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 A B S T R A C T

Large scale monitoring is fundamental for reliably tracking the fate of animal populations under changing 
environments and land-use practices. A common application of large scale population monitoring data is 
to produce indices of temporal change in species abundances, which are used in environmental policy 
assessments of species and biodiversity statuses. For index estimation, spatio-temporal models can be used 
to take advantage of the spatial component of large scale data in order to better capture and understand 
spatial variation in population change. This paper presents a generalized approach to estimating indices of 
relative population change across different spatial and temporal scales from fits of spatio-temporal models to 
population monitoring data. Using flexible specifications of baselines for indices, the approach can be used 
for a range of different comparisons of abundance across space and time, aggregated at small as well as 
large spatial and short as well as long term temporal scales. This is illustrated in an application to Swedish 
monitoring data of the common cuckoo, for which we estimate a range of national, county-wise and fine scale 
indices. An R-package, spotr, that aids computation of indices from fitted models accompanies the paper.
1. Introduction

Estimating the magnitude and nature of population change is of 
primary interest for assessing the status of species and biodiversity, 
particularly in light of current and past land-use and climate change. 
Long-term wildlife monitoring programs covering large spatial areas 
form a backbone for such assessments at regional and national levels. 
Data from such programs are often used to produce indices of absolute 
or relative population size over time. These indices may be used as 
official indicators of species status, as building blocks for biodiversity 
indicators, or may be used among a set of other nature indicators with 
the more general purpose of assessing ecosystem health (Gregory and 
van Strien, 2010).

Indices of species abundance over time are typically derived from 
statistical models of the original data. These models sometimes assume 
that population change is constant over large spatial areas such as en-
tire countries or large strata. In practice population change is likely to 
vary also within large areas (Conn et al., 2015), and there has been an 
increasing recent interest in models that can deal with spatial variation 
in more detail (Johnson et al., 2024; Smith et al., 2019; Wikle, 2003). 
Ignoring spatial variation in population change when it is present could 
lead to poor model fits, possibly adversely affecting inference of large 
scale trends, but more importantly to missed opportunities for assessing 
change at finer spatial resolutions. Mitigation measures, management 
plans, or grassroots initiatives are often implemented at local scales and 
may be better informed by status assessments at those scales (Davey 

E-mail address: jonas.knape@slu.se.

et al., 2010). Responses of populations to climate change may require 
more fine scale spatial estimation (Barnett et al., 2021) as such changes 
can be slow and occur mainly at edges of species ranges. Similarly, 
responses to land-use change may be localized to areas undergoing 
change. Inference about when and where changes in populations have 
occurred can further provide clues for underlying mechanisms that 
may be obscured at the level of regional or national status assessments 
(Bowler et al., 2021).

Spatio-temporal analyses of population change include models as-
suming separate trends across different discrete spatial areas (Sauer 
and Link, 2011) or habitat types (Newson et al., 2009), models that 
link trends to multiple environmental covariates via machine learning 
(Smith et al., 2019), models with trends as an explicit spatio-temporal 
statistical process (Breivik et al., 2021; Vanhatalo et al., 2017), models 
assuming linear but spatially varying trends (Thorson et al., 2023), and 
models including spatio-temporal smoothing (Harrison et al., 2014). 
They range in generality from being customized and tailored to certain 
species Wikle (2003) or monitoring programs (Sauer and Link, 2011) 
to specifications that can be estimated using more generic model fitting 
tools, such as general purpose R packages for GLMM or GAMs.

Abundance indices are usually defined from annual aggregates of 
(possibly weighted) abundance estimates across the whole of a study 
area or over a smaller administrative area (Harrison et al., 2014; Sauer 
and Link, 2011), or from aggregate abundance estimates over the 
season (Dennis et al., 2013). To estimate an index of change, these 
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annual aggregates are then compared to an aggregate over the same 
area in a baseline year or a mean over a period of years (Gregory et al., 
2019; Knape, 2023). Here, we use more flexible specifications of both 
the numerator and baseline (denominator) to present a generalized def-
inition of abundance indices. By allowing the numerator and baseline 
to be specified from arbitrary time periods as well as arbitrary spatial 
configurations, a wide range of comparisons of absolute or relative 
abundances or densities across both space and time fits in under this 
definition. In a case study, we fit four spatio-temporal models based on 
hierarchical GAMs (Pedersen et al., 2019) to data from the Swedish bird 
survey. We show how different specification of indices for these models 
can be used to visualize an array of aspects of spatio-temporal changes 
and their uncertainties at various spatial and temporal scales. An R-
package, spotr, assisting extraction of indices from spatio-temporal 
models fitted to population monitoring data via the R packages mgcv
or brms, or directly from posterior simulations, is provided with the 
paper.

2. Methods

2.1. Data

We consider data in the form of observed abundances, 𝑦𝑖,𝑡, of some 
organism at a set of sites 𝑖 = 1,… , 𝑆 spread out across a spatial 
area (e.g. a country) and for times 𝑡 = 1,… , 𝑇 . We will sometimes 
refer to observed abundances as counts since for birds, the target of 
the case study below, monitoring is usually conducted by counting all 
individuals heard or seen. However, other abundance measures such as 
presence absence or non-integer data such as biomass also fit into the 
general framework (Section 2.2.2). Similarly we will often refer to time 
points as years, but time can also be measured in weeks, days, or other 
units and need not be evenly spaced in time.

Counts at the same site 𝑖 are repeated across time so that there is 
a longitudinal structure to the data. Typically counts from some sites 
will be missing in some years.

Locations of sites should preferably be randomly or systematically 
selected. However, to facilitate volunteer participation some survey 
designs let observers choose sites opportunistically. In this case existing 
sites may disappear and new sites enter the survey as time passes. To 
mitigate bias due to systematic appearance or disappearance of survey 
sites with lower or higher abundances, site effects are often included 
in models fitted to data (Thomas, 1996; van Strien et al., 2000).

2.2. Estimating population indices

We first review a general approach for computing population in-
dices for spatial areas from large scale survey data. We focus on relative 
abundance indices since absolute abundance can often not be reliably 
estimated from population monitoring data. When data are informative 
about absolute abundances, the approach can however be adapted by 
dropping the denominator.

A standard base model for estimating overall population indices is 
built around site and time effects (Fewster et al., 2000; ter Braak et al., 
1994),

𝐸(𝑦𝑖,𝑡) = exp(𝛼𝑖 + 𝛽𝑡)

where 𝛼𝑖 are the site and 𝛽𝑡 the time effects. The stochasticity of 
the response is typically modelled via some appropriate distribution, 
such as a Poisson or negative binomial for counts. To compute global 
population indices for the whole study area in a target year 𝑡 from a fit 
of such a model, one may predict population size across a set of sites for 
year 𝑡 and divide by a predicted baseline population size in a reference 
year (here the first year):

𝐼𝑡 =
∑

𝑖 �̂�𝑖,𝑡
∑

= exp(𝛽𝑡 − 𝛽1)

𝑖 �̂�𝑖,1

2 
The site effects thus cancel when computing the indices and only 
the time effects are needed to compute the index. This is due to the 
fundamental assumption of the model that the time effects are the same 
across the surveyed area.

2.2.1. Indices over geographical areas
More generally, models may include variation in population trends 

across space, and there may be interest in estimating local as well as 
global abundance indices. Generalizing the model above to encompass 
spatially varying trends, as well as nuisance effects, we may write

𝐸(𝑦𝑖,𝑡) = exp(𝜇(𝐬𝑖, 𝑡) + 𝜂(𝑖, 𝑡))

where 𝜇(𝐬𝑖, 𝑡) is a predictor of population size at the spatial location 𝐬𝑖 of 
site 𝑖 and 𝜂(𝑖, 𝑡) contains nuisance effects that capture variation in counts 
that are not of primary biological interest, such as observer effects or 
effects capturing variation in effort or detectability etc. The idea is that 
𝜇(𝐬𝑖, 𝑡) will be used in computing indices while 𝜂(𝑖, 𝑡) will be controlled 
for in estimation but not included when predicting abundance.

Now consider computing an index for a spatial area 𝑆, which could 
be the full area that the survey is targeting such as a country, a 
subregion of that area, for example a county or region, the area covered 
by a specific habitat type, or just a single small-scale pixel. Ideally, 
the index would be computed by integrating the predicted relative 
abundance over all spatial locations in the area:

�̂�𝑆,𝑡 = ∫𝐬∈ 𝑆
exp(𝜇(𝐬, 𝑡))

and the index for 𝑆 formed from

𝐼𝑆,𝑡 =
�̂�𝑆,𝑡

�̂�𝑆,1

Depending on the model, these integrals may be more or less easily 
computed. For example, if 𝜇(𝐬, 𝑡) can be decomposed into additive 
temporal and spatial effects over 𝑆 (but not necessarily across the full 
spatial extent) then the spatial effects may be ignored in computing 𝐼𝑆,𝑡
because the spatial effects cancel in the same way as they did for the 
base model (e.g. Sauer and Link, 2011).

In general it may be difficult to exactly calculate the integrals. 
Instead, they may be approximated by finite sums across a set of 
prediction points, 𝐩1,… ,𝐩𝐾 , in area 𝑆 (e.g. Breivik et al., 2021). The 
prediction points do not have to be identical to the locations of the 
observed data. Assuming that the prediction at point 𝐩𝑘 represent an 
area 𝐴𝑘 of 𝑆, with 

∑

𝐴𝑘 = area of 𝑆, the predicted abundance in 𝑆
may be approximated by the area weighted sum

�̂�𝑆,𝑡 ≈
∑

𝑘
𝐴𝑘�̂�𝐩𝑘 ,𝑡

A good selection of prediction points is important for ensuring 
that the approximation is accurate, but will be model dependent. For 
example, if abundances vary discretely in space, i.e. they are constant 
within each of several discrete geographic units or habitat types within 
𝑆, a single prediction point within each discrete unit may be selected 
and the 𝐴𝑘 set to the area of each discrete unit divided by the area 
associated with the prediction (e.g. Sauer and Link, 2011). On the other 
hand if abundances vary continuously in space, a grid of prediction 
points whose density depends on the spatial resolution of the spatial 
variation of 𝜇(𝐬𝑖, 𝑡) is a better choice (e.g. Bled et al., 2013; Breivik et al., 
2021; Harrison et al., 2014).

The unit of measurement of 𝐴𝑘 does not affect relative indices. It is 
then sufficient to define 𝐴𝐾 as relative weights, for example they could 
be scaled to sum to 1 across the prediction points.
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2.2.2. General indices
Indices can be extended by including more general summaries of 

predictions, both in the target (numerator) and the baseline (denomi-
nator), as well as more general weights.

For this, we let 𝑃  be a set of times over which we want to aggregate 
abundance, for example a set of years or days of a season in a specific 
year. Weights 𝑤𝑘,𝑡 represent the amount that the predicted abundance 
in point 𝐩𝑘 at time 𝑡 contribute to abundance in 𝑆 across the times in 
𝑃  so that
�̂�𝑆,𝑃 =

∑

𝐩𝑘∈𝑆,𝑡∈𝑃
𝑤𝑘,𝑡�̂�𝐩𝑘 ,𝑡

A general relative index can now be computed by using the aggre-
gated abundance over a set of sites 𝑊 , which may or may not be the 
same as 𝑆, and a time period 𝐵 as the reference. For the reference, 
abundance is estimated as
�̂�𝑊 ,𝐵 =

∑

𝐩𝑘∈𝑊 ,𝑡∈𝐵
𝑤∗

𝑘,𝑡�̂�𝐩𝑘 ,𝑡

where the weights 𝑤∗
𝑘,𝑡 correspond to the amount that predicted abun-

dance in site 𝐩𝑘 at time 𝑡 contribute to the aggregate abundance in the 
reference.

The index targeting abundance in 𝑆 over the times in 𝑃  relative to 
abundance in 𝑊  over times in 𝐵 is then defined as

𝐼𝑆,𝑃 =
�̂�𝑆,𝑃

�̂�𝑊 ,𝐵
.

Often each site has the same proportional contribution for all time 
points and it may be suitable to aggregate over time by taking the mean 
abundance over all the time points in 𝑃 . The weights for the target then 
simplify to

𝑤𝑘,𝑡 =
1
|𝑃 |

𝑤𝑘

and the weights for the reference to

𝑤∗
𝑘,𝑡 =

1
|𝐵|

𝑤∗
𝑘

where |𝑃 | and |𝐵| are the number of time points in 𝑃  and 𝐵.
If 𝑆 and 𝑊  are identical, different weights 𝑤𝑘 and 𝑤∗

𝑘 are typically 
not needed and the superscript may be dropped. Weights proportional 
to the number of time points can be used for instance to compare 
average abundance between time periods, or to compare abundance 
across years for seasonal organism like insects.

The generalization to using different sets of sites in the numerator 
and denominator (𝑆 and 𝑊 ) can be used to explore spatio-temporal 
changes in abundance, rather than local changes within 𝑆. This may be 
relevant for example for species undergoing spatial expansions, where 
the baseline might be set to the population density in a source area at 
the beginning of the expansion.

Note that the weights used here are weights for predictions from 
previously fitted models, they should not be confused with weights used 
during model fitting.

2.3. Case study

We use data on common cuckoo (Cuculus canorus) from the Swedish 
bird survey (Lindström and Green, 2020) to illustrate how indices at 
different spatial scales can be computed and visualized using the ap-
proach described above. Worked R-code for the case study is included 
in Appendix A.

The Swedish bird survey scheme started in 1996 and uses a design 
where survey sites are systematically placed on a regular grid across 
Sweden. Sites are surveyed once per year by volunteers doing line 
transect counts of all species heard or seen along the edges of a 2 × 2 
km square. Not all sites are surveyed every year, particularly in the 
northern parts of Sweden that are sparsely populated and where sites 
3 
are generally less accessible. On average, between 400 and 500 out of 
716 sites are surveyed annually but fewer sites were surveyed in the 
first few years.

We fit four different GAMM models to annual site-wise counts of the 
common cuckoo between 2000 and 2020. The data are restricted to be 
within the convex hull of all sites where the species has been found 
at least once. All models use a negative binomial response distribution 
with a log-link and have the same overall structure,
𝑦𝑖,𝑡 ∼ NegBin(exp(𝜇0 + 𝑓1(𝑡) + 𝑓2(𝐬𝑖) + 𝑓3(𝑡, 𝐬𝑖) + 𝛼𝑖 + 𝛾𝑡)),

with an intercept 𝜇0, a smooth temporal component 𝑓1, a smooth spatial 
component 𝑓2 and a spatio-temporal interaction 𝑓3. In addition there 
are random site effects, 𝛼𝑖, and random year effects, 𝛾𝑡. The four models 
share the same specification of the temporal and spatial main effects 
(𝑓1 and 𝑓2) and random effects (𝛼𝑖 and 𝛾𝑡), and differ only in how 
the spatio-temporal interaction term (𝑓3) is specified. The factorization 
into main effects and a spatio-temporal interaction facilitates model 
comparisons, e.g. making it easy to compare models with and without a 
spatio-temporal component, but more importantly allows modelling the 
different components with different degrees of complexity. With spatio-
temporal bird data, there is usually large spatial variation but less 
pronounced temporal variation. For the spatial main effect we therefore 
use a smooth two dimensional function with a high dimensional basis 
(k = 60) to allow capturing fine scale spatial variation in the intercept, 
for the temporal main effect we use a smooth function with a moderate 
basis dimension (k = 9) to allow non-linear trends that are not overly 
wiggly (Fewster et al., 2000), and for spatio-temporal interactions we 
use moderate basis dimensions for both space and time (k = 25 and k = 
9, respectively). The four models treat the spatio-temporal interaction 
as either missing or as smooth or discrete in time and space:

• Model 𝑀0 has no spatio-temporal interaction (𝑓3 = 0).
• Model 𝑀𝑠𝑠 fits a smooth spatio-temporal surface. The spatio-
temporal interaction is constructed from a tensor product of 
temporal and spatial bases using an mgcv interaction of the form
ti(yr, lat, lon, k = c(9, 25), d = c(1,2)). The model 
is a variant of the GAM of Harrison et al. (2014), but separating 
the spatio-temporal variation into main effects and interaction 
and including random site and year effects, 𝛼𝑖 and 𝛾𝑡.

• Model 𝑀𝑠𝑑 fits temporal smooth curves that vary discretely in 
space among counties. The spatio-temporal interaction 𝑓3 is here 
modelled as county specific deviations from the overall trend 
𝑓1, assuming similar smoothness for each county. This is done 
using an mgcv interaction of the form s(yr, county, k = 
9, bs = "fs"). The area specific deviations have penalized first 
derivatives. This may be thought of as random smooth curves 
with random slopes, i.e. county specific trends are shrunk towards 
the overall trend 𝑓1 (Pedersen et al., 2019). On a technical note 
the bs = "fs" term includes random county intercepts which we 
force to zero to reduce confounding with the random site effects 
and make the models more easily comparable.

• Model 𝑀𝑑𝑠 fits smooth spatial surfaces discretely in time using 
an mgcv interaction of the form s(factor(yr), lon, lat, 
k = c(25), bs = "fs"). Here, the spatio-temporal interaction 
is modelled as smooth deviation surfaces for each year, assuming 
similar smoothness for all years. First derivatives are penalized so 
that the model may be viewed as random surfaces shrunk towards 
the overall smooth surface 𝑓2.

We fit the models using the gam function from the mgcv package 
(Wood, 2017) with smoothing penalties selected using REML. For all 
smooth components we use reduced rank thin-plate regression spline 
bases, which are the default in mgcv. These basis do not depend on 
knots and therefore avoid the need to determine their placement. Full 
details of model specification and fitting are given in Appendix A.

An assumption behind the models is that detection rates do not 
change considerably over time or space. A trend in detection rates 
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over time would bias trend estimates if it cannot be controlled for via 
covariates. Spatial variation in detection that cannot be controlled for 
could cause bias in indices comparing abundance between areas, but 
could also lead to bias in temporal trends when abundance trends vary 
across space. Detection rates are not known for the Swedish data, but 
counts follow a standard protocol aimed to reduce the risk of trends in 
these rates.

2.3.1. Other models
Many variations on and alternatives to the above model types can be 

fit with mgcv, or alternatively brms, including generalized linear mod-
els, models with spatially varying slopes, models with random slopes, 
and models with discrete spatial structure interacting with temporal 
components. These packages also support bases for the smooths other 
than thin plate regression splines, including cyclic smooths, Gaussian 
processes, and Markov random fields. For an overview of some of the 
possibilities of mgcv, see Wood (2017) and Pedersen et al. (2019).

2.3.2. Assessing model fit
We assessed model fit using standard tools available in the mgcv

package, and using additional checks of randomized quantile residuals 
(Dunn and Smyth, 1996) and random effects. The checks include inves-
tigating the negative binomial response distribution, and the geograph-
ical and temporal patterns of residuals and random effects (Appendix 
B).

2.3.3. Index estimation
To compute indices for the fits of the models to the cuckoo data, we 

use a grid of points across Sweden with distances of 25 kilometers to 
construct the prediction points, with one point per grid cell and year. 
The grid is restricted to be within the convex hull of all the routes 
where the species has been observed in the same way that the data 
was restricted.

We first compute indices for the whole country. I.e. letting 𝑆 be 
the full spatial extent of the data and using all the grid points to carry 
out the numerical integration. Second, we compute indices for each 
of the 21 counties of Sweden. For this we let 𝑆 be the individual 
counties and use all the points in the grid within the counties for the 
numerical integration. Third, we compute indices for each grid point 
to map changes at a higher spatial resolution.

In prediction for computing indices, we treat site effects as nuisance 
parameters (part of 𝜂). Year effects are treated either as nuisance pa-
rameters, producing less variable and typically more smooth estimates 
of long-term population change, or are included in predictions, which 
will produce non-smooth estimates of annual indices (Knape, 2016). 
Weights are simply set to 1 as each grid point represents the same 
spatial area. For an example of use of non-constant areal weights, see 
Appendix A.

To illustrate use of non-trivial weights and comparisons across space 
we compute indices of how population density in the Swedish counties 
has changed relative to the overall density in year 2000. We then use 
the inverse of the number of prediction points of counties as weights 
for the target, 𝑤𝑘,𝑡 =

1
𝑛𝑆

 where 𝑛𝑆 is the number of prediction points in 
the county 𝑆. For the baseline we use the average density across all of 
Sweden so that 𝑊  is the whole study area and with weights 𝑤∗

𝑘,1 = 1
𝑛

where 𝑛 is the total number of prediction points.
Index computations were done using the index function of the

spotr package (Section 2.4).

2.4. spotr

The R-package spotr accompanying this paper implements com-
putation of indices via post-processing of models fitted via frequentist 
or Bayesian approaches.

To estimate an index, the user first needs to fit an abundance 
model to the data using the R-packages mgcv (Wood, 2017) or brms
4 
Fig. 1. National population indices for the four models, with 95% confidence intervals. 
The baseline for the index is the first ten years (2000–2009). Random year effects are 
treated as nuisance in left column but included in index computation in right column.

(Bürkner, 2018). Next a set of prediction points and any associated co-
variates that the indices should be computed over needs to be defined. 
The spotr function index uses the fitted model and the prediction 
points to compute indices for spatial areas. Uncertainty estimates for 
indices are approximated via simulation. In the case of mgcv, a normal 
approximation is used for simulation (Wood, 2006). Multiple random 
samples are first drawn from an approximate normal posterior distribu-
tion of parameter values (including spline coefficients). The simulated 
parameter values for each sample are then used to compute simulated 
indices. For brms, simulated indices are computed from samples of 
the posterior distribution. In both cases, uncertainty is estimated from 
the variation in indices across simulations. Estimates of indices can 
alternatively be computed directly from simulations across prediction 
points. This may be used for models that are not directly supported by
spotr.

Posterior simulation can be computationally intensive if there are 
many prediction points and/or time points. The implementation there-
fore uses customized C-code for computational efficiency and to avoid 
numerical issues when computing sums of exponentiated terms. For the 
case study, estimating one type of index for a single model took up to 
20 s on a standard desktop computer.

The package may be used to compute indices over geographi-
cal or environmental space (e.g habitat categories or environmental 
gradients), or over combinations of environmental and geographic 
space.

3. Results

All four models showed similar fit, which was deemed acceptable, 
while not perfect (Appendix B). The main discrepancy the checks 
identified was that the random site and year effects deviated from a 
normal distribution, with somewhat wider tails for the site random 
effects, and a few years with lower counts than expected for the year 
effects. Importantly, however, there were no clear temporal or spatial 
patterns to residuals or random effects.
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Fig. 2. Population indices for three select counties in southern (Skåne), central (Dalarna) and northern (Norrbotten) Sweden for the four models, with 95% confidence intervals. 
The baseline for the index is the first ten years (2000–2009). Random year effects were treated as nuisance.
3.1. National indices

There was strong support for spatio-temporal interaction terms for 
all three models with such terms (𝑀𝑠𝑠, 𝑀𝑑𝑠, and 𝑀𝑠𝑑 , Appendix A). 
Population indices at the national scale were similar for all four models 
(Fig.  1). Indices treating random year effects as nuisance show increases 
during the first half and decreases during the second half.

Including year effects in the index suggests strong inter-annual 
variation overlaying the long-term trends. In particular, there were a 
few years with lower counts than otherwise expected (Fig.  1), as also 
indicated by checks of the random year effect residuals (Appendix B).

3.2. County indices

County-wise indices differ more among the different models than 
nation-wide indices, but all spatio-temporal models suggest strong in-
creases in the first half for many counties, particularly in southern and 
central Sweden, and more stable or declining trends in the northern 
counties, followed by stable or declining trends in the second half (Fig. 
2).

To map change across counties we consider two options. The first 
is to select two time points and estimate the change between them 
(using the first of the time points as the baseline for the index of the 
second time point). Using the first and last years as the time points 
shows that long-term change over the entire study period (2000–2020) 
cuckoos declined in the northernmost counties but increased in many 
of the southern counties, and with unclear changes in central and 
southernmost Sweden (Fig.  3, upper panels). Such estimates can be 
sensitive to the selection of time points (Knape, 2023), especially if 
random year effects are included in the computation. Random year 
effects were therefore treated as nuisance.
5 
The second options is to estimate change in average abundance 
between two time periods. Lower panels in Fig.  3 show the estimated 
change from the first to the second decade of the study. That is, indices 
are computed from averages over 2010–2019 relative to averages over 
2000–2009. Here, random year effects were included in the prediction 
since averages across multiple years are less sensitive to short term 
variation. The results show less strong change but also less uncertainty 
than when using the first and last years, which may be expected as 
the time period for the comparison is shorter and averages improving 
the estimation (although the additional variation from the year effects 
could have countered this effect).

As a concise option for illustrating uncertainty, a difficulty for 
maps, we plot the smallest possible change compatible with confidence 
intervals (Fig.  3). In other words, if confidence intervals for the change 
are entirely positive (at the log scale) we show the lower confidence 
limit, and if confidence intervals are entirely negative we show the 
upper limit.

3.3. Indices at higher resolution

Change can also be investigated at finer spatial resolution, partic-
ularly for models 𝑀𝑠𝑠 and 𝑀𝑑𝑠 that have spatio-temporal interactions 
that do not follow county borders. As for the county indices, one can 
map the change between two time points but instead using all the 
points on the prediction grid (Fig.  4). Maps of change for model 𝑀𝑠𝑑
follows county borders as its interaction term depends on space only 
via the county.

Static maps ignore some information as they do not show when 
changes occurred, which is often of interest. One possibility is to show 
the index map for each year, or a sub-sequence of years. Another is to 
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Fig. 3. Estimated relative change (log scale) per county between year 2000 and year 2020 (upper panels) and from the first and second decade (lower panels) for the three 
models with spatio-temporal interactions. Inset plots show uncertainty via the smallest change within 95% confidence intervals. Counties for which confidence intervals overlap 0 
are shown in grey. Random year effects were treated as nuisance in upper panels but included in lower panel estimates.

Fig. 4. Estimated relative change (log scale) from 2000 to 2020 across a grid for the three models with spatio-temporal interactions. Inset plots show uncertainty via the smallest 
change within 95% confidence intervals, with grey representing points where confidence intervals overlap zero. Random year effects were treated as nuisance.
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Fig. 5. Estimated index from 2000 to 2020 across a latitudinal gradient for the three 
models with spatio-temporal interactions, using the first year as the reference. Borders 
around squares indicate that 95% confidence intervals for change relative to year 2000 
include 0. Random year effects were treated as nuisance.

Fig. 6. Estimated annual growth rates from 2000 to 2020 across a latitudinal gradient 
for the three models with spatio-temporal interactions. Borders around squares indicate 
that 95% confidence intervals of growth rates include 0. Random year effects were 
treated as nuisance.

visualize change against a one dimensional gradient (e.g. von Brömssen 
et al., 2021). Because of the elongated shape of Sweden, we use the 
latter approach to show how the estimated index changes across a 
latitudinal gradient (Fig.  5).

One may also use this approach to illustrate changes between 
consecutive years (Fig.  6), these can be seen as estimates of annual 
growth rates. The two models with small scale temporal smoothing 
(𝑀𝑠𝑠 and 𝑀𝑠𝑑) show similar inter-annual changes, while the model 
with only global temporal smoothing (𝑀𝑠𝑑) indicate erratic but mostly 
uncertain changes in specific years.

3.4. Population density

The above indices have all been local, contrasting population size 
over an area to population size in the same area but at another time 
point or period. Information about how abundance is distributed across 
space is then lost. Visualizing this information (Fig.  7) shows that the 
high densities in the north of Sweden have been replaced by high 
densities in the central and south-eastern parts of Sweden.
7 
4. Discussion

The general definition of abundance indices across space and time 
presented here relies on aggregating abundance through sums of
weighted model predictions. The aggregations may be done at small 
or large spatial scales, and at short or long time scales, to highlight 
different features of population change. Annual population indices for 
birds produced from spatio-temporal models (Harrison et al., 2014; 
Sauer and Link, 2011), as well as annual indices from data with 
seasonal structure, similar to official indices derived from butterfly 
counts (Dennis et al., 2013), are included under this definition. The 
approach however also extends to comparisons across space, such as 
comparing population densities or totals across over space and time as 
illustrated in the case study (Fig.  7).

The population indices could be computed from a wide class of 
models fitted to survey data. For GAMs, models can include seasonal 
and/or spatial and spatio-temporal non-linear components (Bürkner, 
2018; Pedersen et al., 2019; Wood, 2017). For insect data collected 
annually over the season, tensor product terms of seasonal curves inter-
acting with year could be used to accommodate changes in phenology 
over time, or models with seasonal curves as smooth random effects 
could be used to incorporate variability in insect emergence among 
years. Models could alternatively have trends that vary by habitat 
types (Newson et al., 2009), across environmental gradients, or have 
combinations of geographical and environmental components. Indices 
could also be computed from fits of model types other than GAMs, 
e.g. from spatial and spatio-temporal random effects models (Vanhatalo 
et al., 2017), or from models estimated by machine learning approaches 
(Smith et al., 2019).

The indices are computed by aggregating weighted predicted abun-
dances across space and/or time. To estimate uncertainty for these 
non-linear transformations of linear predictors, one can use a ma-
trix of predictions whose rows correspond to prediction points and 
whose columns represent uncertainty via random draws. The random 
draws can be simulations from the posterior predictive distribution 
of Bayesian models, or randomized representations of uncertainty of 
frequentist models (Fewster et al., 2000; Wood, 2006). Some care is 
required in the computation of the weighted sums, particularly when 
log-links are used, as sums of exponential terms are sensitive to numer-
ical overflow. Computations handling these issues are implemented in 
the spotr package for mgcv and brms models, or for a matrix of 
random predictions representing uncertainty.

Using weighted predictions to estimate indices can be seen as a vari-
ant of post-stratification, a technique to adjust estimates of population 
level quantities from unbalanced samples (Anganuzzi and Buckland, 
1993). With this technique, predictions are weighted and averaged after 
fitting to correct for the sample imbalance. In our case study, data are 
more sparse in the northern parts of Sweden, particularly in the first 
years of the survey programe. This imbalance, could potentially lead 
to biased trends. Post-stratifying by allowing trends to vary geograph-
ically, then using prediction across a spatially representative grid can 
lead to more accurate estimates. However, while our models suggest 
differences in trends between northern and southern Sweden, we found 
little difference in national scale indices between models allowing 
spatial variation and a model assuming identical relative change across 
space. Indicating that geographical imbalance is not a main issue for 
the cuckoo indices.

The connection to post-stratification could potentially be taken 
further than considered here using ideas behind multi-level regression 
with post-stratification (Gelman and Little, 1997) for inference from 
samples lacking a proper sampling design (Boyd et al., 2023). In the 
context of estimating indices from unbalanced data, this approach 
could use a set of factors that are thought to affect trends and are 
measured at sampled sites and whose total amount are known across 
the target area. These could be included in models using random effects 
and smoothing to deal with small sample sizes, and corrected at the 
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Fig. 7. Estimated population density per county for year 2000, 2010 and 2020 relative to overall density in 2000. Estimates are based on model 𝑀𝑠𝑠, random year effects were 
treated as nuisance.
aggregate level via weights (Authier et al., 2021). Factors could for 
example be habitat and land-use types, including temporal changes 
in such variables. As with most techniques to adjust for imbalance, 
the success of such an approach to correct for imbalance hinges on 
important factors affecting species trends being identified and mea-
sured (Anganuzzi and Buckland, 1993; Conn et al., 2015), and is not a 
replacement for careful sampling design.

The increased flexibility of spatio-temporal models compared to 
models assuming static trends across space opens up for the possibility 
of more accurately capturing population change and makes it possible 
to estimate local change at higher resolution (Harrison et al., 2014). 
However, as sample size decreases at smaller spatial scales, there is 
a greater risk of noise being mistaken for signal and for bias due 
local sampling inconsistencies. I.e. generally larger contributions of 
stochastic events affecting estimates and stronger sensitivity to model 
assumptions. The extent of improvements gained from spatio-temporal 
models will therefore depend on the ability of models to capture the 
true spatial structure of variation in population change. An important 
component in analysis is therefore to assess that models can reasonably 
capture important features of the data. Strategies for checking models 
used to produce abundance indices has received fairly little attention in 
the literature. A perfectly well fitting model is usually hard to achieve 
for large data sets, as seen in the case study, but not all lack of fit 
will have consequences for derived indices. Future research could focus 
on identifying what model assumptions are most crucial for estimating 
reliable indices under specific circumstances, and develop targeted 
checks of such assumption.

4.1. Conclusions

Many types of indices of absolute or relative population abundances, 
or of biodiversity, can be formed from weighted sums of predictions 
from spatio-temporal abundance models. Importantly, indices at small 
scales can form an evidence base for local population and biodiversity 
management and conservation actions. At these local scales data are 
usually limited and it is too costly to carry out local monitoring 
with sufficient precision. The model based approach uses information 
throughout the study area to improve precision. The success of this 
hinges on model assumptions being reasonably accurate, but if well 
8 
specified, spatio-temporal models could mitigate some of the sparseness 
of local data. Future work could look into the gains in precision at local 
scales that spatio-temporal models can provide under various scenarios, 
and what types of models best provide them.
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