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 A B S T R A C T

This paper investigates how extreme weather conditions affect power generators across Europe, with a focus 
on the differing vulnerabilities and adaptive responses of hydropower and thermal plants. Using a granular 
panel dataset of daily power plant outages and local weather conditions (2017–2023), we assess the influence 
of extreme temperatures, floods, and droughts on outage risks. We distinguish between forced and planned 
outages to identify how operators anticipate or react to weather-related stress. Our findings show that extreme 
weather events raise outage risks across multiple technologies, though their responses vary. Sudden shocks, 
such as unexpected temperature extremes, are more likely to trigger unplanned operational failures, while 
planned outages tend to align with longer-term maintenance cycles rather than immediate environmental 
pressures. These results highlight the need for climate-resilient strategies to protect energy systems from 
growing weather variability.
1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) highlights 
that urban infrastructure – including transportation, water, sanitation, 
and energy systems – is being compromised by climate change-related 
extreme and slow-onset events, causing economic losses, service dis-
ruptions, and negative impacts on well-being (IPCC, 2023). Developed 
under historical climate conditions, energy system infrastructures – 
including generation units, transmission and distribution networks – 
now face more frequent and intense extreme weather events (Yalew 
et al., 2020; Jufri et al., 2019). For example, between 2010 and 2019, 
around 4000 weather-related disturbances impacted nuclear power 
plants worldwide, mainly due to elevated cooling water temperatures, 
marking a threefold increase compared to 1990–2009 and resulting in 
nearly 50 TWh of lost electricity generation (Kromp-Kolb et al., 2021). 
As climate change intensifies heatwaves and droughts, thermoelectric 
plants struggle to maintain effective cooling and turbine efficiency, lim-
iting their generating capacity (Bartos et al., 2016; Coffel and Mankin, 
2021; Portugal-Pereira et al., 2024). Under such conditions, these 
facilities may curtail output or shut down if they cannot dissipate 
heat effectively. Moreover, water stress can add operational constraints 
to meet environmental and water use regulations, as evidenced in 
France and Switzerland, where recent heatwaves forced operators to 
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reduce reactor output to prevent river overheating (Stewart et al., 2013; 
Mideksa and Kallbekken, 2010; Portugal-Pereira et al., 2024).

Generation outages can carry substantial economic and social costs. 
At the power plant level, they lead to forgone profits from unsold 
electricity, refurbishment and safety upgrades (International Atomic 
Energy Agency, 2021). At the power system level, outages increase 
grid management costs by requiring additional services to maintain 
stability (Eicke et al., 2021). Although transmission system opera-
tors typically correct single-unit interruptions with remedial actions, 
large shifts in load or generation can propagate failures. For instance, 
an unexpected lack of generation can cause a line to trip due to 
overload (ENTSO-e, 2024). If these disruptions spread to end-users, 
additional economic and welfare losses arise (Chen et al., 2023; Gor-
man, 2022). In Europe, a one-hour outage costs about e17.10 per 
kilowatt hour (Reichl et al., 2013), while indirect expenses – such 
as those from disrupted infrastructure – can amplify direct costs by 
about 50% (Vennemo et al., 2022). Meanwhile, households’ willingness 
to pay to avoid outages has more than doubled between 2004 and 
2017 (Carlsson et al., 2021).

Although technical studies have thoroughly examined how weather 
affects generation capacity, the extent to which these vulnerabilities 
translate into actual outages remains unclear. Previous research has fo-
cused on how extreme weather affects power generation efficiency and 
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on model-based assessment of power plant vulnerabilities, while little 
empirical work has examined generation unit-level power interruptions 
caused by extreme weather events. To address this gap, we investigate 
weather-induced outages at the power plant level and explore how 
these outages differ across various generation technologies and types 
of outages. We exploit high-frequency power outage data from 2017 
to 2023, matched with detailed weather exposure at the power plant 
level across 20 European countries. We use publicly available data from 
the European Network of Transmission System Operators for Electricity 
(ENTSO-E), categorizing interruptions into planned outages (scheduled 
maintenance) and forced outages (unforeseen unavailability of units). 
In the empirical analysis, we employ a fixed-effects logistic regression 
model with temperature bins to assess how extreme temperatures 
and water runoff influence the likelihood of outages across different 
technologies. This methodology follows similar studies analyzing the 
impact of weather fluctuations on economic outcomes (e.g. Deschênes 
and Greenstone, 2011), allowing us to control for both unobserved 
heterogeneity among power plants and the nonlinear effects of extreme 
temperatures.

We contribute to the literature in several ways. First, we focus 
explicitly on power plant outages rather than efficiency losses, address-
ing a critical gap in existing research. While most previous studies 
examine how extreme weather affects the efficiency of electricity pro-
duction (e.g., Behrens et al., 2017), our study empirically analyzes 
the occurrence of actual outages, the worst-case scenario where power 
plants are forced to shut down. Building on these insights, we develop 
technology-specific hypotheses and assessments that reveal differential 
vulnerabilities among various types of power plants, an approach that 
expands the aggregated estimates presented in Coffel and Mankin 
(2021) and is unprecedented in scope. These results add an empirical 
dimension to predominantly model-based assessments, such as Behrens 
et al. (2017) and Bartos et al. (2016), thus providing a greater un-
derstanding of the impacts of climate on Europe’s energy resilience. 
Second, by studying both forced and planned outages we offer a more 
complete understanding of how climate variables impact the resilience 
of power plants. Planned outages, although scheduled, may still be 
influenced by broader climate patterns, which require adjustments to 
ensure operational stability. Third, we examine heterogeneity in the 
response to extreme weather events between plants reliant on inland 
water bodies and those on coasts, adding a spatial dimension to our 
understanding of power plant resilience. Finally, using high-frequency 
data, we capture the short-term impacts of extreme weather, offering 
insights into power system resilience beyond studies that rely on annual 
aggregated data (e.g. Van Vliet et al., 2016).

Our findings reveal that extreme weather conditions increase the 
risk of outages across several power generation technologies. Impor-
tantly, we observe significant differences between forced and planned 
outages. Consistent with our expectations, extreme hot temperatures 
significantly increase the probability of forced outages in thermal 
power plants. However, we also find that planned outages are substan-
tially affected by extreme weather events. In particular, nuclear power 
plants proactively schedule maintenance during drought conditions. 
This suggests that operators adapt to gradual and predictable extreme 
weather events to mitigate the risk of more costly unplanned outages, 
highlighting a form of operational adaptation in the energy sector.

The remainder of the paper is structured as follows. The next 
section presents our hypotheses based on the identified research gaps 
and theoretical considerations. Section 3 details the data sources and 
empirical methodology used in our analysis. Section 4 presents the 
results of our empirical investigation, focusing on the effects of extreme 
weather on outages in thermal and hydropower technologies. It also 
includes robustness checks to validate our findings, a heterogeneity 
analysis examining how the source of water availability influences 
plant vulnerability, and an analysis of how weather conditions af-
fect outage duration across different thermal technologies. Finally, 
Section 5 discusses the implications of our results for energy system 
resilience and operational adaptation strategies, and concludes the 
paper by summarizing the main findings.
2 
2. Conceptual framework

Power plants face different challenges from extreme weather de-
pending on their technology. While existing research highlights how 
temperature and water availability affect the efficiency of electricity 
production, less attention has been given to the occurrence of out-
ages. In this section, we build on the understanding of the weather 
impacts on power plants’ efficiency to explore how extreme weather 
contributes to planned and forced outages, providing a perspective on 
each technology’s role and vulnerabilities and the foundation for our 
hypotheses.

In 2023, nuclear power produced a significant portion of Europe’s 
electricity supply, contributing 23% of total generation, which amounts 
to 619 TWh (Brown et al., 2024). France, in particular, relies heavily on 
nuclear energy, with 65% of its electricity mix derived from this source. 
Other countries such as Germany, Belgium, and Sweden also maintain 
substantial nuclear capacities. The reliance of these plants on efficient 
cooling systems makes them especially vulnerable to extreme weather 
events. Their thermal efficiency depends on the temperature difference 
between the heat source and the cooling environment. When ambient 
temperatures rise, this differential decreases, leading to reduced elec-
tricity production from the same amount of fuel. For instance, Linnerud 
et al. (2011) reported that a 1 ◦C increase in ambient temperature can 
lower nuclear power output by approximately 0.4%, with reductions 
reaching up to 2.3% as condenser pressure approaches its operational 
limits. The output can be further reduced by regulations, which often 
cap the maximum allowable temperature of discharged cooling water 
to protect aquatic ecosystems (Stewart et al., 2013). Droughts and 
severe flooding can also affect nuclear power generation by reducing 
the availability of cooling water or damaging infrastructure (Kim et al., 
2024). For example, the 1999 flood of the Le Blayais nuclear plant in 
France led to the shutdown of multiple reactors due to the inundation 
of critical equipment and loss of off-site power, highlighting the vul-
nerability of nuclear facilities to extreme hydrological events (Kopytko 
and Perkins, 2011).

Fossil fuel power plants are a significant component of the Euro-
pean energy landscape. In 2023, thermal power from coal, gas, and 
oil accounted for 33% of the electricity generation in the European 
Union (Brown et al., 2024). Countries like Germany have historically 
relied heavily on coal and gas, though they are now transitioning 
towards renewable energy sources. Poland, on the other hand, gen-
erates nearly three-quarters of its electricity from fossil fuels. While 
fossil-based technologies differ in fuel source from nuclear power, they 
share a reliance on effective cooling systems, making them vulnerable 
to climate-induced challenges. Ambient air and water temperatures 
affect their operational efficiency. Heatwaves can impair cooling ef-
ficiency, leading to reduced power output or increased operational 
costs. Droughts and floods disrupt water supplies necessary for cooling 
processes, potentially forcing plants to reduce output or shut down. 
Additionally, extreme temperatures can directly impact plant infras-
tructure; high temperatures cause mechanical stress and expansion in 
pipelines, whereas cold weather increases corrosion and causes con-
traction, affecting pressure systems (Sieber, 2013). As climate change 
intensifies, the frequency and severity of these extreme events are 
expected to increase, making it increasingly important to understand 
and mitigate the vulnerabilities of thermal power plants.

Hydroelectric power contributed 12% of Europe’s electricity gen-
eration in 2023, producing 317 TWh (Brown et al., 2024). Countries 
such as Norway, Sweden, and Austria rely heavily on hydropower, with 
Norway generating almost all its electricity from this source. There are 
three main types of hydropower systems: reservoir, pumped storage, 
and run-of-river. Each type shows varying vulnerabilities. Reservoir 
and pumped storage systems depend on consistent long-term water 
availability, which can be disrupted by alterations in precipitation 
patterns and increased evaporation rates due to higher temperatures. 



A. Sergio and F.P. Colelli Energy Economics 148 (2025) 108549 
Run-of-river, on the other hand, are impacted by immediate fluctua-
tions in river flow, making them sensitive to short-term variations in 
water runoff (Wasti et al., 2022). Climate change affects hydropower 
generation through several mechanisms. The depletion of glaciers and 
ice reduces long-term water storage, initially increasing streamflow 
but ultimately decreasing it as glaciers recede. Reduced seasonal snow 
storage leads to earlier snowmelt, altering the timing and availability of 
water for power generation. Increased precipitation variability results 
in more frequent and severe floods and droughts, which can disrupt 
operations and damage infrastructure. Higher temperatures also elevate 
evaporation rates, lowering reservoir levels and intensifying competi-
tion for water resources with other sectors, such as agriculture (Wasti 
et al., 2022). Regional studies highlight significant variability in cli-
mate impacts across Europe. In the Alps, glacier melt has temporarily 
boosted hydropower generation but is projected to decrease by about 
3% as glaciers continue to shrink. Conversely, in the Nordic and Baltic 
regions, increased streamflow and earlier snowmelt may enhance hy-
dropower production; for example, Chernet et al. (2013) found that 
hydroelectric energy generation in Norway could increase by 9%–20% 
under current reservoir operation strategies.

The European Network of Transmission System Operators for Elec-
tricity (ENTSO-E) classifies these interruptions into two main cate-
gories: planned outages, which are scheduled maintenance activities, 
and forced outages, which are an unforeseen unavailability of genera-
tion units. Both events are recorded when they involve changes of 100 
MW or more in a unit’s availability and are referred to as plant-level 
planned and forced outages. Building on the mechanisms discussed for 
thermal and hydropower technologies, we investigate the conditions 
under which extreme weather events contribute to both planned and 
forced outages. By focusing on these events, our study provides in-
sights into extreme weather’s most severe operational consequences, 
complementing existing research on weather effects on generation 
efficiency.

We develop specific hypotheses to guide our empirical investiga-
tion. We hypothesize that planned and unplanned outages respond 
differently to extreme weather events due to their inherent operational 
characteristics. By definition, generators typically schedule planned 
outages for maintenance and refueling purposes, often timed to coin-
cide with periods of lower demand or favorable conditions. Therefore, 
we expect these events to be unaffected by extreme weather conditions 
after controlling for seasonal patterns. This expectation aligns with the 
notion that operators have the flexibility to plan around predictable 
climate variations. In contrast, forced outages result from unplanned 
conditions, such as equipment failures or external disruptions. These 
outages are presumed to be influenced by sudden and severe weather 
shocks.

Furthermore, we hypothesize that thermal power technologies ex-
hibit a U-shaped response to temperature extremes. While moderate 
deviations from optimal conditions may primarily reduce efficiency, 
reaching more severe temperature or precipitation extremes can push 
plants beyond mere performance losses into forced outages. High tem-
peratures can diminish the efficiency of steam and gas cycles and 
increase the likelihood of equipment overheating, while low tempera-
tures may exacerbate issues such as fuel viscosity problems, corrosion, 
and mechanical stress (Coffel and Mankin, 2021; Sieber, 2013; Bartos 
and Chester, 2015). Excessive precipitation or severe drought can 
similarly undermine cooling systems and water availability, driving 
operations towards abrupt failures under the most extreme circum-
stances. Rather than a simple continuum of diminishing returns, we 
anticipate that thermal plants become vulnerable to sudden opera-
tional breakdowns as environmental conditions approach these critical 
extremes. Additionally, we propose that hydroelectric plants are par-
ticularly susceptible to both droughts and floods due to their reliance 
on water availability. Drought conditions can lead to insufficient water 
flow for electricity generation, while floods can damage infrastructure 
and necessitate operational shutdowns. While previous studies like van 
Vliet et al. (2016) focus on aggregate capacity reductions  over longer 
3 
periods, we aim to identify overlooked short-term impacts manifested 
as generation outages triggered by extreme water levels.

3. Methods

3.1. Data

We use panel data from the ENTSO-E Transparency Platform at the 
power plant level, detailing both forced and planned outages from 2017 
to 2023 across 20 European countries. The dataset includes 929 power 
plants, encompassing different technologies: nuclear, coal, gas, and 
three hydro types (reservoir, run-of-river, pumped storage), along with 
their geographical coordinates (latitude and longitude) and nominal 
power capacity (see Fig.  1, panel a). The dataset includes 44,637 
recorded forced outages and 62,672 planned outages. Planned outages 
stem from maintenance schedules and operational strategies, while 
unplanned outages occur due to technical failures. From this data, we 
construct a panel dataset at the power plant and daily level, where a 
binary variable indicates the occurrence of an outage (1 for an outage, 
0 for no outage), resulting in over 1.4 million observations. The original 
hourly outage data has been aggregated to a daily level to simplify 
analysis by matching it with daily-level weather data. At the European 
level, the total number of daily outages shows both an upward trend 
and significant seasonal variation, particularly for planned outages 
(see Fig.  1, panel b). The average frequency of these events varies by 
technology and outage type (forced vs. planned). Planned outages are 
slightly more common than forced ones, with hydro-power pumped 
generators experiencing the highest likelihood of outages, while nuclear 
power has the lowest (see Fig.  1, panel c).

We compile a dataset of weather variables, including temperature, 
precipitation, and water runoff, sourced from the Copernicus ERA5 
reanalysis data (Hersbach et al., 2020). Hourly data is used to calculate 
daily maximum and minimum temperatures, while water runoff is used 
to compute the Standardized Runoff Index (SRI), a common indicator 
for floods and droughts.

To assess the impact of extreme temperatures on energy systems, 
we apply a binning strategy based on percentiles at the power plant 
level. Upper percentiles (above 98th, 95th–97th, 90th–94th) represent 
heatwave exposure, while lower percentiles (10th–6th, 5th–3rd, below 
2nd) indicate cold spells. Due to the geographical diversity of our 
dataset, spanning 20 European countries, temperature bins are based 
on local percentiles rather than fixed temperature ranges. This ensures 
relevance to each plant’s climate.1 This approach allows us to ana-
lyze how temperature extremes affect power supply across different
regions.

The Standardized Runoff Index (SRI) represents the unit standard 
normal deviate for precipitation or hydrologic runoff accumulated over 
a specific period. Unlike the Standardized Precipitation Index (SPI), the 
SRI incorporates seasonal hydrologic processes, accounting for factors 
like snow and soil moisture storage, making it a more stable measure 
than SPI (Shukla and Wood, 2008). For this reason, we prioritize 
the SRI over SPI to evaluate droughts and floods impacting power 
plants. To assess the impact of extreme hydrological conditions, we 
apply a binning strategy based on percentiles at the power plant level, 
consistent with our approach to extreme temperatures. We classify 
the 3-month SRI into bins corresponding to different degrees of hy-
drological stress: above the 98th percentile (extreme wet conditions), 
95th–98th percentile (severe wet), 90th–95th percentile (moderate 
wet), 5th–10th percentile (moderate drought), 2nd–5th percentile (se-
vere drought), and below the 2nd percentile (extreme drought). To 

1 For example, a plant in northern Scandinavia rarely experiences 30–35 ◦C 
temperatures, so applying uniform bins across regions would be inappropriate. 
Using local bins maintains accuracy in capturing temperature extremes at each 
location.
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Fig. 1. Panel a: Map showing the geographical distribution of the power plants considered in the study, colored by technology type. Panel b: EU-level daily sum of outages (blue 
line) and its smoothed trend (red line). Panel c: Observed average outage probability by technology and outage type. Panel d: heatmap of the normalized EU-level frequency of 
outages ordered by the percentiles of temperatures and SRI computed at the power-plant level. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
ensure robustness, we also test 1-month period to capture different time 
horizons of hydrological anomalies.2

All ERA5 data is provided at a spatial resolution of 0.25◦ by 0.25◦
grid (approximately 27.5 km by 27.5 km at the equator), representing 
a uniform grid system over Europe. For each power plant in our 
study, we use the geographical coordinates (latitude and longitude) to 
match its location to the corresponding grid point in the ERA5 dataset. 
This ensures that the local weather conditions (e.g., temperature,
precipitation, and water runoff) are accurately associated with the 
precise geographical location of each power plant. In this way, we 
maintain a high level of spatial accuracy for weather variables that 
directly impact the operational performance of the power plants.

Inspecting the frequency of occurrence of outages by the power-
plant specific percentiles of daily maximum temperatures and daily SRI, 
we can identify interesting patterns (see Fig.  1, panel d): both forced 
and planned outages tend to be concentrated in days where the power 
plant experiences uncommon exposure to weather, although the type of 
outage affects this correlations: planned outages tend to be more con-
centrated in days with extreme temperatures, while planned outages 
in days with either extreme temperatures or extreme SRI values, with 
effects being more uniform across technologies in the latter case.

2 We use the R package ‘‘SCI’’ to compute the SRI for the 3-month accu-
mulation period. The SRI is calculated by fitting runoff data to a probability 
distribution, which is then normalized. For details on the algorithm, see Stagge 
et al. (2015).
4 
3.2. Empirical framework

To test our hypotheses regarding the differential impacts of ex-
treme weather on planned and forced outages, we use a fixed-effects 
logistic regression model. This model has the advantage of not requir-
ing restrictive assumptions about the relationship between unobserved 
heterogeneity and observed covariates (Wooldridge, 2010). This is 
particularly important in our case, where characteristics such as plant 
location, maintenance routines, capacity, and operational history in-
fluence outage risks but cannot be directly observed. To address this 
issue, we follow approaches from similar studies, such as Deschênes 
and Greenstone (2011), which examine the impact of temperature 
fluctuations on health outcomes. Therefore, we use plant-by-month 
and country-year fixed effects to control for both spatial and temporal 
heterogeneity.

Given that planned and forced outages are driven by different 
mechanisms, we estimate two separate models to capture their distinct 
determinants. The probability of an outage occurring at power plant 𝑖
on day 𝑡 is modeled using a fixed-effects logistic regression:
Pr(𝑝𝑙𝑎𝑛𝑛𝑒𝑑𝑜𝑢𝑡𝑎𝑔𝑒𝑖𝑡 = 1)

= 𝛷

(

𝛼𝑝 +
∑

𝑘
𝛽𝑝𝑘𝑇

(𝑘)
𝑖,𝑡 +

∑

𝑚
𝛾𝑝𝑚𝑆𝑅𝐼

(𝑚)
𝑖,𝑡 + 𝛿𝑝𝑖,𝑚 + 𝜃𝑝𝑐,𝑦

)

+ 𝜀𝑝𝑖,𝑡

Pr(𝑓𝑜𝑟𝑐𝑒𝑑𝑜𝑢𝑡𝑎𝑔𝑒𝑖𝑡 = 1)

= 𝛷

(

𝛼𝑓 +
∑

𝑘
𝛽𝑓𝑘 𝑇

(𝑘)
𝑖,𝑡 +

∑

𝑚
𝛾𝑓𝑚𝑆𝑅𝐼

(𝑚)
𝑖,𝑡 + 𝛿𝑓𝑖,𝑚 + 𝜃𝑓𝑐,𝑦

)

+ 𝜀𝑓𝑖,𝑡

In these models, the dependent variable, outage𝑖𝑡, represents a 
binary indicator for the occurrence of an outage at power plant 𝑖 on day 



A. Sergio and F.P. Colelli Energy Economics 148 (2025) 108549 
𝑡. The superscripts 𝑝 and 𝑓 indicate that the parameters are estimated 
separately for planned and forced outages, respectively. Specifically, 
coefficients with superscript 𝑝 correspond to the model for planned 
outages, while coefficients with superscript 𝑓 correspond to the model 
for forced outages.

The terms 𝑇 (𝑘)
𝑖,𝑡  and 𝑆𝑅𝐼 (𝑚)𝑖,𝑡  capture the effects of extreme tempera-

ture and water stress-related factors. The 𝑘th included temperature bins 
𝑇 (𝑘)
𝑖,𝑡  are: T98th𝑖,𝑡 , T95th𝑖,𝑡 , T90th𝑖,𝑡 , T10th𝑖,𝑡 , T5th𝑖,𝑡 , and T2

nd
𝑖,𝑡 , capturing temperature 

extremes at different percentiles. These are constructed as binary in-
dicators for whether daily temperature falls into extreme high or low 
bins, as proposed in studies like Dell et al. (2014a) and Auffhammer 
(2022). Maximum and minimum temperatures are used for hot (>90th) 
and cold (<10th) exposures, respectively.

Similarly, the 𝑚th bins represented by the term 𝑆𝑅𝐼 (𝑚)𝑖,𝑡  capture 
the non-linear effect of hydrological extremes as measured by the 
Standardized Runoff Index (SRI𝑖,𝑡). The SRI percentiles used in the 
model include SRI>98th𝑖,𝑡 , SRI95th–98th𝑖,𝑡 , SRI90th–95th𝑖,𝑡 , SRI5th–10th𝑖,𝑡 , SRI2nd–5th𝑖,𝑡 , 
and SRI<2nd𝑖,𝑡 . This approach ensures that the classification of extreme 
wet and dry conditions is relative to the plant’s local hydrological 
variability rather than fixed thresholds, making the results comparable 
across different geographic regions.

Plant-by-month fixed effects account for unobserved time-invariant 
characteristics specific to each plant, such as location, capacity and age, 
while also capturing monthly variations in plant operations, such as 
fluctuations in electricity generation or seasonal refueling and main-
tenance strategies affecting planned outages (Bell et al., 2020). The 
country-year fixed effects control for time-varying macroeconomic fac-
tors and policy changes that differ between countries and years. For 
example, they capture the influence of national economic trends, en-
ergy policies, regulatory shifts, and significant shocks. By incorporating 
these country-year fixed effects, we also account for broader global 
trends, such as fluctuations in the international energy market, cross-
border energy agreements, or EU-wide regulatory frameworks that may 
have different impacts between countries.

We use Conley standard errors (Conley, 1999) to account for spatial 
and temporal correlations in our error terms, as power plants nearby 
or experiencing similar weather conditions may have correlated errors. 
This correction improves the accuracy of our standard errors by ac-
counting for potential spillover effects of extreme weather across plants 
within a certain distance or time window, as discussed by Dell et al. 
(2014b).

Finally, we differentiate between forced and planned outages to 
identify how extreme weather impacts power plant operations. Forced 
outages are typically unplanned, arising from sudden operational fail-
ures or external factors and can disrupt power supply immediately. In 
contrast, planned outages are scheduled in advance for maintenance 
or other operational reasons and are usually timed to minimize their 
impact, often coinciding with periods of reduced demand.

To complement our analysis on outage occurrence using the fixed-
effects logistic regression, we extend our empirical framework by em-
ploying a negative binomial regression model to examine the duration 
of outages. This approach accounts for the overdispersion observed in 
the count data of outage hours, offering a more flexible alternative to 
Poisson regression. The model specification is as follows:
E(𝑝𝑙𝑎𝑛𝑛𝑒𝑑_𝑜𝑢𝑡𝑎𝑔𝑒_ℎ𝑜𝑢𝑟𝑠𝑖𝑡|𝑋)

= exp

(

𝜎𝑝 +
∑

𝑘
𝜇𝑝
𝑘𝑇

(𝑘)
𝑖,𝑡 +

∑

𝑚
𝜈𝑝𝑚𝑆𝑅𝐼

(𝑚)
𝑖,𝑡 + 𝛿𝑝𝑖,𝑚 + 𝜃𝑝𝑐,𝑦

)

E(𝑓𝑜𝑟𝑐𝑒𝑑_𝑜𝑢𝑡𝑎𝑔𝑒_ℎ𝑜𝑢𝑟𝑠𝑖𝑡|𝑋)

= exp

(

𝜎𝑓 +
∑

𝑘
𝜇𝑓
𝑘 𝑇

(𝑘)
𝑖,𝑡 +

∑

𝑚
𝜈𝑓𝑚𝑆𝑅𝐼

(𝑚)
𝑖,𝑡 + 𝛿𝑓𝑖,𝑚 + 𝜃𝑓𝑐,𝑦

)

where planned_outage_hours𝑖𝑡 and forced_outage_hours𝑖𝑡 represent the 
number of hours a power plant 𝑖 is under outage on day 𝑡, alternatively 
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for planned 𝑝 and forced 𝑓 outages. The terms 𝑇 (𝑘)
𝑖,𝑡  and 𝑆𝑅𝐼 (𝑚)𝑖,𝑡  and 

fixed effects 𝛿𝑖,𝑚 and 𝜃𝑐,𝑦 are modeled as in Equation 1 and Equation 2 
. By modeling outage duration on top of outage occurrence, we provide 
additional insights into how prolonged outages correlate with extreme 
weather conditions.

4. Results

4.1. Thermal power technologies

Overall, we find that in several cases, both forced and planned 
outages of thermal power technologies are affected by extreme weather 
events, with notable differences across technologies and outage cat-
egories. All fossil-based technologies exhibit a U-shaped response to 
extreme temperatures, with high daily maximum temperatures increas-
ing the likelihood of an outage more than extreme cold temperatures. 
Coal is the most vulnerable fossil technology to extreme heat, as the 
probability of a forced outage increases by approximately 3.2 per-
centage points [2.4%–4.0% 95th confidence interval]3 under extreme 
heat. Gas-fired plants also show a significant increase in forced outages 
under extreme heat, though the magnitude is smaller (1.3 percentage 
points). The effect of cold spells on forced outages is moderate for 
gas-fired power plants, which experience a 0.8 percentage point in-
crease [0.5%–1.1%] under extreme cold (below the 2nd percentile). 
The impact is more pronounced for coal and oil-fired power plants, 
with forced outages increasing by 1.4 percentage points [0.8%–2.0%] 
for coal and 1.2 percentage points [0.3%–2.1%] for oil. The effects of 
hydrological anomalies on forced outages are generally small. For gas-
fired plants, moderate flood conditions (SRI 90th–95th percentile) are 
associated with a slight decrease of 0.3 percentage points [0.1%–0.5%] 
in forced outage probability. In contrast, moderate droughts (SRI 5th–
10th percentile) correspond to a small increase of 1.0 percentage 
point [0.4%–1.6%] for coal-fired plants, while oil-fired plants show a 
slight decrease of 0.9 percentage points [0.3%–1.5%] under the same 
conditions.

When focusing on planned outages of fossil-based technologies, the 
U-shaped temperature response is less evident for gas and coal. We 
find a statistically significant increase in planned outages for oil-based 
power plants under extreme cold, with a rise of approximately 1.7 per-
centage points [1.2%–2.2%]. For gas-fired power plants, planned out-
ages do not exhibit a clear response to temperature extremes, while for 
coal, we observe a minor but significant effect under high temperatures, 
with planned outages increasing by 0.8 percentage points [0.3%–1.3%] 
under extreme heat (above the 98th percentile). Planned outages of 
fossil-based technologies show varied responses to extreme drought 
conditions. Gas-fired plants exhibit a small increase of 1.0 percentage 
point [0.4%–1.6%] in planned outages under severe drought (SRI 
2nd–5th percentile). A similar effect is observed for oil-fired plants, 
where planned outages increase by 0.6 percentage points [0.2%–1.0%]. 
The most pronounced response is found for coal plants, with extreme 
drought conditions (SRI below the 2nd percentile) leading to a 3.0 
percentage point increase [0.9%–5.1%] in planned outages.

Nuclear power presents a unique response pattern to temperatures. 
Unlike fossil-based technologies, the effect of temperature on nuclear 
outages increases monotonically, ranging from negative effects at cold 
temperatures to positive effects at hot temperatures. Forced outages rise 
significantly under extreme heat, with the probability increasing by 1.0 
percentage point [0.4%–1.6%] at the highest temperature percentiles. 
Planned outages also show a mild positive response to moderately 
high temperatures, with an estimated increase of 0.2 percentage points 
[0.0%–0.4%]. In contrast, cold spells reduce the likelihood of both 
forced and planned outages, with the probability of a forced outage 

3 Henceforth, numbers presented in square brackets represent the 95th 
confidence interval.
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Table 1
Overview of climate impacts on different power generation technologies.
 Extreme event Thermal fossil (Coal, Gas, Oil) Hydropower Nuclear  
 Extreme Temperatures Reduced cooling efficiency; increased 

stress on pipelines and mechanical 
components

Long-term changes in evaporation 
rates and earlier snowmelt

Reduced thermal efficiency; 
regulations might limit water 
discharge temperatures

 

 Cold Spells Increased fuel viscosity, corrosion, 
and mechanical stress; possible 
frozen coal stockpiles

Limited research available Potential efficiency gains due to 
increased thermal gradient, but risk 
of freezing water intakes

 

 Floods Limited research available Risk of dam overflow or damage; 
sudden fluctuations in river flows 
might negatively impact run-of-river 
plants

Risk of reactor shutdown due to 
flooding of critical infrastructure, loss 
of off-site power, or cooling system 
failure

 

 Droughts Limited cooling water availability 
may force output reductions or 
shutdowns

Reduced river flow and reservoir 
levels decrease generation capacity; 
competition with other water users

Reduced cooling water availability 
affects reactor operations; potential 
regulatory constraints on water use

 

decreasing by 0.5 percentage points [0.1%–0.9%] under extreme cold. 
These findings align with the thermodynamic properties of nuclear 
plants, where higher ambient temperatures reduce cooling efficiency, 
while colder conditions may enhance the thermal gradient, improving 
overall efficiency. The effects of drought conditions, as measured by 
the Standardized Runoff Index, are small and mostly insignificant. We 
observe a weak negative association between moderate drought condi-
tions and forced outages, while planned outages show a slight increase 
of 0.4 percentage points [0.0%–0.8%] under severe droughts. This 
suggests that nuclear maintenance schedules remain largely unaffected 
by short-term hydrological variations, reinforcing the idea that planned 
outages follow long-term operational planning rather than immediate 
environmental constraints.

These findings highlight the complex interactions between extreme 
weather events and thermal power generation. The U-shaped response 
of fossil-based technologies to extreme temperatures confirms that both 
high and low temperatures can disrupt operations. High temperatures 
reduce the efficiency of steam and gas cycles, increasing the risk of 
equipment stress and outages. Conversely, cold weather can lead to 
pipeline contraction, corrosion, and mechanical failures. Cooling water 
availability is a crucial factor for thermal power plants. Drought con-
ditions can lower water levels and raise water temperatures, reducing 
cooling efficiency and forcing operational adjustments. While previous 
studies (Sieber, 2013) suggest that floods can inundate sites and impact 
cooling water withdrawal, our analysis does not find strong evidence 
linking flood events to power outages. For nuclear power, our results 
align with established mechanisms in the literature. Temperature vari-
ations affect nuclear plants through two primary channels: (i) reduced 
thermal efficiency, as the efficiency of the steam cycle depends on 
the temperature differential between the heat source and the cooling 
environment, and (ii) regulatory constraints on maximum discharge 
temperatures to protect aquatic ecosystems (Linnerud et al., 2011; 
Stewart et al., 2013) (see Fig.  2). 

4.2. Hydro-power technologies

We find that hydropower generation plants are primarily affected 
by variations in water runoff rather than extreme temperatures, though 
some temperature effects emerge for specific plant types. For stor-
age plants, extreme cold appears to reduce the likelihood of forced 
outages, with a 1.0 percentage point decrease [−2.0% to 0.0%] un-
der moderately low temperatures (T𝑚𝑖𝑛 2nd–5th percentile). Planned 
outages in storage plants, however, decline by 1.4 percentage points 
[−2.8% to 0.0%] under extreme high runoff conditions (SRI > 98th 
percentile), suggesting that increased water availability reduces the 
need for scheduled maintenance.

Run-of-river plants exhibit a stronger response to hydrological ex-
tremes. Both forced and planned outages increase under high runoff 
conditions, with severe floods (SRI 95th–98th percentile) raising out-
age probabilities by 1.8 percentage points [0.3%–3.3%] for forced 
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outages and 2.3 percentage points [0.7%–3.9%] for planned outages. 
Additionally, moderate flood conditions (SRI 90th–95th percentile) 
increase forced outages by 1.4 percentage points [0.4%–2.4%]. Planned 
outages also rise under low runoff conditions, with a 1.5 percentage 
point increase [0.5%–2.5%] when SRI falls between the 2nd and 5th 
percentiles.

Reservoir plants, in contrast, exhibit limited sensitivity to extreme 
weather. Planned outages increase slightly under moderate cold condi-
tions (T𝑚𝑖𝑛 2nd–5th percentile) by 1.0 percentage points [0.0%–2.0%] 
but decrease under extreme cold (T𝑚𝑖𝑛 < 2nd percentile) by 1.2 per-
centage points [−1.8% to −0.6%], possibly reflecting improved thermal 
efficiency at lower temperatures. Additionally, high runoff conditions 
(SRI > 98th percentile) reduce planned outages by 1.5 percentage 
points [−2.5% to −0.5%], suggesting that greater water availability 
allows plants to delay maintenance and maximize production.

Overall, these findings highlight the distinct sensitivities of hy-
dropower technologies to environmental variability. While storage and 
reservoir plants exhibit minor responses, run-of-river plants are partic-
ularly affected by both floods and droughts, reinforcing their reliance 
on stable hydrological conditions (see Fig.  3 and Table  3) .

4.3. Robustness checks

We performed several robustness checks, detailed in the Supplemen-
tary Materials. First, we re-estimated our models clustering standard 
errors at the power plant level and using a non-parametric bootstrap 
procedure with 300 seeds. Both approaches produced results nearly 
identical to those of our main model, supporting the robustness of 
our standard error estimates. In addition, we explored various alterna-
tive model specifications. These included testing different temperature 
quantiles, employing alternate binning strategies based on both rela-
tive distributions (e.g., T> 90th percentile) and absolute temperature 
cutoffs (e.g., T> 33 ◦C). We also relaxed the fixed effects structure and 
incrementally introduced additional control variables. Across all these 
variations, the magnitude and statistical significance of our key coeffi-
cients remained consistent. Finally, we estimated a Linear Probability 
Model (LPM) as an alternative to our nonlinear specification, and again, 
the core findings did not change.

4.4. Heterogeneity

We explore whether the source of cooling water influences thermal 
plants’ vulnerability to extreme weather events, differentiating between 
those relying on inland freshwater (rivers or lakes) and those drawing 
seawater along the coast. We find statistically significant increases in 
the probability of forced outage occurrence during drought conditions 
(< 2nd percentile of SRI) only as for inland gas, coal and oil generation, 
while coastal power plants exhibit effects close to zero. Furthermore, 
we find negative but non statistically significant effects for coal and 
oil generation forced outages. Our findings suggest that inland-based 
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Table 2
Marginal effect of temperatures and SRI on forced and planned outages of European thermal power plants.
 Variable Nuclear Gas Coal Oil

 Forced Planned Forced Planned Forced Planned Forced Planned  
 T𝑚𝑎𝑥 > 98th 0.010∗∗∗ 0.006 0.013∗∗∗ 0.006 0.032∗∗∗ 0.008∗ 0.018∗ 0.007∗  
 (0.003) (0.005) (0.004) (0.005) (0.008) (0.005) (0.015) (0.005)  
 T𝑚𝑎𝑥 95th–98th 0.004∗∗∗ 0.005∗∗∗ 0.003 0.001 0.008∗ 0.002 −0.001 0.002  
 (0.002) (0.002) (0.002) (0.003) (0.005) (0.006) (0.006) (0.003)  
 T𝑚𝑎𝑥 95th–90th −0.001 0.002∗∗∗ 0.001 0.000 0.001 0.004∗∗ −0.005 −0.002  
 (0.002) (0.001) (0.002) (0.002) (0.003) (0.002) (0.007) (0.002)  
 T𝑚𝑖𝑛 5th–10th −0.002∗ −0.004∗∗∗ 0.003∗∗ −0.003 0.007∗∗∗ 0.005 0.011∗∗∗ 0.004  
 (0.001) (0.001) (0.002) (0.002) (0.002) (0.003) (0.003) (0.005)  
 T𝑚𝑖𝑛 2nd–5th −0.004∗ −0.003 0.004∗ −0.003 0.005 0.001 0.013∗∗∗ 0.008∗∗  
 (0.002) (0.002) (0.002) (0.002) (0.004) (0.006) (0.003) (0.004)  
 T𝑚𝑖𝑛 < 2nd −0.005∗∗∗ −0.010∗∗∗ 0.008∗∗∗ −0.002 0.014∗∗∗ −0.006 0.012∗ 0.017∗∗∗  
 (0.002) (0.003) (0.003) (0.005) (0.006) (0.005) (0.009) (0.005)  
 sri3𝑚 > 98th −0.001 0.007 −0.001 −0.004 0.006 −0.015 −0.009∗∗ −0.004  
 (0.003) (0.008) (0.004) (0.004) (0.005) (0.010) (0.004) (0.007)  
 sri3𝑚 95th–98th −0.003 0.002 0.002 −0.003 0.000 −0.011 −0.011∗∗∗ −0.003  
 (0.003) (0.005) (0.002) (0.004) (0.005) (0.015) (0.003) (0.005)  
 sri3𝑚 90th–95th 0.001 0.001 −0.003∗∗ −0.001 0.006 −0.007 −0.002 0.003  
 (0.001) (0.002) (0.001) (0.004) (0.006) (0.009) (0.003) (0.003)  
 sri3𝑚 5th–10th −0.002∗ −0.002 −0.002 0.001 0.010∗ 0.006 −0.009∗∗∗ 0.003  
 (0.001) (0.003) (0.002) (0.005) (0.006) (0.007) (0.002) (0.007)  
 sri3𝑚 2nd–5th 0.002 0.004∗ −0.002 0.010∗ −0.001 0.019 −0.003 0.006∗∗  
 (0.003) (0.002) (0.002) (0.006) (0.006) (0.015) (0.006) (0.003)  
 sri3𝑚 < 2nd −0.002 0.008 0.000 0.006 0.007 0.030∗ −0.001 0.007  
 (0.003) (0.006) (0.003) (0.006) (0.008) (0.021) (0.006) (0.005)  
 Power Plant ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Power Plant-Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Country ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Country-Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Observations 167,735 171,055 345,097 306,948 168,050 129,061 43,939 46,667  
 Dependent variable mean 0.024 0.027 0.023 0.026 0.023 0.027 0.030 0.033  
 BIC 45,148.9 54,144.7 118,181.3 129,021.0 77,439.8 75,885.4 14,327.3 16,434.7 
 Pseudo R2 0.050 0.077 0.133 0.225 0.155 0.249 0.110 0.069  
Notes: The dependent variable is the occurrence of forced or planned outages in a power plant. Standard errors are clustered based on Conley. 
Significance levels: *p<0.10, **p<0.05, ***p<0.01.
Fig. 2. Estimated probability of occurrence of thermoelectric power plants. Segments represent the 95th confidence interval. Statistically significant estimates are colored in orange, 
while all other estimates in black. Marginal effects are derived from the coefficients in Table  1.
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Table 3
Marginal effect of temperatures and SRI on forced and planned outages of European hydropower plants.
 Variable Storage Run-of-River Reservoir

 Forced Planned Forced Planned Forced Planned  
 T𝑚𝑎𝑥 > 98th 0.008 0.005 −0.009 0.007 0.005 −0.002  
 (0.006) (0.011) (0.010) (0.008) (0.004) (0.005)  
 T𝑚𝑎𝑥 95th–98th 0.003 −0.009∗ 0.000 0.000 0.000 −0.002  
 (0.006) (0.005) (0.010) (0.005) (0.004) (0.004)  
 T𝑚𝑎𝑥 90th–95th −0.003 −0.005 −0.001 0.002 0.004 0.000  
 (0.004) (0.005) (0.007) (0.003) (0.004) (0.004)  
 T𝑚𝑖𝑛 5th–10th −0.001 0.001 0.002 −0.002 0.000 0.000  
 (0.004) (0.004) (0.004) (0.006) (0.002) (0.003)  
 T𝑚𝑖𝑛 2nd–5th −0.010∗ −0.001 0.002 −0.003 0.000 0.010∗  
 (0.005) (0.006) (0.008) (0.011) (0.003) (0.006)  
 T𝑚𝑖𝑛 < 2nd −0.012 0.009 0.007 −0.007 −0.003 −0.012∗∗∗ 
 (0.007) (0.013) (0.006) (0.012) (0.004) (0.004)  
 sri3𝑚 > 98th −0.009 −0.003 0.012 0.028 −0.004 −0.015∗∗∗ 
 (0.009) (0.011) (0.012) (0.038) (0.003) (0.005)  
 sri3𝑚 95th–98th −0.007 −0.014∗ 0.018∗ 0.023∗ 0.003 −0.004  
 (0.005) (0.007) (0.015) (0.016) (0.005) (0.005)  
 sri3𝑚 90th–95th −0.002 −0.005 0.014∗∗ 0.008 −0.001 −0.002  
 (0.004) (0.006) (0.010) (0.007) (0.002) (0.004)  
 sri3𝑚 5th–10th 0.006 0.001 0.003 0.005 0.004 0.006  
 (0.135) (0.088) (0.254) (0.145) (0.091) (0.091)  
 sri3𝑚 2nd–5th 0.002 0.003 0.002 0.015∗∗ 0.006 0.002  
 (0.097) (0.088) (0.345) (0.111) (0.122) (0.184)  
 sri3𝑚 < 2nd 0.001 −0.004 0.003 0.000 −0.001 0.012  
 (0.008) (0.013) (0.009) (0.012) (0.004) (0.013)  
 Power Plant ✓ ✓ ✓ ✓ ✓ ✓  
 Power Plant-Month FE ✓ ✓ ✓ ✓ ✓ ✓  
 Country ✓ ✓ ✓ ✓ ✓ ✓  
 Country-Year FE ✓ ✓ ✓ ✓ ✓ ✓  
 Observations 124,656 119,839 47,465 61,649 153,256 165,831  
 Dependent variable mean 0.03049 0.05668 0.02624 0.05339 0.03884 0.06477  
 BIC 62,776.3 69,247.4 17,392.4 32,122.1 54,336.8 84,318.2  
 Pseudo R2 0.15663 0.22399 0.38313 0.22470 0.20164 0.13355  
Notes: The dependent variable is the occurrence of forced or planned outages in a hydropower plant. Standard errors are clustered 
based on Conley. Significance levels: *p<0.10, **p<0.05, ***p<0.01.
Fig. 3. Estimated probability of occurrence of hydropower plants. Segments represent the 95th confidence interval. Statistically significant estimates are colored in orange, while 
all other estimates in black. Marginal effects are derived from the coefficients in Table  2. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
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Fig. 4. Map of thermal power plant locations by location group (Coast vs Inland). Estimated probability of outage occurrence by location group under exposure of extreme 
droughts, by outage type and plants. Segments represent the 95th confidence interval. Marginal effects are derived from the coefficients presented in the Appendix.
facilities are generally more susceptible to drought-induced outages, 
likely reflecting tighter constraints on freshwater usage and stricter 
environmental regulations. By contrast, coastal plants appear more 
resilient under similar conditions, benefiting from the comparatively 
stable cooling properties of seawater (see Fig.  4). Overall, the find-
ings highlight how spatial factors matter, showing that the location 
where a plant is located can shape its ability to handle climate-related 
challenges.

4.5. Outage duration

In this section, we examine how extreme weather conditions influ-
ence the duration of outages across different thermal power technolo-
gies. Our findings indicate that extreme heat significantly increases the 
average number of hours a power plant is expected to face a forced 
outage, across all fossil-based technologies and nuclear plants, reinforc-
ing the result that high temperatures increase stress on power plant 
components and cooling systems. Under extreme heat (T𝑚𝑎𝑥 > 98th 
percentile), the average number of hour under a forced outage rises 
by approximately 2.9 h for oil-fired plants, 1.4 h for nuclear plants, 
and around 1.0 h for both gas and coal plants. The estimated marginal 
effects are substantial since the average number of hours under outage 
in our sample ranges between 0.56 and 0.69 depending on the technol-
ogy. These results suggest that sustained high temperatures exacerbate 
mechanical failures, leading to longer downtimes for repairs and system 
stabilization.

In contrast, cold temperatures have mixed effects. For gas-fired 
plants, extreme cold (T𝑚𝑖𝑛 < 2nd percentile) increases the average 
hours under a forced outage by about 0.7 h, likely due to operational 
challenges such as fuel transport disruptions and increased mechanical 
stress. Conversely, nuclear plants experience a slight but statistically 
significant reduction in the average hours under forced outage un-
der extreme cold, possibly reflecting efficiency gains from improved 
thermal gradients.

Planned outages, that exhibit a longer average duration ranging 
between 2.7 to 4.9 h depending on the technology, show no strong 
or consistent response to temperature extremes, suggesting that main-
tenance schedules remain primarily driven by long-term operational 
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planning rather than short-term weather fluctuations. Similarly, hydro-
logical extremes, as measured by the Standardized Runoff Index (SRI), 
exhibit limited and inconsistent effects on outage duration. Overall, 
these results suggest that extreme heat is the primary driver of pro-
longed forced outages in thermal power plants, while cold temperatures 
and hydrological anomalies have more limited and technology-specific 
impacts (see Fig.  5 and Table  4).

5. Discussion and conclusions

This study provides new evidence on the impact of extreme weather 
events on European power systems, drawing on a rich dataset of daily 
forced and planned outages across multiple generation technologies. 
We quantify the vulnerability of each technology and highlight how 
system operators respond to extreme conditions in temperature and 
water runoff, finding distinct patterns between forced and planned 
outages.

Our results indicate that extreme heat is a key driver of 𝑓𝑜𝑟𝑐𝑒𝑑
outages across all fossil-based technologies and nuclear power plants, 
likely due to increased mechanical stress and cooling inefficiencies. In 
contrast, we find little evidence that extreme weather conditions signifi-
cantly affect 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 outages. This suggests that maintenance schedules 
are largely predetermined and not directly influenced by short-term 
hydrological fluctuations. The absence of strong effects reinforces the 
idea that planned outages follow long-term operational cycles rather 
than immediate environmental constraints. We also find that extreme 
heat not only increases the probability of forced outages but also signifi-
cantly prolongs the average expected hours under outages. Under high 
temperatures, the average hours under outage rise across all thermal 
technologies, particularly in oil-fired and nuclear plants, suggesting 
that mechanical failures may be more severe or take longer to resolve. 
Planned outage durations, again, show no clear response to weather 
extremes, further underscoring the role of long-term scheduling over 
short-term climate variability.

Among fossil-based technologies, coal remains the most vulnerable 
to extreme heat, while oil-fired plants exhibit increased forced out-
ages under both temperature extremes. Run-of-river hydropower plants 
also show sensitivity to hydrological variability, with both floods and 
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Table 4
Marginal effect of temperatures and SRI on the number of hours under outage of European thermal power plants.
 Variable Nuclear Gas Coal Oil

 Forced Planned Forced Planned Forced Planned Forced Planned  
 T𝑚𝑎𝑥 > 98th 1.378∗∗∗ 2.271 1.064∗∗∗ 1.636 1.021∗∗∗ −0.125 2.899∗∗∗ −0.251  
 (1.036) (3.660) (0.511) (1.528) (0.601) (2.017) (3.834) (1.482)  
 T𝑚𝑖𝑛 < 2nd −0.341∗∗ −2.048 0.731∗∗ −0.859 0.063 −2.899∗ 0.371 5.274  
 (0.0993) (3.712) (4.246) (0.451) (0.215) (1.234) (0.488) (10.328) 
 sri3𝑚 > 98th −0.083 6.220 −0.140 −0.948 0.026 −2.680 0.007 1.021  
 (0.293) (7.518) (0.208) (1.022) (0.212) (2.566) (0.482) (2.044)  
 sri3𝑚 < 2nd −0.319 0.475 0.048 3.199 0.727 18.971 0.173 1.857  
 (0.183) (2.103) (0.264) (3.788) (0.721) (25.537) (1.024) (2.388)  
 Power Plant ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Power Plant-Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Country ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Country-Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Observations 167,086 167,852 342,845 292,778 166,739 122,913 43,839 45,929  
 Dependent variable mean 0.69 3.90 0.59 4.91 0.57 6.84 0.56 2.70  
 BIC 71,992 101,957 202,512 318,460 152,692 227,541 25,799 31,039  
 Pseudo R2 0.024 0.023 0.039 0.022 0.041 0.026 0.034 0.024  
Notes: The dependent variable is the number of hours of forced or planned outages in a power plant. Standard errors are clustered based on Conley. 
Significance levels: *p<0.10, **p<0.05, ***p<0.01.
Fig. 5. Marginal effect of temperatures on the number of hours under outage of European thermal power plants.
droughts affecting outage patterns. In contrast, reservoir and storage 
hydropower plants demonstrate greater resilience, with only minor 
adjustments observed in response to extreme conditions.

Overall, our findings highlight the technology-specific nature of 
climate stressors’ impact on power plant reliability. While extreme 
temperatures primarily drive unforeseen forced outages, the effect of 
hydrological extremes is more nuanced and largely confined to tech-
nologies directly reliant on river flow. The contrast between forced 
and planned outages suggests that adaptive responses depend on the 
predictability of climatic conditions, with operators reacting to sud-
den disruptions while maintaining long-term stability in scheduled 
maintenance.

Our findings have potential applications in climate risk and policy 
assessments. The average construction year of power plants in our 
dataset is 1984, meaning that many of these facilities were designed 
for climatic conditions quite different from today. As climate change 
intensifies, extreme weather events are becoming more frequent and 
severe, underscoring the need for resilient infrastructure to ensure 
a reliable electricity supply. Thermal technologies, especially nuclear 
plants – currently generating over half of Europe’s electricity (Brown 
et al., 2024) – appear particularly vulnerable. The resilience of thermal 
and hydropower generation plants to climate change can be improved 
through technological and organizational adaptations. In terms of ther-
mal generators, particularly nuclear reactors, feasible technological 
measures include retrofitting existing plants with improved cooling 
systems, such as reducing water intake, adopting closed-cycle sys-
tems, or installing enhanced heat exchangers. Converting once-through 
10 
cooling into closed-cycle or hybrid systems, for instance, can limit wa-
ter withdrawal and associated thermal discharges (Kromp-Kolb et al., 
2021). Although these solutions help mitigate thermal sensitivity and 
reduce water usage, they often involve high costs and pose signifi-
cant design challenges. Estimates for the United States suggest that 
retrofitting once-through cooling systems to closed-cycle cooling sys-
tems would cost approximately 500 million USD per nuclear power 
plant and 100 million USD per fossil-fueled plant (EPRI, 2011). For 
new facilities, strategic siting is crucial. Locating plants on the coast 
rather than near rivers or lakes can significantly reduce vulnerability 
to drought conditions, especially for nuclear plants. Currently, about 
40% of nuclear units under construction worldwide are located in-
land, near rivers or lakes (Kromp-Kolb et al., 2021). However, coastal 
siting is not without its own risks, as rising sea levels and more 
frequent storm surges threaten to increase flood hazards (Portugal-
Pereira et al., 2024). Mitigating these flood risks can involve raising 
dykes, bolstering flood barriers, and installing watertight structures, 
with costs ranging from several million to several hundred million 
euros (Kromp-Kolb et al., 2021). Other technical measures that improve 
adaptability to water stress include employing advanced cooling tech-
nologies and drawing on alternative water sources, such as municipal 
wastewater (Epiney et al., 2018). Organizational strategies like ad-
vanced planning, fleet-wide management, and periodic safety reviews 
can further support resilience. Finally, enhanced weather forecasting 
capabilities can help utilities optimize maintenance schedules and op-
erational planning, mitigating the impacts of temperature and water 
availability fluctuations.



A. Sergio and F.P. Colelli Energy Economics 148 (2025) 108549 
From a systems perspective, Europe is progressing with an ex-
pansion of renewable energy sources to reduce the energy sector’s 
carbon footprint. However, renewable sources-particularly wind—are 
also vulnerable to climate risks. Csereklyei et al. (2021) emphasize that 
wind generation is highly susceptible to stormy weather conditions, 
with high winds and storms significantly contributing to outages. Ad-
ditionally, Petersen et al. (2024) find that wind intermittency imposes 
additional costs on the electricity grid, increasing congestion and reli-
ability expenses. To mitigate these risks and enhance supply security, 
renewable plants should be strategically located in regions with lower 
climate risks and supported by an expanded transmission grid. Rec-
ognizing the vulnerabilities of power production and diversifying the 
energy mix is crucial for strengthening Europe’s resilience to power 
disruptions. While large-scale blackouts and widespread load losses 
due to single power plant outages remain unlikely, even temporary 
disruptions can have significant consequences. Generation outages can 
lead to substantial financial losses for producers and drive up elec-
tricity prices, negatively impacting household welfare. In fact, recent 
evidence highlights that nuclear power outages can influence prices 
across multiple EU countries (Rinne, 2019).

Integrating our findings into power dispatch and capacity expansion 
models would allow researchers to simulate how power systems may re-
act to generation outages or efficiency losses caused by extreme events. 
These simulations can reveal changes in plant operations, cross-border 
electricity flows, and the need for extra capacity to meet demand. 
Therefore, our results provide a foundation for future research and 
policy recommendations aimed at mitigating climate risks. This could 
include assessing the economic losses from outages and understanding 
the broader impact of these disruptive events on energy prices.
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