially show lower
abundances, making them less likely to be detected (Gotelli and Colwell,
2001). In addition, the low plot sizes commonly used in tree diversity
experiments may often lead to underestimations of species richness, as
the species richness measured in experimental conditions often falls
short from the saturation point (Hill et al., 1994). Meanwhile, the pat-
terns associated with functional and phylogenetic diversity should be
interpreted cautiously given the lower sample sizes for these indices,
especially since they did not allow for meta-analyses. However, the
higher effects on phylogenetic diversity may be due to this indicator

more accurately reflecting the complementarity in habitat provision by
the tree community, compared to richness or diversity indices. Ac-
cording to theory, an array of forest-dwelling species with high trait
diversity would be required to occupy the variety of niches created in
mixed-species plantations. Since functional and structural traits are the
result of evolutionary history, functional diversity is often assumed to be
related to phylogenetic diversity (Tucker and Emmingham, 1977; Cas-
tagneyrol et al., 2014; M. Cadotte et al., 2017). As a consequence,
phylogenetic diversity, rather than species numbers and relative abun-
dances, may better describe the higher functional diversity of the forest-
related taxa in mixed plantations.

4.3. Moderators

The higher effects of mixed plantations observed in studies from
tropical climates when compared to temperate and continental climates
should be considered cautiously given the low sample size for the
tropical climate type, and the lack of sufficient data for meta-analyses to
confirm this trend. However, the pattern may simply reflect the faster
growth of plantations in tropical regions. At the young age at whichmost
surveys took place, the structural and functional differentiation of mixed
plantations from pure plantations, which eventually should lead to
higher biodiversity, may have already begun to manifest in tropical
regions, whereas in colder climates, this process may take longer
(Ehbrecht et al., 2021). Additionally, the intrinsic higher biodiversity of
tropical forests may offer a higher chance for functionally distinct spe-
cies occupying the increased variety of niches created in mixtures (Cao
et al., 2021).

This may also partly explain the decreasing effects of mixing with
increasing plantation age indicated by our results. At first glance, this
trend may seem surprising, as the diversity of structures and functions in
mixed plantations would be expected to increase with plantation age
(Bradford and Kastendick, 2010; Juchheim et al., 2020). However, the
significant effects indicated by the meta-analysis for plantations in the
age class 0 to 5 years are derived almost exclusively from studies in
tropical regions, where positive effects at early plantations ages should
be more likely due to higher growth rates. Unfortunately, the low
number of studies (n=7) prevents a reliable assessment of the influence
of the climate type within this age class. Furthermore, most plantations
in the age class 5 to 20 years may be experiencing canopy closure and
high stand density, leading to limited light availability in the understory,
and consequently, low structural complexity and species diversity
(Halpern and Spies, 1995; Hedwall et al., 2019). Additionally, consid-
ering the relatively narrow and young age of plantations in the >20
years’ age class (26±3 years on average), as well as the low sample size
of the meta-analysis for this age class, more studies involving older
plantations (e.g., over 30 years) would be necessary to fully capture the
processes occurring at more advanced developmental stages. Research
on older stands has provided valuable insights into biodiversity patterns
in mixed forests, yet such studies have often been conducted in previ-
ously managed forests, resulting in less controlled treatments. This leads
to an increased variability and lack of detailed information on stand
origin and age, which was often the reason for exclusion from this re-
view. Furthermore, these studies often compare monocultures with two-
species mixtures rather than examining a gradient of tree species di-
versity. As a result, their findings are often determined by site-specific
environmental conditions and species identity, rather than by tree spe-
cies diversity, which is often reflected in a lower occurrence of positive
effects of mixed vs pure forests (Schuldt et al., 2022; Schauer et al.,
2023; Glatthorn et al., 2023; Wenglein et al., 2024; Wildermuth et al.,
2024a).

The meta-analyses and trend analyses consistently reported stronger
effects of mixed plantations with a higher number of tree species. This
aligns with the main theories and synthesis of evidence on the rela-
tionship between tree species diversity and ecosystem functioning (i.e.
redundancy, insurance, sampling effect, complementarity) (Tilman
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et al., 1997; Loreau, 2000; Hooper et al., 2005; Forrester and Bauhus,
2016), suggesting they are also applicable to the effects of tree diversity
on forest-related biodiversity. In particular, the higher frequency of
negative effects of mixed plantations observed in two-species mixtures
may be due to a strong reliance of forest-related taxa on one of the tree
species from the mixture. In the mixture, the relative abundance of that
tree species would be lower than in the monoculture, which may reduce
the ecological functions it provides, while creating spatial isolation
among its individuals. This may eventually lead to less diverse com-
munities of dependent taxa (Yguel et al., 2011; Van der Plas et al., 2016).
These results highlight the importance of accounting for the number of
species mixed when evaluating the overall effects of mixed plantations
on biodiversity. With few studies providing this information, some of
our comparisons among different moderator classes had to be limited to
studies with two-species mixed plantations to prevent biases. Eventu-
ally, different patterns may emerge when including studies with more
than two species, or when consistently accounting for the influence of
the number of species across different types of studies. In general,
consistent positive effects seen in controlled experiments with multiple-
species mixtures (Fornoff et al., 2019; Skarbek et al., 2020; Guo et al.,
2021; Matevski and Schuldt, 2021; Wang et al., 2019; Vázquez-González
et al., 2024) seem to contrast with often mixed or inconclusive results of
observational studies limited to two-species mixtures (Schuldt et al.,
2022; Schauer et al., 2023; Glatthorn et al., 2023; Wenglein et al., 2024;
Wildermuth et al., 2024a). This apparent contrast highlights the value of
controlled experimental approaches, suggesting they offer a clearer
understanding of biodiversity impacts, as these are less confounded by
species identity or stand variability (Eisenhauer et al., 2016).

Both the trend analyses and the meta-analyses indicate that mixed
plantations combining species in similar abundances have only slightly
stronger effects on biodiversity, than those with uneven species abun-
dances. However, the meta-analyses revealed significant effects only for
plantations with even species abundances. This suggests that not only
the number of tree species in mixed plantations is relevant for forest-
related biodiversity, but also their relative abundance. In mixed plan-
tations with uneven species abundances, the functions expected from the
less abundant species may be performed at a lower intensity, which may
limit the potential benefits of mixing, whereas the opposite would occur
in mixed plantations with even species abundances (Petchey and Gas-
ton, 2006).

Theoretically, mixing species with different traits may help
achieving higher ecosystem functioning and structural complexity,
leading to higher biodiversity. We expected that mixed plantations
composed of both conifers and broadleaves would achieve higher
biodiversity levels, based on the assumption that the underlying differ-
ences in structural and functional traits among both groups (e.g. leaf
structure, root development, wood properties) (Canadell et al., 1996;
Shmulsky and Jones, 2011) would contribute to a higher niche diversity
(Ozanne, 1999; Ampoorter et al., 2020; Juchheim et al., 2020). Never-
theless, our analyses indicate consistently that mixing conifers and
broadleaves does not necessarily result in higher biodiversity. In fact,
the trend analysis shows that significant effects of mixing are less
frequent when both conifers and broadleaves are mixed, compared to
when only conifers or broadleaves are mixed. This is consistent with
studies indicating structural and functional trait convergence among
conifer and broadleaved species (Reich et al., 1997; Zhang et al., 2020;
Higham et al., 2022). Therefore, higher functional diversity may be
better achieved when selecting species based on specific, targeted traits,
rather than simply mixing broad taxonomic groups.

4.4. Taxonomic/functional groups

Due to the lack of data for litter microbiota, soil mesofauna, and birds
for meta-analyses, we were only able to corroborate the positive trends
suggested by the trend analyses for understory plants, soil microbiota,
and above-ground arthropods. Moreover, the meta-analyses only

confirmed significant effects for understory plants. However, the posi-
tive trends depicted by both methods for understory plants, soil micro-
biota, and above-ground arthropods were consistent in each case in
which the comparisons were possible. Additionally, further studies that
did not meet our inclusion criteria or were published subsequent to our
search, consistently support the trends observed for a variety of above-
and belowground arthropod groups, including hemiptera (Fornoff et al.,
2019), hymenoptera (Fornoff et al., 2019; Skarbek et al., 2020; Guo
et al., 2021), spiders (Matevski and Schuldt, 2021), lepidoptera (Wang
et al., 2019), as well as for birds (May-Uc et al., 2020; Vázquez-González
et al., 2024).

The variation in the sensitivity of the diversity of the different
taxonomic/functional groups to mixed plantations, as shown by the
trend analyses, seems to reflect the strength of these groups’ interactions
with the tree community, as well as their dependence on it. Tree
structure and composition directly determines the availability of nesting
and foraging resources for bird species (MacArthur and MacArthur,
1961). Since mixed forests often exhibit higher structural complexity
(Juchheim et al., 2020), it is not surprising that birds show the highest
sensitivity to mixed planting. This result aligns with previous studies
that demonstrate strong relationships between tree and bird species
diversity (James and Wamer, 1982; Beason et al., 2023). Similarly,
canopy structural heterogeneity and tree species composition are key
drivers of arthropod composition in forests (Schaffers et al., 2008; Wil-
dermuth et al., 2024b). Tree species composition also influences leaf
litter composition and production, affecting its chemical properties and
decomposition rates, which in turn impact the litter microbial commu-
nity composition (Scherer-Lorenzen et al., 2007; Jacob et al., 2010).
Additionally, the overstory community influences understory plant
composition both directly, through direct seed dispersal and by medi-
ating factors like permeability to sunlight, water availability, nutrient
cycling, and soil characteristics, among others, and indirectly, by
attracting specific seed-dispersing animals (Oliver and Larson, 1996).
Thus, the frequent effects of mixed plantations on the diversity of these
groups (i.e., above-ground arthropods, litter microbiota, and understory
plants) are not surprising.

In particular, the comparatively higher proportion of negative
response to mixing shown by above-ground arthropods stemmed from
two studies that have little in common, apart from focusing on specific
taxa that are dependent on particular tree species or conditions pre-
vailing in monocultures. The first case involved heliophile beetle species
associated with higher light abundance in monocultures due to a sparse,
mono-layer canopy (Quinto et al., 2021), while the second case involved
staphylinids apparently dependent on abundance of Fraxinus excelsior,
which was highest in pure plantations of this native species, as opposed
to the mixed plantations that included non-native conifer species
(Oxbrough et al., 2012).

The changes introduced by mixed plantations in the above-ground
structure and leaf litter composition may often occur in the short to
medium term. As a result, the responses of both above-ground and litter-
dwelling organisms to mixing are evident even at the generally young
age of the plantations addressed in the studies included here. However,
ecosystem properties like soil chemical and physical characteristics may
require more time to respond to the establishment of mixed plantations,
since these processes are often mediated by long-term interactions be-
tween plant species, soil organisms, and environmental conditions
(Iwashima et al., 2012; Gunina et al., 2017). The lower response of soil
microbiota and particularly soil mesofauna shown by our results, which
is consistent with findings from regionally-replicated tree diversity ex-
periments (Depauw et al., 2024), may simply reflect the early succes-
sional stages of the plantations addressed, at which point such changes
may not have yet fully occurred.

Finally, our evidence base showed a significant bias towards studies
addressing soil microbiota, understory vegetation, and above-ground
arthropods, while most other groups are underrepresented, limiting
the ability to perform specific meta-analyses for them. Moreover, several
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groups, particularly vertebrates other than birds, or saproxylic species,
were absent. This indicates the general patterns identified should be
interpreted with caution, as the inclusion of underrepresented or absent
groups in future studies may significantly affect our conclusions.

4.5. Conclusions

This study represents the first comprehensive and systematic syn-
thesis of scientific evidence on the effects of mixed tree plantations on
biodiversity. Our findings indicate that mixed-species plantations
generally have a positive effect on biodiversity, while negative effects
are rare. Nevertheless, in most cases examined, mixed plantations had
no statistically significant impact on biodiversity. Therefore, when
establishing mixed plantations, it is important to focus on the conditions
that maximize their benefits. Specifically, mixed plantations are most
effective to foster biodiversity when combining more than two species,
and when the component species are mixed in even proportions, which
should maximize complementarity effects in habitat provision. Addi-
tionally, mixed-species plantations appear to be more effective in
enhancing biodiversity in tropical climates. Among taxonomic groups,
the strongest biodiversity effects are observed for birds, litter micro-
biota, and understory plants, although statistical evidence supports
positive effects only for the latter.

Furthermore, the variability in the effects of mixed plantations
associated to the different types of studies and taxa highlights the
importance of considering the potential biases in our evidence base.
Despite the growing body of evidence on the effects of mixed plantations
on biodiversity, further studies are needed to address critical gaps while
enabling more detailed syntheses focused on specific regions, forest
types, and taxonomic groups relevant for management. In particular,
more studies conducted in tropical and continental climates, covering
taxonomic groups other than plants, arthropods, and soil microbiota, as
well as older plantations (>30 years), are required. Additionally,
research assessing indicators of functional and phylogenetic biodiversity
would provide deeper ecological insights. Such targeted reviews would
allow to address groups or conditions that require more complex
experimental designs. For instance, studying the effects of mixed plan-
tations on larger vertebrates or other mobile species with larger spatial
requirements would require experiments at larger spatial scales with
plot sizes sufficient to capture the responses of these species groups.

Moreover, studies investigating the biodiversity effects of mixed
plantations should report essential information (means, standard de-
viations, sample sizes) to facilitate their inclusion in meta-analyses, one
of the most robust approaches for evidence synthesis. Due to their
simplicity, trend analyses allow for the inclusion of a larger number of
studies. However, they are subject to potential biases, as they do not
account for effect sizes or differences in statistical power among studies.
Thus, their results should be interpreted with caution. Tree diversity
experiments, such as those within the TreeDivNet network (https://t
reedivnet.ugent.be/), offer a valuable opportunity to address existing
knowledge gaps by systematically testing the effects of tree species
richness across well-controlled gradients. With regional replication,
balanced and transparent experimental designs, and varying numbers of
tree species, these experiments enable a more refined understanding of
how biodiversity responds to increasing tree diversity.

Unfortunately, because such studies often focus on gradients of tree
diversity rather than explicit comparisons between pure and mixed
plantations, they rarely include terms like “pure” or “mixed” in their
titles, abstracts, or keywords. Instead, they typically refer to concepts
such as “tree diversity.” Moreover, the origin of the stands under com-
parison (e.g., planted vs. natural) is often not emphasized. As a result,
terms like “plantation” and related synonyms are frequently omitted.
These factors led to the exclusion of several potentially relevant studies
from our search, which eventually may have introduced a bias towards
studies using more conventional or explicit terminology.

To reduce the risk of such omission-related bias, future systematic

reviews should consider a broader selection of search terms, and/or
additional search strategies such as citation tracking or the targeted
inclusion of studies from established networks like TreeDivNet. In the
meantime, and as more studies become available, our findings provide
preliminary evidence that increasing tree diversity in plantations can
benefit biodiversity. These insights may inform reforestation, landscape
restoration, and forest management efforts aimed at enhancing biodi-
versity outcomes.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.biocon.2025.111182.
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