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ABSTRACT
To better understand the increasing human impact on the water cycle and the feedbacks between 
hydrology and society, the International Association of Hydrological Sciences (IAHS) organized the 
scientific decade “Panta Rhei – Everything Flows: Change in hydrology and society” (2013–2022). A key 
finding is the need to use integrated approaches to assess the co-evolution of human–water systems in 
order to avoid unintended consequences of human interventions over long periods of time. Additionally, 
substantial progress has been made in leveraging new data sources on human behaviour, e.g. through 
text mining of social media posts. Much has been learned about detecting hydrological changes and 
attributing them to their drivers, e.g. quantifying climate effects on floods. To achieve further progress, 
we recommend broadening the understanding, the discipline and training activities, while at the same 
time pursuing synthesis by focusing on key themes, developing innovative approaches and finding 
sustainable solutions to the world’s water problems.
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1 Introduction

The feedbacks between hydrology and society have accel-
erated in recent decades, highlighting the need for the 
hydrological community to better understand the interac-
tions between these systems (Montanari et al. 2013, 
Brondizio et al. 2016). Climate change, land use and 
socio-economic changes significantly alter the water cycle, 
leading to changes in water availability, quality and distri-
bution, and related hazards. For instance, flood and 
drought impacts have already significantly increased in 
many regions and are expected to increase further (IPCC 
2012, 2022). Freshwater scarcity is becoming a major limit-
ing factor for societal development and security (United 
Nations 2018, GCEW 2023). Thus, it is important to 
understand, assess, predict and manage these accelerating 
changes in order to mitigate their adverse impacts and to 
ensure sustainability (Montanari et al. 2013, Ceola et al. 
2016, McMillan et al. 2016, Di Baldassarre et al. 2019). This 
review aims to present key scientific advances on change in 
hydrology and society, with a focus on the feedbacks 
between humans and water, particularly over decadal to 
centennial time scales.

1.1 The IAHS scientific decade: Panta Rhei – Everything 
Flows: Change in hydrology and society

The overall aim of the International Association of 
Hydrological Sciences (IAHS) science decades is to coordinate 
efforts in order to accelerate research progress on a particular 
hydrological problem. The success of the scientific decades 
PUB – Predictions in Ungauged Basins 2003–2012 and Panta 
Rhei – Everything Flows: Change in hydrology and society 
2013–2022 led to the current scientific decade, “Science for 
solutions: Hydrology Engaging Local People IN one Global 
world (HELPING),” 2023–2032 (Arheimer et al. 2024). At the 
close of the PUB scientific decade (Blöschl et al. 2013, 
Hrachowitz et al. 2013), the IAHS community started a global 
discussion to identify the most relevant societal challenges to 
shape the next IAHS scientific decade. The discussions on a 
blog, which attracted thousands of visits and many comments, 
converged on the understanding that “change” was the key-
word for hydrological sciences in the 21st century and that a 
broad perspective on global change is necessary. The new 
decade should highlight the key role of hydrology in predicting 
future trends of environmental dynamics shaped by human– 
water feedbacks (Montanari et al. 2013).
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To emphasize the focus on change, this decade was called 
“Panta Rhei – Everything Flows: Change in hydrology and 
society” after the aphorism attributed to the Greek philosopher 
Heraclitus of Ephesus, which conveys the idea that nature and 
societies are continuously changing. Supporting a community- 
based bottom-up organization, an open call for Working 
Groups (WGs) was issued, which resulted in over 30 groups 
that initiated joint studies, scientific papers, conference ses-
sions and workshops within the frame of the IAHS scientific 
decade. An overview of the Panta Rhei working groups and 
their cooperation with IAHS commissions (Fig. 1) emphasizes 
the variety of scientific challenges being addressed and the 
diversity of approaches to solving them.

During the decade, the substantial increase in the network 
of hydrologists and scientists in a range of disciplines, includ-
ing social sciences, stimulated large-scale cooperation based 
on the exchange of knowledge and data, which was supported 

by the emergence of the open science paradigm (UNESCO 
(United Nations Educational Scientific and Cultural 
Organization) 2021; Cudennec et al. 2022b, Hall et al. 
2022). Examples are the Panta Rhei opinion paper series in 
the Hydrological Sciences Journal (Kreibich et al. 2017) and 
the international collaborative effort to collect and analyse 
the Panta Rhei benchmark dataset of paired events of floods 
and droughts, to which more than 90 scientists contributed 
(Kreibich et al. 2022b, 2023). Remarkable progress in under-
standing interconnected change in hydrology and society has 
also been made due to relevant research projects and pro-
grammes supported by governmental agencies and funding 
organizations. Furthermore, the long-term partnership of 
IAHS with several agencies of the United Nations (UN) and 
the UN Water coordination mechanism allowed strong 
synergies with, and scientific inputs to, multilateral efforts, 
including the implementation of Sustainable Development 

Figure 1. Links and cooperation between the Panta Rhei working groups and the IAHS commissions. International Commission on Snow and Ice Hydrology (ICSIH), 
International Commission on Continental Erosion (ICCE), International Commission on Groundwater (ICGW), International Commission on Tracers (ICT), International 
Commission on Coupled Land-Atmosphere Systems (ICCLAS), International Commission on Statistical Hydrology (ICSH), International Commission on Water Quality 
(ICWQ), International Commission on Remote Sensing (ICRS), International Commission on Surface Water (ICSW), International Commission on Water Resources 
Systems (ICWRS).
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Goal (SDG) 6: “Clean Water and Sanitation” and interlin-
kages within Agenda 2030 (e.g. Young et al. 2015, Cudennec 
et al. 2020, 2022a, Mahé et al. 2021, Dixon et al. 2022, ISC 
2023).

1.2 The three domains of Panta Rhei research

The Science Plan of Panta Rhei organized the scientific work 
around three targets and six science questions (Montanari et 
al. 2013). The three targets are closely related to the three 
domains: (1) socio-hydrology (Target 1), (2) predictions 
under change (Target 2), and (3) integrated water resources 
management (IWRM, Target 3), as Panta Rhei aimed to bridge 
past developments with new opportunities (Fig. 2).

The domain of socio-hydrology attempts to understand the 
complex interactions and feedbacks between human and water 
systems (Sivapalan et al. 2012). It contributes to deciphering 
hydrological change and its interaction with societies (Target 1 
in Montanari et al. 2013). The innovation of socio-hydrologi-
cal research is to model the co-evolution of human–water 
systems with an integrated approach to better understand the 
above-mentioned feedbacks and unintended consequences of 
human interventions over long periods of time. Along with 
empirical research across scales and places, stylized models 
based on differential equations are promising tools that can 
help explore socio-hydrological dynamics and contribute to 
theory development (Di Baldassarre et al. 2015). In addition, 
socio-hydrology draws on tools developed in research on 
socio-ecological and complex systems to expand socio-hydro-
logical knowledge (Troy et al. 2015). With these tools, how-
ever, predictability is debatable in view of the contingent 
nature of some environmental and societal processes, as well 
as the importance of retroactive loops and the possible pre-
sence of tipping points (Sivapalan and Blöschl 2015, Bai et al. 
2016). The goal is, rather, the projection of alternative, plau-
sible and co-evolving trajectories of the socio-hydrological 
system, which may help stakeholders identify safe or desirable 

operating spaces (Srinivasan et al. 2017a). As such, socio- 
hydrology aims to be a use-inspired science to inform the 
complex water sustainability challenges faced in the 
Anthropocene (Sivapalan et al. 2014, Sivapalan and Blöschl 
2015, Di Baldassarre et al. 2019) and be applied to policy-
making (Troy et al. 2015).

The domain of predictions under change aims to under-
stand and model changes in hydrological systems in 
response to various environmental and human-induced dri-
vers. It improves the estimation and prediction of hydrolo-
gical processes under change, including design variables for 
flood and drought risk mitigation (Target 2 in Montanari et 
al. 2013). The drivers of change include climate change, river 
regulation, land use change, water abstraction or storage, 
and others (e.g. Milly et al. 2008). Detection and attribution 
of past changes help to understand trends (IPCC 2022). 
While detection demonstrates that a change has been 
observed and is statistically significantly different from 
what can be explained by natural variability, attribution 
associates detected changes with the corresponding drivers 
and rules out alternative explanations that are not causally 
associated with observed outcomes (Merz et al. 2012). On 
this basis, models and methods are developed to predict 
future changes in hydrological systems under changing con-
ditions, supporting decision making in the management and 
planning of water resources.

The domain of integrated water resources management 
(IWRM) is a holistic approach to managing water resources 
that considers the multiple uses and users of water within a 
given area (Biswas 2004, Uysal et al. 2024). It has high societal 
relevance and, therefore, aims for iterative exchanges among 
science, technology, and societies. It brings science into prac-
tice, including policymaking and implementation (Target 3 in 
Montanari et al. 2013). IWRM aims to ensure that water 
resources are managed in an equitable, sustainable and effi-
cient manner that considers both social and environmental 
aspects. Key principles of IWRM include a focus on basin- 

Figure 2. Panta Rhei research encompasses three domains – socio-hydrology (SH), predictions under change (PUC), and integrated water resources management 
(IWRM) – to achieve its three targets (figure adapted from Montanari et al. 2013, Thompson et al. 2013).
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level planning, stakeholder participation, the integration of 
water management across different sectors, and the considera-
tion of social, economic, and environmental factors. The 
approach also emphasizes the need for adaptive management, 
which involves continuously monitoring and assessing water 
resources, and adapting management strategies as needed to 
meet changing conditions (Medema et al. 2008, Kreibich et al. 
2014).

This review is organized along the Panta Rhei science ques-
tions (Montanari et al. 2013), as shown in Table 1. The aim is 
to present scientific progress and to illustrate it using specific 
research findings from the scientific decade.

As a basis for this review, a collection of 351 key scientific 
papers that contribute to answering these science questions 
was compiled (see Supplementary material). The spreadsheet 
for the collection of key papers (see Supplementary material) 
has been made publicly available and the authors of the present 
article have each contributed up to five key papers. The collec-
tion also contains a brief summary of the most important 
results and scientific advances for each paper, as well as infor-
mation on which of the scientific questions of Panta Rhei the 
paper contributes to answering (see Supplementary material). 
With 58 to 89 papers per question, i.e. with shares between 
17% and 25%, the distribution of papers among the questions 
to be answered is fairly even. This collection demonstrates the 
recent progress by many experts in the field of change in 
hydrology and society worldwide.

2 Scientific progress on monitoring and data analysis

Improving our understanding of the long-term co-evolution of 
hydrological systems has required associating geophysical and 
anthropogenic processes that have historically been observed 
at disparate temporal, spatial, and social scales. Improving data 
interoperability and accessibility to enable interdisciplinary 

research was therefore an essential component of the Panta 
Rhei scientific decade. Many initiatives and approaches have 
improved data accessibility, discovered new, unconventional 
data, developed innovative approaches to data integration and 
analyses, and used citizen science, thus contributing to answer-
ing the science question “How can we advance our monitoring 
and data analysis capabilities to predict and manage hydro-
logical change?” The Panta Rhei collection of key scientific 
papers contains 58 papers (17%) that contribute to answering 
this question (see Supplementary material).

2.1 Improved data accessibility

Over the past decade there have been major innovations in data 
collection, in the combination of disparate data into easy-to-use 
large-sample datasets, and in data sharing and open-access 
initiatives that improved the accessibility of hydrological and 
socio-economic data. For instance, flow monitoring at thou-
sands of stations over decades has been the basis for detecting 
changes in high flows and seasonality that were attributed to 
climate change across Europe (Hall et al. 2014, Blöschl et al. 
2019b) and globally (Wang et al. 2024). New data have enabled 
advances in detecting human influence on river flow, for 
instance by showing that water abstractions aggravate droughts 
(Van Loon et al. 2022) and must be taken into account to 
successfully predict the baseflow index (Bloomfield et al. 
2021). Analysis of paired events identified improved governance 
and high investment in integrated risk management as success 
factors in managing unprecedented flood and drought events 
(Kreibich et al. 2019, 2022b). Newly released global datasets, 
such as freshwater withdrawal and consumption rates, enabled 
Huggins et al. (2022) to map socio-ecological vulnerability to 
freshwater stress and storage loss and identify hotspots for 
prioritizing interventions such as IWRM practices.

Considerable effort has been spent on making data more 
accessible and useful via collation across locations and 
domains (Gupta et al. 2014). For example, the Catchment 
Attributes and Meteorology for Large-sample Studies 
(CAMELS), Caravan and EStreams datasets combine daily 
hydro-meteorological time series with landscape attributes (e. 
g. reservoir type and capacity, water abstraction and return, 
consumptive water use, and surface and groundwater rights) 
for more than 20 000 catchments in over 35 countries 
(Newman et al. 2015, Addor et al. 2017, Alvarez-Garreton et 
al. 2018, Chagas et al. 2020, Coxon et al. 2020, Fowler et al. 
2021, Höge et al. 2023, Kratzert et al. 2023, Do Nascimento et 
al. 2024). These datasets have been instrumental in demon-
strating that wastewater discharges dominate urban hydrology 
signals across England and Wales (Coxon et al. 2024), that 
water uses exacerbated hydrological drought conditions dur-
ing the megadrought in central Chile after 2010 (Álamos et al. 
(2024) and that stream water losses are higher in areas of 
extensive groundwater pumping (Uchôa et al. 2024). Other 
studies target specific environments that are sensitive to 
change, such as high-mountain snow cover in semi-arid 
regions (Polo et al. 2019); or focus on anthropogenic processes, 
e.g. storage and release policies for approximately 2000 reser-
voirs in the US (Turner et al. 2021).

Table 1. Organization of this review along the Panta Rhei science questions 
(Montanari et al. 2013).

Panta Rhei Science Questions (Montanari et al. 
2013) Sections of review

How can we advance our monitoring and data 
analysis capabilities to predict and manage 
hydrological change?

2. Monitoring and data 
analysis

What are the external drivers and internal 
system properties of change? How can 
boundary conditions be defined for the 
future?

3. Drivers of change

How do changes in hydrological systems 
interact with, and feedback to, natural and 
social systems driven by hydrological 
processes? What are the boundaries of 
coupled hydrological and societal systems?

4. Understanding socio- 
hydrological systems

How can we use improved knowledge of 
coupled hydrological–social systems to 
improve model predictions, including 
estimation of predictive uncertainty and 
assessment of predictability?

5. Modelling and prediction

How can we support societies to adapt to 
changing conditions by considering the 
uncertainties and feedbacks between natural 
and human-induced hydrological changes?

6. Water management and 
adaptation to change

What are the key gaps in our understanding of 
hydrological change?

7. Summary of achievements 
8. Recommendations
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Important progress has been made in the last decade 
through the structured documentation of extreme events and 
the recording of their impacts in databases (De Groeve et al. 
2014, Rudari et al. 2017). Examples include flood fatality data 
across 12 territories in Europe and its surroundings 
(Papagiannaki et al. 2022), drought impact data extracted 
from nearly 5000 reports (Stahl et al. 2016), and object-specific 
flood damage data from fluvial, pluvial and groundwater 
flooding stored in the Flood Damage Database HOWAS 21 
(Kellermann et al. 2020).

2.2 New, unconventional data

The increasing availability and volume of digital data have also 
opened up new opportunities for the prediction and manage-
ment of hydrological change by including unstructured and 
qualitative data types in the research design. For example, ana-
lysing the minutes of water board committee meetings, 
Carvalho et al. (2024) found that water allocation decisions 
were increasingly based on seasonal forecasts and data on ocea-
nic indices in Northeast Brazil from 1997 to 2021. An analysis of 
the number of news articles published about drought revealed 
that single-family customers reduced their water consumption 
most quickly following heavy drought-related news coverage 
(Quesnel and Ajami 2017, Roby et al. 2018). Web-scraping 
and text mining have made social media popular for analysing 
public opinion on extreme events (Cervone et al. 2016, 
Kryvasheyeu et al. 2016, Smith et al. 2017), improving flood 
mapping (Fohringer et al. 2015, Scotti et al. 2020), and monitor-
ing the occurrence of disasters (Kryvasheyeu et al. 2016). Data 
collected through car navigation apps such as Waze or Mapbox 
have been shown to be powerful in estimating the extent of 
traffic impacts due to flooding (Praharaj et al. 2021, Safaei- 
Moghadam et al. 2023), as well as anomalies in human activity 
(Farahmand et al. 2022). Similarly, Google Trends has emerged 
as a way to measure public awareness regarding drought (Kam 
et al. 2019, Kim et al. 2019, Alencar et al. 2024), track flood 
disasters (Thompson et al. 2021), and understand the dynamic 
social response to past droughts (Gonzales and Ajami 2017).

Earth observation products have become common for 
assessing key environmental variables at large scale, such as 
Landsat data employed for surface water dynamics (Pekel et al. 
2016), Gravity Recovery and Climate Experiment (GRACE) 
data used for terrestrial water storage evolution (Chen and 
Rodell 2021, Kvas et al. 2024), and the Surface Water and 
Ocean Topography (SWOT) mission aimed at monitoring 
river hydraulic properties (Frasson et al. 2019). Local-scale 
monitoring has recently been fostered by low-cost innovative 
wireless sensor networks (WSN), employed for example in the 
meteorological, hydrological, agricultural, water management 
and services sectors (Ojha et al. 2015, Marais et al. 2016, 
Pimentel et al. 2017, Tauro et al. 2018, Bárdossy et al. 2021).

2.3 Data integration and machine learning

The combination of datasets with both process-based model-
ling and machine learning (ML) approaches can be integrated 
in tools that decision makers can use to investigate the long- 
term effects of their management decisions (Xia et al. 2021). 

Furthermore, alongside large-scale or large-sample efforts, 
there are bespoke small-scale efforts to harness local hydro-
logical understanding for improved social outcomes. For 
example, Hund et al. (2018) developed a data-based drought 
early warning system for communities dependent on an aqui-
fer in Costa Rica, with predictions based on the local under-
standing of what climatic conditions typically lead to drought- 
induced hardship.

Interdisciplinary perspectives that integrate qualitative and 
quantitative data are needed to understand complex human– 
water systems (Di Baldassarre et al. 2021, Rangecroft et al. 2021, 
Vanelli et al. 2022). While quantitative data allow researchers to 
identify generalizable patterns and dynamics, qualitative data pro-
vide insights into the socio-political drivers of water management 
through detailed analyses of local contexts (Riedlinger and Berkes 
2001, Ruska and Di Baldassarre 2019, Alexander et al. 2020). Several 
innovative approaches have been developed that combine qualita-
tive and quantitative data in a meaningful way, in particular for 
nexus studies (Liu et al. 2017a, Cudennec et al. 2018, Heal et al. 
2022). Another example is provided by Ferdous et al. (2018), who 
triangulated quantitative data from household surveys and qualita-
tive data from focus group discussions in a socio-hydrological 
study. Sarmento Buarque et al. (2020) present a sequential mixed 
design, where a modelling-based quantitative analysis was sup-
ported by qualitative data obtained from newspapers and photo-
graphs. Van Loon et al. (2015) analysed quantitative and qualitative 
data in an iterative manner to investigate the frequency of occur-
rence of different drought types in cold climates.

With the increasing accessibility of big data from diverse 
data sources, artificial intelligence (AI) and ML approaches are 
increasingly used to overcome the challenges posed by the high 
complexity, non-linearity, and non-stationarity of change in 
hydrology and society (Kratzert et al. 2019, Ke et al. 2020, Mao 
et al. 2021, Yu et al. 2023). For instance, ML is used to auto-
matically label built-up areas based on night-time lights or 
buildings and map roads using aerial or satellite imagery 
(Alshehhi and Marpu 2017, Jia et al. 2022). Other examples 
include real-time identification or mapping of floods based on 
social media posts (Annis and Nardi 2019), and analyses of 
flood damage processes using decision tree or Bayesian 
approaches (Carisi et al., 2018, Schoppa et al. 2020, Paprotny 
et al. 2021). Human perceptions and decisions were assessed 
based on insurance uptake using interpretable ML (Knighton 
et al. 2021, Veigel et al. 2023).

2.4 Citizen science

Citizen science and related data acquisition techniques such as 
volunteered geographic information (VGI), participatory tools 
and crowdsourcing have emerged to complement observations, 
raise awareness, promote innovative thinking, and encourage 
scientist–citizen cooperation in addressing water management 
issues (Woolley et al. 2010, Buytaert et al. 2014). Citizen science 
and related methods have a significant role in improving commu-
nity sensitivity and engagement with water-related issues. 
Through citizen science initiatives, people can actively participate 
in data collection, analysis, and interpretation, promoting univer-
sal and equitable access to scientific data and information (de 
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Sherbinin et al. 2021). Additionally, citizen science projects can 
have educational and outreach aspects, promoting awareness and 
understanding of water issues among the broader public, and even 
increasing citizen engagement in local governance processes 
(Nardi et al. 2022).

Citizen science has gained increasing prominence in 
hydrology, addressing the need for more dispersed and 
diverse observations of multiple water-related variables 
(Nardi et al. 2022) and is used to collect large amounts 
of data over wide areas (Buytaert et al. 2014, Walker et al. 
2021). It additionally enables the observation of social, 
economic, educational, and behavioural dynamics that are 
difficult to capture (Jollymore et al. 2017).

Applications of citizen science in hydrology can range 
from local-scale studies involving a single volunteer to 
global-scale studies involving tens of thousands of volun-
teers (Walker et al. 2021). Examples of data commonly 
acquired include water levels (Lowry and Fienen 2013, 
Jan et al. 2019), water quality (Rangecroft et al. 2023, 
2024), building footprints obtained from OpenStreetMap 
(Cerri et al. 2021), and meteorological observations (“Met 
Office WOW – Home Page” n.d.). Comprehensive over-
views of citizen science projects in the field of hydrology 
are provided by Buytaert et al. (2014), Anna et al. (2019), 
Njue et al. (2019), See (2019), Kelly-Quinn et al. (2022), 
and Nath and Kirschke (2023).

3 Scientific progress on drivers of change

The pace and scope of change of hydrological systems has 
accelerated, and with them the risks to society and the envir-
onment. This has also increased the importance of assessing 
the drivers of change. Effects of climate, land use and socio- 
economic changes on freshwater quantity and quality trends 
were frequently assessed, and new approaches for attribution 
were developed to answer the following scientific questions: 
“What are the external drivers and internal system properties 
of change? How can boundary conditions be defined for the 
future?” The Panta Rhei collection of key scientific papers 
contains 67 papers (19%) that contribute to answering these 
questions (see Supplemental material).

3.1 Climate change

Climate change is expected to significantly influence the water 
cycle, through changes in the global atmospheric circulation 
and the larger water-holding capacity of a warmer atmosphere. 
Using 7250 observations around the world covering the years 
1971–2010, Gudmundsson et al. (2021) found evidence for the 
role of anthropogenic climate change as a causal driver of 
recent trends in river flow. Wang et al. (2024) detected a 
clear trend of weakening seasonality in river flow in high- 
latitude regions of the Northern Hemisphere, which is closely 
linked to anthropogenic climate change. Yang et al. (2021) 
showed that, at a global scale, long-term annual streamflow 
has remained stationary in 79% of catchments with minimal 
human disturbance, while the percentage is only 38% for those 
catchments where substantial human interventions have 
occurred.

Climate change and human behaviour also jointly drive 
changes in hydrological extremes and exacerbate their effects 
(Arheimer et al. 2017, Caretta et al. 2022, Chagas et al. 2022). 
Based on a meta-analysis, Merz et al. (2021) found that in more 
than half of catchments worldwide, floods have increased in 
recent decades. River floods in Europe have increased in mag-
nitude in the northwest and decreased in the south and east in 
the last 60 years (Blöschl et al. 2019b, Bertola et al. 2020). 
Changing seasonality of floods has been detected, more clearly 
than for their magnitudes (Blöschl et al. (2017) for Europe, 
Collins (2019) for the US, Chagas et al. (2022) for Brazil). 
These studies usually consider river flooding, but flash flood-
ing is also expected to increase due to increased atmospheric 
convection in a warmer climate (Llasat et al. 2016, Huang et al. 
2022).

Changes in drought frequency and severity have been 
detected with various confidence levels depending on the 
drought type (Van Loon 2015). While meteorological droughts 
have increased in a few regions of Africa and South America, 
socio-hydrological droughts have increased in megacities 
(Souza et al. 2022) and agricultural (soil-moisture) droughts 
have increased in several regions on all continents (IPCC 
2022). Brunner et al. (2023) find that high-elevation catch-
ments in the Alps have experienced a stronger change in 
drought type (from rainfall-driven to temperature-driven) 
and drought severity (shorter and higher deficit) than low- 
elevation catchments. Brunner and Tallaksen (2019) found 
that four regions in Europe, i.e. southeast England, southeast 
France, central Norway, and the Pre-Alpine area, may become 
more affected by multi-year droughts in the future as stream-
flow becomes less snow influenced. The increasing trend in 
drought severity in the Po River basin (Italy) was found to be 
mainly driven by the type and seasonality of precipitation, 
rather than its total amount, and the expansion of irrigated 
areas (Montanari et al. 2023).

3.2 Land use and socio-economic change

Land use changes such as deforestation and urbanization have 
often caused increased surface runoff and a decreased baseflow 
(Levy et al. 2018, Müller et al. 2021). This effect, along with the 
regulation of river flows, e.g. for hydropower production, 

Summary on monitoring and data analysis: Our monitoring and data 
analysis capabilities to predict and manage hydrological change have 
advanced significantly: (1) Accessibility and usefulness of (time series) 
data has increased by sharing and combining data across locations and 
domains, including quantified human impacts. Examples are the CAMELS 
datasets (e.g. Alvarez-Garreton et al. 2018, Fowler et al. 2021, Höge et al. 
2023), Panta Rhei benchmark datasets (e.g. Kreibich et al. 2023) and 
impact datasets (e.g. Stahl et al. 2016, Papagiannaki et al. 2022). (2) 
Repurposing and combining of data and increased exploration of new, 
unconventional data sources such as social media, novel sensors (e.g. 
Fohringer et al. 2015, Kryvasheyeu et al. 2016, Scotti et al. 2020) and new 
methods of analysis such as machine learning and text mining (e.g. 
Knighton et al. 2021, Paprotny et al. 2021, Veigel et al. 2023) have 
increased the availability and potential of qualitative and quantitative 
data. (3) Advancements in citizen science have demonstrated its value in 
monitoring various processes, promoting community engagement and 
supporting education in hydrology (e.g. Jollymore et al. 2017, Nardi et al. 
2022).
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industrial use or flood protection, has substantially affected 
discharge regimes in many parts of the world (Vorogushyn 
and Merz 2013, Wang et al. 2017, Arheimer and Lindström 
2019, Shrestha et al. 2022).

Considering the combined effects of anthropogenic altera-
tions to natural water streams and changing climate has 
resulted in a new framework of droughts, that defines anthro-
pogenic drought as a compound multidimensional and multi-
scale phenomenon (AghaKouchak et al. 2015, Van Loon et al. 
2016). Anthropogenic droughts are governed by the combina-
tion of natural water variability, climate change, human deci-
sions and activities, and altered micro-climatic conditions due 
to changes in land and water management (AghaKouchak et 
al. 2021). Human activities have a major impact on hydrolo-
gical droughts as well, in some cases exacerbating the effects of 
climate change, despite management efforts (Van Loon et al. 
2022). Alborzi et al. (2018) report on the combined effects of 
meteorological drought and unsustainable water resource 
management, which contributed to the rapid shrinkage of 
Lake Urmia in Iran, after it had reached a tipping point. Van 
Oel et al. (2018) document the exacerbating effect of reservoir 
operations on downstream hydrological drought in a river 
basin in Brazil, while a continental-scale study in the US 
shows that reservoirs can also alleviate drought severity in 
many instances (Brunner 2021). Increasing water demand 
and decreasing surface water availability are frequent causes 
of groundwater overexploitation (Nlend et al. 2018). Declining 
groundwater resources are exacerbated by misaligned incen-
tives associated with the common-pool nature of the resource 
(Mullen et al. 2022).

Flood impacts are also strongly influenced by changes in 
land use and socio-economic processes, next to atmospheric 
drivers (Formetta and Feyen 2019, Merz et al. 2021). Shifts in 
socio-economic systems foster human encroachment into 
floodplains and increase flood exposure. Thus, increasing 
exposure was the main driver of the increase in flood losses 
during recent decades, in Europe (Stevens et al. 2016, Paprotny 
et al. 2018) and elsewhere (Tanoue et al. 2016, McAneney et al. 
2019). It is expected that future flood impacts will continue to 
increase (Rojas et al. 2013, Dottori et al. 2018), due to a 
combination of changes in hazard, exposure and vulnerability 
(Rojas et al. 2013, Vousdoukas et al. 2018, Steinhausen et al. 
2022, Schoppa et al. 2024). Sauer et al. (2021) quantified 
hazard, exposure and vulnerability changes for flood events 
globally, finding that for Europe the increase in flood losses 
was driven almost entirely by exposure, with some small 
decline in hazard and vulnerability.

3.3 Changes in water quality

Climate change in terms of rising temperatures, changes in 
precipitation patterns, and extreme weather events have 
affected the water cycle, also leading to changes in water 
quality (e.g. Meier et al. 2014, Bartosova et al. 2019). In coastal 
areas, sea level rise, storm surges, drought, land subsidence and 
erosion were reported to affect salinity and water quality in 
soils, estuaries and aquifers (Dasgupta et al. 2015, Jasechko et 
al. 2020, Phlips et al. 2020). Water scarcity also impacts water 

quality, as pollution is more concentrated, so that recent 
scientific advances have been in the direction of quality-related 
and ecological water scarcity (Liu et al. 2016, 2022). Integrated 
assessments of water quality, quantity, and environmental 
flows have been widely applied at global, national, and local 
levels (Liu et al. 2017b, van Vliet et al. 2017, Ma et al. 2020).

Urbanization and changes in land use have resulted in 
increased impervious surfaces, such as roads, which can lead 
to higher levels of pollutants, e.g. nutrients and chemicals 
being washed into water bodies (Dailey et al. 2014). Diffuse 
pollution that remains in the environment for a very long time 
makes it challenging to achieve water quality goals (Van Meter 
et al. 2018). In particular, new science questions on the use, 
fate and impacts of persistent anthropogenic chemicals, such 
as PFAS (Ackerman Grunfeld et al. 2024) and microplastics 
(Eerkes-Medrano et al. 2015), were raised during the Panta 
Rhei scientific decade.

At the same time, traditional water-quality problems due to 
agricultural activities have not yet been solved, e.g. the use of 
fertilizers and animal waste that result in nutrient runoff and 
contamination of water bodies, leading to eutrophication 
(Finger et al. 2013) and intensive irrigation that increases 
salinity in downstream water bodies (Thorslund et al. 2021). 
Direct implications for human health are expected from indus-
trial discharges, including the release of pollutants and chemi-
cals that contaminate water sources (Ma et al. 2020), and 
mobilization of geogenic contaminants (e.g. arsenic) due to 
groundwater overuse (Erban et al. 2013).

Addressing these complex and interlinked water quality 
challenges requires a holistic approach that includes sustain-
able water management, land use planning, pollution control 
and public awareness (Hipsey and Arheimer 2013, Rahman et 
al. 2019). Modelling was found to be instrumental in planning 
remedial measures at the catchment scale (Arheimer et al. 
2015) and regionally (Bartosova et al. 2021). Nature-based 
solutions have proven to be efficient in addressing some of 
these challenges (Huang et al. 2020, Oral et al. 2021, Carvalho 
et al. 2022) although their effect at large scale has been ques-
tioned, e.g. regarding wetland constructions for nutrient 
reduction (Arheimer and Pers 2017). Technological advances 
have contributed to significantly improve both detection and 
treatment of water contaminants. Stricter environmental poli-
cies, regulations and standards are needed to reduce pollution, 
by improving wastewater treatment, reducing the impact of 
agricultural practices, and managing landscapes (Hanrahan et 
al. 2018, Cheng et al. 2022, Penny et al. 2022).

3.4 Methodological advancements in the attribution of 
change

Hydrological systems are spatially heterogeneous and tightly 
coupled with human and ecological systems at a variety of 
spatial and temporal scales (Kingston et al. 2020, Bertassello 
et al. 2021). Studying changes in these human–water systems 
requires addressing the twin challenges of detection and 
attribution. Detecting hydrological change implies distin-
guishing persistent changes in hydrological outcomes from 
the effects of stationary but long-memory climate variability 
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and random observation errors (Hall et al. 2014, 
Koutsoyiannis and Montanari 2015, Milly et al. 2015, 
Serinaldi and Kilsby 2015, Yang et al. 2019, Villarini and 
Wasko 2021). Much methodological development during the 
Panta Rhei decade has focused on addressing the second 
challenge of attribution, which investigates the causal rela-
tionship between changes and their hypothesized drivers 
(Merz et al. 2012). Elucidating such causal relationships is 
necessary to improve predictions (Srinivasan et al. 2017a, 
Müller and Levy 2019) and to develop and evaluate policies 
to avert or mitigate these changes (Thompson et al. 2013). 
This subsection discusses current attribution approaches 
with regard to their deductive (model-based) vs. inductive 
(data-based) nature and their focus on internal “Newtonian” 
(small sample size) vs. external “Darwinian” (large sample 
size) variability (Fig. 3).

Deductive process-based models are developed, calibrated 
and validated to test causal hypotheses about the key physical 
processes assumed to govern hydrological dynamics (Ferraro 
et al. 2019), such as hydroclimatic change (Chiang et al. 2021), 
changes in streamflow (Hundecha and Merz 2012, Duethmann 
et al. 2015, Badjana et al. 2017, Mao and Liu 2019, Collar et al. 
2022) and flood risk (Metin et al. 2018). In a related approach, 
hydrological change is analysed by identifying a fingerprint: 
specific signatures of changes in the hypothesized drivers 
(Viglione et al. 2016, Arheimer and Lindström 2019, Bertola 
et al. 2019, 2021, Kemter et al. 2020). For example, Viglione et 
al. (2016) leverage the fact that different processes govern 
floods in catchments of different sizes to identify the most 
likely drivers of changing flood characteristics. Challenges to 
this approach are related to data scarcity and the complexity of 
systems, where feedbacks with social and ecological processes 
can be both drivers and outcomes of hydrological change 
(Srinivasan et al. 2017b, Duethmann et al. 2020).

Data-based inductive approaches use statistical models 
that rely on the detection and interpretation of statistical 
relationships, in time (Arheimer and Lindström 2019, Lan 
et al. 2020) or with observable covariates (Khazaei et al. 2019, 
Shao et al. 2022), or both (Chagas and Chaffe 2018, 
Franceschinis et al. 2021, Müller et al. 2021). In terms of 
attribution, three alternative strategies are deployed. First, 
the structure of the data themselves can be used to infer 
causal relationships, for instance through time series analysis 
such as Granger causality analysis (Singh and Borrok 2019) or 
convergent cross-mapping (Bonotto et al. 2022). Second, the 
characteristics of the data-generating process can be lever-
aged by identifying so-called natural experiments (Müller 
and Levy 2019), for instance through panel regression analy-
sis (Blum et al. 2020, Davenport et al. 2020, Mondino et al. 
2021) or covariate matching (Wagenaar et al. 2018, Brunner 
2021). Third, ML can be leveraged to explicitly control for all 
plausible sources of variations, for instance using explainable 
AI (Althoff et al. 2021, Veigel et al. 2023) or autoencoders 
(Bassi et al. 2024).

Complementary to the previously described Darwinian 
(large sample) approaches are the Newtonian (small sample) 
ones that tackle attribution by seeking to reconstruct a plau-
sible narrative to explain the observed phenomena for a 
limited number of cases (internal validity) (Harman and 
Troch 2014). Approaches seeking to elucidate the internal 
mechanics of a small number of units, through either statis-
tical analysis or process-based modelling, fall under the latter 
category, along with other approaches, including compara-
tive case studies (Kreibich et al. 2017, Garcia et al. 2019), 
socio-hydrological or agent-based models (Kandasamy et al. 
2014, Mustafa et al. 2018, Penny et al. 2021, Schoppa et al. 
2022) and narrative-based approaches (Treuer et al. 2017, 
Leong 2018).

Figure 3. Approximative typology of attribution approaches: DL (diagnostic learning), XAI (explainable artificial intelligence), TS (time series analysis), GC (Granger 
causality analysis), CCM (convergent cross-mapping), BI (Bayesian inference), PC (paired catchments), PA (panel analysis), IV (instrumental variable), RD (regression 
discontinuity), DiD (difference-in-difference), NB (narrative-based analysis), MH (multiple hypotheses), FO (field observation), SH (socio-hydrological modelling), PB 
(process-based or physical modelling), FP (fingerprinting).
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4 Scientific progress on socio-hydrological systems

The impact of humans on water systems has increased and 
with it the need to understand the interactions and feedbacks 
between social and hydrological systems. To this end, new 
socio-hydrological concepts and approaches were developed 
to answer the following questions: “How do changes in hydro-
logical systems interact with, and feedback to, natural and 
social systems driven by hydrological processes? What are 
the boundaries of coupled hydrological and societal systems?” 
The Panta Rhei collection of key scientific papers contains 89 
papers (25%) that contribute to answering these questions (see 
Supplementary material).

4.1 Concepts for socio-hydrological systems

It is well known that human societies increasingly influence 
the hydrological regime, deliberately or otherwise, by: (a) 
building dams and reservoirs to store water for different pur-
poses; (b) diverting water flows for urban, industrial or agri-
cultural use; (c) changing the characteristics of watersheds via 
land use change, including deforestation, urbanization, or 

drainage of wetlands; and (d) altering the regional or global 
climate via greenhouse gas emissions (Savenije et al. 2014).

Concurrently, changes in the hydrological regime, includ-
ing the occurrence of extreme events, influence human socie-
ties. Water crises, droughts and floods impact societies in 
multiple ways, and can cause serious human and economic 
losses. Moreover, individuals, communities, and societies 
adapt and respond to extreme events by changing policies or 
social contracts (Adger et al. 2013) as well as collective beha-
viour, or patterns of human settlements (Mård et al. 2018).

An important scientific advancement in relation to the 
change in hydrology and society is the concept of socio-hydro-
logical systems, which is based on a two-way coupling between 
human actions and water quantity and quality (Sivapalan et al. 
2012, Sivapalan and Blöschl 2015). To illustrate this, Fig. 4 
shows a causal loop diagram, consisting of system states and 
feedbacks. It illustrates how hydrological, economic, political, 
technological and social processes are all interlinked and either 
gradually co-evolve or are abruptly altered by the sudden 
occurrence of an extreme event, e.g. a flood (Di Baldassarre 
et al. 2013, Sivapalan and Blöschl 2015). In general, while 
humans influence hydrological flows, water storage, and the 
distribution of floods and droughts, they also respond to 
hydrological risk by changing (deliberately or not) demogra-
phy, behaviour, water governance and infrastructure. Thus, 
human influences on and adaptive responses to hydrological 
processes are changing in space and time, indicating that 
simulations without sufficient inclusion of human interaction 
tend to underestimate temporal dynamics of human awareness 
and actions that alter hydrology (Di Baldassarre et al. 2015, 
Van Loon et al. 2016, AghaKouchak et al. 2021).

These complex interactions and feedbacks between human 
and water systems (e.g. Fig. 4) can generate socio-hydrological 
phenomena, i.e. patterns across places or even across contexts 
(Sivapalan and Blöschl 2015, Di Baldassarre et al. 2019). These 
phenomena consist of actual outcomes, paradoxical dynamics, 
or unintended consequences that arise from water manage-
ment to achieve a desired societal objective (Table 2). The large 
range of socio-hydrological phenomena was organized into a 

Figure 4. Causal loop diagram showing how hydrological, economic, political, technological, and social processes are all interlinked and gradually coevolve (continuous 
thin arrows), while being abruptly altered (continuous thick arrows) by the sudden occurrence of an extreme event. Depending on the choice of specific state variables 
and feedback mechanisms it can help simulate phenomena, e.g. unintended consequences such as the levee effect (figure adapted from Di Baldassarre et al. 2013, 
Sivapalan and Blöschl 2015).

Summary on drivers of change: Significant advancements were achieved 
in detecting and attributing hydrological changes: (1) Climate change 
leads to both increasing and decreasing trends of hydrological extremes 
in different regions of the world (e.g. Blöschl et al. 2019b, Merz et al. 
2021, Brunner and Tallaksen 2019) and for different types of events (e.g. 
Van Loon 2015, Huang et al. 2022). (2) Land use and socio-economic 
change, such as the construction of hydraulic structures, were also 
identified as drivers of change, particularly in terms of flood and drought 
impacts (e.g. Vorogushyn and Merz 2013, Nlend et al. 2018, Paprotny et 
al. 2018). (3) Climate and global change, e.g. urbanization, leads to 
higher levels of pollutants and changes in water quality (e.g. Dailey et 
al. 2014, Meier et al. 2014, Bartosova et al. 2019). (4) The development of 
various attribution approaches, e.g. deductive (model-based) vs. induc-
tive (data-based) ones, led to a better quantification of the interactions 
between drivers and a better separation of the individual contributions of 
drivers to change (e.g. Viglione et al. 2016, Arheimer and Lindström 2019, 
Ferraro et al. 2019).
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small number of system archetypes (Table 2). For instance, the 
most common example of the “fixes that fail” archetype is the 
levee effect (Di Baldassarre et al. 2018, 2019).

4.2 Approaches for assessing human–water systems

The Panta Rhei initiative has successfully contributed to a 
societal impact assessment that goes beyond project evaluation 
to include, for example, feedback mechanisms and the legacy 
of past and projected future changes based on implemented or 
proposed actions on a multi-decadal or centennial scale. Many 
conceptualizations of mechanisms and potential boundaries 
have been suggested (e.g. Elshafei et al. 2014, Müller et al. 
2024). System dynamics models based on causal loop diagrams 
seem to be a promising way to study and validate long-term 
dynamics (Di Baldassarre et al. 2015, Barendrecht et al. 2017, 
Schoppa et al. 2022).

Models for large-scale studies primarily focus on the water– 
energy–food nexus or other aspects within the framework of 
the SDGs and have been adopted by institutional investors 
such as the World Bank (Liu et al. 2017a, Payet-Burin et al. 
2019). Recently we have seen the development of models with 
very fine resolutions based on agent-based modelling (Wens et 
al. 2020, Ghoreishi et al. 2021) or various applications of 
statistical or ML methods to study interactions on the micro- 
scale. The purpose of modelling has shifted, to some degree, 
from finding universal modelling paradigms to finding suita-
ble boundaries that ensure a simplicity that enables decision 
making while having the complexity that allows for robust 
assessment of the main impacts (Arnbjerg-Nielsen et al. 
2022). Approaches have been developed to integrate 

quantitative and qualitative information in order to better 
understand the hydrological, socio-political, economic, and 
cultural contexts in different locations (Rangecroft et al. 
2018, Vanelli et al. 2022), supported by socio-hydrology 
(Sivapalan and Blöschl 2015).

In detail, conceptual models have been proposed to 
demonstrate that demographic and socio-economic charac-
teristics such as income levels or social status further differ-
entiate population vulnerabilities to water and livelihood 
insecurities (Haeffner et al. 2017, Teweldebrihan et al. 2020, 
Savelli et al. 2021, Savelli and Mazzoleni 2023). 
Understanding and modelling the co-evolution of water 
institutions has shown that vulnerabilities interact with live-
lihood insecurity in cities and floodplains (Yu et al. 2017, 
Muneepeerakul et al. 2020).

The Panta Rhei community has progressed our under-
standing of drought through the lens of human influences 
and coupled system co-evolution (Park et al. 2018, Cavus 
and Aksoy 2020, Wens et al. 2020). Such studies have 
revealed a strong linkage between human behaviour and 
drought effects across increasing time scales, which help 
to form a foundation for understanding and communicat-
ing such complexities within operational drought manage-
ment (Cavus et al. 2022). Similarly, the conceptual basis 
for connecting social processes (adaptation, management) 
with flood events has been strengthened by incorporating, 
for instance, bounded rationality and prospect theories 
(Di Baldassarre et al. 2015, Kreibich et al. 2017, 
Michaelis et al. 2020). Progress has continuously been 
made in predicting basin-scale socio-hydrological 
dynamics of water use for agricultural and environmental 

Table 2. Examples of archetypes and socio-hydrological phenomena (adapted from Di Baldassarre et al. 2019).

Archetype Archetype definition General phenomenon Characteristics of phenomenon Sub-phenomena

Fixes that fail Shortcut solutions might seem to work 
in the short term, but often fail in 
the long run. In this way, they will 
aggravate the original problem or 
create even more challenging 
problems.

Safe-development paradox 
(Kates et al. 2006, Fusinato et 
al. 2024)

Protection measures generate a false 
sense of security that reduces 
coping capacities thereby increasing 
social vulnerability.

Levee effect 
(White 1945) 

Reservoir effect 
(Di Baldassarre et al. 

2018)
Rebound effect 

(Alcott 2005)
Increasing efficiency leads to higher 

consumption.
Irrigation efficiency 

paradoxes 
(Dumont et al. 2013)

Limits to growth Continuous and accelerating growth of 
demand makes the system go 
beyond the limits unintentionally, 
thus experiencing a subsequent 
decline.

Supply–demand 
cycle 
(Kallis 2010)

Increasing supply enables growth that 
in turn generates higher demands.

Fixes that backfire 
(Gohari et al. 2013)

Adaptation effect 
(Di Baldassarre et al. 2015)

Frequent extreme events increase 
coping capacities, thereby reducing 
social vulnerability. 
Adaptation to drought can worsen 
flood losses, and vice versa.

Flood risk adaptation 
Kreibich et al. (2017) 
Sequence effect 
(Di Baldassarre et al. 

2017)
Pendulum swing 

(Kandasamy et al. 2014)
Changing priorities from pursuing 

economic prosperity or 
environmental protection.

Peak water paradoxes 
Gleick and Palaniappan 

(2010) 
Environmental Kuznets 

curve 
(Dinda 2004)

Success to the 
successful

Good performance secures more 
resources relative to others, 
enabling the generation of further 
success which in turn secures still 
more resources.

Aggregation effect Undesirable outcomes at the system 
scale from aggregated optimal 
decisions at the individual scale. 
Desirable outcomes at the system 
scale from aggregated inequalities 
at the individual scale.

Collective action 
(Olson 1965, 
Ostrom 1990) 
Water injustice 
(Zwarteveen et al. 2017)

Institutional complexity Trade-off between resilience and 
efficiency or between resilience to 
different disturbance regimes.

Robustness–fragility 
trade-off 

(Csete and Doyle 2002)
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purposes and its effects on societal conditions such as 
migration into agricultural basins and flood plains (Di 
Baldassarre et al. 2017, Roobavannan et al. 2018). There 
has also been progress in simulating the interplay between 
multiple hazards, water management, and societies. For 
example, Mazzoleni et al. (2021) showed that changes in 
flood and drought awareness can help contribute to the 
emergence of multiple human–water phenomena (e.g. 
sequence effect, reservoir effect, supply–demand cycle, 
and levee effect).

Comparative studies across socio-economic and cultural 
gradients of human water relations as well as hydroclimatic 
gradients provided a better understanding of the interplay 
between water hazards and societal responses, e.g. with respect 
to flood protection and poor water quality (Gupta et al. 2014, 
Kreibich et al. 2017, 2022a, Daniel et al. 2022). An example of 
this is disentangling the effect of social norms on the way water 
is abstracted for intensive agriculture from the effect the latter 
has on the formation of norms that encourage such water use 
(Troy et al. 2015, Alam et al. 2022). Another example is 
provided by Zhao et al. (2019), who introduced comparative 
advantage theory to track the driving forces of virtual water 
trade based on the spatial-temporal distribution of resource 
productivity and opportunity costs of land, labour and water 
use in agricultural and non-agricultural sectors across Chinese 
provinces.

5 Scientific progress on modelling and prediction

The evolution of hydrological systems motivates the need 
to improve modelling and prediction to support better risk 
assessment, planning, and infrastructure design. Various 
approaches and models were developed in response to the 
following question: “How can we use improved knowledge 
of coupled hydrological–social systems to improve model 
predictions, including estimation of predictive uncertainty 
and assessment of predictability?” The Panta Rhei collec-
tion of key scientific papers contains 61 papers (17%) that 
contribute to answering this question (see Supplementary 
material).

5.1 Recognition of the change in hydrology and society 
led to advances In Modelling

Although we know that “stationarity is dead” (Milly et al. 
2008) due to the changes observed over time in hydrological 
response (Montanari et al. 2013, Ceola et al. 2016, McMillan 
et al. 2016), it can still be useful to model hydrological 
processes under known conditions to make reliable predic-
tions, such as for the design of civil structures (Koutsoyiannis 
2011, Lins and Cohn 2011, Matalas 2012, Koutsoyiannis and 
Montanari 2015). Nevertheless, gradual and sudden changes 
in the form of a trend, a jump or a shift (Fowler et al. 2022, 
Volpi et al. 2024) due to the natural variation of a hydro-
logical process or anthropogenic interventions should not be 
ignored, as, for instance, they have the potential to increase 
the frequency and intensity of extreme hydrological events. 
Similarly, in the more complex context of human–water 
systems, inertia in culture and institutions, poor governance 
and the hierarchical and cross-sectoral size of organizations 
influence human decision making. Roobavannan et al. (2018) 
and Amirkhani et al. (2022) incorporated changing beliefs 
about how important the environment is with respect to 
agricultural production as a function of community sensitiv-
ity to environmental degradation. Statistical techniques such 
as breakpoint analysis have been used, for example, to eval-
uate the impact on flow from human-induced changes in 
catchment characteristics (Arheimer and Lindström 2019) 
or to identify changes in reservoir operating rules and to 
develop amended rules using inverse modelling (Giuliani 
and Castelletti 2016).

5.2 Quantitative and qualitative human–water systems 
modelling

Traditional hydrological models are best suited for simulation 
and prediction in natural catchments, assuming that condi-
tions have not been influenced by societal interaction. Human 
influences were often only included as management scenarios 
during the simulation, frequently at a specific point in time 
(Montanari et al. 2013). The predictive capabilities of tradi-
tional hydrological models are based on empirical observa-
tions, with which the models are calibrated and validated 
(Aguilar et al. 2017). However, complex human–water system 
models must reflect human and social dynamics such as chan-
ging water institutions. The data needed to calibrate such 
models often include observations of choices made by humans 
or the evolution of institutions (Sarmento-Buarque et al. 
2020). Further, modelling concepts have gone beyond the 
physics-based principles to include the governing principles 
behind human actions such as rules based on behavioural 
theories and evolutions of water institutions and governance 
that are a result of long-term slow-moving processes of values, 
norms and culture (Sivapalan and Blöschl 2015, Wesselink et 
al. 2017, Bartosova et al. 2021, Schrieks et al. 2021). For 
instance, a system-of-systems regional flood model was used 
to quantify the effect of changes in various risk components, 
including changes in land use, assets, and vulnerability, on 
flood risk (Metin et al. 2018). Recent models of human– 
water decision making have benefited from the novel 

Summary on understanding socio-hydrological systems: Significant 
advancements were achieved in conceptualizing and assessing socio- 
hydrological systems: (1) A better understanding of the feedbacks 
between hydrology and society has been achieved, based on the concept 
of a two-way coupling between human actions and water quantity and 
quality (e.g. Sivapalan et al. 2012, Sivapalan and Blöschl 2015). These 
complex feedbacks can generate phenomena such as the levee effect (e. 
g. Di Baldassarre et al. 2013, 2018). The generic and transferable descrip-
tions of socio-hydrological phenomena and their organization into sys-
tem archetypes should be considered in decision making (e.g. Di 
Baldassarre et al. 2019). (2) Integrated approaches were developed to 
assess the co-evolution of human–water systems in order to avoid unin-
tended consequences of human interventions over long periods of time, 
described as phenomena. The development of socio-hydrological models 
made it possible to simulate long-term developments, including future 
projections (e.g. Barendrecht et al. 2017, Schoppa et al. 2022). Synthesis 
studies stressed the importance of space-time aspects as well as of 
understanding causalities to even better address important societal chal-
lenges (e.g. Van Loon et al. 2016, Zhao et al. 2019).
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application of concepts that exist in the social sciences domain, 
such as game theoretic concepts, agent-based models, and 
behavioural models (Bartosova et al. 2021, Schrieks et al. 
2021). For example, heterogeneous decision making of farmers 
has been extensively modelled using agent-based models 
(Tamburino et al. 2020, Wens et al. 2020, 2022). Yu et al. 
(2017) used game theoretic concepts to incorporate collective 
action in a stylized human–water system model of flood resi-
lience. The model rules which describe how humans interact 
with their water environment were also inspired by beha-
vioural theories such as the theory of planned behaviour, so 
that the models provided realistic predictions of societal 
inequities and unintended consequences of agricultural water 
interventions (Pouladi et al. 2020, Alam et al. 2022). 
Integrating empirical data, e.g. from recorded events, into 
socio-hydrological models supports the simulation of real, 
long-term processes in human–flood systems, including future 
projections (Schoppa et al. 2024). Using Bayesian inference 
allows models to be calibrated with qualitative and quantitative 
data and even to include expert knowledge as a prior 
(Barendrecht et al. 2019).

The application of hydrological models as well as human– 
water system models is not objective and models’ subjectivity 
should be better recognized (Lane 2014, Merz et al. 2015, 
Beck and Krueger 2016, Melsen et al. 2018, Addor and 
Melsen 2019, Yu et al. 2022). It is now acknowledged that 
the predictability of human–water systems is affected by 
factors such as biased selection in choosing stakeholders for 
model co-development, social effects that stem from model 
results, mutual reinforcement of model development and 
model shaping by the involved parties (modellers, scientists, 
stakeholders), a lack of neutrality in political implications, 
and difficulties with transdisciplinary collaboration between 
academic and non-academic actors (Melsen et al. 2018). Yu et 
al. (2022) have highlighted that the complexities of human– 
water systems, such as decision making at various spatial, 
temporal and organizational scales, affect system 
predictability.

In line with the modelling traditions of social sciences, 
where mixed methods are often used, models have been cali-
brated on narratives or narratives are built on model predic-
tions (Leong 2018, Mostert and Mostert 2018, Rangecroft et al. 
2018, Yu et al. 2022). Such an interplay of qualitative and 
quantitative methods to improve predictions and their signifi-
cance for societies is important in the coupled modelling of 
human–water systems.

It is increasingly acknowledged that human–water models 
developed to capture extremely long-term phenomena 
should be explicit about their uncertainty when applied to 
short-term decision making (Srinivasan et al. 2017a). Merz et 
al. (2015) argue that surprise is particularly important in 
attempting to overcome potential cognitive biases within 
coupled human–water management. Techniques such as 
behavioural experiments and surveys have been proposed to 
test hypotheses about human behaviour and biases in deci-
sion making (Tian et al. 2019, Yu et al. 2022). As such, the 
concept of scale, and how human–water processes may shift 
according to the lens through which they are studied and by 
whom, are of importance in bridging the gap between 

understanding human–water co-evolution and utilizing 
such insights for prediction. In this light, a means for defin-
ing, capturing, and communicating human–water model 
uncertainty, especially in narratives or qualitative causal 
loop diagrams developed for diverse decision makers, is 
essential (e.g. Höllermann and Evers 2019). Formal 
Bayesian and other methods have been proposed to analyse 
uncertainty in such models. Barendrecht et al. (2019) incor-
porated survey data in a human–flood systems model and 
provided quantitative uncertainty information based on 
Bayesian statistics.

5.3 Approaches to predict future trajectories

A spectrum of data and modelling methods were developed, to 
unravel complex human–societal phenomena in order to pre-
dict future trajectories of human–water systems in diverse 
contexts. For instance, novel concepts describing community 
sensitivity to drought and flood events were used to under-
stand vulnerability dynamics in the past and predict possible 
future trajectories (Di Baldassarre et al. 2017, Roobavannan et 
al. 2018, Wens et al. 2021, Rusca et al. 2023).

Several socio-hydrological studies, mostly in human–agri-
cultural and human–flood systems, have used diverse data 
sources to simultaneously calibrate social parameters, such as 
perception of risk to flooding, alongside hydrological para-
meters of the models using novel calibration strategies 
(Roobavannan et al. 2018, Barendrecht et al. 2019, Schoppa 
et al. 2024). Such calibrated models were then used to identify 
conditions under which the coupled system would sustain-
ably evolve. For example, using a lumped socio-hydrological 
model at basin scale, Roobavannan et al. (2018) found that a 
higher level of diversification in the basin economy increases 
sustainability and makes it less reliant on water availability. 
Schoppa et al. (2024) calibrated a socio-hydrological model 
for flood risk assessment with survey data and simulated a 
wide range of potential futures. Results showed that inte-
grated adaptation strategies (i.e. combined structural and 
non-structural measures) can reduce the average flood risk 
by up to 60%.

Summary on modelling and prediction: Progress in modelling and pre-
dicting future trajectories was achieved: (1) Various powerful socio-hydro-
logical model approaches were developed which describe feedbacks; 
examples are stylized models, system-of-systems models and agent- 
based models (e.g. Yu et al. 2017, Metin et al. 2018, Wens et al. 2020). 
These approaches allow, for example, the incorporation of changes in risk 
perceptions, beliefs and community sensitivities into (long-term) model-
ling (e.g. Giuliani and Castelletti 2016, Amirkhani et al. 2022). (2) Using 
Bayesian inference, qualitative and quantitative data as well as expert 
knowledge can be used for model parameterization (e.g. Rangecroft et al. 
2018, Yu et al. 2022). The combination of socio-hydrological modelling 
and empirical data provides additional insights into human–water sys-
tems to realistically explore possible system evolutions comprehensively, 
including unlikely futures (e.g. Barendrecht et al. 2019, Schoppa et al. 
2024). (3) Calibrated socio-hydrological models are used to predict future 
trajectories of human–water systems in diverse contexts and to identify 
conditions under which the systems would sustainably evolve (e.g. 
Roobavannan et al. 2018, Wens et al. 2021, Schoppa et al. 2024).
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6 Scientific progress on water management and 
adaptation to change

Since it is not possible to plan under stable hydrological con-
ditions, adaptive management approaches need to be devel-
oped that are more flexible to changing conditions. The 
development of realistic long-term scenarios, adaptive man-
agement and participatory governance are suggested 
approaches to answer the following question: “How can we 
support societies to adapt to changing conditions by consider-
ing the uncertainties and feedbacks between natural and 
human-induced hydrological changes?” The Panta Rhei collec-
tion of key scientific papers contains 76 papers (22%) that 
contribute to answering this question (see Supplementary 
material).

6.1 Scenarios and possibility spaces

Prediction is central to water resources management and plan-
ning. Socio-hydrological models aim to show under what 
circumstances sustainable development or a “lock-in” situa-
tion can arise (Ceola et al. 2016, Schoppa et al. 2024). Various 
socio-hydrological models have been developed to describe 
possible consequences of both “hard” infrastructure and 
“soft-path” solutions (Garcia et al. 2022, Genova and Wei 
2023).

The predictions obtained from the socio-hydrological mod-
els are not mere scenarios that represent snapshots of the 
world at some specific future points in time, as is usual in 
conventional water resources planning. Predictions produced 
from the socio-hydrological models are alternative, plausible 
and co-evolving trajectories of coupled human–water systems. 
Collectively, these trajectories map out the future possibility 
space of socio-hydrological systems (Sivapalan and Blöschl 
2015, Srinivasan et al. 2016). The possibility space creates a 
range of options by exploring the future more independently 
of initial views regarding probability and desirability. It covers 
future pathways involving disruptive changes, i.e. changes that 
do not necessarily follow the pattern of past transitions and are 
impossible to obtain through scenario analyses, and it greatly 
expands the possibility range by simulating various combina-
tions of multiple variables within the system boundaries of the 
models. This possibility space makes it easier to be imagina-
tive, systematic and explicit about hypothetical “What if?” 
questions. It can assist in identifying safe or desirable solutions 
for water availability and use while warning against maladap-
tive actions for socio-hydrological systems with alternate stable 
states of multiple variables (Rockström et al. 2009). The pos-
sibility space provides the basis for developing adaptive and 
participatory water governance.

6.2 Adaptive water management

Adaptive water management is a planning process that is decid-
edly adaptive, aims to keep multiple pathways to the future 
open, and incorporates the knowledge and perspectives of sta-
keholders (Versteeg et al. 2021). In this way, it aims to avoid the 
following three problems that often lead to the failure of plan-
ning processes in water management: (1) traditional planning 

processes often emphasize the technical aspects of water man-
agement while ignoring the practices and knowledge of water 
users and other stakeholders; (2) they are based on an overly 
rational and linear ideal of the controllability of hydrology and 
infrastructure, which is untenable in a time of environmental 
change, non-stationarity and uncertainty; and (3) the planning 
processes are often not suitable for balancing the competing 
interests of stakeholders while keeping an eye on the feasibility 
and economic viability of the measures now and in the future 
(Butsch et al. 2022b, Conallin et al. 2022, Pham et al. 2022, 
Ward et al. 2020).

The Panta Rhei initiative has supported adaptive water 
management through inter- and transdisciplinary research 
and collaboration between hydrologists, social scientists, and 
a range of stakeholders, considering non-stationarity, uncer-
tainty and change in hydrology and society. Furthermore, new 
ideas and advancements are created by meeting changing 
social needs (Sivapalan and Blöschl 2017). In the community 
paper that launched the IAHS Prague statement on the adap-
tation of water resource systems, Ceola et al. (2016) promote 
resilient, adaptive water resources systems management and 
advocate for a bottom-up approach that starts with analysing 
the vulnerabilities of a particular system in context and with 
stakeholders, rather than adopting a one-size-fits-all (“top- 
down”) perspective. van Nooijen and Kolechkina (2021) 
applied control theory for a water resources control system 
with time-varying delays in the feedback loop in a changing 
and unpredictable environment. Garcia et al. (2020) modelled 
reservoir dynamics before proposing a multi-level approach to 
flood and drought management which includes consideration 
of cognitive biases and systematic errors in decision making 
(Garcia et al. 2022). Kreibich et al. (2014) suggested integrating 
the cost assessment cycle into the risk management cycle so 
that continuous monitoring of the costs associated with nat-
ural hazards and their management enables early identification 
of inefficient risk mitigation strategies and supports adapta-
tion. Such solutions provide tools to support the planning, 
monitoring, implementation and evaluation of adaptive 
water management under changing climatic and socio-eco-
nomic conditions over long periods of time.

6.3 Participatory water governance

Participatory water governance approaches are particularly 
suited to managing complex, integrated, dynamic human– 
water systems. These approaches are adaptive and nested, 
and span scales of problems and jurisdictions; they actively 
involve communities and stakeholders, and incorporate all 
kinds of knowledge to inform decision making (Lemos 2015, 
Carnohan et al. 2020). The growing importance of participa-
tion in water management can generally be attributed to its 
potential to initiate social learning processes and build capacity 
(Evers et al. 2016). Understanding the conflicting demands 
and views of stakeholders can strengthen trust between them 
and enables the inclusion of local knowledge and different 
values, interests and perspectives in planning and management 
processes, which promotes acceptance of the proposed mea-
sures (Gooch and Huitema 2008, Evers et al. 2016).
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As the following examples demonstrate, the Panta Rhei initia-
tive’s contributions to supporting participatory water governance 
range from novel approaches to theoretical frameworks, inclusion 
and quantification of social variables and the participatory imple-
mentation of water management. Rangecroft et al. (2021) devel-
oped a working approach for bridging the gap between 
hydrologists and social scientists by embracing the concepts of 
research ethics, power dynamics and communication barriers. Di 
Baldassarre et al. (2019) discuss the role of socio-hydrology as a 
disciplinary framework to accommodate social heterogeneity, 
power relations, cultural beliefs and cognitive biases. Godinez- 
Madrigal et al. (2020) have shown how scientists were involved in 
the long-standing controversies surrounding the Zapotillo dam 
and water transfer project in Mexico, and how a participatory 
approach to hydrological modelling can give voice to previously 
marginalized concerns and proposals.

An implementation example is the transdisciplinary restora-
tion of the damaged aquatic ecosystem in the Heihe River catch-
ment area in China. Experts in hydrology, social development and 
ecosystem health together with authorities and other stakeholders 
implemented an interdisciplinary network approach leading to 
satisfactory restoration results (Liu et al. 2019).

In another case, hydrologists worked with the Scottish 
government to develop a web-based tool to help prioritize 
the location of riparian tree planting to provide shade for 
preventing water temperature extremes and protect fisheries 
as a climate change adaptation strategy (Jackson et al. 2018, 
2021). Many other examples demonstrate how co-design with 
potential end-users from the public and private sector as well 
as civil society organizations lead to improved preparedness, 
early warning and resilience to floods and droughts (Löschner 
et al. 2016, Rangecroft et al. 2018, Lienert et al. 2022).

However, caution needs to be taken, as social learning can 
be characterized by power differences and strategic behaviour 
(Bou Nassar et al. 2021, Nicollier et al. 2022), and foreground-
ing integration, consensus and neutrality in transdisciplinary 
research may reinforce differences in value, knowledge and 
power (Ruska and Di Baldassarre 2019, Brelsford et al. 2020, 
Hayashi et al. 2021).

7 Summary of scientific achievements

Inter- and transdisciplinary collaboration has generated con-
cepts, methods, results and applications that have filled many 
important gaps in our understanding of change in hydrology 
and society and led to progress in science and practical water 
management, as presented in the different sections of this 
review, which we visualize in Fig. 5 and summarize as follows.

7.1 Cross-cutting

In addition to the creation of knowledge, an important out-
come of the Panta Rhei initiative is non-tangible, namely the 
large and diverse community that formed during the decade, 
in line with the IAHS mandate. Cooperation of hydrologists, 
social scientists, and practitioners at local, regional, and inter-
national levels led to mutual benefits and new outcomes. 
Transdisciplinary project teams transformed our understand-
ing of human–water systems, improving predictions and deci-
sion making. Close communication between scientists and 
stakeholders was essential, as new ideas and advancements 

Figure 5. Summary of progress in research on change in hydrology and society in terms of hydrological science and practical water management.

Summary on water management and adaptation to change: (1) Water 
management can consider future scenarios that consist of plausible, co- 
evolving trajectories of human–water systems and form possibility spaces 
that enable an assessment of the circumstances under which sustainable 
development may arise (e.g. Sivapalan and Blöschl 2015, Srinivasan et al. 
2016). (2) Adaptive management concepts, which anticipate changes over 
time, keep multiple pathways to the future open, and incorporate the 
perspectives of stakeholders, have been developed (e.g. Garcia et al. 2020, 
Versteeg et al. 2021). Water management is seen as a continuous process 
with regular monitoring and revisiting management decisions, e.g. via the 
integrated cost assessment cycle (Kreibich et al. 2014). (3) Participatory 
and inclusive governance is needed as it initiates social learning processes, 
builds capacity, enables the inclusion of local knowledge and promotes 
acceptance of the proposed measures (e.g. Evers et al. 2016, Godinez- 
Madrigal et al. 2020). Advice from the scientific community should also 
play an essential role in participatory governance, as promoted in the 
Prague statement of the International Association of Hydrological Sciences 
in 2015 (Ceola et al. 2016).
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are often generated by addressing changing societal needs with 
new approaches and technologies. The co-alignment of 
research with the UNESCO Intergovernmental Hydrological 
Programme (IHP) priorities for a water secure world in a 
changing environment, and with the efforts of the World 
Meteorological Organization (WMO) to support operational 
hydrology, enabled more stakeholders to participate in the 
creation of a new and sustainable water culture through co- 
creative knowledge and transformative education actions at 
several scales of governance.

7.2 Monitoring and data analysis

The accessibility and usefulness of data have increased signifi-
cantly, particularly due to increasing community data-sharing 
initiatives, which match hydrological data with socio-eco-
nomic and behavioural data, e.g. CAMELS initiatives or 
Panta Rhei benchmark data compilations. Open and equitable 
data sharing is supported by international principles such as 
the FAIR data principles of findability, accessibility, interoper-
ability, and reusability (FAIR) (Wilkinson et al. 2016), the 
CARE Principles for Indigenous Data Governance which are 
Collective benefit, Authority to control, Responsibility, and 
Ethics (CARE) (Carroll et al. 2020) and open science principles 
(Ramachandran et al. 2021).

New methods of analysis (e.g. ML, text mining), repurpos-
ing of data and increased exploration of new, unconventional 
data sources (e.g. social media, novel sensors) have increased 
the availability of data in general, but especially of data on 
socio-economic aspects and human behaviour. The value of 
citizen science for monitoring, but also in terms of community 
sensitization, educational aspects and knowledge generation 
through the involvement of multiple points of view, was 
further confirmed and consolidated.

7.3 Drivers of change

Significant advancements have been achieved in detecting and 
attributing hydrological changes, particularly on the basis of 
monitoring and data analyses. Especially, the effects of climate 
change and land use change were quantified for past and 
potential future developments. Additionally, other socio-eco-
nomic processes, such as urbanization, the construction of 
hydraulic structures or groundwater exploitation, have also 
been identified as drivers of change.

In particular, assessments that considered many, in some 
cases all, relevant drivers of change led to a better quantifica-
tion of the interactions between drivers and a better separation 
of their individual contributions to change. These comprehen-
sive, mainly model-based (deductive), but occasionally also 
data-based (inductive) analyses improved our understanding 
of the long-term developments of complex human–water sys-
tems, and stressed the importance of human actions, e.g. to 
mitigate flood and drought risks.

7.4 Understanding socio-hydrological systems

Socio-hydrological research, based on both the analysis of long 
time series and the in-depth assessment of case studies, has led 

to a better understanding of the processes in human–water 
systems. It is crucial to understand and consider the causalities 
and feedbacks that can lead to phenomena such as the levee 
effect. The development of socio-hydrological models made it 
possible to simulate long-term developments, including future 
projections. Combinations of model- and data-based 
approaches increase the relevance for practical water 
management.

Comparative studies enabled the identification of common-
alities and differences between places and the recognition of 
patterns. As such, generic and transferable descriptions of 
long-term changes that involve a two-way coupling between 
human actions and water quantity or quality were developed, 
which also led to organizing the range of socio-hydrological 
phenomena into a small number of system archetypes (e.g. 
fixes that fail). Archetypes are expressed in terms of generic 
causal loop diagrams. Syntheses and meta-analyses across 
socio-hydrological studies stressed the importance of space 
and space-time aspects as well as of understanding causalities 
to even better address important societal challenges.

7.5 Modelling and prediction

Various powerful socio-hydrological model approaches have 
been developed which describe feedbacks, e.g. causal loops, 
and include new conceptualizations of human behaviour such 
as risk awareness and community sensitivity. Examples are 
stylized models (i.e. system characteristics simplified into a 
set of differential equations), system-of-systems models (spa-
tially explicit coupled models that capture different hydrologi-
cal and socio-economic processes of the system) and agent- 
based models (theory-based models that describe the decisions 
and interactions between agents).

Significant progress in parameter estimation has been 
achieved thanks to improved accessibility as well as new, 
unconventional data that also describe new parameters like 
community sensitivity. The use of Bayesian inference allows 
modellers to introduce their degree of belief in certain pro-
cesses as priors. Further, it opens up the possibility to integrate 
empirical qualitative and quantitative data. Both these 
advancements in modelling improved the simulation of past 
and future complex pathways, e.g. including tipping points 
and non-linear system dynamics.

7.6 Water management and adaptation to change

Future scenarios (and partly possibility spaces) are now com-
monly considered in water management, e.g. as required by 
the EU Water Framework Directive and the Floods Directive. 
Adaptive management concepts, which do not rely on design 
values but anticipate changes over time, have been developed. 
Water management is seen as a continuous process with reg-
ular monitoring and revisiting management decisions. 
Preferences for a particular measure are not only determined 
by cost–benefit analyses, but the flexibility and adaptability of 
the measures are also considered.

Participatory and inclusive governance is needed, involving 
all relevant stakeholders (users, planners and policymakers at 
all levels, in particular at the river basin scale, thus from 

HYDROLOGICAL SCIENCES JOURNAL 1225



different countries if relevant). Advice from the scientific com-
munity should also play an essential role in participatory 
governance as promoted in the IAHS’ 2015 Prague statement.

8 Recommendations

The IAHS Panta Rhei scientific decade has ended, but change 
is still ongoing – everything is still flowing, literally. We under-
stand flow and change better now than in 2013. However, we 
also realize that the more our knowledge of nature and humans 
increases, the larger is the number of relevant interactions and 
feedbacks that will come to our attention, and as such the 
greater the complexity and uncertainty in our understanding 
and predictions. We continue our endeavour to answer the 
question “What are the key gaps in our understanding of 
hydrological change” and to fill these gaps. Thus, we need 
both continued excellent science on change in hydrology and 
society and a pragmatic and holistic approach to translating 
scientific innovation into policy and practice.

The Panta Rhei scientific decade inspired worldwide 
research efforts on change in hydrology and society that have 
created a vibrant and productive community of natural, social 
and interdisciplinary scientists and practitioners (Pande et al. 
2022), which is an important and lasting outcome of this 
initiative. Intensive transdisciplinary collaboration on changes 
in hydrology and society has resulted in many new concepts, 
approaches, results and applications that have already 
improved practical water management for the benefit of socie-
ties, as illustrated in this review. We recommend continued 
effort and support for transdisciplinary collaboration in this 
field, by providing mid- to long-term funding for transdisci-
plinary research, supporting improved interdisciplinary edu-
cation, improving the mechanisms to assess the value of 
scholarly work, and bringing together scientists and practi-
tioners from various disciplines within the framework of 
IAHS and beyond (Kreibich et al. 2022a). These are all recom-
mendations geared towards a broadening of our activities.

As we expand knowledge, we should also equally con-
solidate and synthesize, to avoid fragmentation of the field. 

We need a clear science agenda for future research on water 
and societies, which the new IAHS International 
Commission on Human–Water Feedbacks (ICHWF) is 
designed to spearhead. We must synthesize knowledge to 
identify patterns in the apparent disorder and high com-
plexity, using both scientific discourse and targeted efforts 
such as periodic meta-analyses. Finally, our improved 
knowledge and predictive capabilities regarding human– 
water systems should be leveraged to solve water problems 
in a way that accounts for the long-term feedbacks between 
humans and water.

We therefore recommend that the community takes a 
broader view of the hydrological sciences in three dimensions, 
while at the same time pursuing synthesis, also in three dimen-
sions (Fig. 6).

Broadening:

● Broadening the understanding of hydrological sciences 
by promoting comparative studies across spatial gradi-
ents of socio-economic and hydro-climatic systems, 
which can be supported by making data freely available.

● Broadening the discipline by mainstreaming the con-
cept of coupled human–water systems in hydrology, 
because people are affected by, and affecting, all aspects 
of water systems.

● Broadening the training and education in hydrology 
towards more interdisciplinary understanding of inte-
grated systems.

Synthesis:

● Focusing on key themes, e.g. as proposed by the 
Unsolved Problems in Hydrology initiative (UPH; 
Blöschl et al. 2019a), in order to strengthen the coherence 
within the discipline and its impact on other disciplines 
and societies.

● Developing innovative approaches by drawing upon 
new ideas and technologies (e.g. inter- and 

Figure 6. Recommendations to make progress by broadening understanding, discipline and training while synthesizing and focusing on key themes, the development 
of innovative approaches and sustainable solutions.
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transdisciplinary approaches; analysing new data with 
ML and AI) in order to advance the hydrological sciences 
even further in a coherent way.

● Finding sustainable solutions as proposed by the new 
IAHS scientific decade (2023–2032) on “Science for solu-
tions: Hydrology Engaging Local People IN one Global 
world (HELPING)” (Arheimer et al. 2024).
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