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A B S T R A C T

In response to the occurrence of several large wildfire events across the world in recent years, the question of the 
extent to which climate change may be altering the meteorological conditions conducive to wildfires has become 
a hot topic of debate. Despite the development of detection and attribution methodologies for climate change 
impact assessment in the last decade, studies dedicated explicitly to wildfire, or otherwise extreme ‘fire weather’, 
are still relatively few. Here, for the first time, a global probabilistic framework is developed to examine the 
extent to which externally forced changes in historical global mean surface temperature anomalies (GMSTA) 
affected the intensity and duration of fire-conducive weather extremes, defined by the Fire Weather Index (FWI). 
We use six climate model large ensembles (>10 ensemble members) from the sixth phase of the Coupled Model 
Intercomparison Project (CMIP6), to extract the forced response of GMSTA. After evaluating the performances of 
these climate models in simulating fire weather extremes, we examine changes in the probability of fire weather 
extremes using extreme value distributions, fitted with annual maxima in both FWI intensity and duration, and 
scaled to externally forced GMSTA. Global probability ratio maps are used to quantify the influence of rising 
global temperatures on the changing frequency and duration of FWI extremes, and highlight the sensitivity of 
estimates of historical changes in extreme fire weather to the climate model ensemble chosen for the analysis. A 
multi-model synthesis accounting for performance of each model confirms an increasing trend in the probability 
and duration of extreme fire weather linked to externally forced changes in GMSTA, with the largest increases 
found in southern North America, south-eastern Europe and parts of Australia. The results of the selective 
synthesis differ from those obtained via a conventional multi-model averaging that does not account for model 
performance, thereby demonstrating the value added by model evaluation and selection in maximising the 
robustness of probabilistic attribution studies.

1. Introduction

The frequency and severity of large wildfire events have increased 
globally in recent years (World Meteorological Organization, 2021). 
Particularly destructive fires have fostered debate on how the role of 
climate change may have altered the weather conditions favourable to 

wildfires (Boer et al., 2020; Bowman et al., 2020; Ellis et al., 2022). 
Efforts to quantify the role of climate change in altering the frequency 
and magnitude of weather and climate phenomena, broadly termed, 
climate change attribution, have developed extensively during the last 
decade and form an important part of climate change impact assess-
ment. However, attribution studies focused specifically on wildfire 
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events are rare in comparison to those focused on other, more wide-
spread, extreme events, such as heatwaves, meteorological floods, and 
droughts.

The general scarcity of climate change impact assessment related to 
wildfire is surprising given that the link between wildfires and weather 
is well-established and widely used in operational fire management, e.g., 
through the reliance of forest management agencies on the Canadian 
Fire Weather Index System (Van Wagner, 1987) and the United States 
National Fire Danger Rating System (Deeming et al., 1977). The Atlas of 
Mortality and Economic Losses from Weather, Climate and Water Ex-
tremes (1970–2019) (World Meteorological Organization, 2021) cate-
gorises wildfires as part of the ‘climatological’ subgroup of hazards. 
Strictly speaking, however, wildfires are not meteorological events, 
distribution and properties of fuels, ignition patterns are controlled by 
climate variability and human land use patterns. These interactions 
make controls of fire activity more complex, and their relationship to 
weather and climate more obscure. With respect to attribution, the 
confidence and reliability of studies focused on specific events is limited 
by a poorer understanding of the occurrence mechanism of wildfires in 
comparison to other extremes (National Academies of Science, Engi-
neering and Medicine, 2016). Additionally, estimates of climate change 
impact upon the future wildfire activity is associated with uncertainty 
relating to the choice of fire weather indicators (Liu et al., 2022a), and 
the climate models used in the analysis (Philip et al., 2020).

Research on the potential impact of climate change on extreme 
wildfires, particularly when framed in the context of attribution, re-
mains scarce, and even more so on a global scale, with only a few global 
studies having examined changes affecting fire-prone weather, so called 
fire weather. For instance, according to Abatzoglou et al. (2019), 22 % of 
the world’s burnable land area is experiencing anthropogenically- 
induced increases in extreme fire weather indices by 2019, including 
much of the Mediterranean and Amazon. Jain et al. (2022) found trends 
in extreme fire weather across almost half of the global burnable area 
based on the reanalysis data from 1979 to 2020. Additionally, Liu et al. 
(2022a) showed that, across more than 40 % of the world’s fire-prone 
regions, extreme fire weather became at least four times more likely 
due to global temperature increases between 1980 and 2018. There is 
enormous potential for regional- and local-scale studies to support and 
test global-scale frameworks’ findings. Recent case studies have been 
undertaken in regions of Australia (Tett et al., 2018; Lewis et al., 2020; 
van Oldenborgh et al., 2021a), Canada (Kirchmeier-Young et al., 2017), 
Sweden (Krikken et al., 2021), Siberia (Liu et al., 2022b) and South 
Africa (Liu et al., 2023). The emergence of the World Weather Attribution 
initiative has provided a platform for the dissemination of rapid attri-
bution analyses, often in the immediate aftermath of wildfire events (e. 
g., Barnes et al., 2023; Kimutai et al., 2024). Nevertheless, studies 
focused on the impact of climate change on wildfires, or otherwise 
extreme fire weather events, are rare in comparison to other weather 
and climate extremes.

While event-based regional studies are an important supplement to 
global analysis, the extent to which their results can be integrated is 
limited by a lack of consistency in the spatio-temporal definition of the 
event and the choice of methodology. In turn, this limits our ability to 
gauge changes in the frequency of fire-prone conditions and their im-
pacts across the range of Earth’s biomes. In that sense, Liu et al. (2022a)
provided clarity on the sensitivity of the findings of a global empirical 
probabilistic methodology in the definition of extreme fire weather. 
Such analysis of observational data is an important first step in event- 
based attribution studies (e.g., Liu et al., 2022b, 2023). In addition, 
similar methods are frequently applied to transient simulations from 
model ensembles (including those that contribute to the Coupled Model 
Intercomparison Project), either as an alternative to or to supplement 
results from attribution approaches that target fixed forcing runs (Philip 
et al., 2020).

The role of climate models is indeed vital to provide robust climate 
change impact assessment. Despite the widespread use of climate model 

ensembles in climate change impact assessment, many attribution 
studies are based on a small number of models (Kirchmeier-Young et al., 
2017; Kirchmeier-Young et al., 2019; Liu et al., 2022b), or otherwise 
perform no more than a cursory check of model output (Kirchmeier- 
Young et al., 2017). All climate models exhibit (potentially large) biases, 
particularly in the representation of extremes (e.g., Vautard et al., 2020). 
The capability of climate models to simulate statistics of extreme events 
that are comparable to the observed one has not always been given due 
attention, leading to uncertainties in the findings drawn from the 
analysis of simulations from different climate models. This set of cir-
cumstances introduces new questions about the suitability of the chosen 
climate model for assessment of climate change impact arising from a 
specific extreme event (Philip et al., 2020). As noted by Philip et al. 
(2020) in their documentation of recommended protocols for probabi-
listic attribution of extreme events, it is important to examine a series of 
climate models to understand the potential uncertainties and include a 
thorough model evaluation.

The fast-paced development of probabilistic extreme event attribu-
tion analysis during the last decade has been driven by the increased 
capacity for climate models to simulate large ensembles. Climate model 
large ensembles provide: (a) an opportunity to study multiple re-
alizations and thus longer time series than what is possible with obser-
vations alone, which means that the detection and quantification of 
extreme thresholds and distributions should be more robust, (b) a ho-
mogeneous representation of climate, independent of the spatial and 
temporal distribution of the observational monitoring network, and (c) a 
better understanding of the role of externally forced trends (Deser et al., 
2020). Notably, the use of large ensembles (defined here as >10 re-
alizations of the same model) of coupled general circulation models 
enables smoothing the impact of internal variations and extraction of 
more robust externally forced signals, as well as for global mean surface 
temperatures, which is not possible with single-member ensembles 
(Milinski et al., 2020; Maher et al., 2021).

With a growing number of probabilistic attribution studies dedicated 
to wildfire, or extreme fire weather, across the globe, there is a clear 
need to identify and understand multiple sources of uncertainties. Here, 
we use established statistical methodologies applied to six large en-
sembles from the sixth phase of the Coupled Model Intercomparison 
Project (CMIP6) to assess changes in the probability of both the intensity 
and duration of extremes in the Canadian Fire Weather Index) using a 
Generalised Extreme Value (GEV) distribution, fitted with annual 
maxima and scaled to historical externally forced global mean surface 
temperature anomalies (GMSTA). In terms of the analysis of extremes in 
fire weather intensity, the current analysis builds on the empirical- 
statistical approach presented by Liu et al. (2022a). For the first time, 
we apply this approach to the output of multiple large ensembles from 
CMIP6 models. The extension of the same approach to quantify trends in 
the duration of extreme fire weather events also constitutes a novel 
application. We place particular emphasis on model evaluation in order 
to present the most robust possible multi-model assessment of historical 
changes in extreme fire weather, and to highlight the added value of an 
objective model selection step in attribution analysis.

The remainder of this paper is structured as follows. In Section 2, 
details of the CMIP6 data and methodology are presented, including the 
selection of a definition for global fire weather extremes. In Section 3, 
results of the changing likelihoods in extreme fire weather and a multi- 
model synthesis are presented. In Section 4, we conclude and make a set 
of recommendations for future probabilistic attribution of extreme fire 
weather episodes.

2. Methods and data

2.1. Defining fire weather extremes

Fire-climate studies have utilised a range of different indices and 
metrics to represent fire-conducive meteorological conditions. Such 
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indicators are typically defined by national organisations focused on 
disseminating information about fire danger. Examples include the 
McArthur Forest Fire Danger Index from the Centre for Australia 
Weather and Climate Research (McArthur, 1967) and the Keetch–Byram 
drought index from the US National Fire Danger Rating System 
(Deeming, 1972). The set of indices that form the Canadian Fire Weather 
Index System (CFWIS; Van Wagner, 1987) are particularly well known 
and, despite the system’s original development for Canadian pine for-
ests, widely applied across the world, for instance as a key input for both 
the European Forest Fire Information System and the Global Wildfire In-
formation System (Gallo et al., 2023). The system combines daily read-
ings of temperature, precipitation, relative humidity, and wind speed to 
determine a range of fire danger indicators. These include fire fuel 
moisture-related indices (Fine Fuel Moisture Code, Drought Code, and 
Duff Moisture Code), as well as fire behavior indices (Initial Spread 
Index and Build-Up Index), which rely on different subsets of the four 
climate variables. These indicators collectively contribute to a numeri-
cal rating of overall fire danger, known as the Fire Weather Index (FWI) 
(Vitolo et al., 2020). CFWIS indicators have been used extensively to 
define fire-climate relationships, notably in the context of attribution (e. 
g., Du et al., 2021; Krikken et al., 2021; Barnes et al., 2023). The 
appropriateness of the indicator, whether from the CFWIS or an alter-
native system, is an important consideration and the choice has sub-
stantial dependence on circumstance and location (Liu et al., 2022a, 
2022b). Here, FWI is selected as the most appropriate fire weather in-
dicator for our analysis based on its widespread applicability and 
familiarity.

Choosing an appropriate set of spatio-temporal parameters by which 
to define weather or climate extremes is a crucial step in climate change 
impact assessment, since the findings and interpretation of the results 
both rely upon this definition. To this end, fire weather extremes are 
defined in terms of the danger posed irrespective of the meteorological 
drivers (Philip et al., 2020; Krikken et al., 2021; van Oldenborgh et al., 
2021b). Specifically, fire weather extremes are defined in two ways: 

(i) Extremes in fire weather intensity are defined by the annual 
maxima in 7-day averaged FWI (FWIx7day). The choice of 7-days 
for averaging is consistent with previous efforts to attribute FWI 
extremes (e.g., Krikken et al., 2021; Liu et al., 2022b, 2023).

(ii) Extremes in fire weather duration are defined by the annual 
maxima in the number of consecutive days for which FWI is 
above the local historical (1979–2014) 90th percentile 
(FWIxCD90).

Extremes in fire weather intensity and duration are analysed inde-
pendently at all target grid points. To avoid constraining the spatial 
definition of extreme fire weather at each target grid point, and to ac-
count for model noise, spatial maxima are determined in FWIx7day and 
FWIxCD90 within a predefined area. Ideally, spatial maxima should be 
taken across a climatologically homogeneous region (Philip et al., 
2020), but for a global analysis, the definition needs to remain consis-
tent. In an assessment of observed trends in fire weather extremes (also 
performed independently at each grid point), Liu et al. (2022a, 2022b)
considered annual maxima within a surrounding spatial domain defined 
by a longitude-latitude box. Arguably, such a definition is unsuitable 
when applied at the global scale given that the actual size of the spatial 
domain defined by longitude differs substantially between the equator 
and the poles. Here, for each target grid point, we determine the maxima 
in FWIx7day and FWIxCD90 across all grid points within 250 km. Note 
that our results do not significantly change using a 3-, 5- and 10-day 
running average to estimate fire weather intensity (not shown). Simi-
larly, for the extreme fire weather duration, our results do not signifi-
cantly change using the 95th percentile to calculate the number of 
consecutive days above an extreme threshold (not shown).

2.2. Data

Simulations of the historical FWI data are derived from CMIP6 
models, which differ considerably in terms of ensemble size. To ensure 
that the most extreme events are sufficiently well captured, we selected 
a subset of models with an ensemble size of at least 10 members for the 
period 1850–2014. The definition for a large ensemble is unclear; in the 
case of CMIP6, the number of available realizations ranges between 1 
and 50. Here, a threshold of 10 realizations is taken, which results in a 
subset of six ensembles, details are given in Table 1. While the ensemble 
size varies within our subset (from 10 for CNRM-ESM2-1, INM-CM-5- 
0 and MPI-ESM1-2-HR to 50 for CanESM5), we do not anticipate 
strong differences in the representation of internal variability. A 
threshold of 10 realizations also offers comparative consistency with the 
ensemble size of other models used in probabilistic attribution of fire 
weather extremes (e.g., Krikken et al., 2021). Model performance can 
have considerable spatio-temporal dependency, and these six models 
have previously been shown to exhibit comparative strengths and 
weaknesses with respect to the representation of fire weather at regional 
scales (Gallo et al., 2023). In this sense, the six large ensembles offer a 
reasonable approximation of the full range of performance across 
CMIP6.

FWI was calculated for each ensemble using the R package cffdrs 
(Wang et al., 2017). FWI is typically defined by observations of tem-
perature, relative humidity and wind speed recording at noon local time, 
in addition to 24-h cumulative precipitation. To ensure a consistency 
across the global analysis, daily values of maximum temperature, min-
imum relative humidity, mean surface wind speed and total precipita-
tion are taken as proxies for noon conditions. Such an approximation has 
previously been applied in the derivation of CFWIS indicators from 
climate models (e.g., Jolly et al., 2015; Calheiros et al., 2022; Gallo et al., 
2023).

Data from the Global ECMWF Fire Forecast model (hereafter GEFF- 

Table 1 
Details of the six CMIP6 models used in the analysis.

Model Institution Members Resolution Reference

Canadian Earth 
System Model 
version 5 
(CanESM5)

Canadian Centre for 
Climate Modelling 
and Analysis 
(CCCma)

50 128× 64 
∼ 2.8◦ Swart et al. 

(2019)

Atmosphere- 
Ocean 
General 
Circulation 
Model 
(CNRM-CM6- 
1)

Centre National de 
Recherches 
Météorologiques 
(CNRM)

30 256× 128 
∼ 1.4◦ Voldoire 

et al. 
(2019)

the Earth system 
(ES) model of 
the second 
generation 
(CNRM- 
ESM2-1)

Centre National de 
Recherches 
Météorologiques 
(CNRM)

10 256× 128 
∼ 1.4◦ Séférian 

et al. 
(2019)

the fifth 
generation of 
the INMCM 
climate model 
(INM-CM-5- 
0)

Institute for 
Numerical 
Mathematics (INM) 
of the Russian 
Academy of Sciences

10 180× 120 
2× 1.5◦ Volodin 

and 
Gritsun 
(2018)

the latest 
version of the 
IPSL climate 
model (IPSL- 
CM6A-LR)

Institut Pierre-Simon 
Laplace Climate 
Modelling Centre 
(IPSL CMC)

32 144× 143 
∼ 2.5×

1.3◦

Boucher 
et al. 
(2020)

the Earth 
System Model 
version 1.2 
(MPI-ESM1- 
2-HR)

Max Planck Institute 
for Meteorology 
(MPI-M)

10 384× 192 
∼ 0.9◦ Müller 

et al. 
(2018)
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ERA5) (Vitolo et al., 2020) is used as an observational reference for the 
period 1979–2020. GEFF-ERA5 is produced by the European Forest Fire 
Information System of the Copernicus Emergency Management Service 
and provides daily FWI data driven by input fields from the ERA5 
Reanalysis (ERA5; Hersbach et al., 2020). GEFF-ERA5 has been shown to 
be a realistic representation of real-world day-to-day conditions in 
previous work (e.g., McElhinny et al., 2020; Gallo et al., 2023) and is an 
appropriate reference against which model outputs are compared (see 
Section 2.4 in detail). We note the discrepancy between how FWI is 
determined in GEFF-ERA5 and derivation of FWI in the CMIP6 ensem-
bles, in which the four meteorological components are taken as proxies 
for noon conditions. However, a comparison of FWI from GEFF-ERA5 
and FWI calculated independently using the four meteorological com-
ponents from ERA5 (mirroring the approach applied to CMIP6) found 
little difference between the two (Gallo et al., 2023). It should also be 
noted that, by default, GEFF-ERA5 does not implement overwintering 
and that the user is free to determine the start and duration of the fire 
season (Vitolo et al., 2020; Liu et al., 2022a, 2022b). Our derivation of 
FWI from the CMIP6 ensembles is consistent with this setup.

To limit the attribution analysis to ‘fire-prone’ regions only, we use 
an observational dataset to isolate only those areas where evidence of 
past fires has been recorded. Monthly burned area data from the Global 
Fire Emissions Database Version 4 (GFED4; Randerson et al., 2018) were 
used to identify fire-prone grid points. A 9-point smoothing with a 
quadrilateral curvilinear grid of GFED4 data on each grid point was 
employed to account for the spatial randomness of fire occurrence 
during the relatively short period for which GFED4 data is available 
(1996–2016; van der Werf et al., 2017).

2.3. Methodology

A probabilistic framework based on extreme value theory is used to 
estimate changes in the probability of extreme fire weather. Annual 
maxima of both intensity (FWIx7day) and duration (FWIxCD90) across 
all 165 years and all ensemble members from models are pooled and 
fitted to the GEV distribution. To investigate the dependence of the fit on 
global warming, both the FWIx7day and FWIxCD90 distributions are 
scaled with the corresponding 48-month running average in the his-
torical externally forced global mean surface temperature anomalies 
(GMSTA), which is defined as the ensemble mean of each CMIP6 model 
as proposed in Deser et al. (2014). In contrast to taking GMSTA for each 
ensemble member, this approach facilitates the estimation of respon-
siveness to externally forced global temperature changes. The scaled 
(and thus non-stationary) distribution is constructed under the 
assumption that the location parameter μ and the scale parameter σ have 
the same exponential dependency on externally forced GMSTA, for 
which the ‘dispersion’ ratio σ/μ and the shape parameter ξ remain 
constant (e.g., van der Wiel et al., 2017; van Oldenborgh et al., 2018; 
Otto et al., 2018; Eden et al., 2018; Krikken et al., 2021; Philip et al., 
2020): 

μ = μ0 • exp
αT
μ0

(1) 

σ = σ0 • exp
αT
μ0

(2) 

where μ0 and σ0 are the fit parameters of the stationary GEV distri-
bution; α, as a function of four-year smoothed GMST anomaly T, rep-
resents the trend in fire indicator maxima. The three parameters μ, σ and 
ξ indicate the mean, the variability in the tail and the bound of the tail of 
the distribution, separately. In this case, the exponential dependence on 
the covariate serves as a convenient method to ensure a distribution that 
starts from zero and avoids negative FWI values (van Oldenborgh et al., 
2021a). At each grid point, probabilities p0 and p1 of a given fire 
weather extreme occurring in periods of low and high externally forced 
changes in GMSTA, i.e., low and high anthropogenic forcing 

(1880–1884 and 2010–2014 respectively) are estimated. We note that 
the difference in GMSTA between these two periods differs among the 
six model ensembles (a range of 0.7 ◦C to 1.3 ◦C), to which the results 
may show some sensitivity. Changes in likelihood, expressed as the 
‘probability ratio’ (PR) p1/p0, are quantified across all fire-prone re-
gions around the world, as identified in the GFED4 dataset. Additionally, 
changes in extremes in fire weather intensity are expressed as a per-
centage change in magnitude (%MAG). Correspondingly, changes in 
extremes in fire weather duration are expressed as a change in the 
number of consecutive days (durDays).

The scaled GEV approach is well-established and has been previously 
applied in the context of probabilistic attribution to extremes in heat (e. 
g., van Oldenborgh et al., 2018; Otto et al., 2018; Eden et al., 2018), 
precipitation (e.g., van der Wiel et al., 2017) and, more recently to ex-
tremes in fire weather intensity (Krikken et al., 2021). Here, for the first 
time, the approach is also applied to the duration and intensity of 
extreme fire weather on a global scale. The implementation of the 
approach also marks its first global application to fire weather extremes 
from multiple large ensembles of the six CMIP6 models. To ensure that 
the GEV is a good approximation for FWIx7day and FWIxCD90 data, we 
performed a goodness of fit test for each (see Figs. S1-S4 in supple-
mentary material). Overall, we found that the GEV exhibits a strong fit 
when applied to output from model-simulated FWIx7day and FWIxCD90 
across more than 99 % and 90 % of the world’s fire-prone areas 
respectively.

2.4. Model evaluation, selection and multi-model synthesis

In order to present the most robust possible assessment of historical 
changes in extreme fire weather, we present a synthesis of results across 
the set of model ensembles following a rigorous point-scale evaluation of 
each model. The ability of climate models to represent a particular type 
of extreme event is critical and can influence the accuracy and uncer-
tainty of probabilistic attribution analysis (Philip et al., 2020). Here, we 
evaluate the capacity of each of the six CMIP6 models to represent 
realistic distributions of fire weather extremes. In line with the approach 
used in previous work (e.g., van der Wiel et al., 2017; van Oldenborgh 
et al., 2018; Otto et al., 2018; Eden et al., 2018; Krikken et al., 2021), the 
basis of this evaluation is the comparison of a stationary GEV distribu-
tion (i.e., not scaled by GMSTA) fitted with model-simulated annual 
maxima and a GEV distribution fitted with corresponding data from the 
fire danger reanalysis, GEFF-ERA5 (Vitolo et al., 2020). Assessment of 
the similarity of the distribution parameters, and particularly the 
dispersion ratio and shape parameter of each fit, reflects the suitability 
of each model at each target grid point. Our pointwise definition of 
model performance is based on the best estimates of the dispersion ratio 
and shape parameters of the model stationary GEV fit; sufficiently strong 
model performance is assumed where those estimates fall within the 95 
% confidence intervals of the dispersion ratio and shape parameter from 
the ‘observed’ GEV fit (fitted with GEFF-ERA5 data) following a 1000- 
sample non-parametric bootstrapping method (Efron and Tibshirani, 
1998; van der Wiel et al., 2017).

Combining results from different models for probabilistic attribution 
often relies on a conventional averaging of results across multiple 
models, without explicit consideration of the extent of inter-model 
spread or individual model performance. Here, we present a selective 
synthesis of model results in which, for each grid point, results are 
combined across those models that meet the evaluation criteria.

3. Results

Focus is initially given to model evaluation and detection of changes 
in the probability of extreme fire weather intensity (Section 3.1) and 
duration (Section 3.2). This is followed by point-wise model selection 
and a multi-model synthesis, identifying regions where changes in the 
probability of extreme fire weather intensity and duration are the more/ 
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least robust across the different climate model large ensembles model 
agreement (Section 3.3). All the results are made throughout the world’s 
fire-prone regions.

3.1. Extremes in fire weather intensity

3.1.1. Model performance in simulating the extremes in fire weather 
intensity

To obtain a preliminary insight into the performance of the six 
CMIP6 large ensembles, simulated global patterns of both the dispersion 
ratio (σ/μ) and shape parameter (ξ) for GEV distribution fitted with 

Fig. 1. Dispersion ratio (σ/μ) derived from the stationary GEV fitted with FWIx7day for the period 1979 to 2014 from the GEFF-ERA5 reanalysis (a) and six CMIP6 
ensembles (b-g); corresponding differences between the reanalysis and the six CMIP6 models are shown from (h) to (m). Similarly, Shape parameter (ξ) from the 
GEFF-ERA5 reanalysis (n) and six CMIP6 ensembles (o-t) with corresponding differences between the reanalysis and the six CMIP6 models from (u-z). Values in the 
bottom-left corner of each panel from (b-g) and (o-t) show the root mean square error (RMSE) and spatial correlation coefficient (r) of each six CMIP6 ensembles; 
while that from (h-m) and (u-z) show the percentage of overestimations (%(+)) and underestimations (%(− )) among all the grid cells.
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FWIx7day, are compared with the GEFF-ERA5 reanalysis for the period 
from 1979 to 2014, with corresponding differences all shown in Fig. 1.

Concerning the dispersion ratio, GEFF-ERA5 produces high values in 
northwestern and northeastern North America, some parts of equatorial 
South America, equatorial Africa, and northern and southern Asia 
(Fig. 1a). According to the root-mean-square errors (RMSE) and spatial 
correlation (r) between the reanalysis and models, CNRM-CM6-1 
(Fig. 1c) and IPSL-CM6A-LR (Fig. 1f) show reasonable level of agree-
ments (r ~ 0.7) with GEFF-ERA5 in many fire-prone regions of the 
world, despite the apparent inter-model differences in northern South 
America, equatorial Africa and northern Asia, while CanESM5 produces 
the lowest correlation (Fig. 1b). CNRM-ESM2-1 (Fig. 1d), INM-CM5- 
0 (Fig. 1e) and MPI-ESM1-2-HR (Fig. 1g) display a certain degree of 
similarity with GEFF-ERA5 (0.2 < r < 0.5), although they still over-
estimate (%(+) > 50 %) the dispersion ratio, particularly around 
equatorial and southern South Africa, Central Asia (Fig. 1j, k & m). The 
highest overestimates (>80 %; CanESM5) of the extent of the dispersion 
ratio are shown in northern and southern North America, central and 
southern Asia, northwest, and southeast Australia (Fig. 1h). It is worth 
noting that there are apparent underestimations across eastern Europe 
presented by CNRM-CM6-1 (Fig. 1c), INM-CM5-0 and IPSL-CM6A-LR 
(Fig. 1i, l & k).

Concerning the shape parameter (ξ) of the GEV fitted with GEFF- 
ERA5 maxima, the highest values appear in central and eastern North 
America, northern Europe, and some parts of northern and southern Asia 
(Fig. 1n). CanESM5, CNRM-CM6–1 and IPSL-CM6A-LR are the most 
consistent models when compared with the GEFF-ERA5 data, exhibiting 
relatively small RMSE and a strong spatial correlation (r) when 
compared with the other ensembles (Fig. 1o, p & s), while INM-CM5- 
0 produced the largest RMSE values (0.22) and the weakest spatial 
correlation (0.15; Fig. 1r). The other two models, CNRM-ESM2-1 and 
MPI-ESM1-2-HR, show similar results in terms of RMSE and spatial 
correlation, with inter-model differences especially apparent in north-
western and eastern North America, central Europe and northeastern 
Asia (Fig. 1q & t). Fig. 1u-z shows the spatial differences between GEFF- 
ERA5 and the models with the shape parameter overestimated in most of 
the world, indicating a heavier tail behavior related to the extremes in 
the distribution. Again, CanESM5 (Fig. 1u) and CNRM-ESM2-1 (Fig. 1w) 
show the highest degree of overestimations (>60 %), mainly in northern 
Asia. In general, the representation of the shape parameter in the models 
is generally less spatially consistent than that of the dispersion ratio.

In summary, the distribution of annual maxima taken from the 
CMIP6 ensembles is in reasonable agreement with that of GEFF-ERA5 
annual maxima, although there are some notable differences at the 
regional scale. Compared to GEFF-ERA5, CNRM-CM6-1 and IPSL-CM6A- 
LR are the best-performing of the six climate models in terms of their 
representation of the dispersion ratio and shape parameter. CanESM5 
and INM-CM5-0 show the lowest-performing skills among the six CMIP6 
models, as already shown using different FWI statistics in Gallo et al. 
(2023).

3.1.2. Historical changes in extreme fire weather intensity
Based on the global probabilistic method introduced in Section 2.3, 

the changes in the likelihood of extreme fire weather (FWIx7day) related 
to externally forced historical changes in GMSTA are quantified using 
the GEV-scaling method for each climate model. For each grid box, the 
95th percentile of the annual maxima in modelled extreme fire weather 
from 1850 to 2014 was chosen as a threshold defining extremes, from 
which we estimated the return level of events. Global maps showing the 
probability ratio (PR) and change in magnitude (%MAG) between pe-
riods of low and high historical anthropogenic forcing are presented in 
Fig. 2.

Overall, there are several similarities in spatial patterns of both PR 
and %MAG across the six CMIP6 large ensembles. In relation to exter-
nally forced global warming, a 2-fold increase in the probability (PR >
2) of extreme fire weather is found in many regions across the globe, 

such as central and southern North America, northern South America, 
and southern Africa (Fig. 2a-f). This corresponds to an increase of at least 
10 % in the magnitude of extreme fire weather (Fig. 2g-l). Regions with 
increasing likelihoods in %MAG are mainly like those identified in PR 
for each model. In contrast, regarding the probability of extreme fire 
weather conditions, northern North America, central Africa and South-
east Asia reflect a decrease in likelihood (PR < 1) across all six climate 
models (Fig. 2a-f). Note that these simulated decreases in the probability 
of extreme fire weather conditions, which are here found to be related to 
historical externally forced warming in GMSTA, are generally in line 
with the results of observed global fire weather associated with climate 
change (Liu et al., 2022a). The decreases are likely due to the fact that 
the regional impacts of climate change are influenced not only by the 
global warming temperatures but also by other climatic variables, such 
as precipitation patterns and atmospheric moisture content, which are 
particularly significant in high-latitude areas of the Northern Hemi-
sphere and in warm and humid tropical regions (Liu et al., 2022a).

There are some similarities in the spatial patterns across the six 
CMIP6 models, but many areas show sensitivity to the choice of model. 
For instance, CanESM5, INM-CM5-0 and, particularly, IPSL-CM6A-LR 
show a strong decrease in the likelihood (PR < 1) of FWIx7day over 
northern North America (Fig. 2a, d & e), while other models present a 
relatively small increase in the likelihood of such conditions (PR > 1; 
Fig. 2b, c & f). The CNRM-CM6-1 and INM-CM5-0 models are the only 
ones showing a decrease in the likelihood of extreme fire weather in 
central North America (Fig. 2b) and in many parts of South America 
(Fig. 2d), respectively. Such discrepancies between models are also 
found in northern and central Asia: i) decreasing PR over northern Asia 
and central Asia using CanESM5 (Fig. 2a); ii) decreasing (increasing) PR 
over northern Asia (Central Asia) using CNRM-ESM2-1 and INM-CM5- 
0 (Fig. 2c-d); iii) increasing (decreasing) PR are found over northern 
Asia (Central Asia) in CNRM-CM6-1 (Fig. 2b); iv) IPSL-CM6A-LR (MPI- 
ESM1-2-HR) shows a decreasing (increasing) PR in almost the entirety of 
northern and central Asia (Fig. 2e-f). In Australia, such discrepancies 
also exist: an increase in likelihood can be found in most areas in Can-
ESM5, CNRM-ESM2-1 and IPSL-CM6A-LR (Fig. 2a, c & e), while other 
models show a combination of increased and decreased change in like-
lihood (Fig. 2b, d & f). It should be noted that, especially for small 
changes, the uncertainty range on PR and %MAG, which is not explicitly 
estimated here, may cross the threshold of positive and negative ten-
dency. This also applies to the PR and durDays results presented in the 
following section.

The best-performing models for extreme fire weather intensity, 
CNRM-CM6-1 and IPSL-CM6A-L, demonstrate similar PR results, with 
an increase in likelihood of approximately 1.3 and 1.2 times on a global 
scale, respectively. While southern North America, South America, Af-
rica, equatorial Asia and Australia exhibit similar PR results, notable 
disparities are observed in northern North America and most of Asia, 
highlighting the sensitivity of the PR results to the choice of climate 
models.

3.2. Extremes in fire weather duration

3.2.1. Model performance in simulating the extremes in fire weather 
duration

To assess the performance of the six CMIP6 large ensembles in rep-
resenting the distribution of extremes in fire weather duration, simu-
lated global patterns for individual parameters of a stationary GEV 
distribution fitted with FWIxCD90 were compared to distribution pa-
rameters from GEFF-ERA5 over the period 1979–2014 (Fig. 3).

Regarding their capacity to realistically simulate the distribution of 
FWIxCD90, CMIP6 models produce GEV parameters that compare 
reasonably well with the GEFF-ERA5 reanalysis. Looking at the disper-
sion ratio, correlation results show values between 0.3 and 0.7 across 
most of the world (Fig. 3a-g). All models except for IPSL-CM6A-LR 
reproduce spatial variability relatively well (r > 0.5), with regional 
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Fig. 2. Global maps showing probability ratio (PR; left) and percentage change (%MAG; right) in extremes in FWIx7day for six CMIP6 models. The non-stippled 
areas indicate where the best estimates for the dispersion ratio and shape parameter of the stationary GEV fitted with model-simulated FWIx7day fall within the 
95 % confidence interval range for the dispersion ratio of the GEV fitted with GEFF-ERA5 data. Numbers in the bottom-left corner represent the globally averaged PR 
(left) and %MAG (right), and the percentage of the burnable world (%sig) for which PR and %MAG results passed the evaluation.
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differences most apparent in northern North America and South Amer-
ica, northern and southern Asia (Fig. 3a-g). Regions associated with high 
values of dispersion ratio (as identified in GEFF-ERA5), including central 
and southern North America, eastern Europe, northwestern Asia, and 
equatorial Asia, are reproduced well by CNRM-CM6-1 (Fig. 3c), CNRM- 
ESM2-1 (Fig. 3d), INM-CM5-0 (Fig. 3e) and MPI-ESM1-2-HR (Fig. 3g). 
CanESM5 overestimates the dispersion ratio in almost all the fire-prone 

regions (>80 %; Fig. 3h), with the exception of central South America. 
Meanwhile, the other five models underestimate the dispersion ratio 
(Fig. 3i-m). Substantial overestimations of the dispersion ratio are also 
found over most of Australia in INM-CM5-0 (Fig. 3k) and IPSL-CM6A-LR 
(Fig. 3l), while underestimations are found in CNRM-CM6-1 (Fig. 3i), 
CNRM-ESM2-1 (Fig. 3j), and MPI-ESM1-2-HR (Fig. 3m) over eastern 
Australia.

Fig. 3. Dispersion ratio (σ/μ) and shape parameter (ξ) derived from the stationary GEV fitted with FWIxCD90 for the period 1979 to 2014 from the GEFF-ERA5 
reanalysis (a) and six CMIP6 ensembles (b-g); corresponding differences between the reanalysis and the six CMIP6 models are shown from (h) to (m). Similarly, 
Shape parameter (ξ) from the GEFF-ERA5 reanalysis (n) and six CMIP6 ensembles (o-t) with corresponding differences between the reanalysis and the six CMIP6 
models from (u-z). Values in the bottom-left corner of each panel from (b-g) and (o-t) show the root mean square error (RMSE) and spatial correlation coefficient (r) 
of each six CMIP6 ensembles; while that from (h-m) and (u-z) show the percentage of overestimations (%(+)) and underestimations (%(− )) among all the grid cells.
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For the shape parameter, GEFF-ERA5 displays a substantial variation 
worldwide (Fig. 3n). Corresponding spatial correlations between the 
observations and the six models show some level of agreement, with the 
highest correlation (greater than 0.3) reproduced by CanESM5 (Fig. 3o) 
and MPI-ESM1-2-HR (Fig. 3t). Five of the six models show un-
derestimations that are greater than 50 % over all grid cells, mainly 
scattered around southern South Africa, North and Central Asia (Fig. 3u- 
z). The only exception is MPI-ESM1-2-HR (Fig. 3z), with strong over-
estimation in eastern South Africa and northeast Asia.

Concerning the dispersion ratio and shape parameter in the distri-
bution, CNRM-CM6-1, CNRM-ESM2-1 and MPI-ESM1-2 are the best- 
performing of the six climate models, when compared to GEFF-ERA5. 
IPSL-CM6A-LR is the most biased among the six models. The findings 
align closely with those of the study by Gallo et al. (2023), with MPI- 
ESM1-2-HR demonstrating one of the highest model skills in simulating 
fire weather conditions. Also, as in Gallo et al. (2023), CNRM-CM6-1 and 
CNRM-ESM2-1 exhibit relatively strong performances, while IPSL-CM6- 
LR shows relatively poor performance compared to a theoretical average 
model.

3.2.2. Historical changes in extreme fire weather duration
Fig. 4(a)-(l) shows a global map of the probability ratio (PR) and 

change in FWIxCD90 (durDays) at each grid point across the six CMIP6 
models. Overall, for the period 2010–2014, the probability of more 
prolonged extreme fire weather conditions has markedly risen by a 
factor of two on a global scale compared to the 1880–1884 period 
(Fig. 4a-f). This equates to an increase of at least 10 days in the 
maximum duration of extreme fire weather events in relation to exter-
nally forced temperature rise (Fig. 4g-l). In particular, the most pro-
nounced increases in the likelihood of more prolonged extreme fire 
weather occur in southern North America, almost all South America, 
southern Africa, Central and Southeast Asia and parts of Australia 
(Fig. 4a-f). However, we note that northern North America (CanESM5 
and IPSL-CM6A-LR; Fig. 4a & e) and equatorial Africa (CNRM-CM6-1, 
CNRM-ESM2-1 and MPI-ESM1-2-HR; Fig. 4b, c, f) are associated with a 
substantial (up to fourfold) decrease in the likelihood of FWIxCD90. This 
indicates that in these models the maximum duration of extreme fire 
weather tends to decrease in relation to historical externally forced 
warming in GMSTA, aligning with the changes in the intensity of fire 
weather extremes (Section 3.1.2). This can be attributed to various 
impacts of climate change, including changes in precipitation and 
relative humidity, but this does not suggest that extreme fire weather 
events are unrelated to human-driven climate change (Liu et al., 2022a).

We also note regional divergence in the simulated changes in the 
maximum duration of extreme fire weather that is associated with his-
torical changes in externally forced GMSTA. For central North America, 
western and southern Europe, the maximum duration of extreme fire 
weather simulated by CanESM5, INM-CM5-0, IPSL-CM6A-LR and MPI- 
ESM1-2-HR shows an upward trend in PR (Fig. 4a, d, e & f), while a 
downward trend in PR is found using CNRM-CM6-1 and CNRM-ESM2-1 
(Fig. 4b & c). This regional divergence between climate models is more 
common in Asia. For example, in northern Asia, where wildfires occur 
more prevalently, CNRM-CM6-1, IPSL-CM6A-LR and MPI-ESM1-2-HR 
show a significant increase in the likelihood of maximum duration of 
extreme fire weather (Fig. 4b, e & f), but the other three models show the 
opposite change in likelihood (Fig. 4a, c & d). These patterns and de-
viations in regional distribution also appear in Australia, with most re-
gions showing a potential increase in the likelihood of more prolonged 
extreme fire weather conditions (Fig. 4a, b, c & e). Meanwhile, some 
models, such as INM-CM5-0 or MPI-ESM1-2-HR (Fig. 4d, f), suggest a 
decreasing probability of prolonged extreme fire weather conditions in 
the southern or northern regions of Australia.

Similarly, the best performing models for extreme fire weather 
duration, CNRM-CM6-1, CNRM-ESM2-1, and MPI-ESM1-2-HR, exhibit 
relatively consistent PR results, with the increase in likelihood of 
approximately 1.3, 1.4, and 1.5 times on a global scale, respectively. 

While South America, Africa, Equatorial Asia, and Australia demon-
strate similar patterns of PR increase and decrease, notable variations 
are evident across numerous regions worldwide, notably in southern 
North America and Southeast Asia.

3.3. Attribution synthesis across multiple models

In this subsection, we firstly assess consensus among the six CMIP6 
large ensembles, and secondly, explore the value of a model evaluation 
and selection step in synthesising multi-model attribution results. Fig. 5
summarises to what extent the six CMIP6 models agree on the tendency 
of the change in likelihood in extremes of fire weather intensity (Fig. 5a) 
and duration (Fig. 5b). The result suggests that, in relation to the 
externally forced warming GMSTA, 54.3 % of the grid cells show an 
increased likelihood of both extreme fire weather intensity and duration 
when the number of model agreements is larger than three. All models 
simulate an increased likelihood of prolonged and high-intensity events 
in large parts of the world’s fire-prone regions, including areas that have 
witnessed severe fire episodes in recent years (most notably southern 
Europe). An increase in likelihood in at least five of the six models is 
apparent across much of the Americas, southern Africa, Australia, and 
eastern Asia. Models agree on an increased likelihood of prolonged 
extreme fire weather episodes, but there is less consensus on the change 
in intensity. Regions of the lower model agreement include large parts of 
the boreal forests and Canada and Eurasia, particularly for intensity, in 
addition to central Africa and Southeast Asia.

As discussed by Liu et al. (2022a), the use of a common method and 
event definition allows for the robust detection of changes at various 
locations and from multiple data sources to be combined. However, 
combining statistics from different climate models may prove trouble-
some if there are clear differences in model performance. Fig. 5 dem-
onstrates a regional dependence in model agreement. It is important to 
understand the extent to which such discrepancies are due to model 
performance for the climate impact assessment, so to be as robust as 
possible. Here, we apply a model evaluation and selection to identify 
models that can realistically reproduce the dispersion and the shape of 
the distribution of fire weather extremes. All models that meet the 
evaluation criteria can, therefore, be combined to produce global attri-
bution results that, in principle, are more robust and reliable than those 
that would be produced by combining the results of all models irre-
spective of their performance.

Fig. 6 illustrates multi-model global probability ratio maps con-
structed, firstly, from a conventional averaging of the probability ratios 
simulated by all six CMIP6 models irrespective of model performance 
(Fig. 6a-b) and, secondly, using a selective averaging of models that pass 
the evaluation criterion (Fig. 6c-d). As explained in Section 2.4, the 
evaluation criterion is defined by the best estimates of the dispersion 
ratio and shape parameters of the model stationary GEV fit; where those 
estimates fall within the range of the 95 % confidence intervals for the 
dispersion ratio and shape parameter of the GEV fitted by GEFF-ERA5 
data, the model is selected for the multi-model synthesis.

The global PR map (Fig. 6a-b), based on the first, conventional 
synthesis, shows relatively small changes in the probability of extremes 
in both FWIx7day and FWIxCD90. Only a few regions, such as northern 
South America, southern Africa, and southern Asia, show an approxi-
mately two-fold increase in the probability of the fire weather extremes 
in both intensity and duration of days. There are no particularly strong 
or prominent trends, especially in the areas with decreasing probabili-
ties, which are only present in a small part of the equatorial region of 
Africa. However, the conventional synthesis may underestimate the 
range of probabilities to some extent compared to the selective synthe-
sis, which is shown in Fig. 6c-d. In contrast to the conventional synthesis, 
the selective approach considers the individual performance of each 
model and combines the results of those that perform well. The out-
comes show an even more remarkable degree of variability, with 
southern North America, south-eastern Europe and southwestern and 
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Fig. 4. Global maps showing probability ratio (PR; left) and the absolute changes (durDays; right) in FWIxCD90 for the six CMIP6 models. The non-stippled areas 
indicate where the best estimates for the dispersion ratio and shape parameter of the stationary GEV fitted with model-simulated FWIxCD90 falls within the 95 % 
confidence interval range for the dispersion ratio of the GEV fitted with GEFF-ERA5 data. Numbers in the bottom-left corner represent the globally averaged PR (left) 
and durDays (right), and the percentage of the burnable world (%sig) for which PR and %MAG results passed the evaluation.
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south-eastern Australia exhibiting an apparent rise in PR of approxi-
mately four times to the fire weather extremes in intensity and duration 
(Fig. 6c-d), in addition to northern South America, southern Africa, and 
southern Asia regions (Fig. 6a-b). Correspondingly, two-fold decreases 
in the likelihood of the fire weather extremes in both intensity and 
duration of days are not only encountered in the equatorial regions of 
Africa previously mentioned (Fig. 6a-b) but are also apparent in north-
ern North America and most parts of northern and central Asia. Notably, 
changes in PR for both FWIx7day and FWIxCD90 tend to be spatially 
consistent, i.e., the higher the probability of an increase in fire weather 
intensity, the longer the duration of the fire weather and, conversely, the 
lower the intensity the shorter the duration.

Fig. 6e-f displays the difference in PR of extreme fire weather in-
tensity and duration between the conventional and selective ap-
proaches. Results following the model evaluation and selection illustrate 
the extent to which PR differs compared to the conventional synthesis. 
Of particular note is that, following model selection, the PR for 
FWIx7day is up to 80 % greater in parts of eastern and southern Europe 
(Fig. 6e), while the PR for FWIxCD90 is up to 60 % lesser in much of 
western and central Europe (Fig. 6f).

Concerning each grid cell, the percentage of uncertainty changes in 
the range of PR (0–100 %) is shown in Fig. 6g-h. The range is provided 
by the lowest and highest PR among evaluated CMIP6 models, while the 
change of the range is according to the two synthesis approaches applied 
in Fig. 6a-d. Overall, the global changes for both extreme fire weather 
intensity (Fig. 6g) and duration (Fig. 6h) are 45.1 % and 39.1 %, as a 
decrease in the range of PR, separately. There is a positive trend in the 
number of grid cells reaching the averaged values (45.1 % for fire 
weather intensity and 39.1 % for fire weather duration) and a negative 
trend after that. This statistical analysis manifests the variation in PR 
ranges between the results of all the six CMIP6 large ensembles. Sub-
sequently, results of the model ensembles that passed the evaluation, 
clearly reveal the sensitivity of the application of large climate model 
ensembles and the importance of model evaluation and a selection step.

4. Discussion and conclusions

The occurrence and subsequent impact of severe wildfires in recent 
years has heightened scientific, public and media curiosity about how 
such events are linked to a changing climate. Probabilistic attribution 
studies are an important means to assess the impact of climate change on 
wildfires but require a distinction to be made between the fire itself and 

the meteorological conditions that coincided with it. Studies seeking to 
link the probability of extreme fire weather to climate change are rare in 
comparison to, for instance, flood- and drought-related studies. How-
ever, as the number of wildfires, or fire weather, climate change impact 
assessments begin to grow, there is a clear need to continue to build an 
understanding of historical global and regional changes affecting fire 
weather, their potential link to climate change, as well as the range of 
uncertainty associated with the use of climate models, notably CMIP6 
models.

Here, using six CMIP6 large ensembles and established statistical 
methodologies routinely applied in the context of probabilistic attribu-
tion, we examined how historical externally forced warming in GMSTA 
has affected extreme fire weather intensity and duration. While there is 
substantial variability in model performance in most fire-prone regions 
of the world, there is a general increase in the likelihood of extreme fire 
weather occurrence in relation to externally forced warming in GMSTA. 
This trend is broadly consistent with the current understanding of his-
torical changes in global fire weather activity and its relationship to 
observation changes in global temperature, particularly for the increases 
in likelihood across central and southern North America, southern South 
America, southern Africa and Australia, and the decreases in northern 
North America and South East Asia (Jain et al., 2022; Liu et al., 2022a). 
However, for some regions, the discrepancies between models are pro-
nounced, such as the regions across most of Asia, two of the six models 
show similar increasing trends when compared with the observed 
changes in FWI, while other models exhibit decreasing trends with the 
observed changes in other CFWIS components (Liu et al., 2022a). This 
demonstrates the non-negligible and large uncertainties associated with 
the use of a single model in probabilistic attribution studies and the 
importance of integrating results from multiple climate models and 
examining the performance of model skill. It is also worth noting that in, 
for example, equatorial rainforest regions, higher relative humidity due 
to warming temperatures may prevent extreme fire weather from 
occurring. Further analysis of extremes in such regions might consider 
alternative fire weather indicators given that FWI and other CFWIS 
components are not strongly correlated with burned area (Liu et al., 
2022a).

Using the same six large ensembles, we then analysed probabilistic 
changes in extremes in fire weather duration. We found an increasing 
trend in probabilities of prolonged fire weather extremes across most of 
the globe, which appears consistent with the increasing probability of 
high-intensity extreme fire weather conditions. This is accompanied by a 

Fig. 5. Maps showing the number of climate models that present an increased likelihood of extremes in (a) fire weather intensity and (b) fire weather duration across 
the six CMIP6 models. Results are interpolated to a 384 × 192 (~0.9◦) grid (which is the highest resolution among the models assessed). Areas approaching red (blue) 
indicate that an increasing number of models show a positive (negative) change. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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Fig. 6. (a-d) Composite plots showing the average PR for trends across (a)-(b) all the six CMIP6 models in FWIx7day (a) and FWIxCD90 (b); (c)-(d) CMIP6 models 
that sufficiently well-reproduce the dispersion of the distribution and the parameter of the shape of extremes in FWIx7day (c) and FWIxCD90 (d). Additional white 
areas indicate the regions where no climate model met the evaluation criteria. Values in the bottom-left corner of each panel from (a-d) show the globally averaged 
PR and the percentage of the burnable world that shows an increase in PR (%PR(+)). (e) Changes in the average PR across all the six CMIP6 models (a) and the 
selected models (c) in FWIx7day. (f) as (e) but across all the six CMIP6 models (c) and the selected models (d) in FWIxCD90. Numbers in the bottom-left corner 
represent the percentage of the burnable world that shows an increase (%PR(+)) or decrease (%PR(− )) in PR. (g-h) Line charts for the number of grid cells (left axis) 
and the percentage (right axis) of uncertainty changes in PR range between the result across all the six CMIP6 models and evaluated results in FWIx7day (g) and 
FWIxCD90 (h). Values in the bottom-left corner of each panel show the percentage of the decreasing changes in the PR range across the burnable world.

Z. Liu et al.                                                                                                                                                                                                                                       Global and Planetary Change 252 (2025) 104822 

12 



decreasing trend in probabilities of prolonged fire weather extremes for 
specific regions, such as northern North America and equatorial Africa. 
Notably, it was found that the upward trend in the probability of 
extreme fire weather intensity tends to be paired with an increase in its 
duration, i.e., the occurrence of more intense fire weather also predicts a 
greater likelihood of a prolonged duration of the weather phenomenon. 
We again note substantial differences in model performance through the 
world’s prone regions.

Finally, a synthesis was generated from the results of a selected 
subset climate models that met performance criteria following a point- 
by-point evaluation. The results confirm an increasing trend in the 
probability and duration of extreme fire weather in relation to historical 
externally forced changes in GMSTA, particularly in southern North 
America, south-eastern Europe, south-western and south-eastern 
Australia, where the probability of this increase is up to four times 
more likely compared with the past fire weather condition. The selective 
approach to generating a multi-model synthesis produces quite different 
results to a conventional approach that combines the results of all 
models irrespective of their performance most notably in fire-prone 
parts of Europe. Given the additional robustness of the selective 
approach, these differences clearly support the incorporation of model 
evaluation and selection in probabilistic attribution analysis.

The results of this study also highlight the sensitivity of the proba-
bilistic attribution, and more widely of climate change impact assess-
ment, in the context of fire weather extremes to the choice of climate 
models. Single models suffer from unavoidable biases, while a simple 
combination of multiple models can lead to a significant underestima-
tion of results under some circumstances. As highlighted by previous 
work focused on trends in observed datasets, quantification of changes 
in fire weather extremes is sensitive to the choice of fire weather indi-
cator (Liu et al., 2022a, 2022b). FWI is a widely used and understood 
metric and appropriate for the worldwide analysis presented in this 
study but is not necessarily the most appropriate indicator when the 
focus is on a specific location or region. Therefore, the following rec-
ommendations are made for future climate change impact assessment in 
the context of extreme fire weather events: (i) careful consideration and 
justification of the most appropriate fire weather indicator for the study 
region; (ii) use of multiple climate model large ensembles; and (iii) 
robust evaluation of models’ capacity to realistically represent the dis-
tribution of extreme fire weather statistics.
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Singh, R., Holden, P., Fučkar, N.S., Odoulami, R.C., New, M., 2018. Anthropogenic 
influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. 
13 (12), 124010.

Philip, S., Kew, S., van Oldenborgh, G.J., Otto, F., Vautard, R., van der Wiel, K., King, A., 
Lott, F., Arrighi, J., Singh, R., van Aalst, M., 2020. A protocol for probabilistic 
extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6 (2), 
177–203.

Randerson, J.T., van der Werf, G.R., Giglio, L., Collatz, G.J., Kasibhatla, P.S., 2018. 
Global Fire Emissions Database, Version 4, (GFEDv4). ORNL DAAC. Oak Ridge, 
Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1293.
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