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A B S T R A C T

Risk mapping in epidemiology is a strategic tool that identifies high-risk areas for disease outbreaks, guiding 
preventive, surveillance, and control measures. In this study, we investigated how the selection of risk factors in 
ASF risk mapping affected the output of risk maps using the outbreak in Fagersta, Sweden as a study area. We 
identified ASFV risk factors by considering the sequence of introduction, release, and spread. Introduction was 
linked to pathways through which the virus could enter new areas, while release was associated with human 
activities and infrastructure that may lead to environmental contamination. Spread was then examined in 
relation to wild boar populations and environmental conditions that influence virus transmission. We demon-
strated how previously overlooked human activities, such as the management of residual waste in areas acces-
sible to wild boar, contributed to the risk of ASF in Fagersta, an area classified as low risk, and how this affected 
the calculation of disease risk. This study emphasizes the need for robust risk assessment frameworks that take 
into account ecological and socio-demographic factors, as well as emerging research findings. In addition, the 
existence of region-specific threats or vulnerabilities point out the necessity of frequent revisions of risk maps by 
incorporating new threats or vulnerabilities and adapting regional features to environmental changes. These 
findings are meant to improve preparedness and response strategies for ASF and other infectious disease events, 
ultimately contributing to animal as well as public health protection.

1. Introduction

Risk mapping is a powerful tool in epidemiology that offers a sys-
tematic approach to understanding and managing the risk of introduc-
tion and spread of infectious diseases (De Smith et al., 2007; Maceachren 
et al., 2004). By identifying geographical areas at higher risk for disease 
outbreaks, risk maps serve as prioritization tools for preventive mea-
sures and preparedness and for guiding the implementation of surveil-
lance- and control measures. This approach is particularly important for 
managing diseases in wildlife due to the complexities associated with 
the movement and behaviour of wild animals. Unlike domestic animals, 
which are usually confined to controlled environments, wildlife moves 
freely across diverse habitats, which presents significant challenges for 
disease monitoring and control. Our inability to predict such move-
ments, often spanning national borders, complicates coordinated efforts 
to manage disease spread through movement control and surveillance 
(De la Torre et al., 2015). African swine fever (ASF) is a contagious viral 

disease that affects both domestic pigs and wild boar populations, 
causing severe illness and high mortality. The challenges of managing 
ASF are particularly relevant in wild boar populations due to their 
mobility and interactions with the environment. ASF causes severe 
economic losses in the pig industry due to its high mortality rates, 
imposition of trade restrictions, and the absence of effective vaccines or 
treatments (Blome et al., 2020; Dixon et al., 2020). During the last 10 
years, ASF has affected large parts of the EU, where the disease has 
predominantly spread through wild boar populations, underscoring the 
importance of targeted risk mapping strategies to address the risk of ASF 
introduction and spread into new areas.

Several experiences have shown that long-distance translocations of 
ASF virus (ASFV) can occur unexpectedly, driven by human activities 
such as the transport of contaminated materials, regardless of 
geographic barriers. ASFV exhibits considerable persistence in the tis-
sues of infected animals, particularly when protected by a protein rich 
matrix such as meat or blood. During viremia, the virus is distributed 
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throughout the body, rendering non heat-treated contaminated meat 
and food waste infectious. ASFV remains stable in raw, frozen, and even 
cured meat products, allowing it to survive in food waste originating 
from infected animals (Davies et al., 2017; Sánchez-Vizcaíno et al., 
2012). The risk of ASFV spread through food waste is strongly influ-
enced by human practices, particularly when food waste is improperly 
disposed of or when biosecurity measures are insufficient in waste 
management systems. This has contributed to outbreaks in ASF-free 
areas when contaminated food waste or items are transported, 
whether intentionally or accidentally, from affected regions 
(Mazur-Panasiuk et al., 2019). Wild boar frequently scavenge exposed 
food waste, especially in areas with inadequate disposal practices. Dis-
carded food waste containing ASFV poses a risk of infection to both wild 
boar and domestic pigs (Gavier-Widén et al., 2020; Guinat et al., 2016; 
Olesen et al., 2020). This highlights the important role that 
human-mediated factors may play in the introduction of the virus into 
new areas (De la Torre et al., 2015).

Risk mapping may serve as a valuable tool for identifying high-risk 
regions for the introduction and spread of ASF, enabling guided pre-
vention and surveillance efforts. This approach reduces the risk of 
introduction, enhances the likelihood of early detection, limits the 
spread of the disease, and mitigates the negative impacts of outbreaks on 
both wildlife and domestic animal populations. Such risk mapping relies 
on the careful selection of risk factors, which in the case of ASF in wild 
boar are related to the wild boar population, its habitat and ecology as 
well as factor related to human-related activities. Precise selection of 
these factors to suit the characteristics of the target area, species, and 
epidemiological situation improves the predictive capacity of risk maps, 
enabling risk-based, and thus more effective, contingency planning, 
surveillance activities and prevention measures (Mur et al., 2012). 

However, selecting inappropriate or incomplete risk factors may in-
crease uncertainty in the mapping results, leading to less effective dis-
ease control measures, including surveillance and preventive actions.

In Sweden, wild boar populations are primarily concentrated in the 
southern parts of the country where they overlap with areas that have 
relatively high densities of domestic pig herds, see Fig. 1 in Ernholm 
et al. (2022). Sweden’s geographical location, lacking land borders with 
ASF-affected countries and surrounded largely by sea, prevents ASFV 
introduction via contact between infected and naïve wild boar pop-
ulations (Acevedo et al., 2022; Croft et al., 2024; More et al., 2018). 
Therefore, since the introduction of ASF into the EU in 2014, previous 
risk assessments have suggested that focal introduction via human ac-
tivities is the most likely pathway for ASFV to enter Sweden (Swedish 
Veterinary Agency, 2021). Several of the outbreaks in the current global 
epidemic show that such human-mediated spread can occur at any time 
and to any country, regardless of the distance to ongoing transmission in 
wild boar populations (Chenais et al., 2019; Licoppe et al., 2023). Such a 
scenario was therefore used in the risk assessment, and the distribution 
and density of wild boar populations, human population density, traffic 
volumes, vehicle capacity at rest areas, and international trade volumes 
at seaports were considered key risk factors. In multiple scenarios with 
varying weightings assigned to these factors, regions with high wild boar 
densities, particularly in the southern parts of the country, consistently 
emerged as high-risk areas for the introduction and spread of ASFV 
(Swedish Veterinary Agency, 2021). However, in 2023, an ASF outbreak 
occurred in Fagersta municipality, an area initially classified as low-risk 
due to its low wild boar density and its location in inland Sweden. As 
expected, the virus was most likely introduced through human activ-
ities, such as disposing of contaminated food leftovers in the environ-
ment, exposing wild boar to the virus (Chenais et al., 2024). Various 

Fig. 1. A map showing the location of the ASF outbreak and the wild boar hunting bag in Sweden for 2022. Red points indicate the locations where infected carcasses 
were found. The red line represents Restricted Zone I, while the blue line marks Restricted Zone II and the fenced-off area, both established by the European 
Commission on 30 November 2023. The wild boar hunting bag is expressed as the number of wild boar shot per 1000 ha, with darker colours indicating higher 
hunting intensity.
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human-related risk factors were incorporated into the risk mapping, 
including vehicle capacity at rest areas to account for potential trans-
mission through contaminated food waste discarded in bins at campsites 
or roadside locations. However, municipal waste collection centres, 
later identified as potentially contributing to ASFV spread in the 
Fagersta outbreak (Chenais et al., 2024), were not included due to 
insufficient prior information regarding the structure and complexity of 
the of the Swedish waste management systems.

This study examines how the selection and spatial resolution of risk 
factors affect the calculation of the risk of ASFV introduction, release, 
and spread, with the Fagersta outbreak serving as the primary study area 
for model application. Additionally, we aim to assess the impact of 
spatial units and scales on identifying high-risk areas.

2. Background

In September 2023, Sweden confirmed its first case of ASF in wild 
boar near Fagersta, Västmanland County, approximately 170 km 
northwest of Stockholm (Fig. 1). This detection led to the implementa-
tion of strict control measures within a defined infected zone. Over 10 
months, 125 wild boar carcasses were discovered, with 70 testing pos-
itive for ASFV. All positive cases were confined to a core area around the 
initial outbreak site.

Investigations suggest that the virus was introduced between early 
May and late June 2023, with spread peaking between mid-August and 
mid-September and the last death occurring in late September 2023. It 
was concluded that the introduction resulted from human activities, 
possibly linked to a municipal waste collection centre near the epicentre 
of the outbreak that lacked wild boar-proof fencing, attracting local wild 
boar and thus facilitating virus spread (Chenais et al., 2024). Following 
rigorous surveillance and eradication strategies, Sweden was declared 
free from ASF on September 25, 2024.

The general waste management system in Sweden is designed to 
prioritize recycling, waste reduction, and energy recovery. Municipal-
ities are responsible for managing household waste and ensuring that 
waste is separated into categories such as recyclables (paper, plastics, 
metal, glass) and non-recyclable materials. Municipal waste collection 
centres play a central role in the system, providing residents with 
accessible locations to dispose of a wide range of waste, including re-
cyclables, electronics, hazardous materials, and bulky items (Avfall 
Sverige, 2022).

3. Materials and methods

We identified risk factors by considering a sequence of events that 
includes introduction, release, and spread. For the introduction of ASFV, 
traffic and international trade were identified as major pathways 
through which the virus could enter new areas. The release of ASFV into 
the environment was associated with human activities and infrastruc-
ture such as roadside rest areas, waste disposal centres, human popu-
lation density, and land cover characteristics, all of which may increase 
the likelihood of contaminated materials being deposited in wild or rural 
settings. The subsequent spread of ASFV was then considered in relation 
to the local wild boar population, which serves as a reservoir and 
amplifier host, allowing the virus to prevail and move through the 
landscape. In addition, environmental factors such as temperature and 
precipitation were included, as they influence virus survival in the 
environment, wild boar movement patterns, and the overall suitability 
of habitats for ASFV transmission (Aguilar-Vega et al., 2024; Bergmann 
et al., 2021, 2022; ENETWILD-consortium et al., 2024; Sauter-Louis 
et al., 2021; Viltrop et al., 2021). The selection of these risk factors 
was based on a review of the literature, Swedish environmental condi-
tions, expert opinions (Swedish Veterinary Agency, 2021), and data 
availability. All data cleaning, data processing, analysis, risk calcula-
tions, and visualizations were performed using R version 4.4.1 (R Core 
Team, 2024).

3.1. Data

An overview of the risk factors, along with data sources and formats, 
is presented in Table 1. To incorporate a risk factor for ASFV entry into 
the country from ASF-affected countries through international trade, we 
used data on trade volumes at seaports from Transport Analysis and the 
annual average traffic volumes of the road network from the Swedish 
Transport Administration (Jurado et al., 2019; Patterson et al., 2021; 
Transport Analysis, 2024; Swedish Transport Administration, 2024).

Human-related activities can be estimated through human presence, 
which can be effectively measured by population density (Bergmann 
et al., 2021). We obtained the population density, aggregated at the 
municipality level from Statistics Sweden (Statistics Sweden, 2024). We 
used vehicle capacity at rest areas as a proxy for food waste, from the 
Swedish Transport Administration (Swedish Transport Administration, 
2024), and included municipal waste collection centres, which were 
identified as a potential risk factor for the release and spread of ASFV in 
the Fagersta outbreak (Chenais et al., 2024), based on data from Swedish 
Waste Management (Swedish Waste Management, 2023). Information 
on the waste collection capacity of each collection centre as well as 
biosecurity measures in place (e.g. perimeter fences) was unavailable; 
therefore, a value of 1 was assigned for presence and 0 for absence. We 
also utilized CORINE Land Cover data (Copernicus Land Monitoring 
Service, 2018) to identify suitable wild boar habitats. Using GPS collar 
records of wild boar visits (Augustsson et al., 2024), we assigned values 
to five land cover types: artificial surfaces, agricultural areas, forests and 
seminatural areas, wetlands, and water bodies, based on the proportion 
of visits recorded in each land cover type.

For wild boar population data, we obtained the national hunting bag 
statistics from the 2021–22 hunting season, provided by Swedish As-
sociation for Hunting and Wildlife Management, Game Monitoring. 
Hunting bag statistics are commonly used as a proxy for estimating the 
relative abundance of wildlife species (Aubry et al., 2020; Lindström and 
Bergqvist, 2022), though this method has recognized limitations 

Table 1 
Risk factors used in the model, including data sources and format.

Risk factor Data 
type

Temporal 
unit

Spatial unit Data source

Traffic 
volumes

Vector - 
line

2021 Road network 
(link)

Swedish Transport 
Administration

Trade volumes Text 2021 Point Transport Analysis
Human 

population
Text 2021 Municipality 

(pop/km2)
Statistics Sweden

Vehicle 
capacity at 
rest areas

Vector - 
point

2021 Point Swedish Transport 
Administration

Municipal 
waste 
collection 
centres

Text 2021 Point Swedish Waste 
Management

Land cover Raster 2018 100 m2 grid 
cell

Copernicus Land 
Monitoring Service

Hunting bag Vector - 
polygon

2021–2022 Hunting bag Swedish 
Association for 
Hunting and 
Wildlife 
Management

Wild boar- 
vehicle 
collision 
records

Vector - 
line

2016–2020 Road network 
(link)

Swedish Transport 
Administration

Temperature Text 2021 Point Swedish 
Meteorological and 
Hydrological 
Institute

Precipitation Text 2021 Point Swedish 
Meteorological and 
Hydrological 
Institute
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(Focardi et al., 2020). To enhance reliability, we incorporated accident 
statistics from the Swedish Transport Administration, documenting wild 
boar-vehicle collisions across the road network over a five-year period 
(Augustsson et al., 2024; Seiler et al., 2019; Swedish Transport 
Administration, 2024). Temperature and precipitation data were 
collected from all monitoring stations across Sweden (Swedish Meteo-
rological and Hydrological Institute, 2025). Using daily mean temper-
ature and daily mean precipitation records, we calculated the annual 
average values to represent the overall climatic conditions.

3.2. Data processing

The collected data came in various formats, including text, raster, 
and vector (point and line). To use these data in risk calculations, we 
standardized them into a uniform format: raster with a 1 km² resolution. 
A raster file consists of equally sized cells, each assigned an attribute 
value. For example, in the population raster data, all cells within a 
municipality share the same value, representing the population density 
for that area. Data collected as points or lines, such as wild boar-vehicle 
collision records, rest areas, traffic volumes, and municipal waste 
collection centres, were used to create buffered areas with a 5 km radius 
around both points and lines. In cases where two buffered areas over-
lapped, the overlapping area was assigned the mean value of the two 
buffers. This radius was determined based on the home range size 
derived from movement data analysis of Swedish wild boar (Augustsson 
et al., 2024). Each buffered area was assigned an attribute value corre-
sponding to the original data source, such as the number of vehicles a 
rest area can accommodate. Temperature and precipitation were inter-
polated from weather station data using inverse distance weighted 
interpolation with a power value (p) of 2. After data cleaning and con-
version, all raster files were rescaled to have attribute values between 
0 and 1, where 0 represents the lowest risk and 1 the highest (Fig. 2). 
This standardization ensured a common scale across all datasets, 
enabling direct risk comparison (Fig. 3).

3.3. Multicollinearity assessment of risk factors

An assessment of multicollinearity among the risk factors was con-
ducted to ensure the robustness of the model. Multicollinearity occurs 
when predictor variables are highly correlated, potentially leading to 

instability in regression estimates and affecting the reliability of the 
results (Dormann et al., 2013). To evaluate multicollinearity, Pearson 

correlation coefficients were computed for each pair of risk factors. Pairs 
of variables with correlation coefficients greater than 0.7 were consid-
ered highly correlated (Vatcheva et al., 2016).

3.4. Risk weighting based on expert assessments

To assess the relative importance of various risk factors, we 
employed the paired comparison method, a structured decision-making 
technique used in multi-criteria analysis (Saaty, 1987). This method 
enables the derivation of relative weights among a set of factors based on 
expert judgments by systematically comparing them in pairs. A ques-
tionnaire was distributed to a panel of eight experts, including epide-
miologists, disease spread modelers, veterinarians, and risk assessors, all 
with extensive knowledge of the Swedish context, ASF, and wild boar 
behaviour. Six of the eight experts provided responses. The experts were 
asked to evaluate the importance of 10 risk factors (listed in Table 1) 
that could affect the introduction, release, and spread of ASF in wild 
boar populations. For each pair of factors, respondents indicated which 
was more important, using a predefined scale ranging from “much less 
important” (1/4) to "much more important" (4), with “equal impor-
tance” assigned a value of 1 (Saaty, 1987; Vargas, 1990). To minimize 
group influence and bias, all responses were provided independently. 
The individual matrices were subsequently analysed to produce an 
aggregated ranking of the risk factors. The expert panel later reconvened 
to review the aggregated results, discuss inconsistencies, and make final 
adjustments. This collaborative process led to a consensus-based set of 
final weights for each risk factor, which were subsequently used as in-
puts for the risk mapping and analysis. Details of the expert assessments 
are available in the Supplementary Information (Table S1 and Table S2).

3.5. Calculation of expert-assessed risk of ASFV introduction, release, 
and spread in wild boar

The risk of ASFV introduction, release, and spread in wild boar was 
calculated using Eq. (1), which was designed to incorporate expert 
opinion, emphasizing that there is no such risk in areas without wild 
boar. Risk factors were assigned weights ranging from 0 to 1, where a 
weight of 0 indicates that the factor has no impact on the risk of intro-
duction, release, and spread, while a weight of 1 signifies that the factor 
is assumed to fully influence these risks.  

where rIN represents risk factors related to human-mediated virus 
introduction (e.g., traffic volumes, trade volumes), rRE represents risk 
factors associated with virus release into the environment (e.g., popu-
lation density, waste disposal, land cover), and rSP represents factors 
influencing the spread of the virus in wild boar populations and their 
habitats (e.g., hunting bag, wild boar-vehicle collisions, temperature, 
precipitation). The variable w denotes the weights assigned by experts. 
The index i refers to the raster cell, while k, m, and n index the risk 
factors related to Introduction (k = 1 to K), Release (m = 1 to M), and 
Establishment and Spread (n = 1 to N), respectively. PWB is a binary 
indicator that denotes the presence or absence of wild boar.

The output results were rescaled from 0–1 to ensure a consistent 
scale across all scenarios (Fig. 4) and are intended to assess relative, not 
absolute, risk. This allows for cross-regional comparisons to determine 
which regions are more vulnerable to ASF.

Fig. 2. An illustration of the raster (risk factor) rescaling process. On the left, 
the original rasters display varying ranges of cell values. On the right, the 
rescaled rasters are normalised to a value range of 0–1.

Riski =

⎧
⎪⎨

⎪⎩

0, ifPWBi = 0
∑K

k=1

(
rINki • wINk

)
+

∑M

m=1
(rREmi • wREm ) +

∑N

n=1
(rSPni • wSPn ), ifPWBi > 0 , (1) 
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3.6. Sensitivity analysis

We conducted a sensitivity analysis to evaluate the impact of each 
risk factor. Since our model calculated a relative rather than an absolute 
risk, direct comparison of numerical risk values was inappropriate. 
Instead, we assessed the sensitivity of the results by examining how the 
ranking of risk for each spatial unit (specifically, grid cells and munic-
ipalities) changed when individual risk factors were excluded from the 
model. All 10 risk factors were initially incorporated with weights 
derived from expert assessments to establish a baseline risk. In this 
baseline model, each factor contributed according to its relative 

importance as determined through the paired comparison method. 
Following this, a series of 10 iterations was conducted. In each iteration, 
a single risk factor was removed, and the remaining nine factors, each 
weighted according to the expert assessments, were used to recalculate 
the relative risk. Each iteration, therefore, produced an alternative risk 
scenario where the influence of one particular risk factor was excluded. 
Calculations for risk were first made for each 1 km² grid cell, and then 
the average risk per municipality was computed from these grid cell 
values. If a grid cell is located on the boundary between municipalities, 
it is included in the municipality where the majority of the area of that 
cell lies, and the risk calculation is assigned accordingly.

Fig. 3. Maps displaying each risk factor at a 1 km² resolution, with a scale ranging from 0 to 1. Darker colours represent higher intensity levels, and the red rectangle 
marks the outbreak area.
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Fig. 4. An illustration of the risk raster rescaling process. On the left, the calculated risk raster, based on Eq. (1), has a certain range of cell values. On the right, the 
rescaled risk raster is normalised to a value range of 0–1.

Fig. 5. Maps showing the risk of ASFV introduction, release, and spread at a 1 km² resolution, with darker colours indicating relatively higher risk. (a) includes 
traffic volumes, trade volumes, human population, vehicle capacity, land cover, hunted wild boar, wild boar-vehicle collision records, temperature, and precipitation 
as risk factors. (b) incorporates the same risk factors as (a), with the addition of municipal waste collection centres.
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For the global sensitivity test, which evaluates risk sensitivity across 
the entire country, we assessed whether the ranking of municipalities by 
ASF risk was stable when individual risk factors were removed. We 
generated a total of 11 ranking sets, each representing a unique model 
configuration: one for the baseline model and 10 for models where one 
risk factor was excluded. The municipality rankings for each of these 10 
alternative scenarios were then compared to the baseline ranking using 
the Wilcoxon signed-rank test (Wilcoxon, 1992). This non-parametric 
test allowed us to statistically evaluate if excluding a single risk factor 
produced a significant shift in the spatial pattern of risk. A local sensi-
tivity analysis was also conducted for five regions of equal size (in terms 
of the number of grid cells), including the outbreak area in Fagersta 
municipality (Supplementary Fig. 1). These regions were selected based 
on varying levels of human and wild boar populations: high, moderate, 
and low. Within each of these areas, a total of 1840 grid cells were 
ranked according to their calculated risk values under both baseline and 
modified scenarios. To assess the impact of excluding individual risk 
factors, we applied the Wilcoxon signed-rank test to determine whether 
significant ranking changes occurred.

4. Results

The calculation of Pearson correlation coefficients between all pairs 
of risk factors revealed no significant correlations among the variables, 
indicating that the risk factors are independent of one another 
(Table S3). As a result, all 10 risk factors were included in the risk 
calculation. Based on this, the risk was then calculated for the entire 
country of Sweden. Fig. 5(a) and Fig. 6(a) display the results based on 
risk factors identified by SVA prior to the 2023 ASF outbreak. These 
factors include traffic volumes, trade volumes, human population, 
vehicle capacity, land cover, hunted wild boar, wild boar-vehicle colli-
sion records, temperature, and precipitation. At the national level, the 
outbreak area in Fagersta municipality was considered a relatively low 
risk (Fig. 5(a)). Out of 290 municipalities in Sweden, Fagersta munici-
pality was ranked 147th for the risk of ASFV introduction, release, and 
spread. This is a relatively low position, especially considering that 50 
municipalities with no wild boar populations have a risk of 0. Addi-
tionally, the risk values in the grid cells where positive cases were 
detected in the outbreak were also low, ranging from 0.24 to 0.46 (Fig. 6
(a)).

After including municipal waste collection centres as an additional 
risk factor, Fagersta municipality was ranked 179th out of 290 munic-
ipalities (Fig. 5(b) and Fig. 6(b)). However, the risk values for the grid 
cells where positive cases were located were notably higher than the 

municipal average, ranging from 0.43 to 0.59 (Fig. 6(b)).
In the global sensitivity analysis, we calculated the average risk for 

each municipality. Based on these averages, the municipalities were 
ranked (from 1 to 290), and the Wilcoxon signed-rank test was applied. 
Subsequently, the municipalities were grouped into six distinct risk 
levels for the purpose of visually assessing the risk of ASFV introduction, 
release, and spread. Fig. 7 illustrates the spatial pattern of ASF risk. The 
baseline panel shows risk levels calculated with all risk factors included, 
while the other panels show risk levels calculated after removing the 
factor indicated by each panel title. For example, in the “Without traffic 
volumes” panel, risk levels reflect the exclusion of only that factor while 
including the remaining nine risk factors. Results of the Wilcoxon 
signed-rank test confirmed excluding traffic volumes, human popula-
tion, and vehicle capacity at rest areas from the risk calculation led to 
changes in the ranking of municipalities compared to the baseline sce-
nario. However, the overall spatial pattern remained consistent 
(Table 2). By contrast, the local sensitivity analysis for the outbreak area 
reveals a notable difference as illustrated in Fig. 8. Specifically, the in-
clusion or exclusion of municipal waste collection centres significantly 
affects the spatial pattern of the risk of ASFV introduction, release, and 
spread. When municipal waste collection centres are excluded as a risk 
factor, grid cells in the outbreak area show consistently low risk values. 
However, when municipal waste collection centres are included, areas 
with substantially higher risks emerge. The Wilcoxon signed-rank test 
showed that, except for precipitation and trade volumes, all other risk 
factors significantly influence the ranking of risk values for each grid cell 
(Table 2). For the other regions, the sensitivity analysis showed distinct 
patterns of influence (Supplementary Fig. 2). In Region 1, traffic vol-
umes, human population, vehicle capacity at rest areas, and municipal 
waste collection centres significantly influenced risk rankings. Region 2 
was significantly affected by all risk factors except trade volumes and 
precipitation. Region 3 was influenced by all risk factors, while Region 4 
showed significant sensitivity to all except trade volumes and temper-
ature (Table S4).

5. Discussion

This study demonstrates how careful selection of relevant risk factors 
influences the confidence of disease risk assessments. Since risk factor 
selection is inherently incomplete, omitting critical factors can intro-
duce substantial biases and uncertainty, potentially causing deviations 
in predictive scenarios.

Food waste is widely recognized as a significant factor in the intro-
duction and spread of ASFV through human-mediated activities 

Fig. 6. Zoomed-in maps around Fagersta showing the risk of ASFV introduction, release, and spread at a resolution of 1 km², with darker colours indicating relatively 
higher risk. The red and blue lines delineate the zones established by the European Commission on 30 November 2023 (red line = restricted zone I, blue line =
restricted zone II). Red dots indicate the locations where infected carcasses were found. (a) includes traffic volumes, trade volumes, human population, vehicle 
capacity, land cover, hunted wild boar, wild boar-vehicle collision records, temperature, and precipitation as risk factors. (b) incorporates the same risk factors as (a), 
with the addition of municipal waste collection centres.
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(Gavier-Widén et al., 2020; Guinat et al., 2016; Olesen et al., 2020) and 
it has been identified as a potential risk for spreading ASFV to the 
Swedish wild boar population. As a result, it was included in the risk 
mapping prior to the Fagersta outbreak (Swedish Veterinary Agency, 
2021). However, due to insufficient prior information concerning the 
Swedish waste management chain, the risk of virus introduction and 
spread through food waste was not fully addressed. A simplified view of 
the system’s complexity led to potential biosecurity concerns, particu-
larly since the risk at municipal waste collection centres was not 
adequately considered. Consequently, confidence in the assessment was 
hindered by a lack of comprehensive consideration of risk distribution 
across multiple dimensions.

In addition to selecting relevant risk factors, it is essential to assign 
proper weight to each factor to reflect its true impact on disease intro-
duction (Gierak et al., 2019; Stiles et al., 2024). Our analysis, which 
covered five regions with varying characteristics (Fig. 8 and Supple-
mentary Fig. 2), revealed that each region is influenced by different risk 
factors, emphasizing the importance of accounting for regional variation 
when assessing disease dynamics. Regional characteristics, such as 
geographical environment, climate conditions, and local wild boar 
population behaviours, played a significant role in shaping these 

differences. This variability suggests that a one-size-fits-all approach 
may not be effective, and region-specific adjustments are necessary to 
improve prediction accuracy and control measures (Heymann, 2005).

When assessing the risk of ASF across Sweden at the municipality 
level, the highest-risk areas remain in the southern part of the country 
(Fig. 5 and Fig. 7). This variation in risk levels is mainly attributed to the 
higher concentration of wild boar populations, greater human popula-
tion density, and increased human activity in southern parts of Sweden 
(Fig. 3). However, despite Fagersta being ranked as a lower-risk area at 
the national scale, it is important to recognize that it still carries a 
probability of ASFV introduction, release, and spread due to the pres-
ence of wild boar habitats and ongoing human activity. This underscores 
the need for continued vigilance even in areas classified as low risk, as 
local conditions can still facilitate disease introduction under certain 
circumstances. As shown in Fig. 6 and Fig. 8, when the risk is analysed at 
the grid cell level, all positive cases in the Fagersta outbreak are 
concentrated in high-risk areas. These findings highlight the importance 
of using high-resolution maps to capture local environmental, ecolog-
ical, and human factors influencing disease introduction and spread. 
Such maps allow stakeholders to pinpoint high-risk areas within larger 
regions, enabling targeted, effective interventions. Consequently, 

Fig. 7. The results showing the sensitivity analyses at the municipality level. The baseline panel displays the results when all 10 risk factors are included, while the 
other panels show the recalculated risk after excluding the specific risk factor indicated in the panel title. For instance, the ’Without traffic volumes’ panel illustrates 
the risk calculated using only the remaining nine risk factors, excluding traffic volumes. Darker colours represent higher risk values.
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distinguishing between national and regional scales is essential when 
calculating the risk and formulating a disease prevention plan to ensure 
effective implementation (Plavšic et al., 2019).

Limited or poor-quality data on specific risk factors can hinder their 
effective inclusion in models, ultimately diminishing the reliability of 
risk assessments. Inaccurate or incomplete data may misrepresent the 
relationships between risk factors and disease occurrence, resulting in 
incorrect predictions and potentially flawed prevention plans. For 
instance, the hunting bag and wild boar-vehicle collision records uti-
lized in our study to estimate the density and distribution of wild boar 
are valuable for national-scale risk analysis. However, when examined 
at a regional scale, the information derived from hunting bag data be-
comes overly generalized. This is due to the average hunting bag area 
being 1477.40 km² (SD = 2476.82 km²), which closely resembles the 
average area of a Swedish municipality at 1545.83 km² (SD =

2657.09 km²). As a result, a municipality may be assigned the same wild 
boar density value despite variations in actual conditions. More accurate 
predictions of wild boar abundance and density could be achieved 
through a combination of habitat analysis and regional measurements, 

with camera traps providing reliable estimates at a reasonable scale. 
While GPS collaring may not be as scalable, it can still offer valuable 
insights into individual movement patterns and behaviour, contributing 
to a more comprehensive understanding of wild boar dynamics 
(Acevedo et al., 2022; Augustsson et al., 2024; Thurfjell et al., 2014, 
2009). Similarly, the risk mapping strategy for waste collection centres 
relies on binomial attribute values, primarily due to limited data avail-
ability. In this approach, areas associated with waste collection centres 
are classified as either a risk or non-risk factor. This binary classification 
may lead to disproportionately high-risk values in these areas, as the 
presence or absence of a waste collection centre is treated as a simple 
yes/no attribute. Consequently, waste collection centre areas may be 
assigned high-risk values regardless of specific management practices or 
waste accumulation levels. This oversimplification can distort risk esti-
mates, as it does not account for the variability in how waste is stored or 
handled across different locations. To improve the accuracy of risk as-
sessments, a more nuanced approach, which incorporates the intensity 
and biosecurity measures at waste collection centres, would provide a 
more reliable representation of the actual risk they pose.

Over time, changes in the activity patterns of wildlife and human 
populations can have a significant impact on disease transmission dy-
namics. Additionally, climate change leads to alterations in landscapes 
and habitats, further complicating risk assessments. For example, 
changes in temperature and precipitation patterns can lead to changes in 
land cover, which can affect the distribution of species, such as wild 
boar, and their interactions with human populations, thereby affecting 
the spread of diseases (Buttke et al., 2021; Cohen et al., 2020). As such, 
periodic updates and detailed seasonal risk maps are essential for 
accurately reflecting these changes (Stiles et al., 2024). These maps 
enable researchers and policymakers to plan and prepare for potential 
outbreaks and implement timely interventions based on the current 
ecological and epidemiological landscape (Beauvais et al., 2019).

6. Conclusion

In conclusion, this study highlights the importance of careful selec-
tion and appropriate resolution of risk factors in risk mapping. Applying 
the model to the Fagersta outbreak highlights the importance of a 
comprehensive, multi-dimensional approach to risk assessment, with 
thorough evaluation at both national and regional scales to capture local 
conditions and to support targeted interventions. Additionally, as 
environmental and ecological conditions shift, regularly updating risk 
assessments is essential to maintain their accuracy over time. Enhancing 
the spatial resolution of risk factors and adapting them to regional 

Table 2 
Wilcoxon signed-rank test results comparing baseline risk (calculated with all 
risk factors included) to recalculated risk scenarios with each risk factor indi-
vidually excluded.

Risk factor Region Wilcoxon signed-rank test

Test statistic W p-value

Traffic volumes Sweden 11621.0 0.002
Trade volumes 2045.0 0.852
Human population 9407.5 < 0.001
Vehicle capacity at rest areas 7976.5 0.062
Municipal waste collection centres 12523.5 0.596
Land cover 12148.0 0.182
Hunted wild boar 13079.0 0.708
Wild boar-vehicle collision records 10664.0 0.454
Temperature 11311.5 0.744
Precipitation 11441.5 < 0.001
Traffic volumes Outbreak area 856305.5 0.007
Trade volumes 330993.5 0.489
Human population 491777.0 0.003
Vehicle capacity at rest areas 757391.5 < 0.001
Municipal waste collection centres 1235842.5 < 0.001
Land cover 505188.0 < 0.001
Hunted wild boar 962135.0 < 0.001
Wild boar-vehicle collision records 847536.0 < 0.001
Temperature 657300.5 0.001
Precipitation 737488.5 0.977

Fig. 8. The results showing the sensitivity analyses at a 1 km² resolution for the outbreak area. The baseline panel displays the results when all 10 risk factors are 
included, while the other panels show the recalculated risk after excluding the specific risk factor indicated in the panel title. For instance, the ’Without traffic 
volumes’ panel illustrates the risk calculated using only the remaining nine risk factors, excluding traffic volumes. Darker colours represent higher risk values.
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characteristics can make risk mapping a more effective tool for priori-
tizing resources, strengthening biosecurity, and ultimately reducing the 
economic and ecological impact of disease outbreaks in host species.
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