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ABSTRACT: Chemical pollution is one of the fastest-growing
agents of global change. Numerous pollutants are known to disrupt
animal behavior, alter ecological interactions, and shift evolu-
tionary trajectories. Crucially, both chemical pollutants and
individual organisms are nonrandomly distributed throughout the
environment. Despite this fact, the current evidence for chemical-
induced impacts on wildlife largely stems from tests that restrict
organism movement and force homogeneous exposures. While
such approaches have provided pivotal ecotoxicological insights,
they overlook the dynamic spatiotemporal interactions that shape
wildlife−pollution relationships in nature. Indeed, the seemingly
simple notion that pollutants and animals move nonrandomly in
the environment creates a complex of dynamic interactions, many of which have never been theoretically modeled or experimentally
tested. Here, we conceptualize dynamic interactions between spatiotemporal variation in pollutants and organisms and highlight
their ecological and evolutionary implications. We propose a three-pronged approach�integrating in silico modeling, laboratory
experiments that allow movement, and field-based tracking of free-ranging animals�to bridge the gap between controlled
ecotoxicological studies and real-world wildlife exposures. Advances in telemetry, remote sensing, and computational models provide
the necessary tools to quantify these interactions, paving the way for a new era of ecotoxicology that accounts for spatiotemporal
complexity.
KEYWORDS: behavioral ecotoxicology, ethology, field toxicology, landscape ecotoxicology, movement ecology

1. INTRODUCTION
Chemical pollution is a globally pervasive problem. The
contamination of ecosystems with synthetic chemicals is now
considered the fastest-growing agent of global environmental
change, with fears that humanity has exceeded the safe
operating limits of the planetary boundary for novel entities in
the environment.1−3 To date, over 350000 chemicals (e.g.,
plastics, pesticides, pharmaceuticals) are registered for use
worldwide,4 with an increasing number of these substances
being routinely detected in the environment.5 Importantly,
many of these contaminants have been shown to disrupt
wildlife behavior, alter ecological interactions, and shift
evolutionary trajectories.5,6 Given their widespread presence
and capacity to disturb key ecological processes, understanding
how pollutants affect wildlife populations remains a critical
topic of research.
Over the last several decades, increased environmental

monitoring of contaminants has demonstrated that chemicals
are often spatially and temporally structured within the
environment.7,8 In light of this, it has long been acknowledged

that spatiotemporal information must be better integrated into
ecotoxicology in order to accurately predict a species’ local
exposure risk (e.g., landscape ecotoxicology9−11). However,
our current knowledge of chemical pollution-induced effects
on wildlife is largely based on tests performed under simplified
laboratory conditions, where the potential impacts of a
contaminant are often assessed using a single isolated
individual, at one or more set dosages.12,13 In most cases,
these studies aim to achieve homogeneous exposure
conditions�both spatially and temporally�and restrict the
physical space in which the study organisms can move.
Consequently, there is an underlying assumption that the
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effects seen under these conditions would be reflective of
exposures in the wild.10

Like pollutants, organisms are distributed nonrandomly
throughout their environment, and their distribution can
change over time. Recent high-resolution tracking studies on
wild organisms have demonstrated that seemingly similar
species, populations, and even individuals within those
populations often consistently differ in their movement,
space use, and habitat selection,14−17 suggesting that organisms
differ from one another in their likelihood of encountering
pollutants. Furthermore, exposure to chemical pollutants has
itself been shown to alter organismal behavior and movement
rates,6,12,18,19 generating the potential for dynamic feedback
loops between spatiotemporally structured chemical pollutants
and variation in animal movement.20 Given that spatiotempo-
ral dynamics are fundamental to all ecological and evolutionary
processes, understanding how the spatial and temporal
structuring of contaminants and organisms affects variation
in exposure rates, subsequent organismal movement, and how
this may scale up to population-level processes is a vitally
important area for future research.
We contend that accurately measuring and forecasting the

risk of environmental contaminants on wildlife populations
depends on (I) the spatiotemporal variation of pollutants, (II)
the spatiotemporal variation of organisms, and (III) the
relationship between the two. Here, we briefly examine how
spatiotemporal variation in pollutants and individual organisms
may result in differential exposure risk within populations. We
then propose a series of dynamic interactions that could arise
from these spatiotemporal processes and discuss how they may
scale up to have substantial ecological and evolutionary effects.
Finally, we outline promising directions for future research,
emphasizing recent advances in analytical chemistry, animal-
tracking technologies, and computer-based modeling as a
much-needed window into the spatiotemporal elements of
environmental ecotoxicology.

2. POLLUTANTS ARE SPATIALLY AND TEMPORALLY
STRUCTURED WITHIN ENVIRONMENTS

Chemical pollutants are not evenly distributed in the
environment across space or time. First, the source of
contamination plays a significant role in the spatial distribution
of a pollutant. Some pollutants originate from localized point
sources, such as wastewater or stormwater outflows, while
others result from diffuse sources, such as large-scale
agriculture spray-drift. In aquatic systems, factors like water
flow patterns, river discharge, and precipitation levels can
dilute/concentrate and transport these contaminants once they
enter the environment (e.g., ref 21). For example, the
concentration of point-source contaminants typically decreases
with distance from the discharge site, as seen with higher zinc
contamination in waterways near urbanized areas in Vietnam.22

Similar patterns are evident in terrestrial systems, with prior
studies showing that contamination of dust and air with
pesticides is highest near agricultural lands and is diluted
further from the source.23 However, it is important to note that
this is not always the case, particularly when complex
contaminant drift dynamics are involved.23,24 Indeed, nonpoint
source contaminants, such as agricultural runoff and
atmospheric deposition, often show more varied spatial
distributions.25

The matrix through which contaminants move (e.g., soil,
water, or gas), as well as the physical, structural, and molecular

properties of chemicals�such as hydrophobicity, functional
groups, reactivity, and volatility�also determine their
mobility, transformation, persistence, and subsequent distribu-
tion in the environment.25 Additionally, habitat and environ-
mental characteristics like UV exposure, temperature, precip-
itation, soil-sediment composition, prevailing wind direction,
and ocean currents can influence the degradation and dispersal
of contaminants.8,21,26 For example, research has shown that
sediment type is associated with pollutant hotspots in lakes,21

while soil pesticide concentrations can be influenced by
physical soil characteristics26 and local agricultural practices27

in terrestrial systems. Plants, microbes, and animals can further
alter contaminant breakdown and distribution through uptake,
biomagnification, and biotransformation. These processes can
occur across the aquatic−terrestrial interface, where pollutants
may be transferred and even biomagnify through trophic
interactions between ecosystems.28,29

Temporal changes in the spatial distribution of chemical
contaminants are also common. For example, a known hotspot
of wastewater-derived pharmaceuticals and other pollutants in
Lake Geneva, Switzerland, dissipated with a change in thermal
stratification in colder months, resulting in a more homoge-
neous vertical distribution in the water column.8 Similarly,
seasonal variation in the concentration of pesticides and
polycyclic aromatic hydrocarbons (PAHs) has been docu-
mented in the Henares River basin in central Spain, likely due
to seasonality in agricultural practices and changes in sunlight
intensity affecting chemical degradation.30 Temporal changes
can also occur on much shorter time scales. For example,
concentrations of illicit drugs and their metabolites can
increase in wastewater following public events.31,32 In Lake
Qingshan, China, organic pollutant concentrations spiked
immediately following heavy rainfall events before eventually
declining,33 whereas daily variation in the concentrations of
organic and heavy metal pollutants in surface waters of the
Mekong Delta, Vietnam, were linked to water mixing caused
by tidal activity.22

The spatiotemporal variation in exposure to chemical
pollutants has gained increasing attention.9,10 For example, in
the Athabasca Oil Sands Region of Canada, recent research
integrating spatial geographic information systems with
mercury bioaccumulation data�including from amphibians,
bird eggs, plants, and terrestrial and aquatic mammals�has
identified spatial “hotspots” of mercury contamination near
industrial facilities.34 Further, in the Puget Sound Basin
(Pacific Northwest of the United States), coho salmon
(Oncorhynchus kisutch) mortality has been linked to nearby
road density and traffic intensity, a finding attributed to tire
wear particle leachates in urban runoff.35,36 However, much of
this research has focused on relatively large spatial scales to
identify how contaminant exposure varies between species or
populations in different locations across time, with little
attention paid to how the spatial structuring of these chemicals
affects within-population differences in exposure rates, how
exposure can subsequently feed back to alter animal movement
and space use, and how this may influence broader ecological
and evolutionary processes.

3. INDIVIDUALS ARE SPATIALLY AND TEMPORALLY
DISTRIBUTED WITHIN ENVIRONMENTS

It is well-known that the distribution of organisms varies across
both space and time. The movement of animals within their
environment, for example, allows species to track changes in
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resources (e.g., food, breeding sites) and avoid unfavorable
environmental conditions. This can occur at large spatial scales
over long timeframes (e.g., seasonal shifts in distribution
during long-distance migrations), as well as much smaller
scales where organisms vary their within-environment space
use over shorter timeframes. For example, Eurasian perch
(Perca fluviatilis) displayed the highest activity rates and
increased space use during the day,37 while large marine
predators like Atlantic bluefin tuna (Thunnus thynnus) are also
known to migrate hundreds of meters of vertical distance each
day, traversing stratified layers of water with remarkably
different abiotic profiles.38

Individuals within populations also often differ in their space
use and movement dynamics.39 For instance, individual
phenotypes (e.g., body size, body condition, sex, age) have
been found to influence movement and space use in a variety
of species.40−45 Even when controlling for these factors,
individuals within populations still often inherently differ from
one another in their movement.15,46 Indeed, a long-term (8-
year) radio telemetry study tracking over 500 individual fish
from 5 different species showed that inherent individual
differences within populations accounted for more variation in
movement dynamics than differences between the tested
species.47 This intraspecific variation can have key effects on
organismal ecology, with previous research showing relation-
ships between individual movement rates, dietary niche, and
habitat selection.14,16,43 Collectively, this research demon-
strates that individuals within populations exhibit significant
variation in space use and movement, which are closely linked
to niche specialization. Consequently, individual differences
may lead to unique patterns of exposure to environmental
challenges such as pollutants.48−51

4. WILDLIFE−POLLUTION INTERACTIONS IN A
SPATIOTEMPORAL CONTEXT

Given that both pollutants and animals vary in their spatial and
temporal distribution within the environment, an individual’s
movement patterns, habitat preference, and space use will
directly influence its exposure to chemical pollutants. This has
been demonstrated in species such as chinook salmon
(Oncorhynchus tshawytscha),50 Pacific bluefin tuna (Thunnus
orientalis),51 Pacific herring (Clupea pallasi),49 and striped bass
(Morone saxatilis).48 In the wild, an individual’s “realized
exposure” is determined by the alignment between its
spatiotemporal distribution and that of a pollutant, combined
with individual bioaccumulation processes (i.e., the balance of
uptake and loss). Importantly, pollutant exposure can also
create feedback effects that influence future movement and
decision-making, either by disrupting normal behaviors or by
triggering avoidance, attraction, or conformity to polluted
habitats.20,52−57 Below, we conceptualize the dynamic feedback
between the spatiotemporal distribution of contaminants and
wildlife and discuss the likely ecological and evolutionary
consequences (Figure 1).
4.1. Pollutants Impact the Spatiotemporal Distribu-

tion of Organisms and the Nature of Their Exposure.
4.1.1. Wildlife−Pollutant Repulsion-like Interactions. Organ-
isms may actively avoid contaminated areas, with contaminants
directly triggering sensorial repellence or by making environ-
ments less suitable for occupation (i.e., acting as habitat
disrupters).58,59 Such effects can alter the duration and extent
of individual exposure. For example, even at low concen-
trations, copper pollution has been shown to induce spatial

repellence in numerous taxa (including invertebrates, fish, and
amphibians)60−63 and can act as a chemical barrier preventing
recolonization of suitable habitats and potentially isolating
populations.64 Organisms may also employ temporal avoidance
strategies, especially when displacement is impossible, such as
delaying colonization�exemplified by deterred oviposition in
polluted habitats65,66�or entering dormant stages.67 These
avoidance behaviors have been demonstrated in laboratory-
based, multicompartmental exposure systems68,69 and are
influenced by the organism’s ability to detect the pollutant
(sensory physiology), its capacity to escape (e.g., sessile versus
mobile stage, pollutant-induced locomotion impairment), and
also environmental features such as resource availability,
interspecific interactions, and the characteristics of the
chemical exposure (e.g., chemical properties, concentration,
and duration).70 An important aspect to consider when
evaluating risk is that the repellent nature of a substance

Figure 1. (A) Spatial layers that will influence the exposure risk and
outcomes for wildlife. (B) Broad spatiotemporal wildlife−pollutant
interactions and possible effects on the individual movement of fish
from a hypothetical population. (C) Simple framework outlining
potential pathways and dynamic feedback mechanisms between
spatiotemporal variation in pollutants and animals that are described
in this paper (the shading of the arrows helps represent the spatial
layers that are influencing one another). The “seasonal” symbol in the
top right-hand side of (C) represents the importance of changing
environmental variables in determining spatiotemporal wildlife−
pollutant interactions (e.g., via effects on habitat characteristics [ice
versus free-flowing river], contaminant discharge rates [seasonal
changes in agricultural practices or rainfall patterns], individual space
use [seasonal differences in foraging areas or dispersal]).
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may not be directly correlated with its toxicity, meaning that a
highly repellent contaminant could have low toxicity and vice
versa.71 Moreover, because pollutant-induced spatial avoidance
occurs at sublethal concentrations or concentrations too low to
produce detectable physiological effects, environmental risk
assessments based solely on these measures may overlook
important shifts in population and community dynamics (see
Section 4.2).

4.1.2. Wildlife−Pollutant Attraction-like Interactions.
While many chemical contaminants are expected to be
repellents, some compounds can attract wildlife by interfering
with sensory systems or by altering environmental cues used
for habitat selection.72 This can result in “sink habitats” or even
“ecological traps”, whereby organisms select suboptimal
habitats where their exposure to harmful substances is
heightened, and their fitness is consequently reduced. Some
pesticides, for example, resemble insect pheromones, leading
insects to mistake these chemicals for mating signals.73

Similarly, heavy metal pollutants can disrupt sensory system
function, preventing organisms from detecting olfactory signals
that might otherwise be avoided (e.g., predator cues).74

Furthermore, contaminated areas can be associated with
modified local habitat characteristics (e.g., temperature,
nutrient availability, sediment type), inadvertently making
them more attractive to certain species. Wastewater effluents,
for example, may attract fish due to nutrient-rich discharge and
warmer temperatures, increasing their exposure to harmful
contaminants.75,76

4.1.3. Pollutant-Induced Behavioral Shifts. In addition to
repulsion from or attraction to contaminated sites, chemical
pollutants may also alter the spatial distribution of organisms
and their subsequent exposure via effects on organismal
behavior (i.e., without a spatially explicit response to the
contaminant itself). Small- and large-scale movement patterns
are sensitive to contaminants that affect neurological function,
metabolism, and endocrine regulation, such as psychoactive
pharmaceutical pollutants,52,55,56,77 endocrine-disrupting
chemicals,53,54,78,79 and pesticides.54,80,81 As a small-scale
example, chemicals can disrupt biological rhythms of exposed
organisms, altering normal day−night activity cycles.82,83 As a
larger-scale example, contaminants can alter travel distances,
migration dynamics, and stopover durations.84−86 Contami-
nant-induced shifts in movement can, in turn, lead to altered
subsequent exposures to the same or other pollutants (i.e.,
positive or negative feedback loops), by affecting the likelihood
of encountering pollutants as well as the duration of exposure.
Further, contaminant-induced effects on other behavioral traits
may also influence the spatial distribution of organisms and
their probability of future exposures. As an example, risk
landscapes87 and social resistance (e.g., territoriality, within-
group preferences)88 are known to be major barriers to
movement in many species, and there is evidence that many
chemical contaminants can modify behaviors that generate
these barriers, such as territoriality, risk-taking, aggression, and
social behaviors.54,79,89−91

4.1.4. Individual-Specific Effects. Trait variation among
individuals within a population may also determine the nature
of individual exposure. For instance, several demographic
characteristics (e.g., age, sex, body condition, reproductive
status) are known to influence the spatial distribution of
organisms in the environment (see Section 3). Similarly,
individual differences in personality (e.g., foraging propensity,
risk-taking behavior, sociality) and experience within pop-

ulations can also mediate movement rates, space use, and
habitat selection,15,92,93 suggesting that some individuals may
be more likely to encounter contaminants than other
individuals in the population.
Moreover, even when organisms are exposed to the same

contaminant concentrations for the same duration, individual
responses may still differ. Genetic and physiological differences
can influence individual sensitivity to pollutants and their
subsequent behavioral response. For instance, exposure to
environmental levels of an antidepressant over two years
homogenized movement behavior among individual male
guppies (Poecilia reticulata), but no shift in the variation of
female movement phenotypes was observed.94 Variation in
metabolic rate, enzyme activity, and hormone regulation can
also affect how contaminants are processed and detoxified,
influencing the stress signals perceived by organisms and
leading to the avoidance of, or attraction to, certain areas.95

Other traits have also been shown to influence the sensitivity of
organisms to pollutants. Indeed, independent of body mass,
social status influenced the bioaccumulation of the psycho-
active pharmaceutical pollutant oxazepam and subsequent
aggressive behavior in exposed brown trout (Salmo trutta).96

Taken together, this research highlights that where pollutants
are spatially structured within an environment, individual
differences in phenotypic traits (e.g., body condition,
physiology, personality) likely mediate the nature and extent
of exposure in the wild, and that this exposure can
subsequently feedback to affect these same phenotypic traits.
To our knowledge, the potential for individual phenotypic
traits to influence exposure risk, moderate individual
sensitivities, and feedback to influence those same phenotypes
has not been empirically assessed.
4.2. Ecological and Evolutionary Consequences.

Below, we illustrate several potential ecological and evolu-
tionary consequences of spatiotemporal interactions between
pollutants and organismal movement at the individual,
metapopulation, and community levels. This overview is not
intended to be exhaustive but instead highlights several key
outcomes of spatiotemporal wildlife−pollution interactions
that are seldom considered in ecotoxicology. It is also worth
noting that many of the highlighted consequences likely have
effects across multiple biological and spatial scales, which, for
the sake of simplicity, we have not specifically illustrated here.
While we have focused on movement, space use, and behavior,
we acknowledge that many pollutants can exert a variety of
ecological and evolutionary effects via other mechanisms (e.g.,
mutagenesis, direct mortality, disrupted organismal develop-
ment, reproductive changes),97,98 which can also contribute to
potentially adverse outcomes for wildlife populations.

4.2.1. Individual-Level Outcomes. Likely consequences of
pollution-induced changes in animal movement and space use
are alterations in the rate and nature of conspecific encounters
(i.e., intraspecific interactions). For example, pollutants that act
as repellents or attractants may decrease or increase intra-
specific encounter rates via changes in local population density.
Likewise, pollutants that increase movement rates may
similarly heighten the likelihood of encountering conspecifics
(and vice versa). Changes in encounter rates and local
population densities could lead to shifts in the strength/
direction of both natural and sexual selection within the
population via changes in resource (e.g., food and shelter)
competition, disease, and social information transmission, as
well as altered mating dynamics (e.g., inter- and intrasexual
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competition). For example, in brown trout, methamphetamine
(a common psychoactive pollutant) has been reported to cause
a spatial attraction of individuals to methamphetamine-
polluted zones,99 while also reducing individual move-
ment99,100 and increasing conspecific aggression,101 in
combination creating conditions that would likely disrupt the
local ecological interactions of brown trout populations. In
addition, pollution-induced changes in wildlife movement and
space use could alter interspecific interactions, including
changes in predation,102 pollination,103 and parasitism. For
example, mummichog killifish (Fundulus heteroclitus) from
metal-contaminated environments exhibit slower movement
rates, resulting in a decreased ability to capture prey and an
increased susceptibility to predation themselves.102

These interactions may be further complicated, where
individuals differ in their response to the pollutant, thus
altering the distribution of movement phenotypes within the
population. Where such traits are associated with fitness (e.g.,
via predation susceptibility), this will reduce the variation
available for selection to act upon within the population.
However, variation in pollutant sensitivity is not necessarily

fixed; selection on toxicity-mediating genes can result in
populations evolving tolerance (or resistance) to chemical
pollutants, as seen in killifish (Fundulus sp.)104,105 and
numerous other species that have evolved tolerance to
pesticides.98 It may seem like an overwhelming challenge for
ecotoxicology to incorporate these complex interactions
between individual physiological sensitivity, pollution-induced
changes in movement traits, organismal fitness, and adaptive
tolerance in spatially and temporally dynamic environments,
but in many ways, it is necessary if we are to accurately predict
and assess the impacts of pollution on wildlife.

4.2.2. (Meta)population-Level Outcomes. Pollutant-in-
duced changes in movement and space use also have clear
consequences for the ecoevolutionary dynamics of (meta)-
populations. While avoiding exposure can be individually a
more advantageous strategy than enduring the costs of
chemical toxicity and depuration,106 avoidance behavior also
acts as a barrier to movement, resulting in habitat
fragmentation, potentially affecting gene flow and population
connectivity.58,64 Even in the absence of direct avoidance,
where pollutants alter dispersal-related traits�as seen in

Figure 2. Recently developed and established methodological and technological approaches that can facilitate the study of the spatiotemporal
dynamics of wildlife−pollution interactions: wildlife−pollutant positioning;68,120−122 pollutant positioning;123−126 pollutant modeling;127−129
modeling;130 wildlife modeling;131,132 wildlife positioning.133−135 Approaches that can combine all of these different techniques (e.g., gray center of
the Venn diagram)�such as agent-based models that incorporate empirical data from the spatiotemporal distribution of both wildlife and
pollutants�may be particularly promising in predicting the outcomes of spatiotemporal dynamic wildlife−pollutant interactions.
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freshwater isopods (Asellus aquaticus) following sublethal
insecticide exposure107 �there are likely changes in
population growth rates via emigration and immigration and
subsequent gene flow. For several bat star (Patiria miniate)
populations, pollution from stormwater runoff and wastewater
effluent has been shown to act as a barrier to dispersal and
gene flow, leading to reduced genetic diversity at highly
contaminated sites.108

Differential sensitivity to pollutants may also influence gene
flow between populations via specific changes in allele
frequencies rather than changes in the absolute number of
migrants. Research in alpine whitefish (Coregonus sp.) and
marine invertebrates (Peramphithoe parmerong) has demon-
strated genetic variation in tolerance to pollution for
endocrine-disrupting pollutants109 and copper pollution,110

respectively. In cases where tolerance and avoidance of
pollutants are genotype-dependent, this may lead to
pollutant-induced spatial sorting of genotypes (and pheno-
types). For instance, chemical pollutants were found to serve as
genotype-dependent dispersal barriers in Mediterranean
mussels (Mytilus galloprovincialis), leading to substantial
population genetic differences over short distances.111

Conversely, shifts in space use due to preferences (either
direct or indirect) for highly contaminated sites (e.g., refs 75
and 76) or avoidance of polluted areas (e.g., ref 8) could also
increase interbreeding and hybridization between previously
isolated groups, resulting in greater genetic diversity within
populations.

4.2.3. Community-Level Outcomes. Pollutant-induced
changes in movement and space use at the individual level
can scale up to impact community and ecosystem dynamics.
For example, shifts in predator−prey interactions caused by
chemical pollutants (e.g.,refs 55 and 102) have been shown to
restructure food webs.112 Contaminants can also transfer
through trophic interactions and even biomagnify, leading to
complex exposure patterns for species across ecosystems.113,114

Furthermore, species often exhibit varying sensitivities to
chemical pollutants (e.g., ref 115), and in some cases,
community composition may moderate responses to con-
taminant exposure.115,116 For instance, zebrafish (Danio rerio)
and freshwater shrimp (Atyaephyra desmarestii) demonstrated
different spatial avoidance behaviors when tested independ-
ently versus together in response to copper pollution.116

5. WAYS FORWARD
Predicting the outcome of dynamic interactions between
pollutants and organisms across different scales of biological
complexity is inherently challenging and requires detailed
knowledge of both organism- and environment-specific factors.
Nevertheless, it is imperative to advance research on
spatiotemporal exposure risks to accurately predict the
ecological and evolutionary impacts of chemical pollution.
While ecotoxicology has a relatively long history of conducting
laboratory-based contaminant attraction/avoidance stud-
ies,117−119 spatial and temporal variation are still not widely
incorporated, and the scope of these studies has often been
limited. For instance, few studies have investigated whether
individual variation within populations in behavioral and
movement traits predicts an organism’s level of attraction to, or
avoidance of, contamination.
To advance this field, it is necessary to incorporate the

spatiotemporal variability of pollutants and the movement
patterns of wildlife into existing research frameworks as well as

increasing crosstalk between related disciplines. In this regard,
recent methodological and technological advancements in
ecotoxicology, analytical chemistry, and animal tracking, as well
as artificial intelligence and computational modeling, provide
unprecedented opportunities to address these complexities
(Figure 2). Using these recent advancements, we outline a
three-pronged approach to guide future research in this area: in
silico modeling, laboratory experiments, and semifield and field
studies. It is important to highlight that such approaches may
not be equally applicable to all environmental matrices. For
example, in silico modeling and field-based experiments may be
much more feasible in small freshwater lentic ecosystems (e.g.,
lakes) when compared to large marine systems (e.g., seas and
oceans). Nevertheless, we believe that such approaches may
provide insights into the nature of spatiotemporal interactions
between organisms and pollutants across a range of habitat
types.
5.1. In Silico Tools. While verbal and conceptual models

are a key first step in describing dynamic interactions between
contaminants and organisms (Figure 1), computational
approaches are required to predict the outcomes of such
interactions over time.
Agent-based modeling (ABM) is a key tool to investigate

how wildlife will respond to changing environmental
conditions�including contaminants�given that these models
are able to incorporate the adaptive movement ecology of
animals inhabiting a changing landscape.136 As an example,
ABM approaches incorporating individual movement and life-
history traits in combination with pesticide application
schedules have been used to predict spatial patterns of
pesticide exposure, as well as subsequent population
dynamics.137 Despite their utility, ABMs have rarely been
applied to understand complex interactions and feedback
between spatiotemporally dynamic contaminants and animal
movement, particularly in terms of within-population variation
in movement. Such approaches are increasingly feasible given
the increase in modern computing power and the development
and refinement of contaminant fate models.129 Integrating
spatial and temporal information on contaminant concen-
trations at a local scale into ABM approaches will be critical in
predicting how individual variability in movement and
behavior affects exposure to contaminants, providing insights
into the potential long-term effects on population dynamics.
However, these ABMs need to be parametrized and

validated based on empirical data, emphasizing a need for
more research into the spatiotemporal variation of contami-
nants in natural systems. To this end, in silico tools, such as
advanced data-driven computational models, supervised
machine learning algorithms and artificial intelligence tools,
molecular networking, and chromatographic retention time
prediction, have been developed to help identify and predict
the effects of thousands of potential contaminants that are
detected in environmental and biological matrices using high-
resolution mass spectrometry (HRMS).138−141 With such
approaches, concentration,142 toxicity,143 and endocrine-
disrupting activity144 can be derived from the chemical
structure.138,145 Feature-based molecular networking
(FBMN) is a high-throughput tool that can identify related
chemicals in a sample, indicating potential transformation or
degradation pathways of labile substances.146 These in silico
analytical chemistry tools, coupled with high sensitivity
profiling methods, will be essential if we wish to determine
the spatial and temporal scale of pollution at a high resolution.
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5.2. Laboratory Experiments. Conventional studies in
ecotoxicology typically expose organisms to contaminants
within spatially restricted compartments (e.g., containers,
aquaria) and/or under temporally consistent exposure
conditions (acute exposure, 24−96 h; chronic exposure,
several days to months12,13). While useful for testing the
toxicity and concentration thresholds of different chemicals,
this approach limits the organisms’ ability to exhibit their full
range of behaviors, such as the capacity to move away from
contaminated areas. Many laboratory studies have demon-
strated that animals actively avoid contaminated habitats when
given the option.147−149

To overcome these limitations, multicompartmental are-
nas69,117 and steep gradient assays150 offer effective alternative
designs. These designs incorporate ecological complexity into
laboratory experiments while allowing for more spatial and
temporal heterogeneity in exposure conditions.151 By combin-
ing these experimental designs with consumer-grade video
cameras and freely available animal tracking software,
researchers can obtain high-resolution (spatial and temporal)
measurements of individual and group behaviors�see Bertram
et al.12 for a list of tracking software options. This approach
also allows for the quantification of individual variation in
movement and within-population variation in exposure risks
under different ecological and chemical contaminant scenarios,
which are ideally informed by spatially explicit field sampling
(Section 5.3).
To further refine these experiments, the integration of

environmental variables that mimic real-world conditions is
crucial. For example, creating gradient-based exposure
scenarios that simulate the gradual increase or decrease of
contaminant concentrations across a landscape can reveal how
animals detect and respond to changing contamination
levels.64 Similarly, incorporating dynamic elements such as
fluctuating contaminant levels or introducing other ecological
pressures (e.g., predation risk) can offer insights into how
animals balance their responses to multiple stressors, providing
a more realistic prediction of their responses in natural
environments.69,152 Further, incorporating mixture exposures
based on observed environmental (co)occurrences and
predicted biological interactions (e.g., via slow-release chemical
mixture implants153 or exposure to real-world wastewater
effluents154) would more accurately reflect environmental
conditions and could elucidate the potential interactive effects
of different contaminants.
In all cases, it remains essential for future research in this

area to adhere to fundamental principles of ecotoxicology
wherever possible.12 This includes aspects of sound exper-
imental design and quality control such as adequate replication
and standardization, the use of appropriate controls and study
designs, accurate measures of exposure concentrations and
relevant environmental parameters, and the use of appropriate
statistical techniques. Incorporating such principles will be key
in enhancing research credibility and reproducibility, which is
particularly relevant for research that aims to inform chemical
risk assessments and regulation.12

5.3. Field Studies. Laboratory studies are invaluable for
understanding the underlying mechanisms of contaminant
effects and rapidly generating predictions that can be applied
to real-world scenarios. However, the outcomes of laboratory
experiments often diverge from field observations due to the
inherent limitations of replicating the complexity of natural
systems within controlled environments.155−157 Thus, spatially

explicit water sampling and field studies are necessary for
characterizing complex exposure scenarios and monitoring the
spatial and temporal overlaps of chemical contaminants and
animal populations.
Advancements in mass spectrometry libraries and computa-

tional tools, combined with spatially explicit sampling regimes,
are improving the identification and characterization of
contaminant distributions in the field.127 These tools allow
researchers to capture the fine-scale spatial and temporal
variability of contamination in nature, offering a more precise
and comprehensive understanding of the true exposure risks to
wildlife populations. With that being said, the process of field-
validated ecotoxicological experiments is costly in terms of
financial commitment and personnel time. Therefore, the
careful selection and prioritization of chemicals that are
predicted to have environmental implications are key to
reducing these costs. As mentioned above, in silico modeling
can be used to help select chemicals with predicted toxicity and
to highlight transformation products that may also contribute
to the overall risk to environmental health. To elucidate
potentially harmful substances from complex environmental
matrices, effects-directed analysis is a powerful technique that
has benefited by improved HRMS techniques to simulta-
neously identify chemicals and perform in vitro toxicity tests.158

Moreover, advances in remote-sensing technologies, such as
acoustic telemetry and global positioning systems (GPS), have
revolutionized our ability to quantify the behavior and
movement of animals in their natural habitats.17 These tools,
when combined with spatially explicit field sampling, enable
researchers to map the spatial distribution of animal
populations, track their movements, and assess their potential
exposure to contaminants. Targeted exposure devices, such as
slow-release implants, are another emerging tool that can be
used to study exposure under field-realistic settings.86,121,153

Targeted exposure devices can be used to isolate chemical
exposure to specific individuals in the field, while holding
spatial exposure elements constant (i.e., the animal remains
homogeneously exposed while still moving freely) to
disentangle complex wildlife−pollutant spatial interactions.121
In combination, such an approach offers unprecedented
opportunities to understand the impacts of contaminants on
(meta)populations and community-level processes by deliver-
ing near-continuous data on individual movements and
ecological interactions (e.g., social dynamics, predator−prey
relationships).159−161

Here, we categorize pollutant−animal spatial interactions
and conceptualize a simple dynamic feedback model that may
result from such interactions. We identify potential ecological
and evolutionary consequences and highlight key areas of
uncertainty. We recognize that incorporating these spatial
interactions in experimental and observational work generates
logistical challenges but emphasize that it is becoming ever
more achievable, with advances in in silico modeling and
prediction techniques, artificial intelligence, and laboratory-
and field-based animal-tracking technologies, as well as the
rapid advances in high-throughput and sensitive analytical
chemistry approaches. We contend that considering and
incorporating wildlife−pollutant spatiotemporal interactions
in ecotoxicology will improve our ability to assess and predict
the risk of contaminants to wildlife.
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