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A B S T R A C T

This study explores the potential of spatially explicit Harvester Production Reports (HPRs) for automatic 
annotation of Aerial Laser Scanning (ALS) data at tree-level, enabling accurate tree species classification using 
Convolutional Neural Networks (CNNs). By integrating HPRs into the modelling process, this approach provides 
a practical solution for addressing challenges in remote sensing data annotation for forestry applications. The 
ALS data were acquired in managed Norway spruce-dominated forests in southern Sweden using a dual- 
wavelength system composed by two monochromatic sensors. Thus, three datasets were produced: the 905 
nm miniVUX dataset (~100 points/m2), the 1550 nm VUX dataset (~875 points/m2), and the dual-wavelength 
dataset (~975 points/m2), the last being a junction of the two first datasets. The automatic annotation was 
performed by matching tree records in the HPR and ALS data based on spatial proximity and height similarity, 
with a total of 45,516 HPR-recorded tree positions being linked to ALS-derived segments and assigned species 
labels based on HPR records. Then, the individual tree-level ALS point clouds were converted into 2D images 
from multiple viewing angles, with varying image dimensions and pixel sizes to accommodate trees of different 
sizes. These images served as input for CNN-based classification, enabling species identification across ALS 
datasets with varying spectral and spatial resolutions. The CNN models were trained and evaluated to classify 
trees into Norway spruce, Scots pine, Deciduous, and a “Noise” class for segmentation errors. The classification 
accuracy varied according to the dataset used, with the dual-wavelength dataset achieving the highest macro-F1 
score (0.896), followed by the VUX dataset (0.894) and miniVUX dataset (0.835). These findings highlight 
spatially explicit HPRs as efficient, high-quality reference data for CNN-based tree species classification with 
minimal annotation effort.

1. Introduction

Precision forestry applications integrate remote sensing technologies 
and estimation techniques to enhance sustainable forest management. 
By providing detailed insights into tree-level attributes like tree health 
and timber quality, they allow informed decision-making and optimal 
resource allocation (Fardusi et al., 2017; Fassnacht et al., 2024). 
Commonly, precision forestry is supported by advanced remote sensing 
technologies, such as Light Detection and Ranging (LiDAR) sensors, and 
high resolution aerial imagery, which are used to collect detailed data on 
forests and enable the retrieval of information at individual tree-level. 

(Holopainen et al., 2014).
A key component of such forest assessments is the accurate estima-

tion of tree species composition, which plays a critical role in manage-
ment and conservation efforts (Fassnacht et al., 2016; Yu et al., 2017). 
Diverse tree species composition enhances ecosystem resilience, 
providing niches for different organisms, and mitigating the risks asso-
ciated with pests and diseases (FAO and UNEP, 2020). In addition to its 
ecological value, tree species composition is of key interest to the forest 
industry as different species are suitable for different end uses due to 
species-specific wood properties, such as fiber length and resistance to 
traction.
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When it comes to mapping forest characteristics, LiDAR is one of the 
most commonly used tools (Coops et al., 2021; Nilsson et al., 2017). 
These sensors can be used to distinguish tree species based on their 
unique structural features, such as branch patterns and shapes 
(Holmgren and Persson, 2004; Terryn et al., 2020; Xi et al., 2020). For 
instance, Terryn et al. (2020) classified five species using branch pat-
terns in Terrestrial Laser Scanning (TLS) data, achieving 80 % accuracy. 
Analogously, Qian et al. (2023) achieved 90.9 % accuracy using Aerial 
Laser Scanning (ALS) data to differentiate six species, leveraging vertical 
slices of point clouds to geometric shapes. Beyond structural features, 
multispectral LiDAR sensors offer additional spectral reflectance data 
from forest canopies (Takhtkeshha et al., 2024). The use of such systems 
for tree species identification has been widely explored in the scientific 
literature (Budei et al., 2018; Mielczarek et al., 2023; Yu et al., 2017), 
with some studies pointing out improvements in the retrieval of species- 
specific forest parameters (Kukkonen et al., 2019a, 2019b) and tree 
detection (Huo and Lindberg, 2020) when using multispectral LiDAR 
compared to other remote sensing data sources.

As remote sensing technologies advance, they generate increasingly 
complex datasets that require sophisticated analytical methods. For this 
reason, deep learning – in particular Convolutional Neural Networks 
(CNNs) − has gained prominence in analyzing remote sensing data due 
to its ability to analyze complex spectral and spatial patterns (Mäyrä 
et al., 2021; Sothe et al., 2020), with tree species classification being one 
of the most common tasks performed by CNNs in the fields of forestry 
and forest conservation (Kattenborn et al., 2021). For example, Wu et al. 
(2024) used a CNN for band selection in hyperspectral images, reducing 
data dimensionality for faster processing. Their FAST 3D-CNN P-Net 
classified nine tree species with 97 %-99 % accuracy across different 
areas. In the recent years, deep learning has been used for tree species 
classification in different types of remote sensing data, including RGB 
images (Carvalho et al., 2022; Liu et al., 2019; Onishi and Ise, 2021; 
Schiefer et al., 2020), satellite optical data (Bolyn et al., 2022; Hızal 
et al., 2024), multi- and hyperspectral imagery (Fricker et al., 2019; Ma 
et al., 2024; Sothe et al., 2020; Wang and Jiang, 2024; Xu et al., 2024), 
and LiDAR point clouds (Murray et al., 2024; Seidel et al., 2021).

Despite the success, different challenges arise when using such deep 
neural networks for forestry-related applications. One major bottleneck 
is the need for large datasets during model training, as acquiring high- 
quality, georeferenced annotated data is often time-consuming and 
expensive (Kattenborn et al., 2021). To address this challenge, strategies 
such as data augmentation (He et al., 2023; Oubara et al., 2022) and 
synthetic data generation are employed (Bryson et al., 2023; Xiang et al., 
2023), increasing the training data diversity. Finally, emerging tech-
nologies such as UAV-borne laser scanners (UAVLS) and MLSs can be 
used to efficiently measure forest attributes, such as diameter at breast 
height (DBH) and stem volume, over large areas in short times (Hyyppä 
et al., 2022, 2020; Pires et al., 2022; Puliti et al., 2020), generating 
training data in sufficient amounts.

While such methods improve the availability of training data, com-
plementary sources can further enhance model performance and reduce 
reliance on field surveys. A promising alternative is the use of spatially 
explicit Harvester Production Reports (HPRs) as training data for esti-
mating forest attributes. HPRs are a by-product of mechanized har-
vesting, generated in large quantities as a part of routine forestry 
operations. These reports contain detailed georeferenced information on 
each harvested tree, such as taper and species, making them particularly 
valuable for precision forestry applications. When equipped with accu-
rate positioning systems, HPRs provide the exact type of annotations 
required by precision forestry – at tree-level, accurate and spatially 
explicit. Thus, they represent a cost-effective way of enhancing remote 
sensing-based inventories, significantly reducing the resources needed 
for field data collection (Lindroos et al., 2015; Söderberg et al., 2021).

Despite their potential, HPRs remain underutilized in the context of 
deep learning applications for tree species classification. Leveraging 
HPRs as large-scale training data could significantly reduce reliance on 

field surveys while improving the accuracy of species classification 
models. In addition, such data source could enhance the estimation of 
continuous forest variables such as DBH and stem volume (Hauglin 
et al., 2018; Karjalainen et al., 2022; Maltamo et al., 2019; Noordermeer 
et al., 2023), and qualitative variables such as different kinds of forest 
damage (Hansen et al., 2023; Jamali et al., 2023).

Given the possibilities introduced by remote sensing, deep learning, 
and new training data sources, our main objective is to propose a 
method for automatically classifying tree species at single-tree level. For 
that, we use HPRs to automatically annotate ALS data at tree-level, and 
use the annotated data to train a tree species classification CNN. In 
addition, we investigate the proposed technique’s performance under 
ALS datasets with different properties, namely different spectral and 
spatial resolutions.

2. Material and methods

2.1. Study area

The study area is located in central Sweden (59◦46́N, 14◦31́E – 
Fig. 1). Altogether, 17 stands were used in the study, with areas varying 
from 3.7 ha to 16.8 ha. The stands were selected according to their 
planned harvesting dates, between 2021 and 2022. On the harvested 
stands (Table 1) the dominant tree species are Norway spruce (Picea 
abies (L.) H. Karst.) – 79 %, Scots pine (Pinus sylvestris L.) – 11 %, and 

Fig. 1. (A) Map of the study area with the 17 harvested stands and their 
respective areas in hectares (ha). (B) Approximate location of the study area in 
Sweden, in red. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
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Birch (Betula spp.) – 10 %.

2.2. Aerial laser scanning data

The stands were scanned in September 2021 using the Finnish 
Geospatial Institute’s (FGI) dual-wavelength ALS system (Hakula et al., 
2023). This system included two monochromatic LiDAR sensors: the 
Riegl miniVUX-1UAV (905 nm, NIR) and the Riegl VUX-1HA (1550 nm, 
SWIR), mounted on a helicopter flying 100 m above ground at 50 km/h. 
Due to technical issues, the system’s third scanner (green wavelength) 
did not collect data, resulting in a dual-wavelength point cloud.

The point cloud was pre-processed and normalized using the LAS-
tools software (Rapidlasso GmbH, Germany). Individual tree crowns 
were segmented using the Holmgren et al. (2022) algorithm, developed 
for boreal forests and achieving an F1 score of 0.86 for trees with DBH ≥
10 cm (Pires et al., 2024). This method, previously used as the tree 
segmentation method for tree species classification studies (Axelsson 
et al., 2023; Persson et al., 2022), requires sample trees for crown 
density model creation. Accordingly, 122 trees were manually 
segmented to calibrate the model. The segmentation produced polygons 
representing individual tree crowns, with the highest point within each 
polygon identified as the treetop. To simulate different ALS systems, 
returns from the two sensors were separated post-segmentation, creating 
three datasets: mini-VUX (NIR), VUX (SWIR), and a dual-wavelength 
dataset combining both. Table 2 summarizes the characteristics of 
these datasets.

2.3. Harvester production reports

Altogether, 69,253 trees from 17 stands were harvested from 
November 2021 to October 2022 using cut-to-length (CTL) harvesters by 
John Deere (Moline, Illinois, United States) equipped with a positioning 
system. The positioning system consisted of two Global Navigation 
Satellite System (GNSS) receivers mounted on the harvester’s cabin in 
order to establish its position and bearing. Built-in sensors enabled the 
recording of the boom angle and boom extension at the time of tree 
felling. However, the extension of the last part of the boom could not be 
recorded. Together, the integrated sensors for boom extension and angle 
and the GNSS on the harvester’s cabin make it possible to calculate the 
position of each tree during felling. The positions of 34 stumps were 

taken with a RTK GNSS and used to assess the accuracy of the positions 
obtained with the harvester system. The distances between the stumps 
and harvester positions ranged from 0.1 to 2.1 m, with a mean of 0.38 m.

From the HPRs we extracted each tree’s position, species, DBH, and 
the log lengths. Subsequently, the hprCM software (Skogforsk, 2022) 
was used to estimate each tree’s volume and total height based on the 
information on the HPR. The HPR files stored four species classes, 
“Norway spruce”, “Scots pine”, “Birch”, and “Other broadleaves”. The 
“Birch” and “Other broadleaves” classes were combined into a single 
“Deciduous” class.

2.4. Linking harvested trees to ALS data

Linking harvested trees to ALS segments was crucial for creating an 
annotated dataset with individual tree point clouds assigned to species 
classes. This was achieved by matching tree positions and heights be-
tween harvested trees and ALS-derived segments, using treetops from 
ALS segments as reference positions. For each harvested tree position, 
the product of horizontal distance (d) and height difference (dh) be-
tween the tree and neighboring treetops was calculated. If a treetop was 
within 1 m of the harvested tree, the closest treetop was linked to the 
harvested tree. If no treetops were within 1 m, the tree was linked to the 
treetop with the smallest d × dh value. Maximum allowed values were d 
= 3.5 m and dh = 4 m.

Segmented tree crowns, i.e. treetops, that were not linked to har-
vested trees were assumed to be trees that remained standing after the 
harvest or to be commission errors from individual tree segmentation. 
Harvested trees that were not linked to a tree crown were assumed 
omission errors from the individual tree segmentation.

Altogether, 45,516 tree positions were linked to an ALS-derived 
segment, representing 65.7 % of all harvested trees. Of those, 36,162 
trees (79.4 %) were Norway spruces, 5,397 trees (11.9 %) Scots pine, 
and 3,957 (8.7 %) were deciduous trees. The proportion of trees linked 
to an ALS-derived segment increases with DBH (Fig. 2). In smaller DBH 
classes, e.g. from 5 – 10 cm, the majority of harvested trees were not 
linked to any ALS-derived segment. Conversely, this proportion de-
creases as the DBH increases, with the majority of trees with DBH ≥ 10 
cm being linked to an ALS-derived segment.

2.5. Conversion of point clouds to 2D images

We used a CNN designed for 2D image classification – described 
further in section 2.6. Therefore, the individual tree point clouds were 
converted into images. The general workflow for this conversion 
involved transforming the individual tree point clouds into 2D images 
from four angles by rasterizing them in the X vs. Z plane at 45◦ intervals. 
At that stage, the pixel size was dynamically determined based on point 
density to ensure accurate representation of varying tree sizes and 
shapes, and the pixel values assigned according to the ALS dataset used, 
preserving relevant structural and spectral information. Finally, the 
pixel values were normalized and the images resized to a standard 160 
× 320 pixels for CNN classification.

The rasterization was done in the X vs. Z plane, generating four 2D 
representations per tree by rotating the tree point cloud around the Z- 
axis at 45◦ intervals (0◦, 45◦, 90◦, and 135◦). It was performed inde-
pendently for each ALS dataset and tree, producing variable image di-
mensions and pixel sizes tailored to tree size and dataset characteristics. 
Using fixed image dimension and pixel size for rasterizing the tree point 
clouds could lead to inaccuracies in their 2D representations. For 
instance, fixed image and pixel sizes could potentially cause trees to be 
cropped, if the number of pixels is not enough to cover their full extent, 
or blurred, if the pixel size is too large relative to the tree’s size. By using 
variable pixel and image sizes, we were able to better represent the 
different tree sizes and shapes. This approach maintained the resolution 
of the original point cloud data, ensuring higher point density datasets 
were represented with higher-resolution images, while lower-density 

Table 1 
Forest areas’ mean characteristics per tree species. DBH = Diameter at breast 
height in cm. SD = standard deviation.

Tree species Mean DBH (±
SD)

Basal area per hectare 
(m2/ha)

Volume per hectare 
(m3/ha)

Scots pine 25.5 (± 6.05) 6.02 59.7
Norway 

spruce
20.1 (± 7.99) 37.3 357

Deciduous 20.9 (± 7.96) 4.38 36.4
All species 20.7 (± 7.99) 47.7 453

Table 2 
Description of the aerial laser scanning (ALS) datasets used for tree species 
classification. PRR: Pulse Repetition Rate.

ALS dataset

Mini-VUX 
(1)

VUX 
(2)

Dual-wavelength (1 þ
2)

Sensor(s) miniVUX- 
1UAV

VUX- 
1HA

miniVUX-1UAV (1) +
VUX-1HA (2)

Footprint (cm) at 100 m 
from the target

16 x 5 5 16 x 5 (1) + 5 (2)

PRR (kHz) 100 1017 100 (1) + 1017 (2)
Scan speed (revolutions/s) 100 143 100 (1) + 143 (2)
Point density (points/m2) 100 875 975 (1 + 2)
Wavelength (nm) 905 1550 905 (1) + 1550 (2)
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datasets retained appropriate detail levels.
Fig. 3 shows how point clouds of trees with different sizes were 

represented in two dimensions. Prior to rasterization, the extent of the 
point cloud for each rotation angle was used to define the area to be 
rasterized, ensuring accommodation of the entire point cloud within the 
raster frame. For each ALS dataset (i), tree (j) and rotation angle (a), the 
pixel size (ps) of the resulting 2D image was calculated according to 
formula 1. In this calculation, the pixel area was determined as the in-
verse of the point density in the X vs. Z direction post-rotation, repre-
senting the area a single point would occupy if all the returns in the point 
cloud were uniformly distributed within the raster frame. 

psija =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xija*zija)/nij

√

(1) 

where, n is the number of returns in the tree segment.
Once the raster frame and pixel size were established for each i, j and 

a, pixel values were assigned based on the ALS dataset used. In order to 
assess the implication of adding spectral information in the images used 
for classification, the pixel values in mini-VUX- and VUX-derived images 
was set as the number of returns within each pixel considering the full 
depth of a tree’s point cloud. In other words, no intensity values in the 
two monochromatic datasets were used. The pixel values were 
normalized image-wise within the range of 0 to 255, with 0 indicating 
no points in the pixel and 255 corresponding to the 95th percentile of the 
pixel values pre-normalization. Pixels with values greater than or equal 
to the 95th percentile of pixel values were set as 255, resulting in 
grayscale images with 256 shades, ranging from white (0) to black 
(255).

In contrast, the images derived from dual-wavelength ALS data were 
created using an RGB false color composite combining NIR and SWIR. In 
each pixel, the red channel was assigned the mean intensity of the NIR 
points, green as the mean intensity of the SWIR points, and blue as the 
Normalized Near Infrared Index (NDII), calculated using NIR and SWIR 
according to formula 2. For these images, pixels lacking returns from 
either channel were assigned an NDII value of zero. Afterwards, the RGB 
values of each image were normalized to a range between 0 and 255, 
where 0 represented the absence of returns, and 255 indicated the 
highest mean intensity value before normalization. 

NDIIk =
nirk − swiri

niri + swiri
(2) 

where nir is the mean intensity of returns from the miniVUX-1UAV 

sensor, and swir is the mean intensity of returns from the VUX-1HA 
sensor in pixel k.

Finally, all images were resized to the standard dimensions of 160 
(width) by 320 (height) pixels.

2.6. Tree species classification

To ensure an even representation of each tree species class and 
mitigate potential bias towards over-represented classes, the dataset was 
balanced by reducing the number of instances in each class to match the 
smallest class. Thus, the number of trees in the Norway spruce and Scots 
pine classes was reduced to 3,957 trees to match the Deciduous class.

The dataset was visually inspected to create a “Noise” class for 
commission errors from tree segmentation. In this context, an image was 
classified as noise if we could not identify an obvious tree shape on the 
image within the dual-wavelength dataset. This step aimed to classify 
potential commission errors from the tree segmentation process as such, 
increasing the prediction accuracy for the tree species classes. If the 
images of a given segment were considered noise while inspecting the 
dual-wavelength dataset, they were sorted to the “Noise” class in all 
three ALS datasets. During this process, 228 trees were removed from 
the analysis due to being assigned the wrong species class, representing 
0.5 % of all matched trees. These removals could be a result of faulty 
annotations by the harvester operator or errors in the matching pro-
cedure. Since species assignment is manually performed by the operator, 
human error is possible. Additionally, mismatches between harvester- 
derived and ALS-derived positions may have contributed to these re-
movals. Altogether, 853 trees were sorted out from the other classes and 
allocated in the “Noise” class, resulting in 3772, 3559 and 3459 trees in 
the Pine, Spruce and Deciduous classes, respectively.

We used YOLOv8s-cls, a CNN from the YOLO family, for species 
classification due to its strong performance and user-friendly imple-
mentation in PyTorch (Jocher et al., 2023). The YOLOv8s-cls model, 
suitable for small-class problems, was trained for 15 epochs using 
default settings (Appendix A). Each tree was represented by four images 
from different views, resulting in nearly 14,000 images per class. Thirty 
percent of these were reserved for validation at each epoch’s end. YOLO 
networks have demonstrated success in object detection tasks, including 
tree detection and segmentation (Straker et al., 2023) and wood surface 
knot detection (Fang et al., 2021), making YOLOv8 an ideal choice for 
this study.

Fig. 2. Diameter at breast height (DBH) distribution of trees linked and not linked to an aerial laser scanning (ALS)-derived segment. The dashed lines represent the 
mean DBH of each category.
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2.7. Accuracy Assessment

The tree species classification model’s accuracy was assessed by 
comparing observed and predicted species for each tree. Due to the 
limited number of stands (S = 17), we opted for a leave-one-stand-out 
validation approach. For each stand s, the model was trained using 
data from all other stands (S − s) and applied to s. By doing so, we ensure 
that no trees from s are seen during the training process. This process 
was repeated S times, generating predictions for all stands while eval-
uating how the model is able to generalize when applied to different 
stands. During validation, the model predicted species independently for 
each tree projection, producing four probability vectors per ALS-derived 
segment. These vectors were averaged to create a single probability 
vector per segment, assigning the class with the highest probability to 
the segment. The leave-one-stand-out results are shown in a confusion 
matrix together with evaluation metrics such as user’s and producer’s 
accuracy (UA and PA as in formulas 3 and 4, respectively), the F1 score 
(formula 5), and overall accuracy (formula 6). Complementarily, the 
macroF1 represents the mean of the F1 score across all classes. 

UAC = TPc/(TPc + FPC) (3) 

PAC = TPc/(TPc + FNC) (4) 

F1C = 2 • UAC • PAC/(UAC + PAC) (5) 

OA =
1
N
•
∑C

i
TPi (6) 

where TP is the number of true positives, FP are the false positives, and 
FN are the false negatives of class C. N represents the number of trees 
analyzed in this study.

3. Results

3.1. Conversion of point clouds to 2D images

Fig. 4 shows examples of 2D images generated from different ALS 
datasets for each classification category. Mini-VUX-based images had 
the lowest average resolution (27.6 cm pixel size, Table 3), often lacking 
finer details such as branch structures or visible trunks, which appeared 
blurred or absent. In contrast, images generated with VUX and dual- 
wavelength datasets had higher resolutions, averaging 10.1 cm and 
9.52 cm pixel sizes, respectively, revealing finer details (Fig. 4, Table 3).

Fig. 3. Schematic representation of the rasterization of two trees with different point densities and sizes. Tree A: Norway spruce. Tree B: Deciduous tree. Tree C: Scots 
pine. Tree D: Pine tree under wrong segmentation, i.e. noise. The different shades of gray in the 2D image represent the number of points in each pixel. X and Z are 
in meters.
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In average, the Deciduous class had the largest pixel sizes of the tree 
species classes regardless of the dataset being used to generate the im-
ages (Table 3). This can be at least partially explained by the fact that the 
ALS data was collected in the beginning of the Autumn season, when the 
deciduous trees start shedding leaves, thus, intercepting less laser pulses 
then the other tree classes.

3.2. Tree species classification

Tables 4, 5 and 6 show the confusion matrixes and accuracy metrics 

for the classifications performed on the mini-VUX, VUX and dual- 
wavelength datasets, respectivelly. Fig. 5 shows an example of a a 
stand point cloud with all detected trees classified. The highest overall 
accuracies and macro-F1 obtained while using the dual-wavelength data 
for classification (Table 6), followed by the classification performed on 
the VUX data (Table 5). The classification done using the mini-VUX data 
showed the lowest F1 score for the three species classes and noise class, 
resulting in a macro F1 of 0.835 (Table 4).

The tree species classes showed the highest F1 score when using 
dual-wavelength images for classification, ranging from 0.923 to 0.942 

Fig. 4. Two dimensional representations of individual tree point clouds produced with different aerial laser scanning datasets.
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from Spruce to Decidous, resulting in a macro-F1 of 0.934 when not 
considering the Noise class. Analogously, when using VUX-based im-
ages, the F1 scores ranged from 0.914 (Spruce) to 0.937 (Pine), resulting 
in a macro-F1 of 0.926 when disregarding the Noise class. Finally, the 
lowest classification accuracy for the tree species classes was obtained 
while using mini-VUX-based images (Table 4). With this dataset, the F1 
scores ranged from 0.84 for the Deciduous class to 0.876 for the Spruce 
class, with a macro F1 of 0.861 when considering only the tree species 
classes. The F1 scores were the lowest for the Noise class regardless of 
the ALS dataset used for modelling and inference. For this class, the F1 
scores were 0.756, 0.798 and 0.783 when using the mini-VUX, VUX and 
dual-wavelength datasets, respectively.

Even though improvements in the classification accuracy were 
observed across all classes when using ALS datasets with higher spatial 
and spectral resolutions, some classes benefited more from the higher 
resolution datasets than others. For example, when using the mini-VUX 
dataset for classification, the Deciduous class exhibited the lowest ac-
curacy among the tree species classes (F1 = 0.840). However, this class 
showed intermediate classification accuracy when using VUX (F1 =
0.928) and the highest accuracy of all species groups when using the 
dual-wavelength dataset (F1 = 0.942), representing more an improve-
ment of 12.1 % on the F1 score. In contrast, the Pine class’ F1 score 

improved 8.07 % and Spruce class’ 5.37 % when comparing the classi-
fication done using mini-VUX and dual-wavelength data.

We also examined the relationship between classification accuracy 
and stand conditions such as tree density, basal area and species mixture 
measures. However, no meaningful correlation was observed (R2 < 0.1), 
suggesting that classification performance was not strongly influenced 
by these factors.

4. Discussion

4.1. Using HPRs for tree species classification

In this study, we used harvester production reports to automatically 
annotate three ALS datasets, with different spatial and spectral resolu-
tions. With this approach, 45,516 ALS-derived individual tree segments 
were labeled with tree species information by matching spatially explicit 
information from HPRs to the ALS-derived single tree positions, repre-
senting 65.7 % of the trees harvested in the study area. This proportions 
align with other studies reporting rates form from 42.8 % (Mäyrä et al., 
2021) to 69.3 % (Hamraz et al., 2019).

Despite links being established across all DBH classes, many har-
vested trees remained unlinked (Fig. 2). In this study, we could not 
determine the exact reasons for this, as not all trees in the study area 
were harvested. Common forestry practices, such as leaving shelter 
wood or partially harvesting stands, may explain some missing links. 
Additionally, the tree segmentation method used has shown reduced 
detection rates for smaller trees (Holmgren et al., 2022; Pires et al., 
2024), suggesting that improved detection of small trees in ALS data 
could enhance linking rates.

This is a known limitation of ALS-based tree detection and segmen-
tation, as smaller individuals in the understory that are often occluded. 
In this study, many of the harvested trees that were not linked to ALS- 
derived segments fell within lower DBH classes (Fig. 2), suggesting 

Table 3 
Average pixel size (cm) for the tree species classes and noise class (± standard 
deviation). Different letters in the last row denote statistically significant dif-
ferences according to Student’s t-test at a 95 % confidence level.

Class Mini-VUX VUX Dual-wavelength

Pine 26.7 (± 5.88) 9.23 (± 2.1) 8.76 (± 1.98)
Spruce 27 (± 6.04) 9.61 (± 2.3) 9.11 (± 2.17)
Deciduous 27.5 (± 6.43) 10.5 (± 2.83) 9.88 (± 2.62)
Noise 38.9 (± 11.8) 16.4 (± 5.57) 15.4 (± 5.14)
All classes 27.6 a (± 7.04) 10.1b (± 3.07) 9.52c (± 2.86)

Table 4 
Confusion matrix of predictions made using the mini-VUX-based images. OA = Overall accuracy.

Observed Species User’s accuracy F1 score

Pine Spruce Deciduous Noise

Predicted Species Pine 3190 137 292 17 87.7 % 0.867
Spruce 245 3233 206 97 89.8 % 0.876

Deciduous 257 158 2886 114 84.5 % 0.840
Noise 30 71 75 625 78 % 0.756

Producer’s accuracy 85.7 % 87.6 % 83.4 % 73.3 % OA ¼ 85.4 % macroF1 ¼ 0.835

Table 5 
Confusion matrix of predictions made using the VUX-based images. OA = Overall accuracy.

Observed Species User’s accuracy F1 score

Pine Spruce Deciduous Noise

Predicted Species Pine 3409 85 57 5 95.9 % 0.937
Spruce 203 3362 109 80 89.6 % 0.914

Deciduous 94 76 3207 85 92.6 % 0.928
Noise 16 76 86 686 79.4 % 0.798

Producer’s accuracy 91.6 % 93.4 % 92.7 % 80.1 % OA ¼ 91.6 % macroF1 ¼ 0.894

Table 6 
Confusion matrix of predictions made using the dual-wavelength images. OA = Overall accuracy.

Observed Species User’s accuracy F1 score

Pine Spruce Deciduous Noise

Predicted Species Pine 3455 103 87 9 94.6 % 0.937
Spruce 198 3392 60 100 90.4 % 0.923

Deciduous 45 43 3242 97 94.6 % 0.942
Noise 24 61 70 650 80.8 % 0.783

Producer’s accuracy 92.8 % 94.2 % 93.7 % 75.9 % OA ¼ 92.3 % macroF1 ¼ 0.896
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that suppressed trees were underrepresented in the annotated dataset. 
The omission of these trees introduces a potential source of bias, as the 
classification model is predominantly trained on dominant and co- 
dominant individuals. Similar issues have been reported in previous 
studies, which found that small or suppressed trees are frequently 
missing from ALS-derived individual tree-level inventories (Xu et al., 
2014a, 2014b).

To mitigate this limitation, future research could explore strategies 
such as targeted data augmentation for suppressed trees to increase their 
representation during model training. Alternatively, the integration of 
complementary datasets, such as benchmark datasets (Puliti et al., 
2023b) from structurally heterogeneous stands or synthetic point clouds 
that simulate occluded understory trees, may help models learn features 
of suppressed individuals more effectively. These approaches can pro-
vide a partial workaround to underrepresentation by enriching the 
training data, even when direct segmentation of suppressed trees is not 
feasible.

Nevertheless, the annotation effort required in this study was 
significantly lower compared to manual interpretation of LiDAR point 
clouds or traditional field data collection. Annotation remains a major 
challenge for training deep learning models, which often require a large 
number of annotated instances (Hamedianfar et al., 2022). Hence, HPRs 
can simplify this process and provide additional tree size attributes such 
as DBH, height, and volume, which are important for various modeling 
tasks (Hauglin et al., 2018; Karjalainen et al., 2022; Maltamo et al., 
2019; Noordermeer et al., 2023).

4.2. Conversion of point clouds to 2D images

Conversion of three-dimensional point clouds to two-dimensional 
representations is a common approach to detection, segmentation and 
classification problems when using deep learning on point clouds 
(Kattenborn et al., 2021), either by using a single- or multi-view 2D- 
CNNs (Zhang et al., 2023). With such approach, users are able to 
apply well-established deep learning architectures and frameworks used 
for 2D data processing also on data originally acquired in three di-
mensions. For instance, Persson et al. (2022) converted individual tree 
ALS point clouds to 2D images from different views in order to use a CNN 
for tree species classification. Puliti et al. (2023a) used UAVLS data to 
create 2D vertical projections of Norway spruce trees’ and train a whorl 
detector using the YOLOv5 framework (Jocher, 2020). In addition, 
Hamraz et al. (2019) estimated the conifer and deciduous proportions at 

area-level using either a LiDAR-based Digital Surface Model (DSM) or 
projections of the LiDAR point cloud from different viewpoints. More-
over, Straker et al. (2023) performed instance segmentation of indi-
vidual trees using YOLOv5 and UAVLS-based Canopy Height Models 
(CHM).

When it comes to tree species classification at tree-level, Briechle 
et al. (2021) converted UAVLS point clouds with approximately 53 
points/m2 to 2D side view projections. In their study, the pixel size was 
set to 10 cm and the image size was set to accommodate the largest tree 
in the dataset without cropping it, which resulted in a considerable loss 
of detail when projecting smaller trees. In a simpler conversion 
approach, Hell et al. (2022) generated side-view images of tree-level ALS 
point clouds (with approximately 80 points/m2) by producing scatter-
plots with the point locations in the vertical direction. These scatterplots 
were written as 150 x 150 pixel images and used as input for a CNN. 
However, in order to avoid smaller trees being represented with more 
details than bigger trees, only adult forest trees were included in the 
analysis.

We were able to avoid shortcomings related to projecting point 
clouds with different dimensions by using variable pixel sizes and image 
dimensions while projecting the ALS-derived segments into 2D images 
and, later, resizing all the images to the standard 320x160 pixel reso-
lution to be used by the CNN. This allowed us to use the state-of-the-art 
YOLOv8 framework for classification (Jocher et al., 2023), which is 
known for its user friendliness, speed and accuracy. In addition, the 
memory required to store 2D images of 320x160 pixels was considerably 
smaller than the one that would be required if storing point clouds, 
especially when considering that the average point density was nearly 
1000 points/m2.

4.3. Tree species classification using ALS data

Tree species classification accuracies varied with the ALS dataset 
used. Using the dual-wavelength dataset (NIR and SWIR returns), the 
macro-F1 score was 0.896, and overall accuracy (OA) reached 92.3 %. 
Similar performance was achieved with VUX dataset images (macro-F1 
= 0.894, OA = 91.6 %), while mini-VUX dataset predictions yielded 
lower accuracy (macro-F1 = 0.835, OA = 85.4 %). The VUX dataset’s 
higher spatial resolution resulted in a 6.2 % OA increase over mini-VUX, 
with the macro-F1 rising from 0.835 to 0.894. Conversely, using dual- 
wavelength data only slightly improved OA (from 91.6 % to 92.3 %) 
and macro-F1 (from 0.892 to 0.893). This discrepancy may be attributed 

Fig. 5. Example of a stand’s point cloud after tree species classification under the proposed methodology.
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to differences in point density and laser beam footprint: the VUX dataset 
had footprints of nearly 20 cm2 at 100 m, while mini-VUX footprints 
were approximately 63 cm2, reducing visibility of smaller features like 
fine branches in mini-VUX-derived images. In other words, similar tree 
species classification accuracies were obtained when using the mono-
chromatic VUX dataset and the dual-wavelength dataset under the 
proposed methodology. This result can be at least partially explained by 
the fact that CNNs such as the one used in this study are designed to 
learn from local patterns in images (Hamedianfar et al., 2022; Katten-
born et al., 2021), such as the different tree shapes and branches. 
Consequently, when classifying Pine, Spruce, Deciduous, and Noise, 
which differ substantially in shape (Figs. 3 and 4), point density and 
small footprint scanning might have been more determinant than 
spectral information.

The observed differences in classification accuracy across tree spe-
cies highlight the role of the tree crowns’ structural complexity and 
spectral information in species differentiation (Nauber et al., 2024; Qian 
et al., 2023; Terryn et al., 2020). The Deciduous class, which exhibit 
more variable and heterogeneous crown structures, benefited the most 
from the VUX and dual-wavelength datasets likely due to the increased 
spatial resolution capturing finer details necessary for accurate classi-
fication. The further improvement observed with dual-wavelength data 
suggests that spectral information enhances species differentiation by 
capturing variations in foliage properties (Shi et al., 2018a, 2018b). In 
contrast, Pine and Spruce classes showed smaller accuracy gains, indi-
cating that their more uniform crowns are more easily distinguishable 
even with lower-resolution datasets. However, this study is limited to a 
single geographical region and a few species groups. Hence, it was not 
possible to access how the spectral information from dual-wavelength 
LiDAR point cloud would influence tree species classification accuracy 
when classifying more species groups or trees from different biomes.

Yet, the classification accuracies obtained are in-line with other 
studies that have attempted tree species classification using either sin-
gle- or multi-wavelength LiDAR data in similar forest types. For 
example, Axelsson et al. (2023) used a dual-wavelength ALS system 
(532 nm and 1064 nm) and k-nn imputation to classify Pine, Spruce, and 
Deciduous trees, obtaining OA of 91.1 % and macro-F1 of 0.861. Hakula 
et al. (2023) used multispectral ALS (532 nm, 905 nm and 1550 nm) and 
random forest for classifying similar species, obtaining OA of 90.8 % and 
macro-F1 of 0.901.

Regarding deep learning approaches, our CNN-based method using 
2D projections aligns with similar methodologies that have shown high 
classification accuracy. Mäyrä et al. (2021) used 3D-CNNs with ALS and 
hyperspectral images, obtaining OA of 87 % and macro F1 equal to 0.86 
for four species groups. Briechle et al. (2021) achieved high accuracy 
(OA = 96.1 % and macro–F1 = 0.96) when combining LiDAR-derived 
side views and multispectral images in a 2D-CNN but noted reduced 
accuracy using LiDAR alone (OA = 80.4 %, macro-F1 = 0.8). Finally, 
Hell et al. (2022), used side-view 2D projections of individual trees from 
LiDAR data to classify seven tree species in temperate forests, reaching 
an overall accuracy of 87 %.

In addition to using 2D images or point cloud projections, authors 
have used deep learning models for classification directly in 3D point 
clouds. For example, Liu et al. (2022) benchmarked six point cloud- 
based deep learning models to classify eight species classes in dense 
MLS point clouds, achieving F1 scores ranging from 0.718 to 0.996. 
Murray et al. (2024) obtained weighted F1 scores of 0.63 when classi-
fying the leading tree species and 0.85 when differentiating between 
coniferous- and broadleaf-dominated forest plots by using point-based 
deep learning in ALS data with approximately 40 points/m2. These 
studies highlight that deep learning approaches are highly effective for 
tree species classification, particularly when incorporating high- 
resolution data. While point cloud-based methods provide a more 
direct way of processing LiDAR data, they typically require higher 
computational power. Our approach, using 2D projections with CNNs 
provides a simpler alternative while maintaining competitive accuracy.

Regardless of the architecture or type of model chosen, the automatic 
annotation used in our analysis can significantly affect how deep 
learning models are trained by eliminating the bottleneck of training 
data collection and manual annotation, enabling more scalable and 
efficient model development. By leveraging HPRs for species labeling, 
this approach enhances the feasibility of large-scale tree species classi-
fication efforts and opens new possibilities for integrating operational 
forestry data into remote sensing applications.

The classification method’s performance could be improved by 
refining tree segmentation techniques, particularly for smaller trees. 
This could lead to an increase in the proportion of linked trees and 
improve dataset completeness. Apart from tree species classification, 
harvester data could be valuable for estimating other forest attributes, 
such as tree health, wood quality, or growth rates, by leveraging the 
recorded DBH, height, and volume measurements and expanding the 
usage of harvester data in remote sensing-based analyses.

5. Conclusion

This study proposes a method for automatically classifying tree 
species at the single-tree level using ALS data, deep learning, and 
harvester production reports. By using the HPRs to annotate ALS data, 
we effectively trained a tree species classification CNN, achieving 
macroF1 scores ranging from 0.835 to 0.896. The results indicate that 
spatially explicit HPRs are a promising data source for tree species 
identification at the single-tree level. Moreover, the best classification 
performance was achieved when using the dual-wavelength ALS dataset 
under the proposed methodology, closely followed by VUX dataset. The 
worst classification performance was obtained when using the mini-VUX 
data for classification. Future research should focus on implementing 
similar methodologies for diverse species groups, such as different de-
ciduous trees.
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Appendix A. Yolov8s-cls hyperparameters

task: classify; mode: train; model: yolov8s-cls.yaml; epochs: 15; 
patience: 3; batch: 16; imgsz: 320; save: true; save_period: − 1; cache: 
true; device: 0; workers: 8; exist_ok: false; pretrained: false; opti-
mizer: auto; verbose: true; seed: 27; deterministic: true; single_cls: 
false; rect: true; cos_lr: false; close_mosaic: 10; resume: false; amp: 
false; fraction: 1.0; profile: false; freeze: null; overlap_mask: truema-
sk_ratio: 4; dropout: 0.25; val: true; split: val; save_json: false; save_-
hybrid: false; conf: null; iou: 0.7; max_det: 300; half: false; dnn: false; 
plots: true; source: null; show: false; save_txt: false; save_conf: false; 
save_crop: false; show_labels: true; show_conf: true; vid_stride: 1; 
stream_buffer: false; line_width: null; visualize: false; augment: false; 
agnostic_nms: false; classes: null; retina_masks: false; boxes: true; 
format: torchscript; keras: false; optimize: false; int8: false; dynamic: 
false; simplify: false; opset: null; workspace: 4; nms: false; lr0: 0.01; 
lrf: 0.01; momentum: 0.937; weight_decay: 0.0005; warmup_epochs: 
3.0; warmup_momentum: 0.8; warmup_bias_lr: 0.1; box: 7.5; cls: 0.5; 
dfl: 1.5; pose: 12.0; kobj: 1.0; label_smoothing: 0.0; nbs: 64; hsv_h: 
0.015; hsv_s: 0.7; hsv_v: 0.4; degrees: 0.0; translate: 0.1; scale: 0.5; 
shear: 0.0; perspective: 0.0; flipud: 0.0; fliplr: 0.5; mosaic: 1.0; 
mixup: 0.0; copy_paste: 0.0; cfg: null; tracker: botsort.yaml.
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Hyyppä, E., Hyyppä, J., Hakala, T., Kukko, A., Wulder, M.A., White, J.C., Pyörälä, J., 
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