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• A new approach is presented for large- 
scale applications using minimal data.

• Environmental conditions are taken into 
account in the training.

• The method was robust in 95 % of the 
cases for locations with available data.

• Potential uses: climate change impact 
and adaptation, breeding and policy 
decisions.
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A B S T R A C T

Context: Accurately projecting crop yields under climate change is essential for understanding potential impacts 
and planning of agricultural adaptation in sub-Saharan Africa (SSA). Crop growth models and machine learning 
(ML) are often used, but their effectiveness is limited by data availability, precision, and geographic coverage in 
SSA.
Objective: This study aimed to integrate ML with a process-based crop model to produce geographically 
continuous gridded crop yield projections while reducing uncertainties associated with standalone ML or crop 
growth models. As a case study, we implemented it to project the climate change impact on water-limited po-
tential yield of maize across SSA.
Methods: We developed an integrated system that combines ML with eco-physiological processes to estimate 
sowing dates and thermal times, ensuring that crop phenology is accounted for, thus improving potential rainfed 
yield simulations under varying environmental conditions. Random Forest and crop model-based algorithms are 
integrated in three steps: (i) RF1, a Random Forest model integrated with a sowing algorithm, designed to es-
timate the sowing window and sowing date; (ii) RF2, a Random Forest model combined with a crop model 
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algorithm to estimate cumulative thermal time during the growing season, used to determine the timing of 
phenological stages; and (iii) RF3, another Random Forest model, trained based on eco-physiological principles 
applied in phases (i) and (ii), employed to simulate water-limited potential yield. The outcomes of the different 
steps of the framework under historical conditions were tested against reported data across SSA.
Results and conclusions: For maize and historical climatic conditions, the framework delivers yields which differ 
less than 20 % of those simulated with a crop model with high-quality inputs, in 95 % of the cases. Our approach 
thus shows value for generating crop yield projections in data-scarce regions under historical climate, and under 
future climatic conditions which already feature today somewhere in SSA and for which the framework has been 
trained.
Significance: Our approach can also be applied to other major food crops in SSA, under both current and climate 
change conditions. It allows testing the effect of adaptation of crop cultivars in terms of maturity group. Thus, it 
can be used for different crops and with far less data requirements compared to process-based crop models. It has 
the potential for significant applications in assessing climate change impacts, guiding adaptation strategies, and 
supporting crop breeding programmes and policymaking efforts in SSA.

1. Introduction

Projections indicate that climate change will impact crop yields in 
countries throughout sub-Saharan Africa (SSA) (Alimagham et al., 
2024a; Jägermeyr et al., 2021), as their economies heavily depend on 
rainfed agricultural systems, which rely on adequate rainfall and tem-
perature conditions to be productive (Kurukulasuriya et al., 2006; Mertz 
et al., 2009; Abrams, 2018). The potential impact of climate change on 
crop yields in SSA can be either positive or negative, depending on the 
region and the prevalent crop (Alimagham et al., 2024a). The ability to 
project crop yields under climate change conditions with sufficient 
precision is crucial for adaptation of agriculture across SSA.

The impact of climate change on crop yields in SSA using crop 
models is explored in a wide range of studies (e.g., Zhao et al., 2017; 
Hasegawa et al., 2022), but these studies either had to make generalized 
and coarse assumptions about e.g. crop calendars, soil conditions, and 
other management aspects (e.g., Jägermeyr et al., 2021; Stuch et al., 
2021; Rosenzweig et al., 2014) or they are site-based studies that use 
high quality e.g. weather, management and soil data for the study sites 
which goes at the expense of geographic coverage (Asseng et al., 2015; 
Alimagham et al., 2024a). ML enables to accurately estimate crop yields 
in a variety of agro-ecological and management conditions including 
under climate change conditions (e.g., Li et al., 2023; Van Klompenburg 
et al., 2020). The drawbacks of this method are that it treats relation-
ships in a system as a black box, making interpretability of the re-
lationships difficult (Lischeid et al., 2022). Process-based models, like 
crop growth models, on the other hand are based on biophysical pro-
cesses and are thus interpretable.

Combining ML with process-based models could enhance simulation 
capabilities across space and time, while also providing the necessary 
transparency in understanding the processes. Most studies that have 
attempted to combine crop models and ML for yield simulation have 
used crop model outputs as the input for training and employing ML 
algorithms (Li et al., 2023; Shahhosseini et al., 2021). Although this 
strategy improves the accuracy of ML in yield simulations, its applica-
bility is limited to regions with sufficient data to run crop models. 
However, if ML models are trained and tested to mimic key components 
of mechanistic crop simulation models in data-rich regions using mini-
mal input data, they can later be applied in data-scarce regions where 
limited data availability hinders the direct use of crop models. Achieving 
this, especially for yield projections under climate change scenarios, 
requires ML to adequately capture key dynamic eco-physiological pro-
cesses and cropping system principles.

Crop growth and development rates, and resulting yields can vary 
over time at a specific location due to changes in environmental con-
ditions caused by climate change (Guo et al., 2021). If phenology pro-
jections are inaccurate, yield simulations will also be unreliable, as 
growth processes would occur at different times and under conditions 
that do not reflect actual circumstances. At least two key inputs are 
needed to ensure phenology projections are robust, (1) sowing dates; (2) 

thermal time requirement of crops (Fatima et al., 2020; Zimmermann 
et al., 2017). These parameters vary greatly across SSA. For instance, the 
start of the cropping season is determined by the onset of the rainfall 
across SSA, which exhibits significant variability across different sites, 
years, even across relatively small geographic distances (Agossou and 
Kang, 2020). Therefore, in order to determine the phenology timing of 
crops in different regions of SSA, it is imperative to have a compre-
hensive and site-specific dataset, which is currently lacking for SSA. 
Instead, fixed-time data, such as annual, seasonal, or monthly data, are 
commonly used for training ML algorithms (Aramburu-Merlos et al., 
2024; Lischeid et al., 2022. Using ML algorithms based on crop growing 
season data can enhance the accuracy of simulations.

Actual farm yields in SSA remain substantially below their potential, 
primarily due to nutrient limitations (Ten Berge et al., 2019; Sánchez, 
2010), and must increase markedly to meet future food demand (Van 
Ittersum et al., 2016; Sánchez, 2010). Water-limited yield potentials, 
including projections under climate change, provide the benchmark for 
identifying yield gaps and guiding research and development priorities 
(Van Oort, 2018). They also offer a basis for estimating the additional 
nutrient inputs required to achieve target yields necessary for future 
food security (Ten Berge et al., 2019).

The Global Yield Gap Atlas (GYGA, www.yieldgap.org) delivers 
robust (potential) yield projections by using local data (soil, manage-
ment, weather) from key production sites as input for crop growth 
models in combination with a bottom-up spatial framework for 
upscaling to larger spatial scales (Van Wart et al., 2013). Despite the use 
of the upscaling procedure, the spatial coverage is still a limitation 
especially in data-scarce regions like SSA (Rattalino Edreira et al., 2021; 
Aramburu-Merlos et al., 2024). A recent study used the GYGA data to 
assess climate change impacts on key rainfed cereal crops (maize, wheat, 
sorghum, millet) in the region (Alimagham et al., 2024a, 2024b). It 
encompasses key production sites across ten countries, rather than the 
entire SSA region. Here, we leverage this robust dataset for training ML 
techniques and extrapolating the results to the entire SSA using a step- 
wise framework. This framework integrates key mechanisms captured 
with a crop model (timing sowing, crop phenology, and grain yield) to 
achieve the best possible accuracy in projecting climate change impacts 
using ML. The advantage of this stepwise approach is that it builds 
mechanistic detail into our framework while capitalising on the ad-
vantages of ML models in terms of simpler structure, fewer input re-
quirements and easier replicability.

The aim of this study was to integrate ML with a process-based crop 
model, grounded in eco-physiological principles, to generate spatially 
continuous, gridded projections of potential rainfed yields in SSA. This 
integration focused on using high-quality data from existing, data-rich 
sites to train ML. It also ensured that the trained model could be 
applied to data-limited areas, without needing the extensive input 
datasets usually required by process-based crop models. Additionally, 
the framework allows for the use of the trained ML under climate change 
conditions. As case study, we implemented it to project the climate 
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change impact on potential maize yields across SSA. The proposed 
framework utilizes point-based data (from GYGA, Alimagham et al., 
2024b) for ML model training, while also minimising the required input 
data and complexity of the modeling framework under current and 
future climate conditions. We tested the modeling framework within- 
and out-of-sample to demonstrate its applicability for climate change 
studies.

2. Method

The framework integrates Random Forest (RF) and crop model-based 
algorithms in three steps: (i) RF1, a Random Forest model integrated 
with a sowing algorithm named A1, designed to estimate the sowing 
window and sowing date; (ii) RF2, a Random Forest model combined 
with a crop model algorithm named A2 to estimate cumulative thermal 
time during the growing season, used to determine the timing of 
phenological stages; and (iii) RF3, another Random Forest model, 
developed based on eco-physiological principles, employed to simulate 
water-limited potential yield. The combination of the crop modeling and 
ML was structured as follows (Fig. 1): First, the RF1, in conjunction with 
a sowing date algorithm, determined region-specific sowing dates. Next, 
using the RF2, the cumulative thermal time required from sowing to 
harvest was estimated for each region. This estimation relied on the 
daily thermal time calculation algorithm from the crop model, along 
with the outputs from the RF1 and RF2. At this stage, the length of the 
growth period was simulated, enabling the division of the growing 
season into four distinct periods. Finally, the RF3 utilized this data to 
simulate crop yield by incorporating environmental data for each 
growth stage. Training the RF3 model with data from different growth 
stages as simulated through steps i and ii is crucial because sub-optimal 
conditions in one growth stage, such as water stress or high temperature, 

could affect crop growth in subsequent stages. The combination of these 
models thus builds mechanistic details into our framework while capi-
talizing on the advantages of RF models in terms of simpler structure, 
fewer input requirements, and easier replicability.

2.1. Input data

Two groups of data are required for the framework, namely internal 
inputs and external inputs (Fig. 1). External data refers to e.g. daily 
weather data and soil depth (Fig. 1), while internal inputs refer to 
generated outputs of the algorithms or RFs which are then used as inputs 
for the subsequent crop model algorithm or RF (Fig. 1).

Training and testing of each of the three steps within the framework 
are done using data as presented by Alimagham et al. (2024b). This 
study employed the simulated rainfed potential yields across 105 
representative maize production sites from ten sub-Saharan countries, 
namely Burkina Faso, Ghana, Mali, Niger, Nigeria, Ethiopia, Kenya, 
Tanzania, Uganda, and Zambia (Fig. S1). The representative maize 
production sites were chosen to represent production but also to ensure 
that weather data is of the highest quality possible. For each site, a 
representative weather station (RWS) is available in this dataset. The 
sites were selected and the RWS data derived using the protocol estab-
lished by the Global Yield Gap Atlas (Grassini et al., 2015; van Bussel 
et al., 2015). The GYGA protocol seeks to achieve 50 % coverage of 
national harvested crop area within buffer zones of the RWS, ensuring 
the inclusion of crucial climate zones (van Bussel et al., 2015). The 
climate zone map created by the GYGA was used for this purpose (Van 
Wart et al., 2013, and available online at https://www.yieldgap.org/w 
eb/guest/climate-zones). This map identifies climate zones using three 
indices: (i) cumulative annual growing days based on a base tempera-
ture of 0 ◦C, (ii) an annual aridity index, defined as the ratio of mean 

Fig. 1. Flowchart of the designated framework showing the connections between the three random forest (RF) components and two crop model algorithms (A) in our 
approach. The framework consists of three steps: i) estimation of annual sowing dates, ii) simulation of phenological stage timings, iii) simulation of rainfed potential 
yield. Green dashed lines indicate the steps within the framework. See Table 1 for sources of datasets included in the framework. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
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annual precipitation to mean annual potential evapotranspiration, and 
(iii) temperature seasonality, calculated as the standard deviation of the 
12 monthly mean temperatures. Since temperature seasonality was 
largely uniform across SSA, except in a small part of South Africa, we 
represented the climate zones using only the first two indices. To 
enhance the understanding of the thermal time index of each climate 
zone, we converted it to the mean annual temperature by dividing it by 
365 (the number of days in a year). Furthermore, the simulation results 
indicated that zones with an aridity index greater than 30 % experienced 
no water stress impact on potential rainfed yields of maize (data not 
shown), leading us to classify these areas as wet climates. Moreover, 
climate zones with an aridity index below 30 % were designated as dry 
areas. Crop area data from the Spatial Allocation Model map version 
2020 (SPAM2020; International Food Policy Research Institute (IFPRI), 
2024) was used to calculate the coverage of maize land within each 
climate zone.

For each site, the GYGA dataset provided RWS coordinates along 
with crop management (sowing windows), and crop phenology data 
(flowering and harvesting time) under historical conditions, and simu-
lated rainfed potential maize yields under current and future conditions. 
To train ML models, we also employed daily bias-corrected weather data 
for two Shared Socioeconomic Pathways (SSPs; SSP3–7.0 and 
SSP5–8.5), obtained from five different General Circulation Models 
(GCMs; GFDL, IPSL, MPI, MRI, UKESM) from the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) model ensemble (Alimagham 
et al., 2024b). We chose SSP5–8.5 as it shows the largest departures from 
historical climate and hence would constitute suitable scenarios for 
evaluating our modeling framework. In addition, we used SSP3–7.0 
because it is the closest to the world’s current emissions trajectory, and 
thus a suitable indicator of climate change impacts especially by 2050s. 
The time horizons considered were the historical period (1995–2014), as 
well as 2030 (2020–2039) and 2050 (2040–2059) (Alimagham et al., 
2024b).

The training dataset for weather data and for potential rainfed yield 
at RF3 consisted of 20 % of the total data for only climate change sce-
nario SSP5–8.5, leading to a training dataset consisting of ca. 54,000 
simulated data points. It includes all possible combinations of GCMs, 
stations, soil types, and cropping season timing, covering different time 
horizons. For testing the model, the remaining 80 % of data for climate 
change scenario SSP5–8.5 (ca. 216,000 data points) and the full dataset 
for climate change scenario SSP3–7.0 (270,000 data points) were used 
(Alimagham et al., 2024b). Hereafter, we first present each of the steps 
within the framework and its application to the RWS data for repre-
sentative production areas in the ten countries (Sections 2.2–2.4), then 
further details are provided on how the framework can be applied to the 
virtual weather stations (VWS) for all maize land across the entire SSA 
(Section 2.5), and finally, we explain how it is tested against the Evi-
dence for Resilient Agriculture (ERA) version 1.01 dataset, which in-
cludes field experiments conducted across SSA (Rosenstock et al., 2024) 
(Section 2.6).

2.2. Step i, estimation of annual sowing dates

2.2.1. The random Forest model to determine the start of the sowing 
window (RF1)

The first Random Forest model is used to estimate the beginning of 
the sowing window at each location across SSA, hereafter called RF1. In 
SSA, the growing season begins with the onset of rainfall. There is 
considerable spatial variation in the onset of rainfall in SSA, which is 
strongly influenced by latitude (Obarein and Amanambu, 2019). Alti-
tude is another factor which can affect the onset of rainfall in SSA 
(Ngetich et al., 2014). As a result, we chose the following independent 
variables for RF1: coordinate, elevation, region (determined by its 
proximity to the equator or its location in the northern/southern 
hemisphere), and crop season timing within RWSs (in the northern 
hemisphere, the value is 1 which shows the season starts after April; in 

the southern hemisphere, it is 2 which shows the season starts after 
October; for equatorial regions, it encompasses both 1 and 2 because of 
double cropping over the year in this area), average annual temperature, 
annual precipitation, and annual precipitation coefficient of variance. 
The dependent variable was the common beginning of the sowing 
window within buffers around RWSs. RF1’s output is the average start 
and end of the sowing window, that is based on the mean climate and 
geographic location of each buffer area. The GYGA dataset used by 
Alimagham et al. (2024b) from ten countries provides all necessary data 
to train and test the performance of the RF1 (Table 1). The data was 
randomly split into a training set (70 % of the data) and a test set (30 % 
of the data).

Table 1 
The source of datasets employed to train and apply the algorithms.

Data Source of the data

For training For SSA-wide 
simulations

Latitude Alimagham et al. 
(2024b)

Location of VWS*

Longitude Alimagham et al. 
(2024b)

Location of VWS

Elevation https://www.free 
maptools.com/elevat 
ion-finder.htm

https://www.free 
maptools.com/elevat 
ion-finder.htm

Region ** **
Daily rainfall data Alimagham et al. 

(2024b)
See Section 2.5

Daily temperature data Alimagham et al. 
(2024b)

See Section 2.5

Daily radiation data Alimagham et al. 
(2024b)

See Section 2.5

Crop season timing GYGA dataset$ ***
Beginning of the sowing window GYGA dataset Calculated by RF1
Sowing window duration GYGA dataset Adding 60 days to 

beginning of the 
sowing window

Sowing date algorithm # Van Loon et al. (2018) Calculated by A1
Thermal time requirement from 

sowing to maturity
GYGA dataset Calculated by RF2

Cardinal temperatures of maize WOFOST ## WOFOST ##
Ratio between thermal time 

from sowing to flowering and 
total thermal time 
requirement

GYGA dataset GYGA dataset

Timing of the four growing 
stages ###

Alimagham et al. 
(2024b)

Calculated by A2

The duration of each growth 
stage

WOFOST ## See Section 2.3

CO2 concentration CMIP6 @ CMIP6 @
Soil depth AfSIS (Leenaars et al., 

2018)
AfSIS (Leenaars et al., 
2018)

Rainfed potential yield Alimagham et al. 
(2024b)

Calculated by RF3

# A consecutive 7 days within the sowing window with at least 20 mm rainfall.
## https://github.com/ajwdewit/WOFOST_crop_parameters
### Stage I, early vegetative growth stage; Stage II, late vegetative growth 
stage; Stage III, early reproductive growth stage; Stage IV, late reproductive 
growth stage.
$ Global Yield Gap Atlas (https://www.yieldgap.org/web/guest/climate-zones)
@ The data for climate change scenarios SSP3–7.0 and SSP5–8.5 were down-
loaded from ISIMIP3b repository (Büchner and Reyer, 2022) the CMIP6 data 
repository.

* Virtual weather station.
** Regions with a latitude greater than 5◦ are classified as part of the northern 

hemisphere, while those between − 5◦ and 5◦ are regarded as equatorial regions. 
Latitudes less than − 5◦ are categorized as the southern hemisphere.

*** In the northern hemisphere, the value is 1; in the southern hemisphere, it is 
2; for equatorial regions, it encompasses both 1 and 2 because of the double 
cropping over the year system in this area over the year.
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2.2.2. The crop model algorithm to determine sowing dates (A1)
The algorithm A1 estimates year-specific and site-specific sowing 

dates using the RF1 model output, the timing of the start of the sowing 
window, together with a sowing window duration of 60 days. The al-
gorithm calculates the cumulative rainfall for seven consecutive days 
over the sowing window. The last day of this period, when cumulative 
rainfall exceeds 20 mm, is considered the sowing date. If there is not at 
least 20 mm rainfall in seven convective days within the sowing win-
dow, the last day of the sowing window is assumed to be the sowing date 
(Van Loon et al., 2018). This algorithm provides an optimal sowing date 
across SSA (Wolf et al., 2015).

2.3. Step ii, simulation of phenological stage timings

2.3.1. The random Forest model to assess the thermal time requirement 
(RF2)

The second Random Forest model, RF2, used the GYGA dataset for 
RWS for training to calculate the required total thermal time from 
sowing to maturity for maize at each site. The GYGA data used by Ali-
magham et al. (2024b) was randomly split into a training set (70 % of 
the data) and a test set (30 % of the data). The independent variables 
consist of all the independent variables employed in RF1, along with the 
initiation of the sowing window (Fig. 1), and the dependent variable is 
the total thermal time (from sowing to maturity) of common cultivars in 
terms of phenology in each RWS under historical climate conditions. The 
thermal time requirements of cultivars commonly grown in each RWS 
are determined on the GYGA dataset, as specified by local experts.

2.3.2. The crop model algorithm for phenology (A2)
The algorithm for phenology named A2 simulates the timing of four 

stages throughout the growing season, namely: Stage I, early vegetative 
growth stage; Stage II, late vegetative growth stage; Stage III, early 
reproductive growth stage; Stage IV, late reproductive growth stage. 
This segmentation allows for the capture of the eco-physiological re-
sponses of crops during each stage (Table 2; Table S1). We divide the 
growing season in these different stages as stresses (like water stress) 
have a different impact on each stage. For example, although water 
stress across the growing season can decrease grain yield, water stress 
during grain filling (i.e. Stages III and IV) has normally the largest 
negative impact on the grain yield (Cakir, 2004). The eco-physiological 
differences between the different stages are presented in Table 2 and the 
impact of different variables on capturing physiological responses in 
training algorithms is presented in Table S1.

For this purpose, the period from sowing to flowering is divided into 
two equal periods in terms of thermal time requirement (Stage I, Stage 
II). The same is done for the period from flowering to maturity (Stage III, 
Stage IV). The ratio of cumulative thermal time from sowing to flow-
ering to total thermal time requirement from sowing to maturity was 
calculated using GYGA’s observed data, resulting in an average value of 
0.55 with standard deviation equal to 0.04. Note, that this parameter is 

adjustable in our approach, enabling simulations with different values in 
different runs.

The annual sowing date and site-specific thermal time of cultivars 
from sowing to maturity are then used by A2 to estimate the timing of 
the four stages over the growing season. For this purpose, the phenology 
module within the WOFOST model for maize was used (De Wit et al., 
2019). In this module, the development rate is linearly related with 
average daily temperature if the daily mean temperature is larger than 
the base temperature but smaller than the optimum temperature. If the 
daily mean temperature is larger than the optimum temperature, the 
development rate remains constant (Eq. 1). If simulation results from 
another crop model are to be used in training, it is advisable to use the 
corresponding phenology model. 

If t ≤ tb DTT = 0 (1) 

If tb < t < top DTT = t–tb 

If t ≥ top DTT = top–tb 

t: daily mean temperature (◦C).
tb: base temperature for maize growth which was set at 10 ◦C.
top: optimum temperature for maize growth which was set at 30 ◦C.
DTT: daily thermal time caught by maize (degree day).
Since the beginning of the sowing window is one of the inputs for the 

RF2 model (Fig. 1; Table 1) and the output of the RF1 model, we can 
estimate the thermal time requirements of common maize cultivars 
across various locations in SSA by integrating the RF1 and RF2 models 
(Fig. 1; Table 1). It is imperative to emphasize that RF2 solely calculates 
thermal time for historical conditions, with the aim of identifying site- 
specific common cultivars based on their thermal time requirements. 
The thermal time requirements of cultivars employed for future climate 
conditions (time horizons 2030 and 2050) will remain unchanged. 
Although the thermal time requirements remain constant, the timing of 
the four stages can be altered because of increasing temperatures caused 
by the changing climates in 2030 and 2050 compared to historical 
conditions. Additionally, the system has been designed in a way that 
allows for the adjustment of thermal time values calculated by the RF2. 
This enables the evaluation of new cultivars in terms of early or late 
maturity groups in each site across SSA under historical and future 
climate conditions.

2.4. Step iii, simulating rainfed potential yield

2.4.1. The random Forest model to simulate rainfed potential yield (RF3)
The dependent variable in the RF3 model is the rainfed potential 

yield. The independent variables include average temperature, cumu-
lative rainfall, and cumulative radiation during each of the four stages, 
duration of the stages, crop season timing (see section 2.2.1), atmo-
spheric CO2 concentration, soil depth (Fig. 1, Table 1). Despite variation 
in cultivars, temperatures, and the influence of climate change on 
phenological stages across SSA, the implementation of the thermal time 
requirement model (RF2) allows a consistent identification of develop-
mental stages during the maize growing season. The inclusion of soil 
depth as an independent variable is based on the important relationship 
between soil depth, available water for crop growth and maize yield at a 
given precipitation (Calviño et al., 2003). The dominant soil types in 
terms of maximum rootable depth within each buffer zones of 100 km 
around a RWS location (clipped by climate zones – see van Bussel et al., 
2015) were determined using AfSIS data (Leenaars et al., 2018); Up to 
three dominant soil depths were selected until achieving 50 % area 
coverage per buffer zone. All soil units with over 10 % area coverage of 
maize lands were used for buffers that did not meet the 50 % coverage 
requirement.

Despite variation in temperature, similar growing season durations 
can be observed in different regions of SSA due to the use of different 
maturity group cultivars across regions in this study. Consequently, 

Table 2 
Eco-physiological differences across the four growth stages of maize, i.e., Stage I, 
early vegetative growth stage; Stage II, late vegetative growth stage; Stage III, 
early reproductive growth stage; Stage IV, late reproductive growth stage.

Eco-physiological feature Stage I Stage II Stage 
III

Stage IV

Canopy ground cover open close close reopening*
Transpiration/ 

evapotranspiration 
ratio

low high high low*

Water use efficiency** low high high low
Main sink vegetative 

organs
vegetative 
organs

grain grain

* Depending on leaf senescence rate (See Fig. S2).
** Ratio between dry matter and evapotranspiration (See Fig. S2).
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different regions can experience varying temperature and cumulative 
radiation levels during the growing season, despite having the same 
growing season duration. In areas that experience lower temperatures, 
specifically in Eastern and Southern Africa, there is an expected elon-
gation of the period in which leaves stay green, while leaves will have 
shorter stay green periods due leaf senescence under rising temperatures 
(Hu et al., 2023). The inclusion of the duration of the four stages as 
independent variables in the RF3 model (Fig. 1) aims to capture the 
influence of stress duration (water stress or high temperature) in each 
stage (Hu et al., 2023; Ge et al., 2012). The important aspects of water 
and/or temperature stress include intensity of stress, timing of stress, 
and duration of stress (Riedesel et al., 2023; Cavus et al., 2023). The 
intensity can be captured by rainfall data combined with radiation, 
temperature, and soil depth, all of which are included in the training of 
the RF3. The timing can be captured in RF3, because we divided the 
growing season into four different stages, and the environmental data 
for each stage is used separately in training RF3. Finally, the duration of 
the stress can be captured by the duration of each growth stage, which is 
also included in the training of RF3.

2.5. Data for geographically continuous and SSA-wide rainfed potential 
yield projections

To allow for geographically continuous and SSA wide rainfed po-
tential yield projections we followed the GYGA protocol for creating and 
scaling yield projections (van Bussel et al., 2015). This implies that we 
first created a continent-wide network of 1500 VWSs, with a buffer area 
of 100 km radius around each VWS. The buffers were clipped to align 
with the surrounding climate zones, ensuring uniform climate coverage 
for each buffer zone while preventing overlap with other buffer zones. 
The GYGA climate zone map was employed for this purpose (Van Wart 
et al., 2013, and available online at https://www.yieldgap.org/web/ 
guest/climate-zones). Buffer areas with a maize harvested area of less 
than one hectare are excluded, using the SPAM2020 map (International 
Food Policy Research Institute (IFPRI), 2024) (Fig. S3), resulting in a 
total of 1300 VWS covering the entirety of SSA (Fig. S3).

Daily weather data at each VWS, including rainfall, minimum and 
maximum temperatures, and solar radiation, were required for histori-
cal (1995–2014) and future (2020–2039 and 2040–2059) periods. His-
torical rainfall data were taken from the Climate Hazards Infra-Red 
Precipitation with Stations (CHIRPS, Funk et al., 2015), historical tem-
perature data were gathered from the Climate Hazards Infra-Red Tem-
perature with Stations (CHIRTS) (Funk et al., 2019), and solar radiation 
was derived from the agriculture-focused version of the European Center 
for Medium-range Weather Forecasts (ECMWF) Reanalysis version 5 
(AgERA5; Boogaard and van der Grijn, 2020). For each VWS, we 
extracted daily values for each of the variables from the corresponding 
dataset. To create the future projections, we used bias-corrected data 
from General Circulation Models from the Coupled Model Intercom-
parison Project Phase 6 (CMIP6) model ensemble under two climate 
change scenarios (SSPs; SSP3–7.0 and SSP5–8.5) using the ‘delta’ 
method as described by Navarro-Racines et al. (2020).

2.6. Framework evaluation

The outcomes of the different steps of the framework under historical 
conditions were also tested against the Evidence for Resilient Agricul-
ture (ERA) version 1.01 dataset, which included field experiments 
conducted across SSA (Rosenstock et al., 2024). ERA v1.01 is a large 
meta-analysis of 2011 agronomic experiments in Africa covering the 
period 1934–2018. The dataset encompasses a total of 112,859 indi-
vidual observations covering the effect of 363 agronomic, livestock, or 
tree management techniques and their combinations on more than 75 
metrics of productivity, resilience, and greenhouse gases.

Step i outcomes on sowing dates was evaluated using a total of 422 
data points on maize sowing date from the ERA dataset. Step ii outcomes 

on durations (sowing-maturity) was evaluated with measured growing 
season durations (sowing-harvest) using a total of 454 data points from 
the ERA dataset. As the ERA dataset lacked information regarding the 
thermal time requirement of cultivars. Additionally, Step ii was evalu-
ated against data collected by Abate et al. (2017) on dominant maize 
cultivars in various countries. The information on dominant maize cul-
tivars was combined with information on the length of the growing 
season for these cultivars in each country which was gathered from seed 
companies and research institutes (Table S2). The dominant regions per 
country were determined by utilizing simulated results from buffer 
zones that covered 75 % of the total maize area in each country. This 
restriction was accounted for due to the fact that the dominant cultivars 
identified by Abate et al. (2017) did not cover all cropland in the 
countries. Note, that the reported lengths of the growing season for the 
cultivars offered by seed companies and research institutes are typically 
adapted to the primary regions within each country. In addition, it 
should be noted that the reported growing season durations for the 
dominant cultivars are referring to the period between sowing to 
maturity unlike the ERA dataset which is from sowing to harvest 
(Table S2).

Step iii was evaluated by comparing the simulated rainfed potential 
yields against observed yields from experiments in the ERA dataset. The 
ERA dataset underwent a multi-stage filtering method, retaining only 
the experiments with the highest yields within each buffer zone 
(Table 3).

2.7. Sensitivity analysis

In addition to evaluating our method’s outputs using different 
datasets (Section 2.6), we conducted a sensitivity analysis. We system-
atically categorised the simulated rainfed potential yields from Ali-
magham et al. (2024b) for the RWSs, considering factors such as climate 
change scenarios, GCMs, and soil depth. We compared the cumulative 
estimated rainfed potential yield distributions from RF3 with those 
estimated by WOFOST under various climate change scenarios and time 
horizons for each category. Furthermore, we calculated the annual ab-
solute relative change in yields simulated by the RF3 model in com-
parison to the simulated results generated by the crop model. The 
correlation between the calculated absolute relative values and cumu-
lative rainfall or average temperature was assessed across the four 
growing stages.

2.8. Software and packages

A Random Forest model is an ensemble learning method that com-
bines multiple decision trees to improve accuracy and reduce overfitting 
(Breiman, 2001). It works by training several decision trees on different 
subsets of the data and then aggregating their simulations. The model 
creates multiple decision trees by randomly sampling the training data 

Table 3 
The steps for filtering ERA data in order to identify experiments with highest 
yields.

Step Filtering based Number of (remaining) 
data entries

0 All ERA data: no filter 116,243
1 Crop: keep data only for maize with yield data 23,161
2 Rainfed system: keep data only for rainfed 

conditions
21,076

3 Buffer zone: keep only 15 % of the highest yields 
within each buffer zone

2112

4 Study: keep only 50 % of the highest yields for 
each study within each buffer zone*

1200

5 Removing duplicated values for each study 
within each buffer zone

607

* This filter was applied to retain only the treatments from similar experiments 
that produced the largest yields.
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with replacement (Breiman, 1996). The final simulation is the average of 
individual tree outputs (Breiman, 2001). Previous studies have 
demonstrated that Random Forest can accurately simulate crop yields 
(Van Klompenburg et al., 2020; Jeong et al., 2016). The number of trees 
(ntree) was set to 500, and number of variables randomly sampled as 
candidates at each split (Mtry) was calculated by dividing the total 
number of features by 3 for each Random Forest model (RF1, RF2, RF3). 
Training and testing of the ML algorithms were conducted using the 
randomForest package in R language (Breiman, 2001). The caTools 
package was used for splitting the data into the train and test sets (https 
://cran.r-project.org/web/packages/caTools/index.html). The entire 
framework (Fig. 1) was coded in a comprehensive R script using the 
tidyverse package (https://cran.r-project.o rg/web/packages/tidy-
verse/index.html).

3. Results

3.1. The performance of the algorithms

3.1.1. RF1 and the A1 algorithm for sowing date
The nRMSE for estimating the beginning of the sowing window using 

the GYGA dataset for testing the RF1 model was 17.1 % (Fig. 2a; 
Table 4). The combination of the RF1 model and the A1 algorithm 
effectively estimates sowing dates for each year across SSA (Fig. 2b). In 
addition, results demonstrate that the efficacy of combining the RF1 
model and the A1 algorithm for determining site- and year-specific 
sowing dates for the various countries across SSA (Fig. 2b). The algo-
rithms provide accurate estimations of the sowing dates throughout SSA, 
despite the enormous variation in sowing dates across Eastern and 
Southern Africa (Fig. 2b). The simulated sowing date in West Africa 
occurs slightly earlier than the ERA sowing data, with the fourth quartile 
of the simulated data overlapping the first quartile of the ERA data in the 
majority of countries in West Africa (Fig. 2b). This overlap indicates that 
the sowing window is estimated with reasonable accuracy; however, the 
algorithm used to determine the sowing date within the window tends to 
calculate the sowing dates somewhat earlier than the ERA data.

3.1.2. RF2 and the A2 algorithm for phenology
The test dataset of the GYGA data demonstrated that the RF2 model 

has a good performance in estimating the total thermal time 

requirement from sowing to maturity of maize (nRMSE = 10.3 %; 
Fig. 3a, Table 4). Note that the thermal time of maize cultivars at the 
GYGA RWS stations ranged from 900 to 1900 degree days, which is well 
captured by the RF2 model, with good simulations of site-specific cul-
tivars using environmental inputs across SSA (Fig. 3a; Table 4).

A systematic bias exists in the comparison of simulated growing 
season durations from sowing to maturity with the ERA data. In general, 
the simulated values are lower than those reported in the ERA dataset 
(Fig. 3b). However, this bias is not present when comparing the simu-
lated values in the dominant regions in terms of area for the crop with 
the reported duration of the growing season for the primary cultivars 
provided by seed companies and research institutes in each country 
(Fig. 3c).

3.1.3. RF3 and the entire system
In order to evaluate the performance of all algorithms jointly (RF1 

Fig. 2. (a) The simulated beginning of the sowing window using the RF1 model for each representative weather station (blue training dataset, red testing dataset), 
compared to the observed time for the RWSs. The black line is the 1:1 line; (b) A comparison between the simulated sowing date across different locations using the 
RF1 model for virtual weather stations within each country and the measured data extracted from the ERA dataset (422 data points) for the relevant virtual weather 
stations. The simulated results include the historical annual results (1995-2014) at each virtual weather station. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Table 4 
Statistical metrics for evaluating the accuracy of the algorithms using training or 
testing datasets from GYGA RWSs. For the meaning of abbreviations of the al-
gorithms see Fig. 1.

Algorithm Training Testing

R2 RMSE* nRMSE 
(%)

R2 RMSE* nRMSE 
(%)

RF1 0.97 0.5 9.8 0.89 1.0 17.1
RF2 0.91 92.1 5.9 0.56 162.3 10.3
RF3-SSP5–8.5- 

2005
0.97 0.7 8.0 0.89 1.3 15.6

RF3-SSP5–8.5- 
2030

0.98 0.5 6.7 0.89 1.2 14.6

RF3-SSP5–8.5- 
2050

0.98 0.5 7.1 0.87 1.2 16.2

RF3-SSP3–7.0- 
2005**

– – – 0.91 1.2 14.4

RF3-SSP3–7.0- 
2030**

– – – 0.87 1.3 16.0

RF3-SSP3–7.0- 
2050**

– – – 0.84 1.3 18.0

* The unit of RMSE for the RF1 is specified as “month” while for RF2 it is 
“growing degree day” and for RF3 it is “ton/ha”.

** These data were solely employed for the purpose of testing the algorithm 
trained with the SSP5–8.5 data.
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plus the algorithm to determine the sowing date, RF2 plus the algorithm 
to derive the phenology and RF3, the yield model; Fig. 1), the simulated 
rainfed potential yields of the designed system were compared to the 
experimental yields from the ERA dataset across SSA (Fig. 4). The 
comparison of the two datasets across different VWSs in different 
countries highlighted some level of agreement, taking into account that 
yields from the ERA dataset will be lower than water-limited potential 
yields (Fig. 4).

The statistical indices (Table 4) and dispersion of points around the 
one-to-one line in Fig. 5 (and also for SSP3–7.0 in Fig. S4) suggest that 
the RF3 model can accurately replicate the yields simulated by the 
WOFOST model, as extracted from Alimagham et al. (2024b). The RF3 
model shows a small tendency to overestimate yields, occurring in about 
5 % of all simulated yields in SSA. This occurs mostly, for all three time 
horizons, when yields are below 4 ton/ha. Approximately 12 % of all 
estimated yields were below 4 ton/ha for all RWSs, and of which 45 % of 
the cases was overestimated. This indicates the RF3 model’s capacity to 
effectively replicate yields simulated with WOFOST, in at least 95 % of 
the cases both under SSP5–8.5 and SSP3–7.0 climate change scenarios in 
all RWSs. These cases differ less than 20 % of those simulated with 

WOFOST model with high-quality inputs.

3.2. Sensitivity analysis

The rainfed potential yields simulated with the WOFOST model do 
not show significant differences between the GCMs, and the RF3 outputs 
produce similar results under both climate change scenarios (Fig. S5). 
However, the impact of soil depth on yields is substantial. The WOFOST 
model shows lower yields for shallow soils, and the RF3 model also 
captures this in all RWSs under historical and both SSP5–8.5 and 
SSP3–7.0 climate change scenarios (Fig. S6).

The RF3 model is also capable of effectively mimicking the WOFOST 
model’s yields for climate change of different time horizons (Fig. 5 and 
S4). Thus, the difference in performance between the two methods 
under low yields is not likely to be attributable to the impact of tem-
perature and/or CO2 concentration. Nonetheless, a divergence in cu-
mulative distributions is illustrated for yields below 4 ton/ha, 
particularly for shallow soils (Fig. S6). It appears the main contributing 
factor to the disparity in low yields between the two methods is asso-
ciated with the water balance, given the significant impact of maximum 

Fig. 3. (a) Simulated output of the required thermal time from sowing to maturity for maize cultivars using the RF2 model versus the GYGA data (‘observed’) in each 
RWS. The black line represents the 1:1 line; (b) A comparison of the simulated growing season duration of maize in different VWSs with the observed data extracted 
from the ERA dataset; (c) Comparison of the simulated growing season from sowing to maturity of maize in dominant regions (in terms of area) with reported 
durations by seed companies for dominant cultivars in each country (Table S2). Note that, due to differences in the sources of observed data for panels b and c, the 
lists of countries are not identical.
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rootable soil depth on water storage capacity. We further examined this 
assumption (Fig. 6 and 7). The largest discrepancy between the RF3 and 
WOFOST yields clearly occurs with low rainfall during the various 
growth stages. Thus, this suggests that the disparity between the two 
methods at low yields can be attributed to factors related to drought 
during the growing season (Fig. 6). Warmer conditions also lead to a 
slight increase in the disparity (Fig. 7). Despite its restriction to a limited 
section within Fig. 7 (specifically, the area denoted in purple), Fig. 6
exhibits this divergence across a more extensive range of percentages. 
Thus, the role of temperature is less significant compared to drought 
stress at indicating these variations (Fig. 6 and 7). Furthermore, regions 
with high temperature typically experience less rainfall in SSA, so the 
disparity seen in Fig. 7 can also be a result of drought stress.

3.3. Coverage of different climate zones and maize area in entire SSA

The coverage of climate zones with maize land in the training dataset 
is important, as there is a possibility of significant uncertainty when 
extrapolating outcomes across the entire SSA when not all climate zones 
are adequately presented. Our results indicate that a climate zone in 
southern Africa with relatively low temperatures and dry conditions, 
does not have a RWS in the training dataset (Fig. 8 and 9a). This climate 
zone includes ca. 3 % of the total maize area in SSA. It is important to 
mention that South Africa has a large temperature fluctuation 
throughout the year. The cultivation of maize occurs during summer, 
when temperatures are highest, so the low temperatures in South Africa 
are not an issue. Note, that our components are trained with the envi-
ronmental conditions experienced during the maize growing season, 
rather than with the annual indices. Thus, the environmental conditions 
during the maize growing season in South Africa resemble those in other 
regions such as in East Africa, despite differences in climate zone char-
acteristics based on annual indices. Thus, our dataset includes all 

Fig. 4. Comparison between the simulated rainfed potential maize yield across 
different locations using the system presented in Fig. 1 and the measured data 
extracted from the ERA dataset. The simulated results include the historical 
annual results (1995-2014) from five GCMs at each site. The numerical values 
on the y-axis represent the code of virtual weather stations in each country; 
Fig. S7 presents the same results but at the country level.

Fig. 5. Comparison of the rainfed potential maize yields simulated with RF3 and with WOFOST for the training (approx. 54,000 points) and test sets (approx. 
216,000 points) for different time horizons under the historical conditions (2005) and climate change scenario SSP5–8.5 (2030 and 2050) for the future time ho-
rizons. The charts present annual outcomes for a combination of 5 GCMs, 103 weather stations, various soil types within each station’s buffer zone and mono or 
double cropping for maize in the GYGA dataset. The colours represent point density fractions, with each colour representing 10 % of the total points; The same 
information is presented in Fig. S4, but for the SSP3–7.0 climate change scenario.
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Fig. 6. The relationship between the absolute relative rainfed potential yield differences between RF3 and WOFOST (|(RF3-WOFOST)/WOFOST*100|) and cu-
mulative rainfall during each growth stage of maize under the SSP5–8.5 climate change scenario. The colors indicate point density fractions, with each color 
representing 10% of the total dataset (approximately 134,000 points per chart).

Fig. 7. The relationship between the absolute relative rainfed potential yield differences between RF3 and WOFOST (|(RF3-WOFOST)/WOFOST*100|) and average 
temperature during each growth stage of maize under the SSP5–8.5 climate change scenario. The colors indicate point density fractions, with each color representing 
10% of the total dataset (approximately 134,000 points per chart).
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historical climate conditions for training the algorithms. However, ac-
cording to the results, ca. 21 % of climate zones (in terms of maize 
harvested area) in SSA are exposed to new environmental conditions in 
future climates (Fig. 9b). These regions are all located in the northern 
part of SSA. Annual temperatures in these climate zones surpass his-
torical maximum ranges due to the impacts of climate change. It is worth 
noting that the degree of uncertainty in the results within these specific 
regions may be greater compared to other regions.

3.4. Examples of the framework’s modeling outputs

The geographically continuous gridded projections by the frame-
work of the growing season duration and the rainfed potential yields of 
common maize cultivars are illustrated by Fig. 10. Furthermore, it 
presents the impact of climate change on the duration of the growing 
season and rainfed potential yields in 2050 compared to historical 

conditions. The results indicate that the sites with dry climates have the 
shortest growing season durations (Fig. 10a and S9). It is projected that 
the growing season of maize will be reduced by 0 to 35 days due to 
climate change across SSA in 2050 (Fig. 10b). The regions with lower 
mean temperatures, such as the western part of Ethiopia, certain regions 
in South Africa, and the north of Angola, are projected to experience the 
most significant decrease in the duration of the maize growing season in 
2050 compared to the historical conditions (Fig. 10b).

The spatial distribution of simulated rainfed potential yields align 
with the climate conditions in SSA. The areas mentioned in the previous 
paragraph that have a dry climate has the lowest yields. Conversely, 
regions such as the western part of Ethiopia, which have mild temper-
atures and wet climate conditions, have the highest yields (Fig. 10c; 
Fig. S9). In comparison to historical conditions, the rainfed potential 
yields in 2050 are up to 44 % lower or up to 116 % higher due to the 
effects of climate change. The regions with the greatest positive relative 

Fig. 8. Percentage of total maize cultivation area in sub-Saharan Africa situated within each climate zone. The numbers on top of the bars show the numbers of RWSs 
located in each climate zone (Fig. S1 and S9). A dry climate zone was defined as one where annual cumulative potential evapotranspiration fell below 30 % of total 
annual precipitation. The numerical values in the names of climate zones indicate the annual mean temperature associated with each zone. Fig. S9 presents the 
spatial distribution of these climate zones across SSA.

Fig. 9. (a) the climate zone which is not represented by the GYGA reference weather stations under historical conditions; (b) the zones in SSA that exhibit warmer 
climates in the future and those warmer climates are not adequately represented by the current GYGA’s reference weather stations.
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impacts are observed in areas with extremely low rainfed potential 
yields (less than 1.5 ton/ha) under historical conditions, specifically in 
the northern part of SSA (Fig. 10c and d). Therefore, absolute yield 
changes of 1 to 2 tons/ha due to climate change impacts are equivalent 
to substantial changes in relative yield in these areas. It is projected that 
a significant number of sites in SSA will face a decline in rainfed po-
tential yield of maize, ranging from 10 % to 20 % (Fig. 10d).

4. Discussion

4.1. Combining the strengths of process-based crop models and machine 
learning

In this study we presented an approach that capitalises on the 
strengths of a mechanistic crop growth model, relatively high-quality 
input data from key production areas in a subset of countries in SSA, 
and machine learning to allow for extrapolation of yields to the entire 
sub-continent. Substantial effort was put into key eco-physiological 
parameters and processes, including sowing date window, sowing 

Fig. 10. (a) Simulated growing season duration of maize across SSA under historical conditions in the main season; (b) the projected change in the maize growing 
season duration in 2050, when compared to historical conditions; (c) simulated rainfed potential yield of maize across SSA under historical conditions; (d) the 
projected relative change in the rainfed potential yield in 2050, when compared to historical conditions. The results shown in these panels are based on MPI weather 
data and the SSP5–8.5 climate change scenario. Yield is expressed in dry weight.
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date, crop phenology and four different growth stages of the crop during 
which temperature and water stress may have distinct effects. The 
proposed approach relies on high quality input data for a limited num-
ber of locations, but it does not need such high-quality data for 
extrapolation to other locations. This is particularly appealing to data- 
scarce regions such as SSA. While we used the crop growth model 
WOFOST for generating input data, this approach can use inputs from 
results of any well-tested crop growth model. The same holds for the 
choice of a machine learning method. Based on previous studies indi-
cating that Random Forest can successfully simulate crop yields, we 
opted for this method for our study (Aramburu-Merlos et al., 2024; 
Lischeid et al., 2022; Van Klompenburg et al., 2020; Jeong et al., 2016). 
Comparison of the results of our framework using the crop model and 
Random Forest with simulation results derived from the crop model 
employing robust input data demonstrated that our approach can be 
used with high accuracy. Yet, the approach presented in the current 
study is flexible, allowing for different combinations of machine 
learning techniques and crop simulation models based on the user’s 
expertise, familiarity with various methods, and the performance of 
these tools in the target regions.

4.2. The advantages of the approach

Despite the fact that the greatest differences between the rainfed 
potential yields estimated by RF3 and WOFOST occurred under condi-
tions of low rainfall, there are still many points with minimal differences 
between the two models for these specific conditions (Fig. 5). In some 
cases the RF3 model produced better yield simulations as compared to 
WOFOST. For example, at Wolkite in Ethiopia in 2005, the maize yield 
simulated by WOFOST was 0.08 ton/ha, while for the RF3 it was 6.3 
ton/ha. Here, WOFOST failed to accurately simulate potential rainfed 
conditions, as simulated yields were much lower than actual farmers’ 
yields observed at that location (around 2.8 ton ha− 1), let alone the 
rainfed potential yield of the region. In this particular case, the crop 
simulated with WOFOST did not produce any leaf area throughout the 
entire growing season, resulting in a lack of simulated transpiration 
(Fig. S8). However, the evaporation rate from the soil surface during the 
entire season was within the usual range (Fig. S8). In this case, the 
failure of WOFOST to produce sufficient leaf area and grain can be 
attributed to the drizzling bias effect during the early growing season. 
Climate models often overestimate precipitation frequency and dura-
tion, but underestimate its intensity, resulting in a drizzling bias (Chen 
et al., 2021). The issue of accurately representing drizzling bias has been 
a longstanding challenge for global climate models (Chen et al., 2021). 
Using cumulative rainfall data in four distinct crop growth phases and 
ML, as done in our proposed methodology, can be considered a prom-
ising approach to tackle this issue.

Two sets of data were used in this study to evaluate the algorithms of 
our approach: the GYGA data for RWSs and the ERA field experimental 
data. The simulated results from the new approach are consistent with 
all data from the GYGA dataset and the sowing dates provided by the 
ERA dataset. However, in some VWSs (that is for regions in SSA for 
which no RWSs were applicable), we found significant differences be-
tween the simulated data and the extracted data from the ERA dataset 
(Fig. 3b). Generally, measured durations of the growing season in the 
ERA dataset are longer than the simulated values. In our approach, we 
define the growing season as the period from sowing to maturity. 
However, the ERA data experiments, which encompassed both on-farm 
and on-station experiments, defines the growing season as the period 
from sowing to harvesting time. The time of harvesting does not 
necessarily correspond to the time of the maturity, especially in on-farm 
experiments in SSA where harvesting typically takes place a consider-
able time after maturity has been reached (Asare et al., 2023; Kaaya 
et al., 2005; Alakonya et al., 2008).

In previous large-scale studies in SSA, the time from sowing to har-
vesting obtained from different sources has been used as the growing 

season duration in simulations using crop models (Jägermeyr et al., 
2021; Zabel et al., 2021) or ML techniques (Aramburu-Merlos et al., 
2024) to simulate potential yields. When the growing season is pro-
longed due to delayed (relative to maturity) harvesting, as suggested in 
Fig. 3b and c, the simulations are using too long a growing season for 
training the simulations. This could be considered a potential source of 
error in simulations in large-scale studies. Additionally, considering the 
impact of climate change on growing season duration (Fig. 10b; Cleland 
et al., 2007), using an incorrect growing season duration and timing in 
yield simulations could lead to significant uncertainties under future 
climate conditions. We demonstrated that our approach is capable of 
accurately estimating the duration from sowing to maturity across SSA 
(Fig. 3a,c). Thus, the outputs from the two crop model algorithms (A1 
and A2) can be reliably used for future crop modeling- or ML-based 
studies in SSA under current and future climate conditions. Further-
more, dividing the growing season into four periods allows for capturing 
various stress patterns during the growing season, including early- 
season, mid-season, and late-season stress (Table 2).

4.3. Limitations

Crop model outputs were evaluated at the local level in the GYGA 
project under historical climate conditions (Rattalino Edreira et al., 
2021; Alimagham et al., 2024a and b). The algorithms presented in this 
paper are trained using data from the GYGA dataset, encompassing all 
significant (in terms of area) climate zones relevant to maize cultivation 
in SSA under historical conditions. Also, these climate zones represent 
79 % of the climate zones (in terms of area for maize) under future 
climate conditions according to the CMIP6 weather data. Thus, the 
GYGA dataset serves as a valuable resource used in our study to train 
algorithms for SSA under both historical and future climate conditions. 
Yet, we caution to use our approach for future climates that do not 
currently exist and hence for which the approach has not been trained 
(Meyer and Pebesma, 2022). To improve this, we aim to enrich the 
GYGA data with data from hot regions in northern parts of SSA during 
extreme warm years and to use these for training our framework in 
future efforts.

In West Africa, farmers generally tend to sow maize after the first 
main rainfall (greater than 20 mm) at the onset of the rainy season 
(Agbossou et al., 2012; Akponikpè et al., 2010). The algorithm used to 
estimate sowing date in this study calculates the cumulative rainfall over 
seven consecutive days within the sowing window. The last day of this 
period, resulting in more than 20 mm cumulative rainfall, is considered 
the sowing date. Therefore, the algorithm we used in this study is less 
conservative compared to the farmers’ approach of sowing when rainfall 
exceeds 20 mm in a day, which can lead to a later sowing date. The more 
conservative algorithm for maize sowing used by farmers in West Africa 
may be due to the high cost of maize seeds (Adigoun et al., 2022), with 
farmers attempting to mitigate the potential risks of early-season 
drought stress by sowing slightly later. Thus, identifying country- 
specific sowing date algorithms that incorporate local management 
factors in addition to environmental factors could enhance the accuracy 
of sowing date determination in future studies, particularly in West 
Africa.

Although we filtered the ERA dataset for experiments with the 
highest yields (Table 3), the majority of them fell short to apply enough 
nitrogen fertilizer to reach potential rainfed yields (Fig. S10). As a result, 
it is most likely that the filtered ERA yields are below their potential 
rainfed yields, which is also shown by our approach as our simulated 
yields are usually higher than those from the ERA dataset (Fig. 4). 
Nevertheless, we employed the ERA dataset to evaluate our framework 
in terms of spatial distribution of yields. Evidently, any future modeling 
efforts for SSA will benefit from well-managed experiments targeting 
(water-limited) potential yields.
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4.4. Further applications of the approach

It has been reported that statistical models and ML-based models 
possess the capacity to capture extreme impacts, without requiring a 
complex parameter set or an extensive understanding of eco- 
physiological processes (Feng et al., 2019). However, mechanistic crop 
models can account for eco-physiological processes better than statisti-
cal and ML-based models (Roberts et al., 2017). Thus, the combination 
of mechanistic crop models and ML algorithms guided by eco- 
physiological principles holds the potential for improving simulation 
accuracy under climate change conditions, particularly when addressing 
the impacts of extreme conditions (Bai et al., 2024; Kumari et al., 2024; 
Zhu et al., 2021). However, to fully exploit this potential, it is necessary 
to have high-quality experimental yield data obtained under extreme 
conditions (Kim et al., 2024; Rötter et al., 2018), which is currently a 
severe limitation in SSA and for other regions.

Our proposed and tested framework is able to simulate both potential 
yields (irrigated conditions; results were not shown) and rainfed po-
tential yields (rainfed conditions). The ratio of the rainfed potential 
yield to the potential yield can serve as a drought stress index (Van Oort, 
2018), allowing our approach to identify a crop- and site-specific water 
stress severity map across SSA under current and future climate condi-
tions. This map holds significant importance in the field of breeding and 
crop management practices (Jha et al., 2023; Rizza et al., 2004; Debaeke 
and Aboudrare, 2004). In addition, by using data from different GCMs or 
climate change scenarios, our approach enables the analysis of uncer-
tainty in the results under climate change conditions (Tao et al., 2018).

Altering the sowing dates and incorporating new cultivars in terms of 
maturity group are acknowledged as promising approaches to adapt to 
climate change conditions in SSA (Alimagham et al., 2024a; Carr et al., 
2022; Zabel et al., 2021). Our method can be used to assess the influence 
of these factors across SSA under climate change conditions. Due to its 
ability to capture the timing and duration of phenological stages, the 
approach can be employed to assess different cultivars with varying 
growing season durations across SSA under current and future climate 
conditions. By modifying the outputs obtained from the RF2 model, 
which simulates the thermal time requirement of the current cultivars, it 
is possible to adjust the thermal time required from the sowing until the 
flowering, and from the flowering to the maturity, either separately or 
jointly under current and future climate conditions. After adjusting 
thermal time requirements provided by the RF2 model, the rainfed po-
tential yield can be simulated using the new phenological data.

Evaluating potential impacts of climate change on agricultural 
commodities plays a key role in informing policy decisions globally 
(IPCC, 2023). When combined with other factors, such as rising sea 
levels, heat-humidity risks to human health, and more, this information 
provides valuable insights. Such insights are crucial for addressing 
challenges such as land competition between urban expansion and food 
production, conflicts between nations over food resources and popula-
tion migration patterns in the context of climate change (IPCC, 2023). 
This requires detailed information on the potential impacts of climate 
change for all key crops, rather than focusing on just a few crops. By 
strategically narrowing the focus of data collection and crop model 
evaluation to specific regions in SSA, such as done with the GYGA 
protocol (Grassini et al., 2015; van Bussel et al., 2015) the presented 
approach allows to generate accurate and reliable output (phenology 
and crop yields) for different crops for the entire SSA. Our approach is 
not only valid for maize, but could also serve as a basis for exploring 
potential food production of all major food crops in SSA now and under 
climate change conditions. In addition, the presented approach allows to 
test the effect of adaptation of crop cultivars in terms of maturity group. 
Applications of our approach to the purpose of climate change adapta-
tion are visualized in the Africa Agriculture Adaptation Atlas for mul-
tiple crops, i.e. maize, millet, sorghum, wheat, soybean, groundnut, 
common bean and cowpea (https://observablehq.com/d/4c65e6dd 
0bfc32a5). The Africa Agriculture Adaptation Atlas seeks to curate 

and enhance scientific knowledge on climate adaptation in Africa, 
aiming to create a comprehensive resource for investors, policymakers, 
and researchers (https://adaptationatlas.cgiar.org/).

Potential impacts of climate change on rainfed yield potentials 
represent a key strategic indicator for research and development in SSA. 
It provides an upper benchmark to, for example, nutrient-limited yields 
(Falconnier et al., 2020). Such data are essential for policymakers in 
crafting scenarios that address food security in the context of future 
climate conditions. With projections suggesting that food demand will 
increase two- to threefold over the next three decades, achieving the 
needed yield growth in SSA is critical (Van Ittersum et al., 2016). 
Consequently, the benchmark of rainfed yield potential becomes 
increasingly significant: a decline in this benchmark signals a potential 
future threat to regional food security. By projecting this challenge, 
policymakers can be better equipped to respond proactively and 
strategically.

5. Conclusion

While accounting for eco-physiological principles, we integrated 
machine learning techniques with two crop model algorithms to simu-
late the rainfed potential yield across SSA. For locations where we could 
rely on detailed crop growth simulations using local data and the 
WOFOST crop model, our approach was robust in 95 % of the cases. The 
approach can also improve crop growth simulations, particularly in 
addressing biases in rainfall data associated with the so-called "drizzling 
effect." The algorithms are trained using observed data from a limited 
number of carefully chosen locations in SSA. Based on our analysis, we 
conclude that the approach can be used for yield estimation under both 
current and future climate conditions, using data from various GCMs or 
different soil types. Furthermore, the approach can be applied to a va-
riety of crops for which detailed, tested, simulations are available at a 
range (yet limited number) of locations. Thus, the technique outlined in 
this study can extrapolate crop growth simulations to virtually all con-
ditions occurring in SSA’s maize lands with high accuracy for different 
crops, and with far fewer data requirements compared to process-based 
crop models.
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