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 A B S T R A C T

This article compares novel and existing uncertainty quantification approaches for semantic segmentation used 
in remote sensing applications. We compare the probability estimates produced by a neural network with 
Monte Carlo dropout-based approaches, including predictive entropy and mutual information, and conformal 
prediction-based approaches, including feature conformal prediction (FCP) and a novel approach based on 
conformal regression. The chosen task focuses on identifying ditches and natural streams based on LiDAR 
derived digital elevation models. We found that FCP’s uncertainty estimates aligned best with the neural 
network’s prediction performance, leading to the lowest Area Under the Sparsification Error curve of 0.09. 
For finding misclassified instances, the network probability was most suitable, requiring a correction of only 
3% of the test instances to achieve a Matthews Correlation Coefficient (MCC) of 0.95. Conformal regression 
produced the best confident maps, which, at 90% confidence, covered 60% of the area and achieved an MCC 
of 0.82.
1. Introduction

Having accurate maps of a landscape is crucial for supporting 
informed decisions in various applications, including sustainable land-
use management (Pagella and Sinclair, 2014). Creating large-scale 
maps, such as those covering an entire country, is a labor-intensive 
process that requires significant human effort. Consequently, the au-
tomated analysis of remote sensing data has become a common solu-
tion (Blaschke, 2010). This involves the analysis of data from sources 
such as optical images, synthetic aperture radar, hyperspectral imaging, 
and Light Detection and Ranging (LiDAR) (Toth and Jóźków, 2016). 
Historically, traditional computer graphics-based approaches have been 
used for remote sensing applications (Savelonas et al., 2022), but more 
recently, deep learning-based methods have been used successfully in 
these applications (Yuan et al., 2020). Deep learning-based approaches 
tend to convert the remote sensing data into images, and apply seman-
tic segmentation to assign one of the classes of interest to every pixel 
of the image. For example, O’Neil et al. (2020) have mapped wetlands 
based on aerial images and topographic indices calculated based on 
a LiDAR derived digital elevation model (DEM). Similarly, Busarello 
et al. (2025) have investigated the use of different topographic indices 
as representation of a DEM derived from LiDAR data. Based on these 
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rasterized representations, they trained a neural network to detect 
ditches and natural streams.

One challenge when working with automatically generated maps is 
assessing their reliability. A common approach to estimating the quality 
of these maps is by comparing them with a representative portion of the 
actual landscape, which provides a good general estimate as long as the 
evaluated landscape is representative of the overall terrain. However, 
the actual quality can vary significantly depending on location, with 
some parts being more accurate and others less so (Kasraei et al., 2021). 
For decision-making purposes, it is important to have an estimate of 
reliability at specific locations, which can be achieved by quantifying 
the uncertainty of the used model at the point of interest (Xu et al., 
2022).

Quantifying uncertainty in deep learning models initially appears 
straightforward, as they typically provide class-wise probabilities for 
each pixel. However, research has shown that these estimates tend 
to be overconfident, due to the training process rewarding overconfi-
dent predictions (Guo et al., 2017; Sensoy et al., 2018). In response, 
various methods have been developed to quantify neural network un-
certainty, which Gawlikowski et al. (2023) categorize into four primary 
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Fig. 1. Illustration of the semantic segmentation task. Ditches (yellow) and natural streams (orange) should be identified in a given chip based on the slope image derived from 
the digital elevation model at a 0.5m resolution. The uncertainty of the 5% most uncertain pixels, as quantified by Feature Conformal Prediction is displayed using pink for 
background pixels, green for ditches and blue for streams. The strength of the color is determined by the uncertainty value.
directions: single network deterministic approaches, Bayesian methods, 
ensemble techniques, and test-time augmentation methods.

Deterministic methods, such as Dirichlet prior networks (Gaw-
likowski et al., 2022), have been used in remote sensing applications, 
as well as ensemble techniques, such as deep ensembles (Lakshmi-
narayanan et al., 2017). For example, Chaudhary et al. (2022) utilized 
deep ensembles to quantify uncertainty in generated maximum water 
depth hazard maps, which aid in estimating the risk of flooding. 
Additionally, deep ensembles have been leveraged to estimate the un-
certainty in wavelength bands from Sentinel-2 whose spatial resolution 
had been enhanced to a resolution of 10m (Iagaru and Gottschling, 
2023).

However, the primary focus has centered on Bayesian methods. 
The most prevalent approach among these Bayesian methods is Monte 
Carlo dropout (MC dropout) (Gal and Ghahramani, 2016), which has 
been used, for example, by Kampffmeyer et al. (2016) to quantify the 
uncertainty of their method on an urban object classification task based 
on a digital surface model (DSM). MC dropout has also been used 
by Martínez-Ferrer et al. (2022) for uncertainty quantification of their 
approach to retrieve different biophysical variables, such as leaf area 
index and canopy water content from surface reflectance data. Another 
notable Bayesian approach involves the application of Bayesian neural 
networks (Blundell et al., 2015; Goan and Fookes, 2020). Hertel et al. 
(2023) have conducted a comparative analysis of both methodologies 
and advocate for the use of Bayesian neural networks, as they tend to 
be less likely to indicate high confidence in incorrect predictions.

One other approach to uncertainty quantification is the conformal 
prediction framework (Vovk et al., 2005), which has been primar-
ily applied to simple classification and regression tasks, but more 
recently was adapted to semantic segmentation. For example, Wieslan-
der et al. (2021) have used conformal prediction for medical image 
segmentation, while Labuzzetta (2022) has applied subsample con-
formal prediction to the task of surface water and grassed waterway 
segmentation. Additionally, Singh et al. (2024) have demonstrated 
how conformal prediction can be applied to different tasks in earth 
observation, such as tree species mapping, land cover classification 
and canopy height estimation, and advocate for its more widespread 
use. While these works are based on more traditional formulations 
of conformal prediction, Teng et al. (2023) have proposed Feature 
Conformal Prediction (FCP), which is particularly adjusted to the use 
with deep neural networks, and has been shown to be more effective 
at quantifying the uncertainty of a neural network in general semantic 
segmentation tasks.

This article compares uncertainty estimates derived from the pre-
dictions of a neural network (network probability) with mutual infor-
mation and predictive entropy — two uncertainty metrics calculated 
through MC dropout — to those obtained via conformal regression 
and FCP. We focus on these methods, in contrast to Bayesian neural 
networks (Blundell et al., 2015) or deep ensembles (Lakshminarayanan 
2 
et al., 2017), since they can be integrated into existing network archi-
tectures for semantic segmentation tasks, and do not incur extensive 
training times, due to the need to train multiple models. Notably, 
conformal prediction-based methods enable the production of predic-
tions with a specified confidence level. Ideally, this would result in 
a map featuring only confident predictions, such as those above a 
90% confidence level. Therefore, we investigate the usefulness of those 
confident maps.

For our comparison, we select the remote sensing task of detecting 
ditches and natural streams from a DEM (Fig.  1), which has been 
derived from LiDAR data. In particular, we perform this detection task 
on data derived from a DEM at 1m resolution, as well as at 0.5m
resolution. This task is especially challenging due to the narrowness of 
the objects of interest, requiring high detection precision. In contrast 
to other semantic segmentation problems, most pixels are background 
pixels, while only few represent ditches and even fewer represent 
natural streams, leading to a significant class imbalance. Additionally, 
distinguishing between streams and ditches in a DEM can be difficult, 
as they often appear similar. These challenges contribute to uncertainty 
in predictions, which we aim to estimate.

Uncertainty quantification is crucial in this context because it 
could help identify natural streams that have been erroneously pre-
dicted as ditches. This distinction is significant, as natural streams 
require distinct management strategies to preserve their ecological 
integrity (Swedish PEFC, 2023). For example, avoiding the crossing 
of these streams with heavy machinery can prevent soil disturbance, 
which otherwise can exacerbate sedimentation and disrupt ecological 
functions (Bishop et al., 2009). In contrast, ditches can be more easily 
cleaned or maintained without needing permits.

This article addresses the following research questions:

1. Which of the investigated uncertainty quantification approaches, 
i.e., network probability, mutual information, predictive en-
tropy, conformal regression, and FCP produces the most reliable 
uncertainty estimates?

2. To what degree does the resolution of the DEM impact the 
uncertainty estimates?

3. To what extent is it possible to generate useful maps with a 
specific confidence level using conformal regression and FCP?

2. Methodology

2.1. Mapping ditches and streams: Network probability

For mapping ditches and streams, our approach employs a U-Net 
architecture (Ronneberger et al., 2015) similar to that used by Busarello 
et al. (2025) (Fig.  2), which has been demonstrated to be effective for 
this task. The U-Net takes as input a 500 × 500 pixels large chip of 
the landscape represented by the local slope derived from a DEM. This 
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Fig. 2. U-Net architecture for mapping streams and ditches. The colored arrows show 
different processing steps, the dashed arrows indicate concatenation of feature maps, 
and the shaded feature maps indicate the ones being used for Feature Conformal 
Prediction.

input is then downsampled through a series of convolutional, dropout, 
and max pooling layers. Notably, our approach differs from Busarello 
et al. (2025) in that we utilize concrete dropout (Gal et al., 2017), 
which has been shown to improve uncertainty estimates obtained 
through MC dropout (Mukhoti and Gal, 2018).

After four downsampling steps, the extracted feature maps are up-
sampled using transposed convolutions, and processed by convolution 
and dropout layers to reach the original input size. At each upsampling 
step, the feature maps of the corresponding downsampling step are 
concatenated to ensure that no relevant information is lost. The final 
output is produced by applying a convolutional layer to the last feature 
maps (shaded feature maps in Fig.  2) . The output consists of three 
bands, each representing one of the considered classes: background, 
ditch, and natural stream.

In contrast to most U-Net architectures, our approach does not 
utilize a softmax layer, which would map the output at each pixel to a 
probability distribution over the three classes and be trained using cross 
entropy loss. Instead, we employ a linear activation function in the last 
convolutional layer and train the network using mean squared error, as 
proposed by Teng et al. (2023) to improve uncertainty estimates of FCP. 
Labels are mapped farther apart using a double log transform, resulting 
in large positive and negative values. Unlike Teng et al. (2023), who 
applied a Gaussian blur to the labels, we found this approach to be 
detrimental to performance, likely due to the narrow nature of our 
objects of interest, i.e., ditches and streams. To address class imbalance, 
we implement median frequency balancing (Eigen and Fergus, 2015) as 
suggested by Busarello et al. (2025).

Uncertainty estimates are derived from predicted network prob-
abilities. This involves reversing the double log transform to obtain 
probabilities between 0 and 1 for each pixel and class. It should be 
noted that these probabilities are not calibrated in any way. The class 
with the highest probability is selected for each pixel. Uncertainty 
values are then calculated as the difference between the predicted prob-
ability and 1. This approach assumes that high confidence predictions 
yield probabilities close to 1, whereas low confidence predictions result 
in lower probabilities and thus higher uncertainty values.

2.2. MC dropout: Predictive entropy and mutual information

MC dropout has been proposed by Gal and Ghahramani (2016) as a 
method for estimating the uncertainty of a neural network. The main 
idea behind MC dropout is that if a neural network is certain about 
its prediction, introducing small random changes in its execution will 
not affect its prediction. Conversely, when a network is uncertain about 
its prediction, these small changes will lead to large variations in the 
predicted outcome. Thus, the network’s uncertainty can be estimated 
3 
by observing the variability in its predicted output when run multiple 
times. MC dropout introduces small random changes using dropout 
layers within the network architecture.

In a dropout layer (Srivastava et al., 2014), a randomly selected 
subset of neurons has its output set to zero. At each new input, a 
predefined probability determines which neurons are dropped. This 
probability is learned in concrete dropout (Gal et al., 2017), which we 
use in this study. Unlike the traditional use of dropout layers, which 
typically activates them only during training to promote robustness, MC 
dropout keeps those layers active during inference, resulting in varying 
outputs for identical inputs processed multiple times.

MC dropout estimates the uncertainty by using these varying out-
puts to compute two different metrics: predictive entropy and mutual 
information. These metrics measure different types of uncertainty, 
viz. aleatoric and epistemic uncertainty. Aleatoric uncertainty captures 
uncertainty caused by the data, such as ambiguity at the border be-
tween ditch and background, whereas epistemic uncertainty captures 
uncertainty caused by the model itself, for example, due to insufficient 
training data.

Predictive entropy captures both aleatoric and epistemic uncer-
tainty and is approximated for a given input 𝒙 and a given training 
set 𝑡𝑟𝑎𝑖𝑛 as: 
Ĥ[𝑦|𝒙,𝑡𝑟𝑎𝑖𝑛] =
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Here, 𝐶 is the set of classes, 𝑇  is the number of outputs 𝑦 to collect 
for variations of the neural network �̂�𝑡, which are produced by the 
dropout layers, and 𝑝 (𝑦 = 𝑐|𝒙, �̂�𝑡

) is the probability of input 𝒙 being 
in class 𝑐. In contrast, mutual information measures only the epistemic 
uncertainty and is approximated as: 
Î[𝑦,𝑤|𝒙,𝑡𝑟𝑎𝑖𝑛] = Ĥ[𝑦|𝒙,𝑡𝑟𝑎𝑖𝑛]
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This study computes predictive entropy and mutual information 
values for each pixel within every output chip, based on 1 000 outputs 
collected for each chip.

2.3. Conformal regression

Conformal regression is a part of the conformal prediction frame-
work (Vovk et al., 2005), offering guarantees for machine learning 
model predictions. Unlike standard regression, conformal regression 
generates prediction intervals rather than single numerical values. The 
framework ensures that, for a pre-defined percentage of predictions 
(e.g., 90%), the true value lies within the provided interval. While this 
can be achieved easily by making this interval arbitrarily large, the 
challenge lies in finding a narrow yet guarantee-ensuring interval.

While there are two types of conformal regression, this article 
focuses on the inductive case, as it does not require frequent re-training. 
Inductive conformal regression estimates the size of the prediction 
interval based on a calibration set, which is separate from the training, 
validation, and test datasets. The interval is derived by measuring 
the difference between the predicted value and the true value for all 
instances of the calibration set, using a non-conformity function, such 
as mean absolute error (MAE), resulting in a non-conformity score. 
Based on a pre-defined confidence-level, e.g., 90%, the difference or 
non-conformity score of the 90th percentile is selected, and the interval 
is set as the value predicted by the machine learning model plus or 
minus the selected value. This ensures that the true value of 90% of 
instances in the calibration set lies within the produced interval, since 
their prediction errors were smaller than the one chosen. Because the 
calibration set is required to be exchangeable with the test set, i.e., they 
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both come from the same distribution, it can be expected that this 
guarantee will hold also for unseen instances from the test set.

One issue with the described approach is that it assigns the same 
interval to all instances, leading to overly large intervals for most of 
them. This can be addressed by normalizing non-conformity scores 
through instance difficulty estimation. For example, Cortés-Ciriano and 
Bender (2019) estimate instance difficulty using MC dropout, recording 
predicted outputs for the same instance 𝑖 multiple times with enabled 
dropout layers and calculating mean 𝜇𝑖 and standard deviation 𝜎𝑖 over 
those outputs. The non-conformity score 𝛼𝑖 is then computed based on 
the corresponding true value 𝑦𝑖 over all instances in the calibration set 
𝑐𝑎𝑙, resulting in a list of non-conformity scores 𝑆, which is then sorted 
in ascending order. 

𝛼𝑖 =
|𝑦𝑖 − 𝜇𝑖|

𝑒𝜎𝑖
𝑆 = 𝛼1,… , 𝛼𝑞 , with 𝑞 = |𝑐𝑎𝑙| (3)

Based on this list, the non-conformity score 𝛼𝑝 is selected, which 
corresponds to the chosen confidence level 1 − 𝜖 (e.g., 0.9 for 𝜖 = 0.1). 
For a new instance 𝑗, the prediction interval around the mean of the 
MC dropout samples 𝜇𝑗 is then derived by multiplying the selected 𝛼𝑝
with the instance’s difficulty, as measured by the standard deviation 
over the MC dropout samples 𝜎𝑗 (Cortés-Ciriano and Bender, 2019). 
𝑝 = ⌈(1 − 𝜖)(𝑞 + 1)⌉ , for 𝛼𝑝
𝜇𝑗 ± 𝛼𝑝 ⋅ 𝑒

𝜎𝑗 (4)

Another challenge in deriving regression intervals is that the dis-
tribution of non-conformity scores may vary depending on certain 
properties of the instances. For example, when dealing with instances 
having large true values, the error may be greater than for those with 
small true values. If this difference in distribution is not taken into ac-
count, the derived regression intervals will be larger than necessary for 
instances with small true values and possibly too narrow for instances 
with large true values, depending on their prevalence in the calibration 
set.

For classification problems, Mondrian conformal prediction (Vovk 
et al., 2005) addresses these issues by categorizing instances based on a 
Mondrian taxonomy that considers certain properties of each instance. 
A separate conformal predictor is then built for each category. Mon-
drian regression, proposed by Boström and Johansson (2020), follows 
a similar approach. It divides the calibration instances into different 
categories based on a Mondrian taxonomy, specifically an estimate of 
difficulty. The prediction interval within each category is derived from 
the non-conformity score at a specific percentile. This methodology 
allows for more tailored prediction intervals that are narrower for 
instances belonging to simpler categories and wider for those in harder 
categories. Since simpler categories typically have low errors and thus 
low non-conformity scores, their prediction intervals can be narrower. 
In contrast, harder categories will have higher non-conformity scores, 
leading to broader prediction intervals.

In our implementation, each pixel in an input chip is associated 
with three real values indicating to which of the three classes it be-
longs. After reverting the double log transform, we perform conformal 
regression to derive a prediction interval for the three class values of 
each pixel. Since the class values can be seen as the probability of 
the pixel to belong to each of the classes, the estimated intervals can 
be interpreted as probability ranges. The estimation of these intervals 
involves calculating non-conformity scores per class for every pixel in 
all calibration set chips, followed by normalization using 100 Monte 
Carlo samples as proposed by Cortés-Ciriano and Bender (2019).

While we record non-conformity scores per class, we also employ 
Mondrian conformal regression to obtain more tailored intervals. This 
approach differs from the original Mondrian taxonomy by Boström 
and Johansson (2020), which utilized estimated instance difficulty. 
In contrast, our taxonomy categorizes predictions for each class into 
two categories: pixels with predicted probabilities close to zero and 
4 
those near one. This distinction is important because we observed in 
initial experiments the tendency of classes with few pixels to have 
most commonly a predicted probability value of zero with a low 
non-conformity score. Conversely, when the actual class is predicted 
(i.e., the predicted probability exceeds 0.5), the non-conformity scores 
tend to be substantially higher. Given this observation, it is reasonable 
to create categories based on the predicted values.

Thus, we group the non-conformity scores of instances from the 
calibration set 𝑐𝑎𝑙 for each class individually into two lists, one for 
which the predicted probability is lower than 0.5, 𝑆<0.5, and one for 
which the predicted probability is larger or equal, 𝑆≥0.5. Those lists 
are then sorted in ascending order, and the non-conformity scores 
corresponding to the chosen confidence-level 1 − 𝜖 are selected as 
before. 
𝑆≥0.5 = 𝛼≥0.51 ,… , 𝛼≥0.5𝑟

𝑆<0.5 = 𝛼<0.51 ,… , 𝛼<0.5𝑠 , with 𝑟 + 𝑠 = |𝑐𝑎𝑙|

𝑡 = ⌈(1 − 𝜖)(𝑟 + 1)⌉ , for 𝛼≥0.5𝑡

𝑢 = ⌈(1 − 𝜖)(𝑠 + 1)⌉ , for 𝛼<0.5𝑢 (5)

We then calculate intervals for each pixel 𝑗 in a new chip by 
collecting 100 Monte Carlo samples of output predictions for the pixel 
and computing the respective mean 𝜇𝑗 and standard deviation 𝜎𝑗 . 
Given the selected non-conformity scores and the estimated means and 
standard deviations, the interval for one of the possible classes for pixel 
𝑗 is derived as follows: 
𝜇𝑗 ±

(

𝜇𝑗𝛼
≥0.5
𝑡 + (1 − 𝜇𝑗 )𝛼<0.5𝑢

)

⋅ 𝑒𝜎𝑗 (6)

By multiplying the selected non-conformity scores with the prob-
ability mean and its inverse respectively, the final interval is derived 
as combination of both scores depending on how much the pixel’s 
prediction agrees with the respective categories. This way of assigning 
the corresponding non-conformity score to a pixel is computationally 
more efficient than having to find the applicable score based on some 
other feature of the pixel, such as difficulty, via a look-up, as it 
is the case in the Mondrian approaches by Boström and Johansson 
(2020), Wieslander et al. (2021), and Labuzzetta (2022).

The uncertainty value for each class is determined by the size of 
the interval, where a larger interval indicates greater uncertainty in the 
prediction. Unlike MC dropout, which produces uncertainty values per 
pixel, the conformal regression approach derives an uncertainty value 
per pixel per class.

2.4. Feature conformal prediction (FCP)

In contrast to conformal regression, which computes non-conformity
scores based on the output of a machine learning model, FCP (Teng 
et al., 2023) calculates these scores based on an intermediate feature 
representation of a neural network. This feature representation can be, 
for example, the feature maps produced by a convolutional layer. These 
feature maps are then converted into a single vector by flattening the 
corresponding tensor, enabling FCP to obtain a predicted output for an 
input instance as a point in a high-dimensional vector space.

When applying conformal regression, it is clear what constitutes a 
true value for computing the non-conformity score, i.e., the target value 
of an instance. In contrast, identifying the true feature representation of 
an instance is not straightforward. FCP assumes this true representation 
to be the infimum, which corresponds to the feature representation 
with the smallest numerical values, which produces the correct output. 
However, finding this optimal representation is challenging. As a re-
sult, FCP approximates the infimum by optimizing the original feature 
representation for a given input instance to produce the correct output 
using gradient descent. It should be noted that this approach modifies 
the values of the feature representation rather than adjusting neural 
network weights. The non-conformity score is then computed using a 
norm distance, such as the infinity norm, between the vector of the 
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original representation and the one derived through gradient descent. 
This yields a single non-conformity score per instance, differing from 
the conformal regression case where multiple scores are generated 
corresponding to each output.

The base score is derived, similar to conformal regression, by com-
puting the non-conformity scores for the calibration set and selecting, 
for example, the 90th percentile. Given a test instance, FCP derives its 
corresponding feature representation and applies perturbations to this 
representation, ensuring that the resulting new feature representations 
do not deviate beyond the distance indicated by the base score. These 
perturbations are achieved using Linear Relaxation based Perturbation 
Analysis (LiRPA) (Xu et al., 2020). Subsequently, FCP estimates the 
resulting output intervals by applying the neural network to the per-
turbed feature representations. In summary, FCP performs conformal 
regression in feature space and derives output prediction intervals 
through perturbation analysis. Mathematical proofs of the correctness 
and efficiency of the method have been derived by Teng et al. (2023).

Our implementation utilizes feature maps generated prior to the 
output layer (shaded feature maps in Fig.  2) for FCP. In contrast to Teng 
et al. (2023), who found that features can be extracted from various 
layers without altering the prediction intervals, our findings suggest 
that using feature maps from any other layer results in unreasonably 
large prediction intervals for our task and network architecture. This 
may be because the skip connections in our U-Net architecture inter-
fered presumably with the perturbation step, as the perturbations were 
applied only to the feature maps of the upsampling path and not those 
of the downsampling path. We employ perturbation analysis to derive 
prediction intervals for every pixel and class. Similar to our conformal 
regression implementation, the size of the interval is interpreted as 
uncertainty, where larger intervals indicate higher uncertainty.

3. Experiments

3.1. Dataset

For this article, we used a dataset provided by Busarello et al. 
(2025)., consisting of LiDAR-derived DEMs for 12 distinct regions in 
Sweden, further described by Lidberg et al. (2023). The dataset is 
available in two resolutions, 0.5m and 1m, corresponding to input chips 
of 500 × 500 pixels representing areas of 250m×250m and 500m×500m, 
respectively. To address class imbalance, chips with less than 250 ditch 
or stream pixels were removed, resulting in a dataset where still only 
1.1% and 0.1% of all pixels belong to the ditch and natural stream class, 
respectively (Busarello et al., 2025).

Topographic indices are utilized to provide a rasterized represen-
tation of the DEM. In our experiments, the local slope was used, 
which signifies the change in elevation between every pixel in the 
DEM, with inclination displayed in degrees (Florinsky, 2016). This 
index was chosen due to its superior performance in stream detection 
and satisfactory results for ditch detection (Busarello et al., 2025). To 
reduce execution time, we focused on a single index; however, all 
uncertainty quantification methods remain applicable when multiple 
indices are considered.

To evaluate the chosen uncertainty quantification methods, we 
employed 10-fold cross-validation to facilitate statistical analysis. How-
ever, since conformal regression and FCP require a calibration set, the 
dataset was divided into 11 folds: nine for training, one for calibration, 
and one for testing to ensure exchangeability between folds. Stratified 
sampling by region ensured that chips in each fold cover the 12 dis-
tinct regions similarly well, preserving representativeness throughout 
training, calibration, and test set.

Apart from ensuring exchangeability, we needed to prevent infor-
mation about the test set from leaking into the training and calibration 
set to avoid biasing the evaluation and obtaining miscalibrated uncer-
tainty estimates. This was achieved using the following partitioning 
strategy. The dataset was divided into chips without overlap, ensuring 
5 
Fig. 3. Number of chips in each of the 11 folds for the digital elevation model (DEM) 
with resolution 1m and 0.5m.

that no chip’s information was shared between training, calibration and 
test set. Within each region, chips were grouped to minimize borders 
with adjacent chips in other folds. To optimize this grouping, a heuristic 
algorithm was used due to the NP-hard nature of the problem1, yielding 
an approximate optimal solution for partitioning.

After splitting the chips from the 1m DEM into 11 folds, the cor-
responding chips were then selected for the 0.5m DEM, ensuring that 
both resolutions contained the same ditches and streams within each 
fold. This design prevented differences in performance between the two 
resolutions being attributed to varying levels of complexity, rather than 
resolution itself. While the number of chips for the 1m DEM was nearly 
the same for all folds, this number varied more for the 0.5m DEM (Fig. 
3). The reason for this variation was that a different number of chips 
was dropped in each fold, depending on the number of 0.5m DEM chips 
containing at least 250 ditch or stream pixels.

3.2. Performance metrics

The neural network’s performance in classifying pixels as back-
ground, ditch, or natural stream was evaluated using the Matthews 
Correlation Coefficient (MCC) (Matthews, 1975; Yule, 1912) and 𝐹1
score. Given that there were more than two classes, we used the multi-
class version of MCC proposed by Gorodkin (2004). MCC provides a 
balanced view of the classification performance across all classes, while 
𝐹1 score focuses on the performance for a specific class, making it 
particularly suitable for investigating the network’s performance for 
one class of interest (Chicco et al., 2021).

To evaluate the performance of uncertainty quantification
approaches, we utilized the Area Under the Sparsification Error Curve 
(AUSE) (Ilg et al., 2018). Unlike the commonly used Patch Accuracy 
vs. Patch Uncertainty (PAvPU) (Mukhoti and Gal, 2018), AUSE also 
considers the uncertainty estimates for accurate predictions and does 
not require parameter tuning (Dreissig et al., 2023). Furthermore, 
AUSE is more suitable than the Expected Calibration Error (ECE) (Pak-
daman Naeini et al., 2015) because ECE tends to overestimate cali-
bration performance on imbalanced datasets (Dreissig et al., 2023). 
In contrast, AUSE can be combined with a performance metric that 
is robust to imbalanced data, such as MCC (Chicco et al., 2021). The 
main idea behind AUSE is that network outputs should be correct when 

1 NP-hard problems are computational problems for which there is no 
known algorithm which finds a solution in a number of steps polynomial in 
its input (Garey and Johnson, 1979). There is no efficient algorithm to solve 
them.
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estimated to have low uncertainty, but may be incorrect when their 
uncertainty is high.

The sparsification curve is obtained by sorting pixels by their uncer-
tainty and removing a fraction of the most uncertain pixels. Then, clas-
sification performance is measured on the remaining pixels. Here, we 
used MCC for multi-class evaluation and 𝐹1 score for single-class eval-
uation. This process is repeated for increasing fractions of pixels. The 
resulting performance curve should gradually increase if uncertainty 
aligns with correctness.

The sparsification error curve is obtained by subtracting the spar-
sification curve for one uncertainty quantification approach from the 
oracle curve, i.e., the sparsification curve derived by sorting and remov-
ing pixels by actual distance between predicted and true values. This 
optimal sorting removes the most incorrect predictions first and is thus 
the best an uncertainty quantification method can achieve. For a good 
uncertainty quantification method, there will be a small area under 
the sparsification error curve, which can be used as single measure to 
compare between uncertainty quantification approaches.

Furthermore, we evaluated the practical use of those approaches 
using a correction curve, which we propose for this evaluation. This 
curve illustrates the impact different uncertainty quantification meth-
ods would have when used for correcting uncertain pixels, rather than 
removing them as is done for the sparsification curve. This correc-
tion curve shows how many pixels would need manual investigation 
to achieve a specified MCC value or 𝐹1 score, facilitating informed 
decision-making. The correction error curve can be obtained by sub-
tracting the correction curve of a particular uncertainty quantification 
method from the oracle correction curve. Based on this, we define 
the Area Under the Correction Error Curve (AUCE) as a metric for 
evaluating how well an uncertainty quantification approach identifies 
pixels that require correction relative to the optimal solution.

3.3. Experiment design

In our experiments, 10 U-Net models were trained on different fold 
combinations using a unique calibration and test set for each model. 
The implementation utilized pytorch 2.0.1 (Ansel et al., 2024) with 
training performed on a computer equipped with approximately 1TB
of RAM, two Intel Xeon Platinum processor with 32 cores each, and 
one 40GB partition of an NVIDIA A100 GPU. We performed training 
using the Adam optimizer (Kingma and Ba, 2015) and a batch size of 
16. Furthermore, each model was trained for 300 epochs in case of the 
1m DEM, and for 165 epochs, in case of the 0.5m DEM, as these values 
were determined to be optimal based on validation loss performance. 
Given the reduced instance count for the 1m DEM, training for more 
epochs was reasonable since there were fewer weight update steps per 
epoch.

After training the models, their performance was evaluated using 
MCC and 𝐹1 score on the respective test sets. A Bayesian t-test for 
correlated observations (Corani and Benavoli, 2015) was conducted 
to determine if there were significant differences between the models’ 
performance on the 1m and 0.5m DEM data. This statistical test was 
chosen, since it avoids the shortcomings of more traditional null hy-
pothesis significance tests (Benavoli et al., 2017). Basically, it computes 
the probability of the performance difference between two approaches 
to lie within or outside of a pre-defined region of practical equiva-
lence (ROPE). In our evaluation, we chose the ROPE to be a difference 
in MCC value of 0.05, meaning that the performance difference of two 
methods would have to be at least 0.05, for us to consider one method 
significantly better or worse than the other. Given that this test is a 
paired test, we paired the MCC result on one test fold from the 1m
DEM with its corresponding test fold from the 0.5m DEM, i.e., the fold 
which covers the same areas, just at a higher resolution.

Given the trained models, we calibrated the conformal regression 
and FCP approaches on the respective calibration sets. We then derived 
uncertainty estimates for the chips in the corresponding test sets using 
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the investigated approaches, i.e., network probability, mutual informa-
tion, predictive entropy, conformal regression, and FCP. The execution 
time was measured for each approach. We then calculated the AUSE 
for all approaches on each test fold and both resolutions. This allowed 
us to investigate whether a lower resolution lead to poorer uncertainty 
estimates by comparing the AUSE scores between resolutions using the 
Bayesian t-test. Specifically, we paired the scores for each test fold 
and method of one resolution with those of the other resolution to 
determine if there were significant differences in uncertainty estimation 
quality.

Furthermore, we compared the AUSE scores for different uncer-
tainty quantification methods using the Bayesian t-test to determine 
which method performed best. This comparison involved pairing the 
AUSE score of each two methods based on the corresponding folds and 
resolution. When comparing the AUSE, we considered a ROPE of 0.05 
sufficient to identify practically relevant differences in performance 
among the evaluated methods. To facilitate efficient comparison of 
methods, high-density intervals (HDIs) were derived using the Bayesian 
t-test. The HDI plot displays the 95% probability intervals in which 
performance differences between methods lie, as well as the ROPE. 
By focusing on intervals not overlapping with the ROPE, statistically 
significant differences can be identified between methods.

To illustrate the practicality of these methods, we derived correction 
curves considering all classes, as well as curves focusing solely on 
predicted ditch and stream pixels. This allowed us to investigate the 
effort required to correct errors where natural streams were mistakenly 
predicted to be ditches or vice versa. Since, for illustrative purposes 
only, sparsification and correction curves displaying the performance 
of a single model had to be selected, the model with AUSE and 
AUCE values closest to the mean performance at both 1m and 0.5m
resolutions was selected. The chip used for illustration was chosen as 
the one containing the most ditch and stream pixels from the test set 
of this model.

Lastly, we explored the possibility of generating reliable prediction 
maps using conformal regression and FCP. To this end, we calibrated 
these methods for various confidence thresholds, spanning from 50% 
to 90%, and included only pixels for which the probability interval of 
the most probable class did not overlap with those of any other class. 
We then computed the recall for each class, as well as the average 
recall over all classes. The recall was derived by dividing the number 
of confidently and correctly predicted pixels of a class by the total 
number of pixels of that class in the test set. Thus, giving an indication 
of the percentage of classified pixels in those confident maps. We also 
evaluated the classification performance on only those pixels classified 
with high confidence, excluding the ground truth of all pixels to which 
no single class was assigned. This gave an indication of the correctness 
of those confident maps.

4. Results

4.1. Mapping performance

Our analysis of the mapping performance revealed that all trained 
models performed best on the background and second best on the ditch 
class, but struggled with natural streams (Table  1). Models trained on 
the 0.5m DEM outperformed those on the 1m DEM in terms of MCC. 
A Bayesian t-test confirmed a significant advantage for the 0.5m DEM 
models, estimating that with a probability of 100% they yielded a 
0.05 points higher MCC than their 1m DEM counterparts. This result 
remained the same even when increasing the ROPE to 0.1.
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Table 1
Mapping performance on the 1m and 0.5m resolution data as measured by the 
Matthews Correlation Coefficient (MCC) for all classes, and the 𝐹1 score for the 
background (𝐹 (𝑏)

1 ), ditches (𝐹 (𝑑)
1 ), and natural streams (𝐹 (𝑠)

1 ). The reported values 
indicate the mean and standard deviation over 10 test folds. Best performance indicated 
in bold. 
 Resolution 𝐹 (𝑏)

1 𝐹 (𝑑)
1 𝐹 (𝑠)

1 MCC  
 1m 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 0.62 ± 0.02 0.39 ± 0.06 0.61 ± 0.02 
 0.5m 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟕𝟕 ± 𝟎.𝟎𝟑 𝟎.𝟒𝟑 ± 𝟎.𝟎𝟖 𝟎.𝟕𝟔 ± 𝟎.𝟎𝟑 

Table 2
Area Under the Sparsification Error Curve (AUSE) for the 1m and 0.5m
resolution data derived for the background (𝐴𝑈𝑆𝐸(𝑏)), ditch (𝐴𝑈𝑆𝐸(𝑑)), 
and natural stream (𝐴𝑈𝑆𝐸(𝑠)) class using 𝐹1 score as performance 
metric, and the overall AUSE score using the Matthews Correlation Coef-
ficient for network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual 
information (𝑚𝑖), conformal regression (𝑐𝑟), and feature conformal 
prediction (𝑓𝑐𝑝). The reported values indicate the mean and standard 
deviation over 10 test folds. Best result indicated in bold.
 𝐴𝑈𝑆𝐸(𝑏) 𝐴𝑈𝑆𝐸(𝑑) 𝐴𝑈𝑆𝐸(𝑠) AUSE  
 1m

 𝑝𝑟𝑜𝑏 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.46 ± 0.23 0.58 ± 0.22 0.42 ± 0.19 
 𝑝𝑒 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.96 ± 0.01 0.97 ± 0.03 0.95 ± 0.03 
 𝑚𝑖 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.95 ± 0.01 0.98 ± 0.00 0.95 ± 0.01 
 𝑐𝑟 0.02 ± 0.00 0.33 ± 0.03 0.52 ± 0.07 0.35 ± 0.03 
 𝑓𝑐𝑝 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟐𝟎 ± 𝟎.𝟏𝟎 𝟎.𝟑𝟗 ± 𝟎.𝟏𝟏 𝟎.𝟐𝟎 ± 𝟎.𝟏𝟎 
 0.5m

 𝑝𝑟𝑜𝑏 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.61 ± 0.28 0.64 ± 0.22 0.51 ± 0.21 
 𝑝𝑒 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.73 ± 0.16 0.84 ± 0.18 0.65 ± 0.14 
 𝑚𝑖 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.90 ± 0.07 0.96 ± 0.06 0.84 ± 0.09 
 𝑐𝑟 0.02 ± 0.00 0.20 ± 0.03 0.51 ± 0.09 0.23 ± 0.03 
 𝑓𝑐𝑝 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟗 ± 𝟎.𝟎𝟒 𝟎.𝟑𝟒 ± 𝟎.𝟏𝟐 𝟎.𝟎𝟗 ± 𝟎.𝟎𝟒 

4.2. Uncertainty quantification performance

MCC values increased faster for models trained on the 0.5m DEM 
compared to those on the 1m DEM when removing the most uncertain 
pixels, as indicated by the sparsification curves (Figs.  4(a) and 4(b)). 
This suggests that uncertainty quantification methods are more effec-
tive in identifying misclassified pixels for the 0.5m DEM than the 1m
DEM. Consequently, areas between sparsification curves and the oracle 
curve were smaller for the 0.5m DEM (Table  2).

The trend of improved identification of incorrect pixels with higher 
resolution did not hold for network probability (𝑝𝑟𝑜𝑏), where higher 
resolution resulted in worse identification. Nonetheless, the Bayesian t-
test found that a higher resolution (0.5m DEM) led to better uncertainty 
estimates than a lower resolution (1m DEM) with a probability of 
83% (ROPE=0.05). Excluding 𝑝𝑟𝑜𝑏 increased this probability to 99% 
(ROPE=0.05).

While the uncertainty quantification performance varied between 
resolutions for sparsification curves and AUSE, it showed mostly minor 
differences for correction curves (Figs.  4(c) and 4(d)) and AUCE scores 
(Table  3). The only exception was conformal regression (𝑐𝑟) for which 
correction curves and AUCE scores improved with higher resolution. A 
Bayesian t-test revealed that, with a probability of 85% (ROPE=0.05), 
the performances at different resolutions were practically equivalent, 
i.e, the performance differences lay within the ROPE. Without 𝑐𝑟, this 
probability rose to 98% (ROPE=0.05).

Comparative analysis of uncertainty quantification methods re-
vealed distinct differences in their sparsification curves (Figs.  4(a) 
and 4(b)). Notably, the MCC scores for methods, such as mutual 
information (𝑚𝑖), predictive entropy (𝑝𝑒), and network probabil-
ity (𝑝𝑟𝑜𝑏), decreased significantly, especially when the first 5% of 
uncertain pixels were removed (Fig.  4(b)). This drop in performance 
was caused by the fact that these methods assigned high uncertainty 
values to correctly classified pixels, particularly ditch and natural 
stream pixels (Fig.  5). This tendency is reflected in the higher AUSE 
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Table 3
Area Under the Correction Error Curve (AUCE) for the 1m and 0.5m
resolution data derived for the background (𝐴𝑈𝐶𝐸(𝑏)), ditch (𝐴𝑈𝐶𝐸(𝑑)), 
and natural stream (𝐴𝑈𝐶𝐸(𝑠)) class using 𝐹1 score as performance 
metric, and the overall AUCE score using the Matthews Correlation Coef-
ficient for network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual 
information (𝑚𝑖), conformal regression (𝑐𝑟), and feature conformal 
prediction (𝑓𝑐𝑝). The reported values indicate the mean and standard 
deviation over 10 test folds. Best result indicated in bold.
 𝐴𝑈𝐶𝐸(𝑏) 𝐴𝑈𝐶𝐸(𝑑) 𝐴𝑈𝐶𝐸(𝑠) AUCE  
 1m

 𝑝𝑟𝑜𝑏 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 0.04 ± 0.01 0.02 ± 0.00 
 𝑝𝑒 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟑 ± 𝟎.𝟎𝟏 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 
 𝑚𝑖 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.02 ± 0.00 0.04 ± 0.01 0.02 ± 0.00 
 𝑐𝑟 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.29 ± 0.04 0.38 ± 0.06 0.29 ± 0.04 
 𝑓𝑐𝑝 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.10 ± 0.07 0.17 ± 0.12 0.10 ± 0.07 
 0.5m

 𝑝𝑟𝑜𝑏 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 0.04 ± 0.01 0.01 ± 0.00 
 𝑝𝑒 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟑 ± 𝟎.𝟎𝟏 𝟎.𝟎𝟏 ± 𝟎.𝟎𝟎 
 𝑚𝑖 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.01 ± 0.01 0.05 ± 0.02 0.02 ± 0.01 
 𝑐𝑟 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.19 ± 0.02 0.41 ± 0.07 0.20 ± 0.02 
 𝑓𝑐𝑝 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 0.06 ± 0.04 0.16 ± 0.11 0.06 ± 0.04 

scores for these classes (Table  2). The HDIs (Fig.  6), derived from the 
Bayesian t-test, confirmed that FCP (𝑓𝑐𝑝) outperformed MC Dropout 
based approaches, such as predictive entropy (𝑝𝑒) and mutual in-
formation (𝑚𝑖) with a 100% probability, even when assuming a 
ROPE of 0.4. Furthermore, 𝑓𝑐𝑝 was estimated to perform better than 
network probability (𝑝𝑟𝑜𝑏) with a probability of 99.4%, and better than 
conformal regression with a probability of 99.6% (ROPE=0.05).

The correction curves (Figs.  4(c) and 4(d)) revealed that 𝑐𝑟 and 
𝑓𝑐𝑝 exhibited inferior performance compared to 𝑝𝑟𝑜𝑏, 𝑝𝑒, and 𝑚𝑖. 
This indicates that correcting pixels identified by the latter enables 
faster achievement of higher performance. This is likely caused by 
their strong focus on ditches and natural streams (Fig.  5), which make 
up only a small portion of the dataset, but are frequently misclassi-
fied (Table  1). Specifically, an MCC of 0.95 was attainable with an 
average correction rate of 3% (approximately 2.87 million pixels) using 
𝑝𝑒. Using the Bayesian t-test, we found that the probability of 𝑝𝑒, 
𝑚𝑖, and 𝑝𝑟𝑜𝑏 being practically equivalent to be 100% (ROPE=0.05). 
Furthermore, the test suggested that 𝑐𝑟 performed significantly worse 
than all other methods with a probability of 100% (ROPE=0.05). 𝑓𝑐𝑝
was found to perform significantly worse than 𝑝𝑒, 𝑝𝑟𝑜𝑏, and 𝑚𝑖 with 
a probability of 78.1%, 73.5%, and 69.1% (ROPE=0.05) respectively.

When focusing solely on pixel classifications predicted to be ditches 
or streams, overall 𝑚𝑖 was found to be most effective in identifying 
misclassified streams and ditches (Figs.  7(a) and 7(b)). A Bayesian t-test 
revealed that for ditch pixels incorrectly classified as stream pixels, 𝑚𝑖
had a significantly higher AUCE score with a probability greater than 
95% (ROPE=0.05) when compared to 𝑝𝑟𝑜𝑏, 𝑐𝑟, and 𝑓𝑐𝑝. Using 𝑚𝑖
to correct these errors, on average 70.6% of stream pixels (≈ 40 000) 
needed to be corrected to achieve an 𝐹1 score of 0.95 for ditches. For 
correcting pixels classified as ditch, the Bayesian t-test revealed that 
𝑚𝑖 had a significantly higher AUCE score than 𝑐𝑟 with a probability 
of 99.1% (ROPE=0.05). However, we found that 𝑓𝑐𝑝 and 𝑝𝑟𝑜𝑏 lead 
to achieving an 𝐹1 score of 0.95 for the stream pixels with fewer 
corrections than 𝑚𝑖. Both required on average the correction of 75% 
pixels (≈ 714 000). In contrast, 𝑚𝑖 required a correction of 79.7%. It 
should be noted that these 𝐹1 scores were calculated not on all pixels, 
but only on those initially classified as ditch or natural stream.

𝑓𝑐𝑝 had significantly faster inference times compared to 𝑐𝑟 and 
the MC dropout-based 𝑝𝑒 and 𝑚𝑖 (Table  4). Specifically, processing 
the entire surface area of Sweden at a 0.5m resolution using 𝑓𝑐𝑝, pro-
ducing both the actual prediction and the uncertainty estimates, would 
take approximately 80 h, whereas an MC dropout-based approach 
would require around 3 years on the same hardware. It should be noted 
that both MC dropout-based approaches have the same execution time, 
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Fig. 4. Sparsification and correction curves for the oracle, network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual information (𝑚𝑖), conformal regression (𝑐𝑟), and feature 
conformal prediction (𝑓𝑐𝑝) computed on one test fold. The curves are shown for both resolutions of the digital elevation model (DEM), 1m and 0.5m. The classification performance 
was measured across all classes using the Matthews Correlation Coefficient (MCC).
, 
Table 4
Execution times in seconds for predictive 
entropy (𝑝𝑒), mutual information (𝑚𝑖), con-
formal regression (𝑐𝑟), and feature confor-
mal prediction (𝑓𝑐𝑝) on one chip covering 
an area of 500m ×500m (1m resolution) or 
250m ×250m (0.5m resolution). The reported 
values indicate the mean and standard devia-
tion over all chips in the 10 test sets. Fastest 
execution time indicated in bold.
 𝑡1m (s) 𝑡0.5m (s)  
 𝑝𝑒/𝑚𝑖 14.13 ± 0.78 14.00 ± 0.72 
 𝑐𝑟 1.75 ± 1.53 1.49 ± 0.22  
 𝑓𝑐𝑝 𝟎.𝟎𝟔 ± 𝟎.𝟎𝟏 𝟎.𝟎𝟒 ± 𝟎.𝟎𝟏  

since that time is dominated by the sampling process, which is the same 
for both approaches.

4.3. Conformal prediction performance

When generating confident maps using the conformal prediction 
approaches, FCP resulted in significantly lower recall for all confi-
dence levels than conformal regression (𝑓𝑐𝑝: 0.12–0.13; 𝑐𝑟: 0.60–0.66), 
prompting a focus on maps generated using the latter. As expected, 
recall increased with decreasing confidence (Table  5). However, even 
highly confident maps covered a sizeable portion of background (100%)
ditch (56%), and natural stream pixels (24%).

Similarly to expectation, classification performance degraded with 
decreasing confidence levels, with one notable exception being the 
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Table 5
Recall for the confident maps generated from the 0.5m resolution data using conformal 
regression for different confidence levels, measured for the background (𝑅𝑒𝑐𝑎𝑙𝑙(𝑏)), 
ditches (𝑅𝑒𝑐𝑎𝑙𝑙(𝑑)), natural streams (𝑅𝑒𝑐𝑎𝑙𝑙(𝑠)), and the class average (𝑅𝑒𝑐𝑎𝑙𝑙). The 
reported values indicate the mean and standard deviation over 10 test folds. 
 Confidence 𝑅𝑒𝑐𝑎𝑙𝑙(𝑏) 𝑅𝑒𝑐𝑎𝑙𝑙(𝑑) 𝑅𝑒𝑐𝑎𝑙𝑙(𝑠) 𝑅𝑒𝑐𝑎𝑙𝑙  
 90.0% 1.00 ± 0.00 0.56 ± 0.04 0.24 ± 0.08 0.60 ± 0.03 
 80.0% 1.00 ± 0.00 0.59 ± 0.04 0.25 ± 0.08 0.61 ± 0.04 
 70.0% 1.00 ± 0.00 0.62 ± 0.05 0.27 ± 0.08 0.63 ± 0.04 
 60.0% 1.00 ± 0.00 0.65 ± 0.05 0.29 ± 0.09 0.64 ± 0.04 
 50.0% 1.00 ± 0.00 0.67 ± 0.04 0.30 ± 0.09 0.66 ± 0.04 

background class, whose performance remained stable (Table  6). How-
ever, even at 50% confidence, the performance on confidently classified 
pixels, as measured by MCC, surpassed the overall performance on all 
pixels (Table  1).

5. Discussion

5.1. Choice of uncertainty quantification method

When comparing the evaluated uncertainty quantification approa-
ches, FCP outperformed others in terms of AUSE (Table  2) but not 
in terms of AUCE (Table  3). This discrepancy stems from AUSE and 
AUCE addressing different questions. AUSE assesses alignment between 
predictions and uncertainty estimates (Dreissig et al., 2023), while 
AUCE evaluates the ability to identify misclassified pixels. The choice 
of method depends on the goal: AUSE is more informative for creating 
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Fig. 5. Illustration of the groundtruth map, as well as the uncertainty maps for the 0.5m resolution showing the 5% most uncertain pixels as estimated by the evaluated uncertainty 
quantification approaches. The maps show the local slope image for certain background pixels and uncertain ones in pink. Furthermore, the maps show certain (yellow) and 
uncertain (green) ditches, as well as certain (orange) and uncertain (blue) streams.
Fig. 6. High-density intervals derived using a Bayesian t-test for correlated obser-
vations indicating the intervals in which the performance differences between the 
compared methods, network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual 
information (𝑚𝑖), conformal regression (𝑐𝑟), and feature conformal prediction (𝑓𝑐𝑝), 
lie with a probability of 95%. The performance is measured as area under the 
sparsification error curve for all classes, and the Region of Practical Equivalence (ROPE) 
indicates a performance difference of 0.05.
9 
Table 6
Mapping performance for only the pixels included in the confident maps generated 
using conformal regression on the 0.5m resolution data as measured by the Matthews 
Correlation Coefficient (MCC) for all classes, and the 𝐹1 score for the background (𝐹 (𝑏)

1 ), 
ditches (𝐹 (𝑑)

1 ), and natural streams (𝐹 (𝑠)
1 ). The reported values indicate the mean and 

standard deviation over 10 test folds. 
 Confidence 𝐹 (𝑏)

1 𝐹 (𝑑)
1 𝐹 (𝑠)

1 MCC  
 90.0% 1.00 ± 0.00 0.83 ± 0.03 0.44 ± 0.10 0.82 ± 0.03 
 80.0% 1.00 ± 0.00 0.82 ± 0.03 0.44 ± 0.10 0.81 ± 0.03 
 70.0% 1.00 ± 0.00 0.81 ± 0.03 0.44 ± 0.09 0.80 ± 0.03 
 60.0% 1.00 ± 0.00 0.80 ± 0.03 0.43 ± 0.09 0.79 ± 0.03 
 50.0% 1.00 ± 0.00 0.79 ± 0.02 0.43 ± 0.09 0.78 ± 0.03 

prediction uncertainty maps, whereas AUCE appears to be suitable for 
pixel-level correction.

Upon examining the uncertainty map generated by FCP for a 
broader area (Fig.  8(b)), it becomes clear that the model is generally 
confident in its ditch predictions, except in border regions or where 
ditches exhibit unusual bends. Additionally, while the two natural 
streams in the area (the orange lines in Fig.  8(a)) were not well 
identified by the model, it is relatively straightforward to trace their 
paths from the uncertainty maps due to the presence of uncertain 
background pixels on the map. This can help alert a human viewer 
to the presence of these streams, which would be imperceptible in the 
prediction map alone.

When examining the top-performing uncertainty quantification
methods according to AUCE, we found that network probability, predic-
tive entropy, and mutual information consistently identified predictions 
on ditch and natural stream pixels as the most uncertain ones, regard-
less of prediction correctness (Fig.  5). On the other hand, predictive 
entropy and mutual information tended to exhibit overconfidence in 
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Fig. 7. Correction curves for the network probability (𝑝𝑟𝑜𝑏), predictive entropy (𝑝𝑒), mutual information (𝑚𝑖), conformal regression (𝑐𝑟), and FCP (𝑓𝑐𝑝) computed only on 
pixels from one test fold on the 0.5m resolution data. The curves indicate the 𝐹1 score for the stream class (𝐹 (𝑠)

1 ) and the ditch class (𝐹 (𝑑)
1 ) respectively, considering only pixels 

previously classified as ditch or stream.
 

incorrect predictions, as evidenced by their low AUSE scores. This 
tendency aligns with findings by Hertel et al. (2023), who also observed 
this characteristic of MC dropout-based approaches. Given that only 
about 1% of pixels belong to ditches, and even fewer to natural streams, 
it is likely that the methods’ strong AUCE performance is an artifact of 
the highly skewed class distribution. This phenomenon arises because 
fixing a few pixels in classes with low instance counts and generally 
poorer performance can improve MCC scores more than correcting 
pixels from the mostly correct majority class (Table  1). As a result, one 
may find that for more balanced datasets, the AUCE scores of these 
methods may be lower compared to FCP. Additionally, the tendency 
to identify correctly classified pixels as uncertain can be problematic 
for their use in detecting incorrectly classified pixels, since the high 
false positive rate may lead people to dismiss detections of potentially 
misclassified pixels (Axelsson, 2000).

When specifically examining corrections of pixels misclassified as 
ditches or natural streams, we observed that mutual information out-
performed other approaches in identifying ditch pixels mistakenly clas-
sified as streams. Conversely, FCP and network probability were more 
effective at identifying stream pixels incorrectly classified as ditches. 
This disparity may stem from the fact that most ditch pixels were 
accurately predicted, leaving only few natural stream pixels to be de-
tected. In this scenario, overconfidence in incorrect predictions is more 
detrimental than when there is a larger number of misclassified pixels, 
as it was the case for the pixels classified as natural stream. Given that 
natural streams underlie stronger protections (Swedish PEFC, 2023), it 
is more important to identify stream pixels misclassified as ditch than 
vice versa.

One notable finding was that network probability achieved compa-
rable AUCE scores to MC dropout-based approaches, while outperform-
ing them in AUSE scores. The strong performance in identifying stream 
pixels among those classified as ditch is likely a consequence of that. 
Thus, it appears that network probability has effectively balanced high 
uncertainty values for ditches and streams with cautious avoidance of 
undue certainty in incorrectly classified pixels, at least for this dataset.

In Fig.  8(c), we observe the pixel corrections for pixels marked as 
most uncertain by network probability. It is evident that all predicted 
ditch and stream pixels were corrected due to their relatively high 
uncertainty. However, there are also instances where pixels were not 
corrected despite being wrongly predicted (stream pixels in Fig.  8(c), 
zoomed-in region), resulting from the model’s undue confidence in its 
predictions. This confidence can be attributed to the fact that the natu-
ral stream is not visible in the DEM, as indicated by the one pixel wide 
line in the ground truth. Given that the figure showcases the correction 
of the 5% most uncertain pixels, a significant number of background 
pixels were also corrected, even though they were correctly predicted. 
10 
One notable aspect of these corrected background pixels is that they 
appear to follow a specific pattern. Upon analyzing the slope values of 
those corrected background pixels, we found them to be significantly 
higher than average slope values. Furthermore, similar patterns have 
been observed in data from other regions, but not consistently across 
all areas, suggesting that these may be caused by minor differences in 
the data collection process.

When evaluating execution performance, arguably, the fastest un-
certainty estimates were derived using network probability, since it 
equals the model’s inference speed of approximately 0.014 s per chip, 
resulting in an estimated processing time of 28 h for all of Sweden. 
While this was significantly shorter than the 80 h required for FCP, 
we deem FCP still feasible, especially when compared to the execution 
times for MC dropout-based approaches (≈ 3 years) or conformal 
regression (≈ 124 days). It is worth noting that these times can be 
significantly reduced by using fewer Monte Carlo samples. For example, 
utilizing just 10 samples, as Kampffmeyer et al. (2016), would reduce 
the time required for MC dropout and conformal regression to 280 h 
and 298 h, respectively. However, this may come at the cost of reduced 
uncertainty quantification performance.

In summary, our results show that FCP yielded the most accurate 
uncertainty estimates at a reasonable processing speed. Therefore, we 
believe it is well-suited as a method for generating uncertainty maps. 
However, when attempting to identify which pixels require correction 
in the generated ditch and stream maps, we found that using network 
probability was more effective. This approach identified the pixels that 
needed correction better and resulted in lower execution times.

5.2. Impact of resolution

The classification performance was improved when detecting ditches
and streams on higher resolution data (Table  1). This is reasonable 
since landscape outlines were captured more accurately, which sim-
plified the detection problem. This finding aligns with the findings 
by Busarello et al. (2025) on mapping ditches and streams, but also 
with findings on mapping other terrain features, such as ephemeral 
gullies (Chowdhuri et al., 2021), and rock glaciers (Robson et al., 
2020).

Higher resolution DEMs also yielded more accurate uncertainty 
estimates as indicated by the obtained AUSE scores. While it is unsur-
prising, that a lower resolution leads to a higher uncertainty (Pogson 
and Smith, 2015; Wu et al., 2024), the observed reduced alignment 
between estimated model uncertainty and actual performance is likely 
due to the network’s generally poorer performance on lower resolution 
data. In contrast to AUSE, the AUCE scores were mostly unaffected 
by the resolution, presumably since AUCE performance was largely 
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Fig. 8. Illustration of the groundtruth, uncertainty, corrected, and confident map over an area of 1.5 km × 1.5 km at a 0.5m resolution. In all maps, certain or correct background 
pixels are shown by the local slope image, while ditches are shown in yellow, and streams in orange. The uncertainty map was generated using feature conformal prediction 
and displays the 5% most uncertain background (pink), ditch (green), and stream (blue) pixels. The corrected map was derived by correcting the 5% most uncertain pixels as 
estimated by network probability. Corrected pixels are shown with full intensity, while not corrected pixels have low intensity. The confident map was derived using conformal 
regression at a 90% confidence level, and pixels where the model did not commit to one class are shown in black.
improved by ditch and stream detection rather than uncertainty quan-
tification accuracy. Thus, as long as a method could identify most ditch 
and stream pixels it would get a high AUCE score, even if it marked 
many correctly classified pixels as uncertain.

Most methods showed increased uncertainty quantification per-
formance with higher resolutions, except network probability, which 
decreased due to overconfidence in its predictions. This overconfi-
dence was caused by the simplified learning problem, which allowed 
the model to assign more extreme probability estimates to pixels, as 
incentivized by the training process. As noted by Guo et al. (2017) 
and Sensoy et al. (2018), this leads to poorer uncertainty estimates.

There was no difference in processing time for a chip of 1m res-
olution versus one with a 0.5m resolution (Table  4), since both have 
the same number of pixels. However, four 0.5m resolution chips are 
required to cover the same area as one 1m resolution chip. This results 
in four times longer processing times for the 0.5m resolution. As such, it 
11 
is important to consider whether the gained performance improvements 
justify the increased processing costs.

In summary, there is a motivation for conducting high-resolution 
LiDAR scans to improve ditch and stream detection and to obtain 
more accurate uncertainty estimates. However, this may decrease the 
accuracy of uncertainty estimates obtained by network probability as 
performance improves.

5.3. Confident segmentation maps

When generating confident segmentation maps, we found that only 
𝑐𝑟 consistently produced a reasonable number of single-class pre-
dictions for various confidence levels, ruling out 𝑓𝑐𝑝 from further 
evaluation. This appears contradictory to the findings by Teng et al. 
(2023), who showed that FCP produced shorter confidence bands than 
a baseline conformal prediction approach. It is reasonable to assume 
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that shorter confidence bands also would lead to a higher number of 
single-class predictions. However, it should be noted that the conformal 
prediction approach used by Teng et al. (2023) differs from 𝑐𝑟 used 
in this article, which is the likely reason for the observed differences.

For 𝑐𝑟, recall improved as the confidence level decreased (Table  5). 
This was expected since lower confidence thresholds allow 𝑐𝑟 to make 
more errors and thus commit to single-class predictions for more pixels. 
Similarly in line with expectations was the observed decrease in preci-
sion, indicated by lower MCC and 𝐹1 scores (Table  6). This decrease is 
caused by 𝑐𝑟 actually making more errors at lower confidence levels.

Compared to the models’ results on all pixels (Table  1), we observed 
improved classification performance for predictions with high confi-
dence levels (Table  6). Specifically, we achieved an MCC of 0.82 for 
90% confident predictions, surpassing the MCC of 0.76 obtained on all 
pixel predictions. This performance difference was largely due to clear 
improvement in the ditch class, which was attained through 𝑐𝑟 not 
assigning a class in border regions where it is challenging to determine 
where the ditch ends and the background begins, or areas where the 
ditch was not clearly visible in the DEM (Fig.  8(d), zoomed-in region). 
These observations align well with the findings by Koski et al. (2023), 
who found that the main causes of error in detecting small watercourses 
with deep learning were boundary issues and unclear visual expression 
in the DEM.

Despite committing to a single class with high confidence, it is 
possible for 𝑐𝑟 to make errors. For example, many natural stream 
pixels were confidently predicted as background (Fig.  8(d), zoomed-
in region), which was not unexpected. This outcome is consistent with 
the fact that 𝑐𝑟 allows for 10% errors at a 90% confidence level. It is 
important to note that the guarantees provided by this method apply 
to probability intervals rather than the classes themselves. A model 
that consistently missed to predict the natural stream class, would 
make significantly fewer errors than 10%, due to its low occurrence 
rate (less than 1%). Instead, it would in over 99% of the cases be 
correct in predicting the probability for the stream class to be close to 
0%. Consequently, 𝑐𝑟 primarily prevented overprediction in minority 
classes, such as ditch and stream, as observed in Fig.  8(d) and reflected 
in their low recall values (Table  5).

Our analysis revealed that neither 𝑐𝑟 nor 𝑓𝑐𝑝 are particularly 
suitable for generating confident maps of ditches and natural streams. 
Although 𝑐𝑟 produced more confident predictions than 𝑓𝑐𝑝, the 
generated maps only covered around 60% of all pixels, particularly 
omitting ditch and stream pixels. This means that the prediction sets 
for pixels of these classes frequently contained more than one possible 
prediction. This observation is in line with the findings by Ghosh et al. 
(2023), who show that conformal prediction tends to result in large 
prediction sets for challenging datasets, while obtaining narrower sets 
for simple ones. Apart from this issue, it also took a considerable 
amount of time to generate the confident maps (Table  4).

5.4. Limitations and future work

This article’s evaluation of uncertainty quantification methods is 
limited to one specific remote sensing task with an extreme class distri-
bution. This may have skewed results, as MC dropout-based solutions 
likely perform differently in terms of AUCE on tasks with more bal-
anced distributions. Although investigating extreme cases is valuable, 
given that classes with relatively few instances are not uncommon in 
remote sensing (Kossmann et al., 2021), it would be interesting to 
investigate if MC dropout’s AUCE performance would decrease when 
applied to tasks with more balanced distributions.

Furthermore, the dataset used in this study is limited by its two-
resolution format (1m and 0.5m). As demonstrated, classification and 
uncertainty quantification performance improve with increasing reso-
lution. However, it is plausible that returns diminish at some point, 
warranting investigation into the optimal resolution threshold. Addi-
tionally, the uncertainty quantification performance of   has been 
𝑝𝑟𝑜𝑏
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observed to decrease with increased resolution, suggesting a possi-
ble trend where higher resolutions lead to overconfident predictions. 
Higher resolution datasets would aid in investigating this trend as well.

Another limitation of our study is that we have only investigated 
a restricted set of uncertainty quantification approaches. For example, 
Bayesian neural networks (Blundell et al., 2015) were excluded from 
this study since they cannot derive uncertainty estimates from the same 
model as the other investigated approaches. This would have compli-
cated direct comparisons between the methods, as it is less clear if 
differences in uncertainty quantification performance are due to differ-
ences in the used methods or due to the different models. Nevertheless, 
exploring Bayesian neural networks would be valuable for future re-
search as they have been shown to outperform MC dropout-based 
approaches by Hertel et al. (2023). Similarly, deep ensembles have 
been shown to perform better than MC dropout-based approaches (Lak-
shminarayanan et al., 2017). Investigating how they compare to the 
evaluated conformal prediction-based approaches could be worthwhile. 
However, due to their significant training time requirements, we ex-
cluded them from this article; using the recommended number of 
networks in the ensemble would have quintupled the necessary training 
time.

It should be noted that none of the investigated uncertainty quan-
tification approaches is able to handle out-of-distribution (OOD) data, 
i.e., data that is distinctively different from the training data. Alarab 
et al. (2021) have shown this for network probability and MC dropout-
based approaches, while this limitation of conformal prediction has 
been pointed out, for example, by Angelopoulos et al. (2022). This is 
not a big problem for the studied dataset, since it has been specifically 
designed to be representative of the Swedish landscape (Busarello et al., 
2025). However, in situations where OOD data is present, the obtained 
uncertainty estimates may not be reliable. One approach to handle 
OOD data would be to build on ideas from the ‘‘Learn then Test’’ 
framework (Angelopoulos et al., 2022).

Our investigation was further limited by focusing solely on con-
formal regression approaches within either feature space (𝑓𝑐𝑝) or 
output space (𝑐𝑟). The focus on probability ranges rather than actual 
class predictions may have hindered the utility of generated confidence 
maps, as they tended to suppress minority class predictions. In the 
future, this limitation could be addressed by exploring whether the 
conformal classification approach by Wieslander et al. (2021) can be 
made more computationally efficient or through further investigation 
into recent methods proposed by Mossina et al. (2024), Brunekreef 
et al. (2024). By focusing on conformal classification approaches, the 
guarantees provided by the conformal predictor would apply directly 
to the classification outcome, and thus might produce more usable 
confident maps.

6. Conclusions

In this article, we investigated various uncertainty quantification 
techniques, including network probability, predictive entropy, mutual 
information, conformal regression, and feature conformal prediction, 
and applied them to a specific remote sensing task: identifying ditches 
and natural streams from elevation data sourced from a digital eleva-
tion model (DEM). Additionally, the impact of different DEM resolu-
tions on classification and uncertainty quantification performance was 
explored. Furthermore, confident maps were generated using conformal 
prediction methods. Our key findings include:

• Feature conformal prediction (Teng et al., 2023) produces un-
certainty estimates most aligned with the actual neural network 
performance at a reasonable cost to the execution time. However, 
for correcting misclassified pixels, the network probability output 
is more suitable, at least for the investigated dataset.

• A higher resolution DEM leads to better classification perfor-
mance and better uncertainty estimates.
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• Conformal regression and feature conformal prediction are not 
suitable to generate confident maps, since they are overly con-
servative in their estimates and the model performance is too 
limited.
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