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Sensitivity analysis of the Green Shoulder indices in 
pre-emergence detection of single trees attacked by 
European spruce bark beetle
Langning Huoa, Niko Koivumäkib, Roope Näsib and Eija Honkavaarab

aDepartment of Forest Resource Management, Swedish University of Agricultural Sciences, Umea, Sweden; 
bDepartment of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land 
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ABSTRACT
The application of hyperspectral cameras for forest health monitor-
ing enables precise detection of stress-related changes in vegeta-
tion, such as those caused by spruce bark beetle infestations. In 
a previous study, Green Shoulder Indices (GSIs) were proposed, 
which exhibited high capacities to indicate trees with decreasing 
vitality caused by spruce bark beetle infestation using hyperspectral 
drone images. However, the detection accuracy of these indices 
may be influenced by the selection of various parameters. This 
study conducts a sensitivity analysis of the indices and aims to 
assess how the detection accuracy is impacted by different para-
meter choices. The detectability obtained from the GSIs was calcu-
lated and compared when (1) using the brightest or centremost 
pixels from the crown segments with different thresholds, (2) 
smoothing the spectral curves with different levels, and (3) using 
bands with varying bandwidths. The results showed that the GSIs 
were not sensitive to whether the brightest or centremost pixels 
were used for detection. Stronger smoothing caused the derivative 
peak at 545 nm to shift towards smaller wavelengths when a tree 
was under increasing stress, but the detectability obtained using 
GSIs did not decrease with stronger smoothing. The simplified GSIs 
using three wide spectral bands centred at 490 nm, 530 nm, and 
550 nm (MS GSIs) slightly decreased the detection accuracy com-
pared to narrowband MS GSIs, but the differences were minor, e.g. 
decreased from 0.86 to 0.80 using the index with the highest 
detectability (δGSCR1MS). This study highlights the robustness of 
GSIs against tested factors and implies their potential for forest 
stress monitoring and damage control.
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1. Introduction

The European spruce bark beetle (I. typographus) is one of the most devastating forest 
pests in Europe, which has significantly increased the mortality of Norway spruce 
(Köhl, Linser, and Prins 2020). Detecting infested trees and removing them from forests 
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before a new generation of bark beetle emerges is important for damage control. 
Among the studies achieving early detection before brood emergence, Huo, 
Koivumäki, et al. (2024) used hyperspectral drone images and proposed to use features 
in the green shoulder region (490–550 nm) to form Green Shoulder Indices (GSIs, 
Figure 1). Two types of indices were proposed, one using values from the first 
and second derivative curves, requiring hyperspectral data to calculate (denoted as 
Hyperspectral Green Shoulder Indices, HS GSIs, (Equations 1, 2) and the other type is 
simplified indices, which only require reflectance from three bands to calculate 
(denoted as Multispectral Green Shoulder Indices, MS GSIs, (Eq. 3, 4) Although 
improved detection with higher accuracy was presented when using HS GSIs and 
MS GSIs, some factors need to be further analysed to test the robustness of the new 
methodology.

1.1. Pixel selection strategy

It is essential to assess whether the detection performance is sensitive to crown segmen-
tation and pixel selection strategy. Calculating crown reflectance has been regarded as 
a basic step for spectral analysis. After obtaining the crown segments, different crown 
pixel selection strategies include (1) using pixels from the entire crown (Einzmann et al.  
2021; Huo, Lindberg, et al. 2023; Huo, Koivumäki, et al. 2024), (2) using pixels within 
a certain radius to the crown centre, e.g. 0.5 m (Klouček et al. 2019; Näsi et al. 2015) and 
1 m (Näsi et al. 2018), and (3) using the brightest pixels (Bozzini et al. 2024), e.g. 20% 
brightest pixels (Cessna et al. 2021) and 50% brightest pixels (Bárta et al. 2022). While 
different methods and parameters have been used in different studies, very few have 
analyzed how much the crown pixel selection affected early detection of infested trees. 

Figure 1. Averaged spectral curves of infested trees at four times T1, T2, T3, and T4 at the VNIR (a) and 
green shoulder region (b), and the reflectance (c1), first and second derivative (c2, c3) of healthy and 
infested trees at T4.
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Näsi et al. (2018) discovered that using the average of the three or six brightest pixels 
(0.10 m or 0.12 m resolution) obtained higher spectral separability between healthy and 
infested trees than using all crown pixels. Huo, Yu, et al. (2024) compared the pixel 
selection strategy of using different thresholds to select the brightest or centermost 
pixels. They found that using the brightest pixels (>80% percentile) or centremost pixels 
(e.g. 0.5 m radius) in the tree crowns had higher detectability than using all pixels for 
early-infested-tree detection, but not for trees in later stages of infestation.

1.2. Smoothing effect

The proposed HS GSIs in Huo, Koivumäki, et al. (2024) were calculated from derivative 
curves, which can be affected by hyperspectral smoothing, a step to minimize noise. 
While many vegetation-indices-based methods do not often apply spectral smoothing 
(Bárta et al. 2022; Honkavaara et al. 2020), it is a crucial step for derivative analysis, using 
smoothers such as Whittaker Smoother (Einzmann et al. 2021) and Savitzky-Golay (Huo, 
Yu, et al. 2024). However, smoothing can also change informative spectral features, e.g. 
causing shift effects of the peak or valley point in the derivative curves and causing a loss 
of spectral detail (Tsai and Philpot 1998). Therefore, it is important to understand how the 
spectral features in the green shoulder region shift with different smoothing levels and 
test whether the higher detection rates yielded by HS GSIs require a specific smoothing 
setting.

1.3. Robustness against bigger bandwidth

MS GSIs were proposed by Huo, Koivumäki, et al. (2024) as a simplified version of HS GSIs 
that only need reflectance from three bands, i.e. the Blue band at 490 nm, the Green band at 
550 nm, and the Green Shoulder band at 530 nm. MS GSIs were intended for multispectral 
sensors, which can be much more cost-efficient than hyperspectral sensors and thus can 
cover larger areas without sacrificing spatial resolution. Nevertheless, the tested perfor-
mance in Huo, Koivumäki, et al. (2024) still used reflectance from narrow bands (5.5 nm of 
Full-Width-Half-Maximum, FWHM), while multispectral sensors usually have channels with 
larger bandwidths. Therefore, this study aims to present how bigger bandwidths affect the 
detection. We will test whether the MS GSIs perform worse with larger bandwidths that are 
commonly used by multispectral sensors, e.g. 66 nm and 36 nm for the Blue and Green 
bands in Sentinel-2 images (Huo, Persson, and Lindberg 2021) and drone-based MAIA S2 
multispectral camera (SAL Engineering S.R.L. and TIS S.R.L, Italy) (Huo, Koivumäki, et al.  
2024), and 50 nm and 36 nm for the Blue and Green bands in PlanetScope images.

This study focuses on the sensitivity analysis of the GSIs proposed in Huo, Koivumäki, 
et al. (2024). We used the same dataset and parameters to quantify the detectability of 
infestations except for three steps: pixel selection, spectral smoothing, and different 
bandwidths for GSIs calculation. The aim is to present the robustness of the GSIs against 
those factors and potential factors affecting the detection performance, which are crucial 
to consider before implementing the method for practical monitoring and management 
of forest damage caused by bark beetles.
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2. Materials and methods

2.1. Test area and reference data

The test area was located in Helsinki city central park (60°15′25.200″N, 24°55′19.200″E). 
A 20 ha area dominated by mature Norway spruce trees with ongoing infestation by 
I. typographus was selected for the study. In 2021, 56 healthy and 41 infested trees were 
selected as the samples. The healthy trees were selected based on a field survey conducted 
on 6–9 September 2021 to determine whether the trees were healthy without any attack 
symptoms. The infested trees were selected from visual interpretation of RGB orthophotos 
acquired on 7 September 2021 and 21 June 2022. Trees with green tree crowns on 
7 September 2021 and appeared dead on 21 June 2022 were determined as attacked by 
the first filial generation (F1) while still in the green-attack phase of the infestation.

2.2. Remote sensing datasets

The DJI Matrice M600 hexacopter drone was employed as the platform for the pushb-
room hyperspectral camera, Specim AFX10 VNIR. The AFX10 camera, weighing 2.1 kg, 
was mounted on a Gremzy T7 gimbal. The camera had an integrated computer and 
a high-end GNSS/IMU unit, and had a 15 mm focal length and spectral sensitivity of 
400–1000 nm. With a spectral binning of 2 and spatial binning of 1, it achieved 
a spectral resolution of 5.5 nm, a spectral sampling interval of 2.68 nm, 224 spectral 
bands, and 1024 spatial pixels (Specim, 2022). Details of the camera settings are given 
in Table 1.

Hyperspectral VNIR images were collected at two-week intervals, denoted as T1, T2, T3, 
and T4, from the beginning of the bark beetle attack to the brood emergence of the next 
bark beetle generation (pre-emergence period), and infested trees started to experience 
increasing stress and vitality decline at some point during this time. The drone flights 
were done from approximately 100 m above ground level, and the side overlaps of flight 
lines were 36% at ground level and 20% at treetops. The camera settings and flight 
conditions are listed in Table 1.

The hyperspectral datasets were georectified using the Specim CaliGeoPRO v2.3.12 
software. The post-processed kinematic (PPK) GNSS/IMU solutions were calculated using 
the Applanix PosUAV v 8.6 software for the flight trajectories. The raw image pixel values 

Table 1. Hyperspectral AFX10 camera settings during the flights.
Camera setting

Spatial: Binning; pixels 1; 1024 Flight speed (m/s) 7

Spectral: Binning; bands 2; 224 Flight height (m) 100
FPS; Exposure time (ms) 71.72; 13.69 GSD (cm): tree tops, ground 5.6, 7

Flight details
Date and UTC Time* Illumination conditions Sun zenith Sun azimuth
26 July 2021 08:00–08:11 Sunny (uniform) 48° 131°
09 August 2021 10:10–10:25 Cloudy (quite uniform) 45° 175°
23 August 2021 08:49–09:00 Varying 52° 150°
07 September 2021 10:03–10:12 Sunny (uniform) 54° 175°

*Local time was UTC +03 hours.
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of AFX datasets were transformed to the units of radiance using the Specim CaliGeoPRO 
v2.3.12 software, and georectification was carried out with a digital surface model (DSM) 
of 1 m GSD (Ground Sample Distance) smoothed with a Gaussian filter. The radiance 
images were transformed to reflectances using panels with 25% nominal reflectance.

This study used the same hyperspectral VNIR data as Huo, Koivumäki, et al. (2024), and 
more details can be seen in Huo, Koivumäki, et al. (2024).

2.3. Tree segmentation

Tree crowns were automatically segmented using a marker-controlled watershed algo-
rithm, the same as presented in Huo, Koivumäki, et al. (2024). A single-band image 
(wavelengths at 553 nm) was first used to make a segmentation mask, which was then 
applied to every band. To make the segmentation mask, pixels with the maximum pixel 
values from a smoothed single-band image were used as the markers, and then a marker- 
controlled watershed segmentation was conducted using the SegmentTrees tool in the 
Lidar Toolbox in Matlab (MathWorks, Inc., 2021). Shadow or gap pixels were excluded 
from the segments if the reflectance from the green band was lower than 0.015 (Huo et al.  
2023; Huo, Koivumäki, et al. 2024). After these steps, images of individual tree crowns 
were derived with the markers as the tree tops. Then, health status of the trees shown in 
each image was determined by matching the markers with the location of the reference 
data. Among all segments, 47 healthy and 29 infested trees were successfully segmented 
from all images acquired from T1 to T4 (Please see Huo, Koivumäki, et al. 2024 for a full 
segmentation description.).

2.4. Green shoulder indices

The reflectance of each tree was calculated by averaging certain pixel values from the 
crown pixels (more details in Section 2.2). To match the spectrum from different times, the 
spectra were all normalized by the Frobenius norm, which is the square root of the sum of 
squares of reflectance values in the full spectra. The spectral curves were also smoothed 
by Savitzky-Golay smoothing with polynomial order 2 and frame length 7 (more details in 
Section 2.3). The calculation of Green Shoulder Points is listed in Table 2. Hyperspectral 
Green Shoulder Indices (HS GSIs) and simplified Green Shoulder Indices (MS GSIs) were 
calculated by Equations 1-4. 

Table 2. Abbreviation and calculation of the green shoulder points.
Abbr. Term Calculation

GSIP Green Shoulder Inflection 
Point

The point of maximum slope on the reflectance spectrum in the green 
shoulder range (490–550 nm), where the 1st derivatives show peak values at 
approx. 520 nm and 545 nm.GSIP520 1st derivative of GSIP at 

approx. 520 nm
GSIP545 1st derivative of GSIP at 

approx. 545 nm
GSCP Green Shoulder Curvature 

Point
The point of maximum curvature on the reflectance spectrum in the green 

shoulder range (490–550 nm), where the 2nd derivatives show valley values 
at approx. 530 nm.GSCP530 2nd derivative of GSCP at 

approx. 530 nm
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To show the vitality changes over time and to normalize the indices with the initial status 
of trees, we also normalized the indices by comparing them to the first image acquired at 
T1, as 

where VI refers to the tested indices GSIP545, GSCP530, GSCR1, GSCR2, GSCR1MS, GSCR2MS 

and Ti refers to the image acquired at T1, T2, T3, and T4. These four tested indices should 
be stable for healthy trees over time while increasing with longer durations of the 
infestation.

2.5. Detection evaluation

The detection performance of early infestation using green shoulder indices was evalu-
ated in the same way as Huo, Koivumäki, et al. (2024) to make the results comparable. The 
performance was quantified by detectability, i.e. detection rate, calculated using images 
from all acquisitions T1 + T2 + T3 + T4. We first calculated the 1% or 99% percentile of the 
indices values for the healthy trees at all times T1 to T4, and defined the range as 
a ‘healthy range’. Among the infested trees, the ones with index values outside this 
range were considered detectable, and the proportion of them was treated as ‘detect-
ability’. Detectability represented how well the infested trees could be identified by 
unsupervised classification, e.g. using empirical thresholds.

2.6. Sensitivity analysis

The study tested the robustness of green shoulder indices in changing parameters in 
three steps.

(1) Pixel selection strategy: selecting pixels in the crown segments to calculate the 
crown reflectance. This study tested two ways of averaging crown reflectances. (i) 
averaging the brightest 5%, 10%, 15%, 20%, 25%, 50%, 75%, and 90% pixels, and (ii) 
averaging the pixels that were within 0.1, 0.25, 0.5, . . ., 3.5 m radius from the crown 
top.
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(2) Smoothing effect: denoising the spectral curves using different frame lengths. 
Smoothing algorithms are often used to process the spectral curves to reduce 
noise, but smoothing can often slightly change the signature properties and 
influence the performance of derivatives and indices. Therefore, we tested how 
the Green Shoulder Inflection Points and Green Shoulder Curvature Points shifted 
when using different frame lengths of the Savitzky-Golay smoothing from 3 to 15, 
with larger values making the curves smoother. Then HS GSIs and MS GSIs were 
calculated and tested to determine whether the detectability was stable when 
using different smoothing parameters.

(3) Robustness against different bandwidths: simulating reflectance acquired by multi-
spectral sensors and testing the performance of MS GSIs. This involved computing 
the mean reflectance of bands from the hyperspectral images within bandwidths 
ranging from 5 nm to 70 nm. Detection was evaluated using the same method 
above when using GSCR1MS, GSCR2MS, δGSCR1MS and δGSCR2MS with changing 
bandwidths.

3. Results

3.1. Pixel selection strategy

Overall, the detectability results indicated that infested trees could not be detected at 
T1 and T2 (1–5 weeks after attacks), but detection rates began to increase thereafter 
(Figure 2, Figure 1). After segmentation, we explored which pixels in the tree crown 
were more sensitive to infestation. We first tested whether using only the brightest 
pixels could improve early identification. In general, most GSIs did not show increasing 
or decreasing trends of changing the detectability when using brighter pixels, espe-
cially not at T4 (Figure 2b). Some GSIs showed slightly lower detectability at T3 
(Figure 2b) when averaging with too dark pixels (more than 75% brightest pixels) or 
only averaging too brightest pixels (less than 25% brightest pixels). When averaging 
pixels within specific radii of the tree tops, most VIs yielded lower accuracy with radii 
smaller than 1.75 m at T3 and 1 m at T4 (Figure 2b). Detectability obtained from larger 

Figure 2. Detectability of VIs using the brightest pixels above different percentiles (a) and different 
radii (b) of the tree segments to average reflectance of individual tree crowns, using images from T1, 
T2, T3, and T4. The solid lines are the detectability using VIs, and the dash lines are the detectability 
using the normalized VIs (δVI).
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radii than those mentioned thresholds were very similar. MS GSIs were more robust 
against changing pixel selection. In the following steps, we continued the analysis with 
crown reflectance averaged from 75% of the brightest pixels without radius limitation. 
Note that the crown segments were still used in this step. For example, if a tree had 
a crown radius smaller than 3 m, only the crown pixels were averaged without ground 
pixels or shadows within this range.

3.2. Smoothing effect

With a longer time of being infested, the infested trees showed larger values at GSIP545 

and GSCP530 than the healthy trees, while the differences in GSIP520 values were not 
pronounced. We tested how GSIP545, GSIP520 and GSCP530 shifted when using different 
frame lengths of the Savitzky-Golay smoothing from 3 to 15, with larger values making the 
curves smoother. Results showed that GSIP545 shifted towards smaller wavelengths when 
using frame lengths ≥11, and the larger the frame length used, the more shift GSIP545 had 
(Figure 3(b)). GSCP530 also shifted slightly to smaller wavelengths when using frame 
lengths of 15 (Figure 3(c)). When using frame lengths >15, the smoothing was so strong 
that the minor peak of the first derivative curve at 545 nm disappeared, so HS GSIs could 
not be calculated.

Figure 4 presents the influence of the smoothing technique on the detection accuracy. 
For HS GSIs, the detectability was relatively low when smoothing with a frame length of 
smaller than 5, but when the smoothing frame length was increased from 5 to 15, there 
was no clear trend in detectability, although some fluctuations appeared in T3 (Figure 4(a) 
dashed lines). For MS GSIs, the detectability differed very slightly between no smoothing 
and strong smoothing.

Figure 3. Distribution of GSIP520 (a), GSIP545 (b) and GSCP (c) Points of healthy (blue crosses) and 
infested (red crosses) trees with different frame lengths of 9 (1), 11 (2), 13 (3), and 15(4) for the spectral 
smoothing at T4.
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3.3. Robustness against different bandwidths

Figure 5 presents the effects of varying the bandwidths when computing the MS 
GSIs. We first used the same bandwidths for all three bands, i.e. the Blue band at 
490 nm, the Green Shoulder band at 530 nm, and the Green Peak band at 550 nm. 
We observed large decreases in detectability when bandwidths were larger than 
60 nm (Figure 5(a)). We then fixed the bandwidth of 60 nm and 30 nm at the Blue 
and Green Peak bands, respectively, and changed the bandwidth of Green 
Shoulder band (Figure 5(b)). It did not show a decreasing effect on detectability 
with larger bandwidth. However, when the bandwidth of 60 nm was fixed at both 
Blue and Green Shoulder bands, the decreasing effect appeared with increasing 
bandwidths of Green Peak band (Figure 5(c)). This illustrated the importance of 
having a relatively narrow bandwidth at Green Peak band, but not at the Blue or 
Green Shoulder bands.

GSCR1MS and δGSCR1MS showed higher robustness against larger bandwidths than 
δGSCR2MS and δGSCR2MS. δGSCR1MS had the best tolerance with larger bandwidths and 
only decreased the detectability at T4 from 0.86 to 0.80 when using a bandwidth of 60 nm 

Figure 4. Detectability of HS GSIs (a) and MS GSIs (b) When using different smoothing parameters. 
Detectability at T4 (solid lines), T3 (dashed lines), and T2 (dotted lines) were all presented in the 
figures. A frame length of 0 represents the cases without smoothing.

Figure 5. The detectability of MS GSIs changes with different bandwidths. (a) Changing bandwidths 
for all three bands. (b) Changing bandwidths of the Green Shoulder band while having a fixed 
bandwidth of 60 nm at the Blue and Green Peak bands. (c) Changing bandwidths of the Green 
Shoulder band while having a fixed bandwidth of 60 nm at the Blue and Green Shoulder bands. 
Detectability at T4 (solid lines), T3 (dashed lines), and T2 (dotted lines) were all presented in the 
figures, as the highest detectability shown at T4 around 0.6–0.9, medium detectability shown at T3 
around 0.2–0.4, and low detectability close to 0 at T2. Bandwidth of 0 in the figures refers to the case 
when using reflectances from the original narrow bands.
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for all three bands compared to narrowbands. When using bandwidths of 60 nm, 30 nm, 
and 30 nm at Blue, Green Shoulder, and Green Peak bands, a similar setting as the 
Plantescope images, the detectability was 0.76, 0.86, 0.73, and 0.73 at T4 using the four 
MS GSIs, i.e. GSCR1MS, δGSCR1MS, GSCR2MS, and δGSCR2MS, respectively. The detectability 
was slightly lower than narrow bands, i.e. 0.80, 0.86, 0.83, and 0.83 using the same four MS 
GSIs.

4. Discussion

This study presented the robustness of the GSIs when changing parameters in the 
spectral analysis, including pixel selection, smoothing effect, and different band-
widths. On the contrary to the results from two previous studies showing brightest 
pixels or centremost pixels could improve early detection (Huo, Yu, et al. 2024; Näsi 
et al. 2018), this study presented that the detectability was affected less by pixel 
selection when using green shoulder indices, especially GSCR2MS. This study used the 
same method to segment tree crowns and the same parameters to select pixels as 
Huo, Yu, et al. (2024). Different camera types may cause the opposite results. The 
cameras used in this study were line scan cameras, while the other two studies (Huo, 
Yu, et al. 2024; Näsi et al. 2018) used frame cameras with pass filters that required 
accurate co-registration between bands and photometric stereo imaging systems and 
algorithms. As different light conditions, such as direct or diffuse, could influence the 
distribution of the reflectance within tree crowns, it is expected that using the 
brightest pixels under direct light could improve the detection, while it was not 
pronounced in this study. The results illustrated that whether using the brightest or 
centremost pixels improves early detection could be case-wise, and more studies are 
needed to explore whether differences were caused by different camera types.

This study also explored the shift effects of the Green Shoulder Points (GSPs, 
including GSIP520, GSIP545, and GSCP530) from the stressed trees. Many studies have 
shown that Red Edge Point (REP) shifted to smaller wavelengths after plants got 
stressed and different methods were developed to estimate the wavelength of the 
REP to quantify plant stress (Li, Zhang et al. 2024; Li, Huo, and Zhang 2024). Our 
results showed that, when using smaller frame lengths of the Savitzky-Golay smooth-
ing on the spectral curves, none of the GSPs showed a shift trend during infestation. 
However, GSIP545 shifted to smaller wavelengths when using bigger frame lengths, 
while the shifts of GSIP520 and GSCP530 were still very subtle. Moreover, the bigger 
frame lengths used, the more GSIP545 shifted after a longer infestation time. The shift 
effect under different smoothing parameters was consistent with a similar experi-
ment in another study (Tsai and Philpot 1998).

The shift mechanism and calculation of REP and GSP have many similarities. They 
both shift when pigment contains change and they are both calculated by derivative 
analysis on the peak and valley values. The equation for GSCR1MS (Equation 3) was 
similar to the linear 4-point interpolation of REP (Guyot and Baret 1988), but with 
3-point interpolation instead. There have been different ways of calculating REP, e.g. 
the wavelengths with the maximum 1st derivative in the red-edge region (Dawson 
and Curran 1998), the linear 4-point interpolation method (Guyot and Baret 1988), 
the polynomial fitting method (Pu et al. 2003), the inverted Gaussian fitting method 
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(Bonham-Carter 1988), and the linear extrapolation method (Cho and Skidmore  
2006). Some studies compared the performance and robustness of the REP using 
different calculation methods and found that the REP derived by the linear extra-
polation method was more sensitive and robust to the plant nitrogen stress (Cho and 
Skidmore 2006; Main et al. 2011). Similar to REP, there should be different ways of 
calculating the GSP that can be further developed (Li et al. 2024).

This study also illustrated the robustness of MS GSIs against smoothing effects 
and wider bandwidths. While HS GSIs required certain smoothing levels to have 
stable performance (frame length of 7–15 of Savitzky-Golay smoothing), MS GSIs 
did not require smoothing to yield detectability similar to those after smoothing. 
Even with different smoothing levels, detectability barely changed with MS GSIs. MS 
GSIs were also relatively stable when bandwidth increased to 30 nm − 60 nm, 
similar to the bandwidths of Planetscope and Sentinel-2 images, and many drone- 
based multispectral cameras such as MAIA S2 (SAL Engineering S.R.L. and TIS S.R.L, 
Italy), DJI Mavic 3 M (SZ DJI Technology Co Ltd, China), and MicaSense Altum-PT 
(MicaSense, Inc, US). The results highlighted the big potential of the Green 
Shoulder band at 530 nm to be built in multispectral cameras and the potential 
to apply MS GSIs on images collected from small drones, airships, aircrafts, and 
satellites for large-area mapping.

5. Conclusions

This study contributes to the understanding of sensitivity and optimization of hyper-
spectral (HS) and multispectral (MS) Green Shoulder Indices (GSIs) for detecting trees 
infested by bark beetles before brood emergence. Through a sensitivity analysis, the 
study demonstrated that the GSIs were robust to variations in crown segmentation, 
spectral smoothing, and broader bandwidths. It was shown that using the brightest or 
centremost pixels in tree crowns was unnecessary for achieving optimal detectability. 
Additionally, while stronger spectral smoothing caused the derivative peaks at 545 nm 
to shift towards smaller wavelengths, it did not affect the detectability. Results also 
showed that wider bands on MS GSIs with 30–60 nm bandwidths slightly reduced the 
detectability compared to narrow bands, though the differences were minor. Among 
the tested GSIs, the parameters had a lower impact on the performance of MS GSIs 
than HS GSIs, demonstrating MS GSIs being effective and robust simplifications of HS 
GSIs. Normalization of index values from the first image further enhances robustness 
and accuracy compared to indices without normalization, e.g. δGSCR1MS against 
GSCR1MS. A multispectral sensor for tree health monitoring is proposed with central 
wavelengths at 490 nm, 530 nm, and 550 nm with 10–30 nm bandwidths. Overall, this 
research highlights the potential of GSIs as a valuable tool for early vegetation stress 
monitoring and improves the understanding of the reliability of these indices under 
various conditions.
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