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Abstract 

Reliable population size estimates are imperative for effective conservation and management, but are notoriously difficult to obtain for 
rare, cryptic species such as large carnivores. Genetic capture–mark–recapture (CMR) models can provide robust population size estimates 
and may be conducted noninvasively during a single sampling period. African leopards (Panthera pardus) are listed as vulnerable, with 
declining populations. However, population size estimates are rare for much of their range. Here, we provide population size estimates for 
leopards in the Limpopo (LNP) and Banhine (BNP) national parks and the Lebombo Conservancy (LC), in western Mozambique. We esti-
mate population sizes using SNP-based CMR models derived from genetic information acquired noninvasively from scats collected across 
the sites. Additionally, we compare our density estimates with those derived from trophic scaling to provide inferences on the drivers of 
Leopard density in the region. We estimate populations of 87, 15, and 13 leopards in LNP, BNP, and LC, respectively. Population size esti-
mates derived from trophic scaling suggest that leopards are limited by bottom-up prey resources in LNP and LC, but there is evidence for 
top-down regulation in BNP. Given the precariousness of Leopard populations in the region, we urge use of population monitoring using 
genetic CMR models to inform conservation and management.

Key words: genotyping, Greater Limpopo Transfrontier Conservation Area, noninvasive, Panthera pardus, scat, trophic scaling.

Effective management and conservation are dependent on reliable 
population size estimates (Katzner et al. 2011). These are inherently 
challenging to obtain for rare, cryptic species such as large carni-
vores (Creel and Rosenblatt 2013). Various noninvasive methods 
including spoor and scat counts, call-up surveys, camera trapping, 
and aerial surveys are available for estimating carnivore popula-
tion sizes (Wilson and Delahay 2001). However, these methods 
carry biases related to detection probabilities (Redfern et al. 2002; 
Dröge et al. 2020) and to obtaining absolute population sizes from 
frequency data, and are frequently imprecise (Ringvall et al. 2000; 
Anderson 2001). Capture–mark–-recapture (CMR) models satisfy 
many of the abovementioned biases but are often constrained by 
logistical issues such as the need to often handle the animal (e.g., 
Muñoz‐Igualada et al. 2008) and biased catchability (e.g., Tuyttens 
et al. 1999). Genetic CMR models, which use the genotype of an 
individual as a unique identifier (Palsbøll 1999), are advantageous 
over traditional CMR methods since they can be conducted nonin-
vasively, during a single sampling period, and hold great potential in 
providing robust population size estimates (Kohn et al. 1999).

African leopards (Panthera pardus) are listed as Vulnerable by 
the IUCN and populations have declined by 42% across Africa in 
the last 24 years (Stein et al. 2020). Leopard population strong-
holds now center on protected areas (PAs; Jacobson et al. 2016), 
but many PAs across their range are deteriorating in terms of con-
serving biodiversity (Lindsey et al. 2017). Given their elusive and 
cryptic nature, estimating Leopard population sizes is inherently 
difficult, with such estimates typically being derived from density 
estimates from spatially explicit capture–recapture (SECR) models 
using camera traps (e.g., Strampelli et al. 2020; Briers-Louw et al. 
2024). Although previous studies have used noninvasive genetic 
sampling (microsatellites) to assess Leopard geneflow (Dutta et 
al. 2013a), population structure (Dutta et al. 2013b), and presence 
(Busby et al. 2009), only 1 study has previously used genetic CMR 
models to assess Leopard population sizes (Sugimoto et al. 2014)—
this despite the utility of genetic CMR models in providing robust 
population size estimates. This lack of CMR models highlights the 
need for genetic CMR techniques to be applied more broadly, par-
ticularly in African PAs that are deteriorating (Lindsey et al. 2017) 
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and experiencing high levels of human encroachment (Wittemyer 
et al. 2008).

Leopards are limited by prey availability (Stander et al. 1997), but 
human activity is becoming an increasingly limiting and pervasive 
factor (e.g., Strampelli et al. 2018; Rogan et al. 2022). Comparing 
potential Leopard density derived from trophic scaling based on 
prey availability with observed densities allows for inferences to be 
drawn on the drivers of Leopard density in a region (Hayward et al. 
2007)—such information may aid in effective conservation of the 
species.

Southern Africa’s flagship transfrontier conservation area—the 
Greater Limpopo Transfrontier Conservation Area (GLTCA)—is of 
global conservation importance (Mabunda et al. 2012) and con-
sists of national parks, private game reserves, and communal 
lands in South Africa, Mozambique, and Zimbabwe. However, the 
Mozambique portion of the GLTCA—that constitutes its greatest 
area—is heavily impacted by human activity, with Mozambique’s 
civil war and decades of poaching decimating wildlife in the region 
(Grossmann et al. 2014). Furthermore, population size estimates for 
various mammals, including leopards, in the Mozambique portion 
of the GLTCA are rare.

Here we provide Leopard population estimates for Mozambique’s 
Limpopo (LNP) and Banhine (BNP) national parks and the Lebombo 
Conservancy (LC), within the GLTCA, using genetic information 
obtained noninvasively from scats. Additionally, we compare these 
estimates with predicted Leopard densities in LNP, BNP, and LC, 

testing the hypothesis that Leopard populations are limited by top-
down anthropogenic activities. These population estimates can 
help guide conservation and management efforts in the region, and 
highlight the utility of genetic CMR models in determining popula-
tion sizes.

Materials and methods.
Study area.
The study was conducted in 3 PAs in the Mozambique portion 
of the GLTCA: LNP (11,233 km2); BNP (7,250 km2); and LC (1,320 
km2; Fig. 1). The climate is warm, dry tropical, with low and var-
iable rainfall (Stalmans et al. 2004; Stalmans and Wishart 2005). 
Vegetation is savanna woodland and scrubland (Stalmans et al. 
2004; Stalmans and Wishart 2005). Human activities in the PAs 
include subsistence cropping and pastoralism, bushmeat hunt-
ing, logging, mining, charcoal production, and commercial-scale 
Lion (P. leo), African Savanna Elephant (Loxodonta africana), White 
Rhinoceros (Ceratotherium simum), and Black Rhinoceros (Diceros 
bicornis) poaching (Grossmann et al. 2014; Everatt et al. 2019a). 
Wildlife populations are well below estimated carrying capac-
ity (Lindsey et al. 2017) due to the decimation of wildlife during 
Mozambique’s civil war (Hatton et al. 2001), and poor management 
capacity due to inadequate conservation funding (Baghai et al. 
2018), allowing for decades of poaching (Grossmann et al. 2014).

Fig. 1. Study area (shaded) consisting of Mozambique’s Limpopo and Banhine national parks and the Lebombo Conservancy. Points refer to locations 
where genotyped male (squares), female (triangles), and unknown sex (circles) Leopard scats were collected.
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Scat sampling.
Scats were collected in 2014 in BNP, 2014 and 2015 in LNP, and 2013 
and 2015 in LC using a trained detection dog, within a random sam-
pling design following MacKay et al. (2008). Because detector dogs 
search for scents on the air, they are equally likely to find scats on 
or off of trails and to find cryptically placed scats as prominently 
placed male marking scats, thus reducing sex bias within the 
sampling (MacKay et al. 2008). Locations of collected scats were 
recorded, and scats stored in airtight double plastic bags with silica 
gel in the inner bag.

Dried scats were moistened with distilled water, after which 
Q-tips were used to sample the outer surface. Both ends of each 
Q-tip were used to sample each scat, such that 2 subsamples per 
scat were obtained. Q-tips were then placed in small envelopes, air-
dried for 24 h, and stored in an airtight container with silica gel. 
These samples were then sent to the Molecular Ecology Group, 
Swedish University of Agricultural Sciences (Umeå, Sweden) for 
DNA extraction and genotyping.

DNA extraction and genotyping.
DNA was extracted using Zymo’s Quick-DNA fecal/soil extraction 
kit. A total of 252 scats identified as leopards in the field were 
genotyped on a Fluidigm Biomark using panels of 96 SNPs identi-
fied for leopards (PID 2.45 × 10−35 and PIDsib 6.53 × 10−17). Markers 
were selected based on their ability to generate consistent and 
accurate genotypes from low- and high-quality DNA extracts, 
which was validated using replicates and empirically determined 
thresholds following methods previously described (Norman et al. 
2013; Blåhed et al. 2018; Spitzer et al. 2020). The panel is com-
prised of 3 monomorphic sex markers and 5 mitochondrial mark-
ers—see Mamugy et al. (2024) for a full description of the SNP 
panel used in this study as well as the design, validation, and QC 
protocols. Negative controls were included in all runs. Samples 
where heterozygosity was <0.05 and amplification success was 
<90% were removed from our analyses. Genotyping errors were 
calculated from autosomal SNPs by counting the number of allele 
mismatches at each locus, divided by the total number of ampli-
fied alleles.

Data analysis.
Population size estimation.
Data analysis was performed using R software (R Core Team 
2023). We empirically determined the threshold amplification rate 
required to generate genotypes of sufficient quality by comparing 
allelic differences between all sample pairs. When comparing geno-
types of all sample pairs in a CMR data set, 2 distributions of allelic 
differences manifest. One distribution will hold the allelic differ-
ences between unique individuals. For 96 markers, this distribution 
typically centers around 50 to 60 differences depending on varia-
tion in the population. The other distribution shows mismatches 
between samples from the same individual caused by genotyping 
error. If genotyping error is high and genetic variation in the popula-
tion is low, these distributions may partially overlap, rendering sep-
aration of unique genotypes (individuals) from spurious genotypes 
caused by error impossible. Once the amplification success needed 
to ensure genotypes of sufficient quality had been established, we 
assessed the number of unique Leopard individuals sampled across 
PAs using the package “allelematch” (Galpern et al. 2012). Based on 
the above, we allowed for a maximum of 13 mismatches for samples 
to be categorized as the same individual. We manually screened the 
output to ensure accurate matching of duplicate samples, and that 
the same samples were not identified as different individuals. Our 
data held 9 technical replicates, all of which were correctly binned. 

Outputs from the individual identifications were then used to esti-
mate Leopard population sizes using CMR analyses.

We estimated population sizes using a maximum likelihood 
estimate (multinomial probability distribution) in the package 
“capwire” (Pennell et al. 2013). In “capwire,” we ran 2 CMR models 
that: (1) assume all individuals were sampled equally (equal cap-
ture model); and (2) account for differences in individual detect-
ability (2-innate rate model). We selected the best-fitting model 
using a likelihood ratio test in “capwire” (Pennell et al. 2013). We 
bootstrapped population size estimates 1,000 times to acquire 95% 
confidence interval estimates for each PA. We used population sizes 
from the best-fitting models to calculate Leopard density per PA, 
expressed as the number of leopards per 100 km2.

Additionally, we calculated the effective population size (Ne) for 
each PA as:

Ne =
4 ×Nm ×Nf

Nm +Nf

where Nm is the number of males, and Nf is the number of females 
in a population (Wright 1933).

Genetic diversity.
We calculated population-level genetic diversity for leopards as 
observed (HO) and expected (HE) heterozygosity, and inbreeding coef-
ficients (FIS) in GENALEX 6.5 (Peakall and Smouse 2006).

Trophic scaling.
We estimated Leopard carrying capacity for LNP and BNP using a 
Leopard/prey regression model (Hayward et al. 2007), which pro-
duces expected Leopard densities based on the biomass of their sig-
nificantly preferred prey. We calculated prey biomass using ¾ mean 
adult female body mass (Hayward et al. 2007) for each preferred 
Leopard prey species (Hayward et al. 2006), multiplied by the avail-
ability of the preferred prey species. Significantly preferred prey 
included in our trophic scaling estimates were Impala (Aepyceros 
melampus), Northern Bushbuck (Tragelaphus scriptus), and Bush 
Duiker (Sylvicapra grimmia; Hayward et al. 2006). Data on prey avail-
ability were acquired from raw animal counts derived from driven 
transects conducted in LNP, BNP, and LC (Everatt et al. 2023).

Results
Individual identification.
Genotyping error for the filtered data set was 6%. Following filtering, 
manual screening, and removal of duplicate samples, we obtained 
118 genotype matches from 103 scats of which 63 were unique indi-
viduals and 12 genotypes had multiple matches, across LNP, BNP, 
and LC (Table 1). LC’s Leopard population was strongly female- 
biased (1 male:3.5 female), whereas the inverse was recorded for 
BNP (1 male:0.35 females), and LNP’s sex ratio approximated parity 
(1 male:1.1 females; Table 1), thus indicating that there was no sex 
bias associated with the sampling.

Population size.
Model selection based on the hypothesis that there are individ-
ual differences in detectability was accepted for leopards in LNP 
(P-value for all likelihood ratio test < 0.01). We therefore applied the 
2-innate rate model to assess population size for LNP, and the equal 
capture model for Leopard populations in BNP and LC. Leopard pop-
ulation estimates were 84 in LNP, 12 in BNP, and 13 in LC, with the 
2-innate rate model providing larger population size estimates for 
all PAs (Table 2). Ne for LNP, BNP, and LC were 40, 6, and 6, respec-
tively (Table 2).
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Genetic diversity.
Genetic diversity metrics were broadly similar across sites, with HO 
being greatest in LC (0.41), followed by BNP (0.36), and LNP (0.35; 
Table 3). FIS values were also similar across sites, being lowest in LC 
(−0.08) followed by BNP (−0.01) and LNP (0.05; Table 3).

Trophic scaling.
Everatt et al. (2023) estimated 1,579, 543, and 75 preferred Leopard 
prey individuals for LNP, BNP, and LC, respectively. This estimate 
produced preferred prey biomass estimates of 4.09, 2.05, and 1.7 kg/
km2 in LNP, BNP, and LC, respectively. Trophic scaling estimates of 
potential Leopard density were 0.56, 0.47, and 0.36 individuals per 
100 km2, yielding potential Leopard population size estimates of 63, 
34, and 8 individuals in LNP, BNP, and LC, respectively. These esti-
mates closely approximate estimates produced by our genetic CMR 
models for LNP, but are higher and lower than the estimates in BNP 
and LC (Table 2).

Discussion
Our findings represent the first Leopard population size estimates 
for LNP and BNP and provide baseline population estimates for the 
region. The density estimates are among the lowest recorded for 
leopards in southern Africa and are similar to those in landscapes 
of comparable habitat type and land use in Botswana (Boast and 
Houser 2012) and northwestern Zimbabwe (Loveridge et al. 2022), 
and to those of Xonghile Game Reserve within LC (Strampelli et 
al. 2020). Furthermore, our density estimates approximate those 
in unprotected Fynbos and Succulent Karoo landscapes in the 
Western Cape of South Africa (Martins 2010; Devens et al. 2018), 

where primary productivity is low (Read and Mitchell 1983) and 
carnivores have faced intense persecution (Skead 2011). The 
Western Cape Leopard densities are recognized as being par-
ticularly low, and these are relic populations that have persisted 
for over 250 years in the face of persecution (Skead 2011). This 
result suggests that despite the low densities recorded here, these 
Mozambique populations may persist. However, under conditions 
of favorable conservation management and prey availability, such 
as in the Greater Kruger National Park, Leopard densities may 
exceed 12 individuals per 100 km2 (Maputla et al. 2013; Balme et al. 
2019)—an order of magnitude higher than our density estimates 
of <1/100 km2.

Contrary to our hypothesis that leopards in our study area are 
limited by top-down anthropogenic activity, our population size 
estimates closely approximate those derived from trophic scaling 
based on preferred prey biomass. This result suggests that Leopard 
populations in our study area are predominantly limited by prey 
availability rather than top-down anthropogenic activity, as seen 
elsewhere (Rosenblatt et al. 2016). Conversely, lions in our study 
area are strongly limited by human activities (Everatt et al. 2014, 
2019b). Lions are usually more persecuted relative to other African 
carnivores, since they: (1) consume cattle (Bos spp.) more than other 
livestock, with cattle having greater cultural and spiritual value in 
African communities relative to other livestock (Schneider 1984); (2) 
defend their kills from humans, unlike other carnivores; and (3) are 
social and vocal carnivores, with these behavioral traits enabling 
humans to find and kill them more easily than other carnivores 
(Kissui 2008). The secretive and solitary nature of leopards, and 
their strong livestock avoidance (Forbes et al. 2024), possibly explain 
why their populations in our study area approximate potential 

Table 1. Number of genotype matches, unique individuals, multiple matches, and unclassified samples from “allelematch” outputs and 
the number of unique male, female, and unknown sex samples for the Limpopo (LNP) and Banhine (BNP) national parks and the Lebombo 
Conservancy (LC).

Protected area Genotype matches Unique individuals Multiple matches Unclassified Males Females Unknown

LNP 95 45 12 1 19 21 5

BNP 10 9 0 0 7 2 0

LC 13 9 0 0 2 7 0

Table 2. Realized population size estimates and 95% confidence intervals, derived from each CMR model, and potential population sizes 
based on trophic scaling for leopards in the Limpopo (LNP) and Banhine (BNP) national parks and the Lebombo Conservancy (LC). Realized 
and potential Leopard densities from selected CMR model and trophic scaling, respectively, and effective population sizes Ne.

Protected 
area

Realized population size Potential 
population size

Realized density 
(leopards/100 km2)

Potential density 
(leopards/100 km2)

Ne

Two-innate 
rate model

Equal capture 
model

LNP 87 (78 to 118)a 56 (46 to 66) 62.91 0.75 0.56 40

BNP 19 (10 to 39) 15 (8 to 22)a 34.08 0.17 0.47 6

LC 19 (10 to 45) 13 (8 to 18)a 8.1 0.98 0.36 6

a*Best-fitting model.

Table 3. Genetic diversity, expressed as observed (HO) and expected (HE) heterozygosity, and inbreeding coefficients (FIS) for leopards in the 
Limpopo (LNP) and Banhine (BNP) national parks and the Lebombo Conservancy (LC).

Protected area n HO (± SE) HE (± SE) FIS

LNP 89 0.35 (0.02) 0.40 (0.02) 0.05

BNP 13 0.36 (0.02) 0.36 (0.02) −0.01

LC 13 0.41 (0.02) 0.37 (0.02) −0.08

n: number of genotypes.
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prey-based population size estimates, unlike lions. However, we 
note the evidence for top-down anthropogenic activity limiting 
BNP’s Leopard population as seen by the lower realized population 
size relative to the potential population size. Poaching for Leopard 
body parts and skins, and bycatch from bushmeat snaring lim-
its populations both in Mozambique (Briers-Louw et al. 2024) and 
across their range (Stein et al. 2020). Further investigation into this 
matter, particularly in BNP, is required.

We note the variability in sex ratios estimated here, with LNP 
approximating parity and contrasting with the male-biased BNP 
and the female-biased LC estimates. Leopard sex ratios are typically 
female-biased, with 1 male:1.8 females (Nowell and Jackson 1996), 
whereas the sex ratios recorded in our study vary across sites. These 
ratios for BNP and LC may reflect chance demographic effects that 
are particularly pronounced in very small populations (Caughley 
1994), but may have long-term, currently unknown, demographic 
implications. This is, in part, reflected in the low effective popula-
tion sizes estimated here.

Conservation and management implications.
Given that various noninvasive techniques used for assessing 
Leopard population sizes face numerous biases and are often inac-
curate (Redfern et al. 2002; Dröge et al. 2020), genetic CMR models 
can serve as a robust, alternative method for assessing population 
sizes (Kohn et al. 1999). SECR models derived from camera trap data 
can produce precise population size estimates (Efford 2004) and are 
the most commonly used method for assessing Leopard density. Our 
Leopard density estimate for LC is in line with those derived using 
SECR models (Strampelli et al. 2020), with data collected during 
the same period in both studies. The precision of our density esti-
mates potentially underscores that both methods (genetic CMR and 
SECR) can produce robust population size estimates for leopards. 
However, large-scale camera trap studies are expensive and logis-
tically challenging in terms of camera trap setup and maintenance 
(Foster and Harmsen 2012). Additionally, camera traps need to be 
operated for an extensive survey period to yield accurate popula-
tion size estimates (Wang and Macdonald 2009). Conversely, genetic 
CMR methods can be conducted during a single, short sampling 
period. Many large mammal species (e.g., lions) are also difficult to 
recognize individually based on external features using cameras, 
which can lead to inflated population size estimates (Treves et al. 
2010). This issue can be mitigated by identifying individuals from 
their unique genotype (Palsbøll 1999). Furthermore, genetic data 
derived from noninvasively collected samples can also be used to 
meet other objectives including drawing inferences on survival, 
reproductive success, dispersal, and describing diets. For example, 
we have previously described Leopard diets in LNP using the same 
scats that were used in this study (Forbes et al. 2024). Additionally, 
genetic CMR models can be used for providing robust assessments 
of sustainable hunting quotas, since a lack of robust population 
size estimates and assessments of sustainable offtakes (Spong et 
al. 2000; Balme et al. 2009; Creel et al. 2015) has been shown to 
have devastating outcomes for Leopard populations (Loveridge et 
al. 2022). Based on the above information, we urge future carnivore 
population assessments to be conducted using genetic CMR models 
as described here.

In conclusion, the baseline Leopard population size estimates 
provided here for LNP, BNP, and LC clearly highlight the need to 
improve management and conservation of the species in the region. 
We reemphasize the need for urgent prey population rehabilita-
tion, which would promote the recovery of Leopard populations. 
Potential top-down Leopard population regulation in BNP needs 
further investigation. Given the precariousness of the Leopard 

population in the region, continued monitoring of population sizes 
using noninvasive CMR models would reveal population responses 
to improved conservation practices.
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