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A B S T R A C T

Damage to the keel bone in commercial laying hens represent one of the greatest welfare issues in laying hens. 
This study aims to identify the DNA markers and candidate genes for bone strength and density traits in a Rhode 
Island Red laying hen population. We conducted genome-wide association studies (GWAS) on bone quality traits 
using a sample of 925 Rhode Island Red laying hens genotyped with a genotyping array consisting of 60 000 DNA 
markers. With a univariate linear mixed model, we identified 52 suggestive genetic markers located within 28 
candidate genes that are associated with the humerus, keel, and tibia strength and density. We also found 
overlaps between the GWAS results for medullary bone score and tibia strength and density with published 
quantitative trait loci (QTL) for eggshell effective layer thickness and abdominal fat weight, respectively. Her-
itability estimates for the humerus stiffness, tibia stiffness, medullary bone score and minor bone diameter 
ranged from 0.21 to 0.34. Annotation term enrichment analysis of genes within 2 Megabases of suggestive 
markers found that mTOR signalling pathway, tryptophan metabolism, TGF-β signalling pathway, and apoptosis 
were significantly enriched. These loci do not overlap previously published associations, and thus appear to be 
novel.

Introduction

High egg production makes laying hens prone to problems such as 
keel bone deformation and damage during the egg-laying period. Bone 
damage represents a considerable welfare and economic problems in 
commercial laying hens (Candelotto et al., 2017; Habig et al., 2021; 
Harlander-Matauschek et al., 2015; Webster, 2004). As the age in-
creases, the decrease of mineralized structural bone mass during the 
laying period leads to declining the health status and egg quality of 
laying hens. Currently, bone health is one of the main factors limiting 
the performance of extra-long laying hens (Alfonso-Carrillo et al., 2021).

To date, a large number of QTLs and candidate genes that signifi-
cantly affect chicken skeletal traits have been identified (Podisi et al., 
2012; Schreiweis et al., 2005). A QTL region significantly associated 
with tibia and humerus breaking strength was identified on chromosome 

1 in a hybrid F2 population of commercial purebred White Leghorn hen, 
which was recently fine-mapped and identified around the cystathionine 
β synthase (CBS) gene areas associated with osteoporosis (De Koning 
et al., 2020; Dunn et al., 2007). A GWAS analysis of hybrid F2 laying 
hens between a Chinese indigenous breed and a White Leghorn flock 
identified several candidate genes mapped to narrow regions related to 
bone development (Guo et al., 2017). GWAS combined selection 
signature analysis to analyze the genetic basis in an F2 population 
constructed by broiler and layer, and identified 21 candidate genes in 3 
genomic regions significantly related to bone growth and development 
(Li et al., 2021).

The Rhode Island Red breed is one of the most common breeds in the 
world and is often used as a cross parent for many commercial layers 
(Kumar et al., 2002). Estimates of the heritability of bone quality traits 
in the Rhode Island Red population were recently reported, suggesting 
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that bone quality could be alleviated through genetic selection (Dunn 
et al., 2021). The objective of this work was to identify associations and 
candidate genes for bone strength and density traits in the Rhode Island 
Red population, including the tibia breaking strength, tibia density, tibia 
stiffness, cortical thickness, the major and minor diameter of tibia, the 
humerus breaking strength, humerus density, humerus stiffness, med-
ullary bone score, and the keel bone density using Illumina 60 K SNP 
array data.

Materials and methods

Animals and phenotypes

We used data from 925 Rhode Island Red hens previously studied by 
(Dunn et al., 2021; Sallam et al., 2023). Hens were housed with a 
companion hen in cages that were equipped with a perch. All hens had 
free access to feed and water and were managed in the same environ-
ment. Samples were collected at 68 weeks of age from four hatches as 
previously described. The breaking strength of the humerus and tibia 
was evaluated by a three-point bending test, and the density test of the 
humerus, tibia and keel was collected by an X-ray scanner as the pre-
viously described (Dunn et al., 2021). Descriptive statistics for body 
weight and bone traits are listed in Table 1. Covariates for genome-wide 
association studies were identified by fitting body weight, housing sys-
tem, and hatch of week in a multiple regression model with bone traits 
as response variable, and birds that had high leverages (greater than 
three times the standard deviation) were removed.

Genotypes

The hens were genotyped with the Illumina 60 K chicken SNP array 
which contained 57,636 SNPs across 33 autosomes and two sex chro-
mosomes (Groenen et al., 2011). We first discarded SNPs with unknown 
physical position and repeated genomic coordinates. The PLINK soft-
ware (http://pngu.mgh.harvard.edu/purcell/plink/; Purcell et al., 
2007) was then used to control the quality of individuals by removing 
those with a missing genotype frequency higher than 0.05 and omitting 
SNPs with a minor allele frequency lower than 0.01 or a 
Hardy-Weinberg equilibrium P value lower than 1 × 10-4. The number of 
variants located on autosomes eligible for the following analysis is 
shown in Table 1.

Genome-wide association analysis

Association between each genetic locus and bone quality trait, and 
heritability of each trait were evaluated under a univariate linear mixed 
model in the GEMMA (Zhou and Stephens, 2012) program with the 
command “-lmm 1″. The statistical model is shown as follows: 

y = Wα + Xβ + u + ε; u~MVNn (0, λτ− 1K); ε~MNVn (0, τ− 1In)           

Where y is a vector of phenotypic values. W is a matrix of covariates 

(hatch, house and body weight) including a column of 1 s, α is a vector of 
the corresponding coefficients including the intercept. X is a vector of 
locus genotypes, β is the effect size of the locus. u is a vector of additive 
genetic effects, λ is the ratio of the random effect variance to the residual 
error variance, τ− 1 represents the variance of the residual errors and K is 
a kinship matrix calculated from a pruned set of total SNP loci obtained 
by the command “-gk 2″ in GEMMA. ε is a vector of residual errors, In is 
an identity matrix.

Body weight, hatch and house were included as fixed effects in the 
genome-wide association study because of significant associations with 
traits when analyzed in a linear model (Supplementary Table 1).

In this study, a 1.6 × 10− 6 P value was used as the genome-wide 
significance level using Bonferroni correction (0.05/31000) and the 
suggestive significance threshold for P-value was arbitrarily set to 1 ×
10− 4 to provide a less conservative presentation of the results. The 
“QQman” package in the R software (Turner, 2018) was used to draw 
Manhattan and quantile—quantile plots.

SNP identification, candidate gene annotation and QTL detection

The GWAS peak SNPs were physically localized on the Galgal 6.0 
reference genome assembly by the Ensembl Genes database (https 
://www.ensembl.org/index.html) and candidate genes closest to each 
tag SNP were identified. Based on the GWAS results, we used the loca-
tion of the significant SNPs to search for candidate genes with GALLO R 
package (Fonseca et al., 2020) by entering the position of a SNP and 
±500 kb. Furthermore, the chicken QTLdb (https://www.animalgeno 
me.org/cgi-bin/QTLdb/GG/index) (Hu et al., 2013) was used to find 
previously detected associations perform QTL enrichment testing with 
Padj<0.05 and N_QTLS>2.

To identify a large set of suggestive SNPs for annotation term 
enrichment, we used a threshold to 0.0004, and a 2-Mb region was 
defined around each suggestive SNP. To investigate the biological as-
sociations among the candidate genes within these regions of all the 
GWAS lead SNPs, we performed GO and KEGG enrichment analysis by 
the DAVID database (https://david.ncifcrf.gov) (Huang da et al., 2009; 
Sherman et al., 2022).

Power analysis

To explore the power characteristics of the study, we used the 
genpwr R package (Moore et al., 2019), assuming a linear model, ad-
ditive genetics and a significance threshold like in this study. We esti-
mated the power to detect loci explaining 0.1 %, 1 %, 5 %, 10 % of the 
variance at different sample sizes, as well as the effect size that could be 
detected with 80 % power assuming a sample size of 850 individuals. 
The results are shown in Supplementary Fig. 1.

Table 1 
Descriptive statistics for bone traits.

Traits/unit N Min Max Mean SD CV/% Number of SNPs

Thickness/mm 902 0.254 1.144 0.598 0.107 17.934 30,753
Tibia density/mm_Al_equiv 892 1.687 3.089 2.357 0.241 10.237 30,750
Tibia breaking strain/N 889 98.700 387.000 226.600 50.083 22.103 30,746
Tibia stiffness/N_mE 881 14.803 57.091 33.912 7.341 21.645 30,743
Minor diameter/mm 883 5.857 8.160 6.993 0.437 6.246 30,754
Major diameter/mm 884 6.953 10.023 8.527 0.576 6.750 30,740
Keel density/mm_Al_equiv 866 0.573 1.088 0.825 0.097 11.740 30,749
Humerus density/mm_Al_equiv 825 0.947 2.361 1.432 0.304 21.255 30,756
Humerus breaking strain/N 861 74.400 292.100 157.500 45.539 28.911 30,406
Humerus stiffness/N_mE 862 8.822 42.069 23.461 6.091 25.963 30,744
Medullary bone score 879 - - - - - 30,759
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Results

Genome-wide association studies

Thirty-eight SNPs were associated with humerus traits. The Q-Q plots 
were used to illustrate the level of potential P-value inflation. The 
average genomic inflation factor (λ) is 0.962 (Fig. 1, Table 2), which 

indicated the absence of any obvious population stratification and the 
reliability of GWAS results. For keel density and humerus stiffness, there 
was only one suggestive SNP associated, with GGA 26 and 4, respec-
tively. Fourteen significant SNPs associated with medullary bone score 
were clustered in two chromosomal regions, on GGA1 and 9. A total of 
twenty-two suggestive loci distributed on GGA 5, 9, 13, and 25 were 
associated with humerus density. Furthermore, eight suggestive SNPs 

Fig. 1. Manhattan and QQ plots for the association analyses of humerus and keel traits. In the Manhattan plots, -log10(P-value) of the filtered high-quality SNPs (y- 
axis) is plotted against their genomic positions (x-axis). In the Q-Q plots, -log10(p) of observed association statistics on the Y-axis were compared to those of the 
association statistics expected under the hypothesis of no association on the X-axis. The solid line represents concordance between observed and expected values. 
Genomic inflation factor, λ, is shown for each dataset.
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associated with the medullary bone score were also found to be asso-
ciated with humerus density at a suggestive level.

Fourteen SNPs were associated with tibia strength and density traits 
on GGA 2, 5, 7, 14, and 17, and the average genomic inflation factor (λ) 
is 1.000 (Fig. 2, Table 2). Two suggestive SNPs for tibia density were 
located on GGA 5, respectively. Two suggestive SNPs for tibia breaking 
strength, on GGA 2 and 17, respectively. And only one suggestive SNP 
for major bone diameter was located on GGA 5. A total of nine sugges-
tive SNPs distributed on GGA 2, 7and 14 were associated with tibia 
stiffness. No SNP was associated with cortical bone thickness and minor 
bone diameter at the GWAS significance level.

QTL and annotation term enrichment

We overlapped the regions from genome-wide association studies 
with published quantitative trait loci from ChickenQTLdb. The results 
showed that the abdominal fat weight QTL overlapped regions for five 
bone traits, while eggshell thickness QTL overlapped the medullary bone 

score regions. There were also overlaps with breast, carcass and body 
weight QTL (Figs. 3 and 4).

Annotation term enrichment analysis revealed 12 Gene Ontology 
terms with FDR<0.1, among them, keratin filament for the minor bone 
diameter, and adenylate cyclase-modulating G-protein coupled receptor 
signalling pathway for the tibia density. Seven terms were enriched for 
the medullary bone score including K‑threo-aldose 1-dehydrogenase 
activity, bile acid transmembrane transporter activity, G-protein 
coupled purinergic nucleotide receptor activity, and humerus density, 
three terms for tibia breaking strength which are ATPase activity, 
coupled to transmembrane movement of substances and voltage-gated 
calcium channel activity (Table 3). According to the KEGG database, 
eight pathway annotations were significantly enriched, including mTOR 
signalling pathway, tryptophan metabolism, TGF-β signalling pathway, 
and apoptosis (Table 4).

Table 2 
Description of SNPs significantly associated with bone quality traits in Rhode Island Red hens.

Trait Peak SNP CHR Pos (bp) A1 A0 MAF Beta (s.e) Var (%) P-value Nearest gene or transcript

Humerus density Gga_rs15674900 5 17,748,696 T C 0.341 − 0.076 0.0189 6.105E-05 CCND1
 Gga_rs14519806 5 17,756,573 A G 0.341 − 0.076 0.0189 6.449E-05 CCND1
 GGaluGA277535 5 17,793,200 A G 0.342 − 0.077 0.0189 4.601E-05 CCND1
 Gga_rs15675036 5 17,816,747 A G 0.343 − 0.075 0.0189 9.051E-05 FGF19
 GGaluGA277719 5 18,592,354 T C 0.323 − 0.075 0.0190 9.180E-05 ENSGALG00000049369
 Gga_rs14957234 5 18,611,927 T C 0.323 − 0.075 0.0190 9.047E-05 ENSGALG00000049369
 GGaluGA277835 5 18,967,730 A G 0.317 − 0.074 0.0190 9.270E-05 ELF5
 GGaluGA284473 5 39,327,053 T C 0.255 − 0.085 0.0211 6.100E-05 TMEM63C
 Gga_rs15987089 9 22,571,590 A G 0.408 0.073 0.0171 4.978E-06 MFSD1
 Gga_rs16680382 9 22,641,697 T C 0.382 0.072 0.0173 5.536E-06 RSRC1
 GGaluGA343964 9 22,694,487 A G 0.381 0.072 0.0174 8.577E-06 RSRC1
 Gga_rs14682747 9 22,716,989 T C 0.382 0.072 0.0173 5.536E-06 RSRC1
 GGaluGA343975 9 22,718,522 A G 0.382 0.072 0.0173 5.536E-06 RSRC1
 Gga_rs13736850 9 22,749,245 T G 0.382 0.072 0.0173 5.536E-06 RSRC1
 Gga_rs14682782 9 22,755,016 A G 0.382 0.072 0.0173 5.536E-06 RSRC1
 GGaluGA344028 9 22,808,170 A G 0.383 0.069 0.0173 1.351E-05 SHOX2
 Gga_rs14057603 13 2,613,738 A G 0.378 0.073 0.0175 3.565E-05 PCDHGC3
 GGaluGA000809 13 2,617,085 A G 0.390 0.073 0.0171 2.099E-05 PCDHGC3
 GGaluGA090604 13 2,723,555 T C 0.382 0.074 0.0175 2.641E-05 ENSGALG00000034005
 Gga_rs14057466 13 2,786,047 A G 0.390 0.073 0.0172 2.445E-05 PCDH1
 GGaluGA194683 25 363,950 T C 0.244 0.075 0.0192 9.800E-05 POGZ
 GGaluGA194718 25 421,590 A G 0.244 0.075 0.0192 9.800E-05 SNX27
Humerus stiffness GGaluGA270428 4 88,558,830 A G 0.323 − 12535.990 3200.4710 9.684E-05 PTPRA
Keel density Gga_rs16204910 26 5,100,286 T C 0.360 − 0.033 0.0075 1.207E-05 ENSGALG00000031807
Medullary bone score Gga_rs13878250 1 63,701,762 A G 0.178 0.370 0.0934 7.918E-05 RERGL
 GGaluGA022457 1 63,723,936 A G 0.180 0.379 0.0931 5.159E-05 RERGL
 Gga_rs13878420 1 63,853,470 T C 0.180 0.379 0.0931 5.159E-05 RERGL
 GGaluGA022507 1 63,896,924 A G 0.180 0.379 0.0931 5.159E-05 RERGL
 GGaluGA026797 1 79,347,934 A G 0.372 − 0.295 0.0728 5.604E-05 HAO2
 GGaluGA343801 9 22,427,285 A G 0.340 0.285 0.0720 8.173E-05 ENSGALG00000039468
 Gga_rs15987089 9 22,571,590 A G 0.412 0.322 0.0700 4.978E-06 MFSD1
 Gga_rs16680382 9 22,641,697 A G 0.386 0.324 0.0709 5.536E-06 RSRC1
 GGaluGA343964 9 22,694,487 A G 0.385 0.318 0.0711 8.577E-06 RSRC1
 Gga_rs14682747 9 22,716,989 A G 0.386 0.324 0.0709 5.536E-06 RSRC1
 GGaluGA343975 9 22,718,522 A G 0.386 0.324 0.0709 5.536E-06 RSRC1
 Gga_rs13736850 9 22,749,245 A G 0.386 0.324 0.0709 5.536E-06 RSRC1
 Gga_rs14682782 9 22,755,016 A G 0.386 0.324 0.0709 5.536E-06 RSRC1
 GGaluGA344028 9 22,808,170 A G 0.386 0.310 0.0709 1.351E-05 SHOX2
Tibia breaking strength Gga_rs14145402 2 17,645,348 T C 0.483 − 11.001 2.5930 2.441E-05 PIP4K2A
 Gga_rs15032791 17 3,353,238 A G 0.097 − 17.884 4.5094 7.903E-05 PAPPA
Tibia density Gga_rs14517040 5 13,545,074 A G 0.444 − 0.052 0.0124 3.138E-05 KCNQ1
 Gga_rs16468468 5 13,606,911 A G 0.445 − 0.052 0.0124 3.247E-05 KCNQ1
Tibia stiffness Gga_rs14148617 2 20,486,067 T G 0.463 15535.890 3969.8630 9.805E-05 FAM171A1
 Gga_rs14150107 2 21,774,232 T C 0.480 − 15952.890 4046.8040 8.723E-05 CDK14
 Gga_rs14150254 2 21,912,734 A G 0.480 − 16256.690 4038.7280 6.186E-05 CDK14
 Gga_rs14620039 7 26,263,298 T C 0.215 − 18345.500 4671.5250 9.275E-05 ENSGALG00000026460
 Gga_rs14620154 7 26,367,786 A G 0.229 − 18468.990 4537.1030 5.113E-05 SLC15A2
 Gga_rs14620196 7 26,384,936 T C 0.216 − 18476.380 4676.4090 8.411E-05 SLC15A2
 Gga_rs14620221 7 26,411,766 T C 0.230 − 19411.710 4536.9180 2.088E-05 SLC15A2
 Gga_rs15008991 14 7,144,668 T C 0.021 54588.740 13897.9700 9.247E-05 CACNG3
 Gga_rs15009148 14 7,330,887 T C 0.026 48740.250 12382.3700 8.934E-05 ENSGALG00000006140
Bone diameter major Gga_rs16470339 5 15,066,389 A C 0.215 0.141 0.0357 7.961E-05 MUC5B
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Fig. 2. Manhattan and QQ plots for the association analyses of tibia traits. In the Manhattan plots, -log10(P-value) of the filtered high-quality SNPs (y-axis) is plotted 
against their genomic positions (x-axis). In the Q-Q plots, -log10(p) of observed association statistics on the Y-axis were compared to those of the association statistics 
expected under the hypothesis of no association on the X-axis. The solid line represents concordance between observed and expected values. Genomic inflation factor, 
λ, is shown for each dataset.
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Discussion

This study aimed to identify potential candidate genes associated 
with genetic variation in humerus and tibia bone strength and density 
using blood samples from 925 Rhode Island Red hens. There was a lack 
of major large-effect loci, but we identified suggestive genetic associa-
tions for humerus (38 SNPs) and tibia (14 SNPs) traits. These loci did not 
overlap previously published bone QTL, and thus appear to be novel 
(Johnsson et al., 2022; Raymond et al., 2018). There was also no overlap 
between suggestive associations for bone composition traits identified in 
the same population (Sallam et al., 2023).

The relative absence of major loci in the presence of substantial 
genomic heritability reaffirms the polygenicity of bone strength and 
density traits and suggests that genomic prediction of bone traits may be 
fruitful. Indeed, the potential for genomic prediction of tibial bone 
strength within the Rhode Island Red pure line has been demonstrated 
(Sallam et al., 2025).

Genetic association with the humerus traits

In the current study, the top SNP is located within the MFSD1 (major 
facilitator superfamily domain containing 1) gene on GGA9 and is the 
signal most strongly associated with humerus density and medullary 
bone score, referred to as pleiotropy, which is prevalent in the genetic 
architecture of chickens. A significant phenotypic correlation existed 
between humerus density and medullary bone score (P < 0.01). MFSD1 
is an unglycosylated protein, and the immunofluorescence results 
showed that MFSD1 is present in the lysosomes of differentiated osteo-
clasts (Massa Lopez et al., 2016). The trabecular bone of vertebrae in 
MFSD1-deficient mice had decreased BMD and BV/TV ratio, increased 
osteoblast number and osteoclast activity, leading to the decline of bone 
mineral density (Lopez, 2018). Four medullary bone score associations 
on GGA1 are located within 166 kb upstream of the RERGL (Ras-like 
estrogen-regulated growth inhibitor-like) gene and overlap with QTLs 
for eggshell effective layer thickness and eggshell thickness in crossed F2 
individuals (Duan et al., 2016; Liu et al., 2011). Mineralized medullary 
bone serves as a “calcium store” for eggshell formation, and the med-
ullary bone undergoes turnover during a daily egg-laying cycle (Mueller 
et al., 1969).

Some markers that were found to be associated with humerus density 
on GGA5 overlap with the QTL for carcass weight in crosses between 
New Hampshire and White Leghorn chicken (Nassar et al., 2012), and 
QTL for breast muscle weight and abdominal fat weight that were 
detected in White Plymouth Rock (Atzmon et al., 2008). Among the 
markers, three suggestive markers are located within CCND1 (Cyclin 

D1) gene, Let-7b targets CCND1 to regulate osteoblast differentiation in 
mouse MC3T3-E1 cells (Wang and Cai, 2020). MiR-23b-3p functioned as 
a positive factor through regulating cell cycle, proliferation, apoptosis, 
and differentiation of MC3T3-E1 cells via targeting CCND1 (Wang and 
Zhao, 2021). A suggestive marker overlaps with the FGF19 (Fibroblast 
growth factor 19) gene on GGA5, which may inhibit osteoclastogenesis 
by regulating osteoprotegerin (OPG)/NF-κb ligand (RANKL) axis re-
ceptor activator (Guo et al., 2022) and enhance osteogenic differentia-
tion via the Wnt/β-linked protein pathway that is associated with the 
regulation of osteogenic differentiation and bone formation (Teufel and 
Hartmann, 2019).

Genetic association with the tibia traits

The marker on GGA2 associated with tibia breaking strength located 
within the PIP4K2A (phosphatidylinositol-5-phosphate 4-kinase type 2 
alpha) gene, is actively involved in regulating intracellular cholesterol 
transport and negatively correlated with bone mineral density, muta-
tions in this gene did not affect humerus mineral density of laying hens 
(Hu et al., 2018a). Two tibia stiffness associations on GGA2 (bp: 21,774, 
232 and 21,912,734) are located downstream the CDK14 (Cyclin 
dependent kinase 14) gene, a novel cell cycle protein-dependent kinase, 
is a cell cycle regulator whose upregulation indicates increased cell 
proliferation during peri‑implant bone healing (Davidson and Niehrs, 
2010). SLC15A (Solute carrier family 15 member 2) associated with tibia 
stiffness located on GGA7 is a transmembrane transporter protein 
expressed in cell membranes and organelle membranes. Osteoclasts can 
be formed from tissue-specific macrophages in inflammatory and 
immunological environments (Sun et al., 2021). In mice, SLC15A is 
highly expressed in mature immune cells and macrophages in the bone 
marrow (Hu et al., 2018b). A marker association with the tibia density 
on GGA5 (bp: 13,606,911) is located within the KCNQ1 (Potassium 
voltage-gated channel subfamily Q member 1) gene. lnc-KCNQ1OT1 
(KCNQ1 opposite strand/ antisense transcript 1), often regarded as an 
imprinted lincRNA, regulates osteogenic differentiation of mesenchymal 
stem cells by miR-214/BMP2 axis (Wang et al., 2019) and alleviates 
osteoclast differentiation (Zhang et al., 2021).

These markers that were found to be associated with tibia strength 
and density traits on GGA 2, GGA5, and GGA7 all overlap with a QTL for 
abdominal fat weight in a chicken interline cross with White Plymouth 
Rock background (Atzmon et al., 2008). A study on Korean men showed 
that abdominal obesity is a risk factor for osteoporosis whether in young 
or old men (Kim et al., 2019), the research on Chinese men showed that 
abdominal fat and visceral fat mass have negative effects on bone 
microstructure (Lv et al., 2016). On the contrary, excess fat increases the 

Fig. 3. Enrichment of QTL overlapping humerus traits quality associations.
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mechanical load on bones and results in higher bone mineral density 
(Rosen and Bouxsein, 2006). Therefore, the potential mechanism be-
tween abdominal fat and bone mass in laying hens deserves further 
investigation.

The annotation term enrichment for each bone trait

The candidate genes detected in this study are mainly related to 
skeletal development, mTORC1 and mTORC2 both implicated in regu-
lating osteoblast differentiation and function (Chen and Long, 2015). 
Besides, mTORC1 and mTORC2 signaling play an important and minor 
role in endochondral skeletal development, respectively. TGF-α 
signaling pathway have diverse functions in osteoblast differentiation, 
skeletal development, growth plate development, and bone formation 
(Chen et al., 2012; Wu et al., 2016). The primary active metabolites of 

Fig. 4. Enrichment of QTL overlapping tibia traits quality associations.

Table 3 
GO term enrichment test involving the genes within 2 Mb of the SNPs with P <
0.0004.

Trait ID Term Gene 
count

P- 
Value

FDR

Bone 
diameter 
minor

GO:0045095 Keratin filament 11 1.88E- 
15

3.48E- 
13

Medullary 
bone 
score

GO:0047834 D‑threo-aldose 1-de-
hydrogenase activity

5 1.98E- 
05

4.96E- 
03

Medullary 
bone 
score

GO:0015125 Bile acid 
transmembrane 
transporter activity

4 3.94E- 
05

4.96E- 
03

Medullary 
bone 
score

GO:0045028 G-protein coupled 
purinergic 
nucleotide receptor 
activity

4 6.25E- 
05

5.25E- 
03

Medullary 
bone 
score

GO:0004032 alditol:NADP+ 1- 
oxidoreductase 
activity

4 1.32E- 
04

8.31E- 
03

Medullary 
bone 
score

GO:0015347 Sodium- 
independent organic 
anion 
transmembrane 
transporter activity

4 1.80E- 
04

9.07E- 
03

Tibia 
breaking 
strength

GO:0042626 ATPase activity, 
coupled to 
transmembrane 
movement of 
substances

5 1.41E- 
04

2.18E- 
02

Tibia 
breaking 
strength

GO:0005245 Voltage-gated 
calcium channel 
activity

4 6.11E- 
04

4.74E- 
02

Medullary 
bone 
score

GO:0015721 Bile acid and bile 
salt transport

4 1.74E- 
04

6.60E- 
02

Medullary 
bone 
score

GO:0043252 Sodium- 
independent organic 
anion transport

4 2.38E- 
04

6.60E- 
02

Tibia 
breaking 
strength

GO:0005886 Plasma membrane 26 4.81E- 
04

6.64E- 
02

Tibia 
density

GO:0007188 Adenylate cyclase- 
modulating G- 
protein coupled 
receptor signaling 
pathway

9 4.71E- 
05

7.31E- 
02

Table 4 
Gene set enrichment test involving the genes within 2 Mb of the SNPs with P <
0.0004.

Term Gene count P-value

mTOR signaling pathway 29 5.813E-03
Influenza A 26 1.487E-02
ABC transporters 11 1.992E-02
Apoptosis 24 2.027E-02
Tryptophan metabolism 10 2.704E-02
Fanconi anemia pathway 12 2.721E-02
Folate biosynthesis 8 3.541E-02
TGF-beta signaling pathway 18 4.755E-02
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tryptophan metabolism are serotonin, melatonin, and kynurenine, all of 
which play vital roles in bone biology (Al Saedi et al., 2020). Serotonin is 
divided into brain- and gut-derived, and both are functionally inde-
pendent. Among them, brain-derived serotonin enhances bone forma-
tion and inhibits bone resorption (Ducy and Karsenty;, 2010). 
Gut-derived serotonin inhibits bone formation with no changes in 
bone resorption (de Vernejoul et al., 2012; Yadav et al., 2008). 
Increasing kynurenine levels results in accelerated skeletal aging by 
impairing osteoblastic differentiation and increasing osteoclastic 
resorption (Refaey et al., 2017).

Conclusion

In the current study, we conducted an association analysis based on 
the SNPs data and humerus, keel and tibia traits of the Rhode Island Red 
hens. We obtained 52 suggestive SNPs loci, and there was a total of 28 
genes near these SNPs. These loci do not overlap previously published 
associations, and thus appear to be novel.

Supplementary Fig. 1. Power analysis for a GWAS design. The 
vertical dashed line indicates the size of the present study while the 
horizontal line corresponds to a statistical power of 80 %
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