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ABSTRACT
Disease resistance traits are complex and quantitative in nature. Breeders regularly evaluate multiple important traits across 
diverse environments to employ them in genomics- assisted breeding. In this study, we evaluated the prospects of genomic pre-
diction models by incorporating genome- wide association study (GWAS) results into single- trait and multitrait genomic predic-
tion scenarios, using two distinct panels: the NMBU panel and the GRAMINOR panel. A standard genomic prediction model 
(Base) and the Base model with the addition of significant GWAS markers as fixed covariates (Base + GWAS) were tested on both 
panels. The predictive ability of models was measured in terms of prediction ability by using Pearson's correlation method. An 
improvement of 0.05% to as high as a two- fold improvement was observed in both the panels for single- trait and multitrait scenar-
ios. In general, multitrait models outperformed single- trait models regardless of whether the GWAS markers were included. This 
study further concludes that multitrait- based genomic predictions are superior to single trait–based ones when the associated 
traits are used and are well correlated.
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1   |   Introduction

Common wheat (Triticum aestivum L.) is an important and 
widely grown crop in Norwegian agriculture and globally. It 
is the second largest grown crop and serves as a staple food 
source worldwide, providing 20% of the calories in the human 
diet. Savary et al. (2019) estimated that global wheat yield losses 
due to biotic and abiotic stress average 21.5% (ranging between 
10.1% and 28.1%). Among these factors, diseases and pests are 
one of the major contributors to these losses globally. For ex-
ample, Fusarium head blight (FHB), which leads to poor seed 
quality and contamination of grains with harmful mycotoxins, 
is one of the most serious diseases attacking the wheat crop and 
causing huge losses in the final yield, predominantly in Europe 
and North America. The most important FHB- causing patho-
gen worldwide is Fusarium graminearum, which produces the 
mycotoxin deoxynivalenol (DON) (McMullen et al. 2012). FHB 
resistance is quantitative, with a complex genetic architecture 
greatly influenced by genotype- environment interactions. 
Therefore, replicated field experiments with reliable phenotypic 
selection are necessary for developing new cultivars with FHB 
resistance.

Climate change is one of the principal causes of disease epidem-
ics, and FHB has become a major problem in present- day wheat 
cultivation. Both climate change and increasing food demand 
present challenges in wheat breeding, requiring rapid develop-
ment and deployment of improved cultivars to adapt to changing 
ecological and economic conditions. Annual wheat production 
currently grows at a rate of 0.9%. However, with the global pop-
ulation expected to rise to 9 billion by 2050, annual global wheat 
production must increase by 2.4% to avoid a food shortage of 
38% below the increased demand (Ray et al. 2013). Conventional 
breeding processes are time-  and resource- consuming, and it 
typically takes around 10–12 years to develop a new cultivar. To 
accelerate breeding and reduce costs, novel approaches must be 
implemented into breeding programs. For example, the avail-
ability of high- density, low- cost marker genotyping platforms 
makes genomic prediction and selection feasible. Consequently, 
genomic selection (GS) can be implemented to predict breeding 
values of progeny lines without costly phenotyping, saving time 
and money while increasing the intensity and accuracy of trait 
selection (Meuwissen, Hayes, and Goddard 2001). Genomic pre-
diction aims to utilize genetic resources, such as SNP markers, 
to predict the breeding values of new lines in silico. Combined 
with advanced data analysis, including machine learning and 
multitrait (MT) prediction models, GS can be a powerful tool for 
breeding, reducing the need for costly manual evaluation.

GS technology has already revolutionized animal breeding, 
where simulations and implementations have shown that 
the genetic gains can be doubled or even tripled (García- Ruiz 
et al. 2016). However, this potential has yet to be seen in plant 
breeding, despite over a decade of research into developing GS 
methodology for barley, maize, rice, sorghum and wheat for dif-
ferent traits of interest (Bernardo and Yu 2007; Zhong et al. 2009; 
Heffner et  al.  2010; Heffner, Jannink, and Sorrells  2011; 
Lorenz, Smith, and Jannink  2012; Riedelsheimer, Technow, 
and Melchinger  2012; Zhao et  al.  2012; Poland et  al.  2012; 
Lorenz  2013; Rutkoski et  al.  2014; Fernandes et  al.  2018; 
Hunt et al. 2018; Spindel and Iwata 2018). In wheat breeding, 

considerable research has been carried out on yield and disease- 
resistance traits (Heffner, Jannink, and Sorrells  2011; Poland 
et  al.  2012; Rutkoski et  al.  2014; Jarquín et  al.  2017; Jiang 
et al. 2017; Liu et al. 2021). Prediction accuracies are currently 
very low for complex diseases using GS. Therefore, in the cur-
rent study, FHB will be used as a case to improve the prediction 
accuracies of disease resistance by use of significant and con-
sistent QTL captured from our previous GWAS study (Nannuru 
et al. 2022).

To practice GS in a breeding program, a training population 
must be created that has been phenotyped for the traits of in-
terest and genotyped with genome- wide markers. This training 
population provides phenotypic and genotypic information used 
to model a prediction equation (GS model), which predicts the 
marker effects on the traits. The GS model is then used to pre-
dict genomic estimated breeding values (GEBVs) on the testing 
set, which has only been genotyped for genome- wide markers 
and not phenotyped, to assess the predictive ability of the GS 
model. These GEBVs are used to make selective decisions on 
best- preforming genotypes in the breeding programs. Various 
statistical GS models have been developed over the past 20 years, 
with machine learning methods, both parametric and nonpara-
metric, gaining popularity. Parametric methods include RR- 
BLUP (Meuwissen, Hayes, and Goddard  2001) and genomic 
BLUP (assuming a normal distribution of SNP effects), BayesA 
and weighted Bayesian shrinkage regression wBSR (assuming a 
prior normal distribution of effects with a higher probability of 
moderate to large effects) and BayesB and BayesCπ (assuming 
that some SNP effects are 0). Nonparametric methods include 
random forest, reproducing kernel Hilbert space (RKHS) or 
neural network approaches, and these models were compared 
by Heslot et al. (2012).

GS models typically consider the genetic marker's information 
or pedigree relationships for predictions both in animal and 
plant breeding programs. Incorporating GWAS- identified sig-
nificant QTL markers in the GS models has improved predic-
tion accuracies, particularly for complex traits. A model called 
GS + de novo GWAS where GWAS results are incorporated 
in prediction models has shown a superior performance to 
all the other models tested for various traits in different en-
vironments in rice (Spindel et al. 2016). Veroneze et al. (2016) 
demonstrated that including GWAS information in multipop-
ulational genomic predictions has shown an increase in pre-
diction accuracies in pigs. However, the use of GWAS markers 
as fixed covariates showed mixed results of prediction accu-
racies when predicting agronomic traits controlled by small- 
effect genes in maize and sorghum (Rice and Lipka  2019). 
Inclusion of haplotype- based GWAS loci as fixed effects in 
the prediction models resulted in a 9%–10% increase in pre-
diction accuracies (Sehgal et  al.  2020). Recent studies have 
shown similar results of an increase in prediction accuracies 
when GWAS results are included in the GS prediction models 
(Bian and Holland 2017; Liu et al. 2021; Ma and Cao 2021; Hao 
et al. 2022; Shahinnia et al. 2022; Morales et al. 2023, 2024). 
Most studies included GWAS results as fixed covariates for 
univariate genomic predictions and have seen increases in 
prediction accuracies. Furthermore, the inclusion of GWAS re-
sults and/or FHB- correlated traits as covariates in GS models 
has been previously shown to improve prediction accuracy for 
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FHB resistance in wheat (Arruda et al. 2016; Moreno- Amores, 
Michel, Löschenberger, et al. 2020; Moreno- Amores, Michel, 
Miedaner, et  al.  2020; Larkin et  al.  2020; Zhang et  al.  2021; 
Akohoue et al. 2022; Morales et al. 2024). Our current study 
also focuses on the effect of GWAS- based QTL markers on 
prediction accuracies of both single- trait (ST) and MT models.

The objective of this study was to train different models and pre-
dict the breeding values for ST and MT models by incorporating 
the GWAS- based significant SNP markers as a fixed effect com-
ponent into the genomic prediction models.

2   |   Material and Methods

2.1   |   Plant Material, Experimental Design 
and Trials

We obtained data from field trials on two wheat panels: the 
NMBU spring wheat panel (hereafter referred to as the NMBU 
panel) and the GRAMINOR spring wheat panel (hereafter re-
ferred to as the GRAMINOR panel). The NMBU panel is a col-
lection of 296 hexaploid spring wheat accessions including lines 
mainly from Norway, Europe, the United States, CIMMYT 
(Mexico), China and Australia. The GRAMINOR panel consists 
of 358 new breeding lines from the commercial spring wheat 
breeding program of Graminor. The NMBU panel was tested 
over 5 years in four different locations, whereas the GRAMINOR 
panel was tested over 2 years in three locations.

Data was obtained from field trials at two locations in Norway: 
The Vollebekk research station at the Norwegian University of 
Life Sciences, Ås (59°N, 90 m above sea level), and the Staur re-
search farm close to Hamar (60°N, 153 m above sea level). The 
NMBU panel was planted in α- lattice designs with two rep-
licates at the Vollebekk research farm in 2013, 2014 and 2019 
and at the Staur research farm in 2015. The GRAMINOR panel 
was evaluated in two replicates at the Vollebekk research station 
in 2020 and 2021, following the same methodology as for the 
NMBU panel.

In Austria, both panels were tested at the experimental station 
in the Department of Agrobiotechnology, Tulln, in 2020 (9°N, 
177 m above sea level). In 2020, a subset of 200 lines from the 
NMBU panel was tested, whereas in 2021, the GRAMINOR 
panel was evaluated. Both trials in Tulln were conducted using 
randomized complete block designs with two replicates.

Both panels were also evaluated in a location in Canada at 
Morden, Manitoba. The NMBU panel was planted in an α- lattice 
design with two replicates in 2020, and in 2021, the GRAMINOR 
panel was tested following the same experimental design and 
methodology.

In the above- mentioned field trials, the lines from both panels 
were evaluated for FHB disease resistance–related traits such 
as FHB disease severity in the percentage of diseased spikelets 
and DON content in parts per million (ppm). Apart from these 
traits, other secondary traits were also recorded, such as plant 
height (PH), days to heading (DH) and anther extrusion (AE) 
(Table 1). For a more detailed description of how the field trials 

were conducted, the traits and how they were evaluated, please 
refer to Nannuru et al. (2022). Not all the traits were scored in 
each field experiment (Table 1).

2.2   |   DNA Extraction and Genotyping

Seedlings of the NMBU panel and GRAMINOR panel were grown 
in the greenhouse and genomic DNA was extracted from fresh 
young leaves using the DNeasy plant DNA extraction kit (Qiagen). 
The lines were genotyped using Trait Genetics Illumina 25 K 
SNP Chip and, in addition, genotyped with some KASP and SSR 
markers for key agronomic and disease resistance traits (Rasheed 
et al. 2016). The SSR markers were converted to a biallelic state 
and were filtered based on 10% missing data and a minor allele fre-
quency of ≥ 5% in the lines. Heterozygous genotypes were regarded 
as missing data. Positional information was assigned according 
to the Trait Genetics Illumina 25 K SNP Chip. After filtering and 
removing redundant markers, 21,652 markers remained in the 
genotype dataset. Imputation of the markers was done using the 
software Beagle 5.4 per the guidelines provided in the user manual 
(Browning, Zhou, and Browning 2018). Following the imputation, 
both genotypic datasets were merged to obtain the common mark-
ers between the panels using Plink 2.0 (Purcell et al. 2007). After 
the merging, 15,987 markers were common between the panels 
and kept for further use in the genomic prediction models.

TABLE 1    |    List of environments (Year × Location) and phenotypic 
traits used for genomic prediction analysis: (a) the NMBU panel and (b) 
the GRAMINOR panel.

(a)

Environment

Trait 1 2 3 4 5 6

Anther extrusion X X X X

Heading date X X X X X X

Deoxynivalenol X X X X X

FHB disease severity X X X X X X

Plant height X X X X X X

Note: Environment—2013_Vollebekk [1], 2014_Vollebekk [2], 2015_Staur 
[3], 2019_Vollebekk [4], 2019_Morden [5] and 2020_Tulln [6].

(b)

Environment

Trait 1 2 3 4 5

Anther extrusion X X

Heading date X X X X

Deoxynivalenol X X X

FHB disease severity X X X X X

Plant height X X X

Note: Environment—2020_Tulln [1], 2020_Vollebekk [2], 2021_Tulln [3] and 
2021_Vollebekk [4], 2021_Morden [5]).
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2.3   |   Phenotypic Data Analysis

Least square means (LSmeans) were calculated using the 
‘lme4’ package (Bates et al. 2014) and ‘lmerTEST’ (Kuznetsova, 
Brockhoff, and Christensen 2017) in R (R Core Team 2021) for 
all the recorded phenotypic traits in this study. Models used for 
the calculation were based on the lmer function in the package 
‘lme4’ of R using REML. For alpha lattice design, Models 1 and 
2 were used to calculate the LSmeans of single environments for 
each trait. For randomized complete block design, Models 3 and 
4 were used to calculate the LSmeans of single environments 
and across the environments for each trait.

and

where Piknl is the phenotype (trait value) of the ith variety in 
the nth replicate in the kth block, � is the general mean, gi is 
the fixed effect of the ith variety, Rn is the random effect of 
the nth replicate, R:Bkn is the random effect of the kth block 
within the nth replicate and eiknl is the error term. In Model 
2, Pijknl is the phenotype (trait value) of the ith variety in the 
nth replicate in the kth block in the jth environment. � is the 
general mean, gi is the fixed effect of the ith variety, Ej is the 
random effect of the jth environment, g × Eij is the random 
effect of the ith variety grown under the jth environment (in-
teraction), Rn is the random effect of the nth replicate, R:Bkn is 
the random effect of the kth block within the nth replicate and 
eijknl is the error term.

and

where Pinl is the phenotype (trait value) of the ith variety in the 
nth replicate, � is the general mean, gi is the fixed effect of the 
ith variety, Rn is the random effect of nth replicate and einl is 
the error term. In Model 4, Pijnl is the phenotype (trait value) 
of the ith variety in the nth replicate in the jth environment, 
� is the general mean, gi is the fixed effect of the ith variety, Ej 
is the random effect of the jth environment, g × Eij is the ran-
dom effect of the ith variety grown under the jth environment 
(interaction), Rn is the random effect of the nth replicate and 
eijnl is the error term.

Pearson correlations between the traits were calculated (Benesty 
et  al.  2009) in R for both the panels and principal component 
analysis (PCA) biplot analysis was performed for all the traits 
using across- environment means in the R- package ‘Factoextra’ 
(Kassambara and Mundt 2017).

2.4   |   Genotypic Data Analysis

PCA was performed to interpret the calculated eigenvalues 
and principal components by integrating the genotypic data 
from both panels using TASSEL software (Glaubitz et al. 2014). 
Additionally, marker combination analysis was conducted by 

evaluating the top associated GWAS markers selected for this 
study. This evaluation was based on the variation inflation fac-
tor (VIF) and correlation metrics. Low VIF and correlations 
between the markers were preferred. Marker combinations that 
showed improvement in prediction ability (PA) were retained 
and used for the analysis.

Linkage disequilibrium (LD) decay analysis was performed 
using TASSEL for the NMBU panel, the European set of the 
NMBU panel and the GRAMINOR panel. Genome- wide half- 
decay r2 was estimated from the generated output from the soft-
ware (Glaubitz et al. 2014).

Allele frequencies of GWAS- associated markers used for the 
NMBU panel, the European set of the NMBU panel and the 
GRAMINOR panel were calculated from the available genotypic 
data of the respective panels.

2.5   |   ST and MT Genomic Predictions

We used the Bayesian ridge regression method, which is gen-
erally used for univariate and multivariate predictions im-
plemented in the ‘BGLR’ package in R (Pérez and de los 
Campos 2014) with 5000 burn- in and 15,000 iterations for each 
trait. We fit the standard base genomic prediction model for ST 
and MT genomic predictions as follows:

where y is the vector of phenotype on n genotypes for a single trait 
(n × 1); μ is the overall mean; Z is a design matrix with values of p 
markers on n number of genotypes (n × p); and u(n × 1) is a predic-
tor vector with u ∼ N (0, K(n×n)�

2
g), where �2g is the additive genetic 

variance and K is the realized additive relationship matrix. The 
residuals e is a vector of residual error with u ∼ N (0, R(n x n)�

2
e), 

where R is the residual matrix and �2e is error variance. The same 
Model 5 was extended to multiple traits, where y is the vector of 
n genotypes for t multiple traits (n × t), μ is the overall mean for 
multiple traits, Z is a design matrix with genotype values of p 
markers on ‘n × t’ number of genotypes [(n × t) × p]; u is a predic-
tor [(n × t) × 1] was assumed to follow a distribution u ∼ MVN (0, 
Σ Ä G), where Σ is a variance–covariance matrix across the mul-
tiple traits (t × t). The residuals e is a vector of residual error with 
e ∼ MVN (0, R Ä I), where R is (t × t) variance covariance matrix 
of residuals in all traits and I is the identity matrix.

We used significantly associated markers as fixed covariates in 
another model called Base + GWAS for ST and MT. For this, the 
criteria chosen were using top significant markers across the 
environments and across the traits from the GWAS study by 
Nannuru et al. (2022). The model we fit is as follows:

where y is the vector of phenotype on n genotypes for an ST 
(n × 1), μ is the overall mean, β is the vector of fixed effects 
(significant markers from GWAS), X and Z are design matri-
ces, u was assumed to follow a distribution described earlier in 
Model 5, and the rest of the factors are same as in Model 6. This 
model was used as MTBase + GWAS, where y is the vector of n 

(1)Piknl = � + gi + Rn + R:Bkn + eiknl

(2)Pijknl = � + gi + Ej + g × Eij + Rn + R:Bkn + eiJknl,

(3)Pinl = � + gi + Rn + einl

(4)Pijnl = � + gi + Ej + Rn + g × Eij + eiJnl,

(5)y = � + Zu + e,

(6)y = � + X � + Zu + e,
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genotypes for t multiple traits (n × t), μ is the overall mean, β is 
the vector of fixed effects (significant markers from GWAS), X 
and Z are design matrices, and the rest are same as described 
for Model 5.

The removal of top significant markers, utilized as fixed effects, 
from the overall markers used for calculating the additive rela-
tionship matrix (K) in Models 5 and 6 was ensured to prevent 
overfitting bias in the prediction models, as detailed by Spindel 
et  al.  (2016). The models are summarized in Table  2, and the 
top significant markers used in this study are summarized in 
Table 3.

The above- described models were used to make single trait and 
MT predictions with and without GWAS- associated SNP mark-
ers on both panels (the NMBU panel and the GRAMINOR panel) 
for all the single environments and across the environments. 
These models used for ST are referred to as STBase and the base 
model for MT predictions as MTBase, whereas the base models 
with SNP markers as fixed covariates for ST and MT predictions 
are referred to as STBase + GWAS and MTBase + GWAS. The 
GWAS- associated SNP markers used for both panels are solely 
based on GWAS output from the NMBU panel for both panels. 
This testing of prediction models on an independent panel of 
lines (the GRAMINOR panel) served as validation in this study. 
The associated markers were combined based on their demon-
strated significant impact and influence on disease resistance, 
as identified in our previous allele stacking analysis (Nannuru 
et al. 2022).

The FHB disease–related traits FHB disease severity and DON 
content were mainly used to evaluate the potential of the afore-
mentioned models both for ST and MT scenarios. In the MT pre-
diction scenario, AE, PH and DH were used as correlated traits 
to predict both FHB disease severity and DON content. Both the 
ST and MT prediction scenarios were assessed using the cross- 
validation method.

2.6   |   Cross- Validations for Assessment of PA 
and Genomic Heritability

We employed a five- fold cross- validation methodology, which 
included 10 replications for each model evaluated across diverse 
environmental conditions. Within each fold of the replication 
process, phenotypic values associated with a specific trait were 
intentionally masked. During the cross- validation procedure, 
the model was iteratively run for 10 replications, resulting in the 
derivation of genomic estimated breeding values (GEBVs) for 
each masked fold. It is important to note that for ST prediction 
models, all traits to be evaluated were done simultaneously, with 
phenotypic values masked accordingly based on the predefined 
folds. Conversely, in MT prediction models, each trait was eval-
uated individually, with the phenotypic values of the target trait 
masked while retaining the phenotypic information from all 
other traits.

The NMBU panel and the GRAMINOR panel were alterna-
tively used as training and validation sets to further evaluate 
the potential of the models tested in this study. The NMBU 
panel is further divided into ‘European’ and ‘Others’ based 
on the population structure analysis conducted by Nannuru 
et  al.  (2022). Consequently, the data were categorized into 
three groups: NMBU, GRAMINOR and European (the NMBU 
panel excluding ‘Others’), which were alternately used for 
testing and validation purposes. The evaluation focused ex-
clusively on a single trait scenario, and the results were re-
ported accordingly.

PA was calculated as the Pearson correlation coefficient be-
tween predicted GEBVs and observed phenotypic values across 

TABLE 2    |    Summary of the prediction models used in the study.

Model Fixed effects Relationship matrix

ST — GMarkers

ST + GWAS GWAS markers GMarkers–GWAS

MT — GMarkers

MT + GWAS GWAS markers GMarkers–GWAS

Note: Relevant GWAS markers were systematically excluded from the overall 
marker set for all analyses.

TABLE 3    |    Summary of the top significant and associated GWAS markers used in the study.

SNP marker Chromosome Position (Mbp) Included in

AX- 94844681 3A 718 NMBU and 
GRAMINOR panels

wgrb619 3B 5 NMBU panel

wsnp_BG604678A_Ta_1_2 4A 582 NMBU panel

RFL_Contig1490_386 6A 605 NMBU and 
GRAMINOR panels

wsnp_Ex_c45713_51429315 6B 712 NMBU and 
GRAMINOR panels

Kukri_c57593_79 7A 702 NMBU and 
GRAMINOR panels

Note: Marker wgrb619 at the Fhb1 locus has two alternative alleles, 730 (resistant allele) and 1450 (susceptible allele), and was not part of the genotyping procedure in 
the GRAMINOR panel, and marker wsnp_BG604678A_Ta_1_2 was missing in the GRAMINOR panel. Mbp = megabase pairs.
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all folds and replications. This comprehensive assessment al-
lowed us to effectively evaluate the performance of the models 
across different traits and environmental conditions, providing 
valuable insights into their predictive capabilities.

3   |   Results

3.1   |   Trait Correlations and Distributions

Pearson correlations between across- environment means of 
FHB disease severity with DON content in both panels showed 
high significance in both panels with r = 0.64 (p < 0.0001) in 
the NMBU panel and r = 0.41 (p < 0.0001) in the GRAMINOR 
panel. In both panels, AE was negatively correlated with DON 
content (r = −0.53 and −0.53, p < 0.0001) and FHB disease 
severity (r = −0.58 and −0.45, p < 0.0001) with high statisti-
cal significance. Some of the other correlations between trait 
means were highly significant in the NMBU panel, such as 
PH was negatively correlated with DON content (r = −0.34, 
p < 0.0001), whereas DH was positive and highly correlated 
with DON content (r = 0.38, p < 0.0001). In the GRAMINOR 
panel, similar trends were observed: PH was negatively cor-
related to DON (r = −0.28, p < 0.0001), and DH positively cor-
related to DON content (r = 0.07, p < 0.0001). The correlations 
of PH and DH to FHB were negligible in the GRAMINOR 
panel, but in the NMBU panel, the correlation between PH 
and FHB disease severity was highly significant (r = −0.44, 
p < 0.0001). These correlations are illustrated in the form of 
a PCA biplot, which visualizes negative and positive correla-
tions between the traits (Figure 1).

Single environment and across the environments LSmeans of 
FHB disease severity and DON content showed continuous vari-
ation that resembled normal distributions. Considerable varia-
tion was observed within the NMBU panel, the European set of 
the NMBU panel and the GRAMINOR panel for the FHB dis-
ease severity and DON content both within environments and 
across the environments (Figure S1).

3.2   |   PCA and Linkage Disequilibrium

PCA of the combined genotypic data from both panels re-
vealed that the NMBU panel could be further categorized into 
European and exotic lines (others) using two principal compo-
nents PC1 and PC2 accounting for 19.99% of the genetic vari-
ation (see Figure 2a), whereas PC1 and PC3 explaining 17.23% 
of the total variance revealed that others are quite noticeable in 
being genetically different from the European and Graminor 
lines (see Figure 2b).

Estimated half- decay r2 varied between the panels and values 
ranged (r2 = 0.18–0.210), with r2 for half- decay in the NMBU 
panel was 0.18. For the European set of the NMBU panel, r2 for 
half- decay was 0.19, and it was 0.21 for the GRAMINOR panel 
(Figure S3).

In addition to this, the allele frequencies for the GWAS- associated 
markers used for genomic prediction in the GRAMINOR and 
NMBU panels are shown in Figure S2.

3.3   |   ST and MT Predictions

In general, incorporating GWAS markers as covariates led 
to an increase in PA. The extent of this improvement varied 
depending on whether the analysis was conducted within a 
single environment or across multiple environments, and it 
differed between the two panels studied. Specifically, while 
some cases within the GRAMINOR and NMBU panels did not 
exhibit an increase in PA when GWAS markers were used as 
fixed covariates, other scenarios did show notable improve-
ments. Moreover, this trend was more consistently observed 
in MT scenarios. In some instances, the inclusion of GWAS- 
associated markers did not enhance PA. Despite these excep-
tions, the overall trend indicated that using GWAS markers as 
covariates generally enhanced PA.

The increase in PA ranged from as low as 0.05% to as high 
as a two- fold improvement. Altogether, the results exemplify 
that although the addition of GWAS markers can substantially 
enhance PA, the degree of improvement is variably dependent 
on the specific environment and panel under consideration 
(Figures 3, 4, 5 and 6; Figures S4, S5, S6 and S7). The results 
are elaborated below in context to analyses conducted with 
and without GWAS markers across the environments, traits 
and panels.

When using the European subset of the NMBU panel as training 
data to predict the GRAMINOR panel, the prediction of DON 
content performed well, whereas FHB disease severity showed 
negative PAs. Incorporating GWAS- associated markers, both in-
dividually and in combination, led to an increase in PA for both 
traits in the GRAMINOR panel (Figures 5 and 6; Figures S8 and 
S9; Table S3).

Furthermore, when the GRAMINOR panel was used as training 
data to predict the European subset of the NMBU panel, both 
traits did not perform well with and without GWAS- associated 
markers. In general, there was no difference observed between 
using individual markers versus marker combinations as fixed 
covariates in this context. Very similar patterns were observed 
when NMBU and GRAMINOR panels were used alternatively 
as training and validation sets (Figures 5 and 6; Figures S8 and 
S9; Table S3).

3.4   |   Conventional Base Model (Base)

Overall, the MTBase PAs were considerably higher than those 
of the STBase models in both the NMBU and GRAMINOR pan-
els. However, there were exceptions observed, particularly for 
the trait FHB disease severity in specific single environments 
[2021 Vollebekk within the GRAMINOR panel (Figures 3 and 
4; Tables S1 and S2)].

These exceptions observed above were not observed in the 
NMBU panel (Figures 3; Figure S6; Tables S1 and S2). In most 
of the cases, MTBase models performed well compared to the 
STBase models across different single environments and across 
the environments (Figures  3 and 4; Figures  S6 and S7). This 
pattern indicates that the superiority of MTBase models over 
STBase models was common across the traits and environments.
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3.5   |   Base Model Plus GWAS Covariates 
(Base + GWAS)

In general, incorporating GWAS markers, whether individu-
ally or in combinations, led to an enhancement in PA both for 
STBase + GWAS and MTBase + GWAS models in both the NMBU 
and GRAMINOR panels (Figures  3 and 4; Figures  S6 and S7; 
Tables S1 and S2). In general, more consistent effects of including 
GWAS markers were shown for MTBase + GWAS. The increases 
in PA were more prominent when individual markers were used 
compared to marker combinations in both the cases regarding 
traits as well as the environments for both panels (Figures 3 and 4).

However, there were instances where combinations of GWAS- 
associated markers provided a more consistent improvement in 
PA. Notable examples include the marker combination 4A6B for 
both STBase + GWAS and MTBase + GWAS prediction models 
in the NMBU panel, and the marker combination 6A7A in the 
GRAMINOR panel (Figures S6 and S7; Tables S1 and S2).

Overall, MTBase + GWAS models demonstrated a more consis-
tent increase in PA compared to STBase + GWAS models, both 
within single environments and across multiple environments, 
and for all the traits analysed in this study (Figures  3 and 4; 
Figures S6 and S7; Tables S1 and S2).

FIGURE 1    |    Heatmap showing Pearson correlations between across- environment means of different traits for (a) the NMBU panel and (b) the 
Graminor panel. PCA—biplot explaining the correlation between the traits and genotypes for (c) the NMBU panel and (d) the Graminor panel. 
Abbreviation: PCA = principal component analysis. [Color figure can be viewed at wileyonlinelibrary.com]
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4   |   Discussion

The main goal of implementing GS in plant breeding programs 
is to increase the PA of complex traits, making use of advances 
in the research area of genomics- assisted breeding. Breeders 
evaluate a wide variety of traits such as agronomic traits, grain 
yield, disease resistance and quality, among others; and these 
traits may be correlated. The number of traits evaluated to-
gether, as well as MT predictions, achieve better genetic gains. 
In this study, we evaluated correlated traits important for FHB 
disease resistance. Single trait and MT models were used to 
test genomic prediction models with and without GWAS co-
variates that were five- fold cross- validated with 10 replica-
tions. Our study's main aim was to evaluate the impact of PA 
in STBase + GWAS and MTBase + GWAS. We observed that 
there is a potential to increase the PA by the inclusion of GWAS 

markers. There was a considerable increase in PA in both the 
single trait model and MT models. However, the MT model PAs 
were higher than the single trait model's with and without the 
GWAS covariate in the prediction model. The reason for the 
good PAs in the MT model is due to the correlations between 
the traits and the established knowledge of the genetic architec-
ture of FHB disease resistance. We also used the GRAMINOR 
panel as an independent material to test the models previously 
described. PAs were moderate to high, and there was an in-
crease in PA when the GWAS- associated SNP markers were 
used with small exceptions. On the other hand, we also further 
tested the potential of the above- mentioned models using the 
NMBU panel as a whole, the ‘European’ subset of the NMBU 
panel and the GRAMINOR panel alternatively as training and 
validation sets in a more practical breeding context. More de-
tailed aspects of the results will be discussed in the following.

FIGURE 2    |    Principal component analysis based on the 25 K data showing the population structure of the NMBU panel, which is divided mainly 
into two groups—European and others (lines from outside Europe such as from CIMMYT, China and the United States) and the GRAMINOR panel; 
(a) PC1 and PC2 and (b) PC1 and PC3. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3    |    Bar graphs showing the prediction abilities in single environments (Year × Location) and across- environment means of FHB disease 
severity and DON content using single- trait and multitrait prediction models in the NMBU panel. The X- axis labels indicate the chromosome 
from which significant GWAS- associated markers were used, and the Y- axis indicates the prediction ability of different genomic selection (GS) 
models tested. Abbreviations: FHB = Fusarium head blight, DON = deoxynivalenol; locations: M = Morden, S = Staur, T = Tulln and V = Vollebekk; 
mean = across- environment means; models: STBase = single- trait standard conventional GS model; STBase + GWAS = STBase + GWAS- associated 
markers as fixed covariates; MTBase = multitrait standard conventional GS model; MTBase + GWAS = MTBase + GWAS- associated markers as fixed 
covariates. [Color figure can be viewed at wileyonlinelibrary.com]
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4.1   |   Trait Correlations and Genetic Diversity

Correlations between traits are very important, and they play a 
vital role in the MT model, as was also observed in our study. 
Traits associated with FHB disease resistance are well char-
acterized, and the correlations from this study are in line with 
previous genetic studies. As we also observed, DH can be either 
negatively or positively correlated with FHB disease severity 
due to phenological differences in the germplasm and changing 
weather conditions during anthesis, which is the most suscepti-
ble stage for FHB infections (Andersen 1948; Sutton 1982; Kriss, 
Paul, and Madden 2010). A general negative correlation of FHB 
disease severity with PH is well established (Mao et al. 2010; Lu 
et  al.  2013; Kubo et  al.  2013), as also confirmed by our study. 
AE is an important trait evaluated for FHB disease resistance—
the lower the value of AE, the higher the disease severity. Many 
studies (Skinnes et  al.  2010; Lu et  al.  2013; Kubo et  al.  2013; 
Buerstmayr and Buerstmayr 2015; He, Lillemo, et al. 2016; He, 
Singh, et al. 2016) have reported a negative correlation between 
FHB disease and DON content with AE. The lines with high AE 
had lower infection rates, lower FHB disease severity and lower 
DON content. So, searching and selecting the genotypes with 
higher AE helps the breeding gains. AE, PH and DH are traits 
that have a direct influence on FHB disease and DON content 
since they affect the plant's susceptibility to the disease and these 
traits exhibit high heritabilities and are easy and cheap to score. 
For this reason, we used traits such as AE, DH and PH as cor-
related traits in MT prediction models in our study. The informa-
tion from the correlated traits in the MT model was valuable and 
the PAs using this in the MT model were considerably higher. 
This was evident from our results in this study. Considering 
these trait correlations in the MT models and selecting the best 
genotypes will help achieve faster gains in a shorter time.

PCA of the NMBU panel and the GRAMINOR panel together 
explained a total variation of 19.99% from using the first two 

principal components; however, there was no remarkable differ-
ence seen among the three groups (European lines, Graminor 
lines and others; ‘exotic lines’). But when PC3 was used instead 
of PC2, although the total variation decreased, a clear separation 
of exotic lines from the adapted European lines in the NMBU 
panel was apparent. Similarly, GRAMINOR lines displayed a bit 
more distinct grouping from the rest (Figure 2). This highlights 
the diversity present in the NMBU panel compared to adapted 
European lines from the NMBU panel and its distinction from 
the GRAMINOR panel. Furthermore, estimates of genetic diver-
sity based on r2 half- decay indicate that the NMBU panel exhib-
its a higher diversity compared to both the European set of the 
NMBU panel and the GRAMINOR panel. However, this differ-
ence is not considerably large, but it suggests that measurable 
levels of genetic diversity exist between the two panels.

4.2   |   Impact of Adding GWAS Information to 
GS Model

Multiple studies in plant and animal breeding have incorpo-
rated GWAS results into the prediction models and reported 
increases in the PA. Sehgal et al. (2020) reported up to 9%–10% 
increase in PA by using the most consistent and robust asso-
ciations from the GWAS conducted on genetic characteriza-
tion of yield, and it was one of the first reports of integrating 
the trait genetic architecture in genomic prediction models for 
grain yield. They approached using GWAS- associated mark-
ers and haplotypes as fixed covariates in the prediction model 
for different environments with inclusion of epistatic effects. 
A study conducted on Eucalyptus tree breeding concluded 
that adding the GWAS results into the GS method was very 
valuable, as it enhances the power to identify the interest-
ing and hidden potential of genomic variation in forest tree 
breeding (Tan and Ingvarsson  2022). They concluded that 
this method of incorporating the GWAS results into genomic 

FIGURE 4    |    Bar graphs showing the prediction abilities in single environments (Year × Location) and across- environment means of FHB disease 
severity and DON content using single- trait and multitrait prediction models in the GRAMINOR panel. The X- axis labels indicate the chromosome 
from which significant GWAS- associated markers were used, and the Y- axis indicates the prediction ability of different genomic selection (GS) 
models tested. Abbreviations: FHB = Fusarium head blight, DON = deoxynivalenol; locations: M = Morden, S = Staur, T = Tulln and V = Vollebekk; 
mean = across- environment means; models: STBase = single- trait standard conventional GS model, STBase + GWAS = STBase + GWAS- associated 
markers as fixed covariates; MTBase = multitrait standard conventional GS model; MTBase + GWAS = MTBase + GWAS- associated markers as fixed 
covariates. [Color figure can be viewed at wileyonlinelibrary.com]
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prediction improves the PA, which is a promising avenue to 
increase the efficiency of genomic predictions in forest tree 
breeding. Similar models were tested in a simulation study by 
Rice and Lipka  (2019) in maize and sorghum. The idea was 
that GWAS peak significant markers could add and boost the 
PA in RR- BLUP models. They observed a reduction in PA and 
this reduction in PA was also seen in our study in some cases, 
whereas in most cases, there was an improvement. Similarly, 
including SNPs identified via GWAS as covariates in GBLUP 
models substantially improved PA for FHB resistance both 
within and across winter wheat breeding programs (Morales 
et al. 2024). In animal breeding, Veroneze et al.  (2016) were 
one of the first ones to use computed weights from the GWAS 
results and apply these to multipopulational predictions. This 
showed an exceptional increase in the prediction accuracies; 
however, because this was performed in a single trait model, 

the results could potentially change under an MT model. They 
also mentioned that combining multiple traits would need 
new strategies to combine weights; otherwise, it is highly 
likely for a bias to occur in PA without these defined weights. 
Our study showed improved prediction performance with the 
use of MT models compared to ST models, and most cases 
with improved PA by the inclusion of GWAS markers were 
again MT models. We also assume that more training data 
and stronger correlations between traits will achieve a greater 
rise in PAs. The method of incorporating GWAS markers into 
GS was termed GS + de novo GWAS by Spindel et al.  (2016). 
They performed this approach in rice breeding populations 
and reported that GS + de novo GWAS outperformed all the 
other models for several traits and in various environments. 
In addition to this, they proposed a two- part strategy breeding 
design which was used to bring new or novel genetic variation 

FIGURE 5    |    Bar graphs showing the prediction abilities of across- environment means for FHB disease severity and DON content using single- 
trait GS prediction models, where NMBU and GRAMINOR panels were used alternately as training and validation sets: (a) ‘NMBU’ as a training 
set and ‘GRAMINOR’ as a validation set and (b) ‘GRAMINOR’ as a training set and ‘NMBU’ as a validation set. The X- axis labels indicate the 
chromosome from which significant markers were used, and the Y- axis indicates the prediction ability of different genomic selection (GS) models 
tested. Abbreviations: STBase = single- trait standard conventional GS model; STBase + GWAS = STBase + GWAS- associated markers as fixed 
covariates. [Color figure can be viewed at wileyonlinelibrary.com]
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into elite breeding populations by adding more genetic di-
versity, thus increasing the potential chance of better genetic 
gains (Spindel et al. 2016). A simulation study has shown that 
having a major gene as a fixed effect in the prediction model 
was very beneficial, especially when the heritability and per-
centage of genetic variance explained by the gene is high. In 
contrast to this, when the major gene was used as a random 
effect and adding up a bulk of other markers, the PA decreased 
more quickly (Bernardo  2014). Some of these studies men-
tioned above served as an initial motivation to make use of 
GWAS associations in the genomic prediction models. Our re-
sults and observations are like those seen in previous studies. 
Furthermore, most of the cases showed a potential increase 
in genomic prediction abilities; however, this was not always 
the case for all traits and models tested in our study. We have 

observed a range of 0.05% to as high as a two- fold increase in 
the PAs. Elsewhere, it was mentioned that even a 1% increase 
in PAs achieved improved genetic gains (Bernardo 2014).

4.3   |   MT Predictions Are Advantageous Over ST 
Predictions

The main aim of our study was to evaluate the potential of 
using the GWAS results in single trait and MT prediction 
models. MT models outperformed the ST models in PA when 
the Base model was used. This is because the association and 
correlations between different traits add up to the observed 
increase in the prediction accuracies. MT models were com-
pared to ST models using different agronomic and malting 

FIGURE 6    |    Bar graphs showing the prediction abilities of across- environment means for FHB disease severity and DON content using single- trait 
GS prediction models, where European—(part of NMBU panel excluding ‘Others’) and GRAMINOR were used alternately as training and validation 
sets (NMBU panel was divided into ‘European’ and ‘Others’): (a) ‘European’ as training set and ‘GRAMINOR’ as validation set and (b) ‘GRAMINOR’ 
as training set and ‘European’ as validation set. The X- axis labels indicate the chromosome from which significant markers were used, and the Y- 
axis indicates the prediction ability of different genomic selection (GS) models tested. Abbreviations: STBase = single- trait standard conventional GS 
model; STBase + GWAS = STBase + GWAS- associated markers as fixed covariates. [Color figure can be viewed at wileyonlinelibrary.com]
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traits in barley (Bhatta et  al.  2020). In the study, it was re-
ported that MT predictions were always superior and outper-
formed the ST prediction model. CV1 and CV2 types were 
used for cross- validation purposes and MT- CV2 was better 
than the others (Bhatta et  al.  2020). Nevertheless, we used 
five- fold cross- validation for assessing the PA and observed 
that the MT model is superior to the single trait model. There 
are only a limited number of studies conducted using multiple 
traits for predicting breeding values because of model com-
plexity and the increased number of parameters involved. 
Most importantly accurate estimates of correlations between 
the MTs are needed for achieving better prediction abilities 
(Jia and Jannink 2012; Rutkoski et al. 2012; Montesinos- López 
et al. 2016; Lado et al. 2018). All the studies mentioned above 
reported advantages of MT prediction models, which use cor-
related MTs. Montesinos- López et al. (2016) reported that the 
MT model with correlated traits is better than uncorrelated 
traits. In our study, we evaluated the MT model using traits 
correlated with FHB disease resistance and observed an in-
crease in PAs. Findings from our study emphasize that the 
variability in prediction accuracies varies between MT and 
ST base models across different traits and environments, 
highlighting the importance of considering trait- specific and 
environment- specific effects in genomic prediction studies. 
Alongside, it also highlights the complexity and variability 
inherent in genomic prediction and suggests that although 
MT models generally offer higher prediction accuracies, their 
performance can vary depending on the specific trait and en-
vironment. This shows the importance of considering both 
trait-  and environment- specific effects in genomic prediction 
studies. Adopting a more nuanced approach that accounts 
for these factors can lead to more accurate and reliable ge-
nomic predictions, ultimately enhancing the application of 
GS in breeding programs. For example, considering genetic 
correlations between the traits, genetic architecture of the 
traits, environmental interactions, quality and quantity of 
data and most importantly model complexity and computa-
tional challenges are very important factors for consideration 
in general for GS prediction models (Meuwissen, Hayes, and 
Goddard  2001; Daetwyler, Villanueva, and Woolliams  2008; 
Heslot et al. 2012; Jia and Jannink 2012; Guo et al. 2014).

4.4   |   Performance of Base and Base + GWAS 
Models on GRAMINOR Panel

Base + GWAS models in both ST and MT scenarios showed 
improvement in PAs for both the NMBU and GRAMINOR 
panels. But the idea of incorporating GWAS markers in the 
genomic prediction model for the GRAMINOR panel was con-
sidered a kind of validation, where no prior GWAS was con-
ducted. We used the GWAS markers found significant in the 
NMBU panel and included those in the prediction models on 
the GRAMINOR panel. There was an increase in PA observed 
for STBase + GWAS and MTBase + GWAS, whereas there 
was a remarkable increase in the PAs in MTBase + GWAS 
compared to STBase + GWAS, which resembles the results 
observed from the NMBU panel. In our study, we have taken 
care of the overoptimization of GWAS markers and overfit-
ting the GS models by systematically excluding the GWAS- 
associated markers from the overall genotypic marker set used 

to calculate the additive relationship matrix used, as followed 
and described in Spindel et  al.  (2016) and Li et  al.  (2019). 
However, on average, there was an increase in the PAs in 
STBase + GWAS and MTBase + GWAS. These results in the 
GRAMINOR panel suggest that GWAS- associated markers 
from the NMBU panel did contribute to the PA in GRAMINOR 
lines. This may be due to some associations of those GWAS 
markers used as fixed effects in this panel or some of the 
marker alleles that were fixed. We have used the robust and 
significant markers as detailed in Table  3. This approach to 
ensure that only robust QTLs that also segregate in the testing 
population are included as fixed effects could help to achieve 
higher PAs in most of the cases. Furthermore, there are other 
factors as mentioned in the previous section that contribute to 
the overall performance of the models. Additionally, we per-
formed cross- population validation by using the NMBU panel 
as a training set and the GRAMINOR panel as a test set to 
evaluate the performance of Base and Base + GWAS models in 
the ST scenario. We observed a few cases of improved PAs for 
both FHB and DON content by the inclusion of GWAS mark-
ers. The usual scenario of improved PA was largely variable in 
cross- population validation of prediction models by inclusion 
of GWAS markers. Morales et al. (2024) recently reported that 
including GWAS SNPs and/or FHB- correlated traits in GBLUP 
models improved PA for FHB under both cross- validated and 
cross- population scenarios, further demonstrating that includ-
ing GWAS markers identified in one population in GS model-
ling in another genetically related population can enhance PA. 
Our results indicate that the PA varies across different traits 
and panels when using GWAS markers, suggesting that the 
efficacy of genomic prediction models can depend on the spe-
cific genetic backgrounds and environmental conditions of the 
populations being studied.

5   |   Conclusions and Outlook

We have evaluated the potential of incorporating GWAS- 
associated markers in genomic prediction models with the hy-
pothesis of an increase in the PA based on promising results 
from previous studies. As hypothesized, inclusion of GWAS 
markers as fixed effects improved the PA, but this was depen-
dent on which markers were used. Overall, the improvement 
was consistent in most cases for MT models. In general, MT 
models showed higher PAs and performed better than ST 
models. The increased predictive power of MT models likely 
comes from the use of genetic information from the correlated 
traits. When using GWAS markers from the NMBU panel in 
STBase + GWAS predictions on the GRAMINOR panel, im-
proved PAs were seen in most cases. We conducted this study 
to explore the possibilities of improving the GS models by 
means of GWAS marker information. Most of the studies that 
used this approach were for ST models; we used this approach 
also in MT models with considerable success. However, in 
some cases, there was no success, which highlights the com-
plexity of FHB disease resistance traits. Our study conse-
quently concludes that MT models outperform ST models for 
predicting FHB disease resistance in wheat. Furthermore, it 
suggests the need for customized modelling strategies tailored 
to specific breeding objectives and environmental contexts to 
be used in predicting complex disease–related traits.
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