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Abstract 

Background During the Green Revolution, one of the biggest developments of wheat domestication was the development 
of new cultivars that respond well to fertilisers and produce higher yields on shorter stems to prevent lodging. Consequently, 
this change has also impacted the wheat microbiome, often resulting in reduced selection of taxa and a loss of network com-
plexity in the rhizospheres of modern cultivars. Given the importance of rhizosphere microbiomes for plant health and per-
formance, it is imperative that we understand if and how these changes have affected their function. Here, we use shotgun 
metagenomics to classify the functional potential of prokaryote communities from the rhizospheres of pre-green revolution 
(heritage) cultivars to compare the impact of modern wheat breeding on rhizosphere microbiome functions.

Results We found distinct taxonomic and functional differences between heritage and modern wheat rhizosphere 
communities and identified that modern wheat microbiomes were less distinct from the communities in the sur-
rounding soil. Of the 113 functional genes that were differentially abundant between heritage and modern cultivars, 
95% were depleted in modern cultivars and 65% of differentially abundant reads best mapped to genes involved 
in staurosporine biosynthesis (antibiotic product), plant cell wall degradation (microbial mediation of plant root archi-
tecture, overwintering energy source for microbes) and sphingolipid metabolism (signal bioactive molecules).

Conclusions Overall, our findings indicate that green revolution breeding has developed wheat cultivars 
with a reduced rhizosphere effect. The consequences of this are likely detrimental to the development of micro-
biome-assisted agriculture which will require a strong rhizosphere selective environment for the establishment 
of a beneficial plant root microbiome. We believe our results are of striking importance and highlight that implemen-
tation of microbiome facilitated agriculture will benefit from deliberately incorporating the development of beneficial 
plant-microbiome interactions, alongside traditional yield traits, to advance sustainable wheat production.

Keywords Wheat dwarfing, Wheat microbiomes, Heritage cultivars, Plant-microbe interactions, Green revolution 
breeding, Microbial functions
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Introduction
As a result of the Green Revolution, we benefit from a 
huge increase in cereal grain production. This was largely 
due to the widespread use of fertilisers and pesticides, 
the development of agricultural practices and the intro-
duction of high-yielding cultivars. Modern cultivars are 
characterised by increased tillering, larger seed heads 
producing higher yields, but on shorter stems to prevent 
lodging, and they respond well to high fertilizer inputs. 
However, they rely on unsustainable levels of agrochemi-
cal inputs, including synthetic fertilisers, which are envi-
ronmentally harmful [64].

While pre-green revolution cultivars, such as herit-
age or landraces cultivars, are mainly grown on marginal 
fields on organic farms [40, 44] they are still an impor-
tant genetic resource for breeding programs [13, 23], 
especially since they show tolerance to extreme weather 
events and other stresses [41]. Wheat domestication gave 
little to no consideration to belowground processes,as 
such, we are only beginning to understand how wheat 
developments during the Green Revolution has impacted 
the interactions between roots and soil organisms six 
decades after the modern cultivars were introduced into 
agriculture [19, 53, 63].

The rhizosphere, i.e., the interface between roots and 
soil, harbours a dynamic community of microorgan-
isms. These communities play an important role in how 
plants function, ranging from beneficial effects, e.g., aid-
ing nutrient acquisition, growth promotion and plant 
defences [35, 38, 56], to harmful effects, e.g., patho-
gens such as Gaeumannomyces tritici causative agent 
of take-all disease in most cereals [45]. The assembly 
of rhizosphere communities are largely determined by 
the exudates and structure of plant roots [55, 65] which 
the microbiome itself can modulate [21, 46], therefore 
it is not surprising that the domestication of wheat has 
been shown to influence protist, bacterial, nematode and 
fungal rhizosphere communities [19, 53, 63]. The gen-
eral trend in these populations is that wheat domestica-
tion has reduced selection processes in the rhizosphere. 
This is demonstrated by the root microbiome of heritage 
wheat harbouring more unique taxa and more complex 
microbiomes than the modern cultivars. Furthermore, 
modern cultivars can be enriched in fungal pathogens 
[20]. Similar trends have also been found in the domes-
tication of other cereals such as barley [7], soybean [58], 
rice [61] and durum wheat [59]. While these findings 
have been important for our understanding of micro-
bial community dynamics there is now a requirement to 
understand microbiome assembly and function for these 
resources to be harnessed in sustainable agriculture pro-
grammes with less dependence on fertilizer inputs [8, 
17]. Phylogenetic marker gene profiles can hint at the 

function of these communities [19]. However, to obtain 
a comprehensive understanding of how green revolution 
wheat developments have impacted microbiome func-
tion, there is a requirement for holistic shotgun sequenc-
ing methods to be deployed.

Whole shotgun metagenomic sequencing provides a 
representation of the genomes present in each sample, 
allowing the inference of functional potential of a micro-
bial community. This technique has been used to study 
the wheat rhizosphere microbiome and identify microbes 
that consume plant-derived carbon [14], to ascertain dif-
ferences in microbial zinc-mobilisation genes between 
high and low zinc wheat cultivars [66], and the compari-
son of antibiotic resistance genes in the rhizospheres of 
common crops [71]. To date, shotgun metagenomics 
has not corroborated the wheat domestication-driven 
changes in rhizosphere communities found using phy-
logenetic marker gene studies. A previous attempt was 
made in Canadian wheat cultivars and found no effect 
of domestication, but this study sampled at wheat senes-
cence [48], a time when the structure of the root micro-
biome of annual plants has been found to degrade and 
become dominated by saprophytes [33]. However, a 
similar study conducted in durum (tetraploid) wheat 
demonstrated that domestication led to a decline in 
gene diversity and a shift in microbial functional traits, 
particularly related to nutrient cycling [72]. As yet, the 
impact of the wheat developments during the green 
revolution on the vegetative stages of hexaploid bread 
wheat plants has not yet been explored using shotgun 
metagenomics.

Given the strong evidence from previous studies that 
wheat domestication impacts the rhizosphere commu-
nity structure at a taxonomic level, we predict that the 
same impact will be observed for a range of functional 
genes in these communities. We tested this hypothesis 
by growing two heritage and two modern wheat culti-
vars alongside unplanted bulk soil control pots under 
glasshouse conditions. At flowering stage, we sampled 
the rhizosphere soil and bulk soil samples and generated, 
analysed, and compared the shotgun metagenomic pro-
files, in terms of taxonomy and function, of the prokary-
ote communities from these sample types.

Methods
Wheat cultivars and growth conditions
Wheat cultivars (Table 1) were selected based on pre-
vious results by Kavamura et al. [19], which indicated 
differences in the root microbiome structure and pre-
dicted function between modern and heritage culti-
vars. Soil was collected from Stackyard bare-fallow soil 
mine (52.002997°N, 0.613058°W) in January 2019. Soil 
details are previously described [50]. Soil was sieved 
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(2 mm mesh), mixed thoroughly, and stored at 4 °C in 
polythene bags prior to use. Seeds were obtained from 
a field trial at Rothamsted Research, U.K., described in 
Lovegrove et  al. [29]. Seeds were surface sterilized as 
described previously (Reid 2021,70% ethanol, 10 min; 
1.5% active chlorine, 1  h; 5 × rinse, sterile distilled 
water; overnight imbibition  in sterile water  at 4  °C), 
to prevent compounding effects of microbial commu-
nities transferred from parents or during processing. 
Seeds were then transferred to pre-soaked (sterile dis-
tilled water) filter paper in Petri dishes and germinated 
for three days in the dark at room temperature. Seed-
lings were transplanted to individual wells on a seed 
tray (1 × seedling per well) in Stackyard bare fallow 
soil and grown in a glasshouse at Rothamsted Research 
for two weeks (20 °C, 16 h/day light regime, watered 
daily) before vernalization for twelve weeks (4 °C; 8 h 
light and 16 h dark). After this time, 3 seedlings were 
transplanted to 6-inch diameter pots (approximately 
1 kg soil per pot), with NPK granules [15% N, 9%  P2O5, 
11%  K2O, 2% MgO with micro-nutrients (B, Cu, Fe, 
Mn, Mo, and Zn); Osmocote, United Kingdom] (∼5 
g per pot) added to the soil surface of each pot. Five 
replicate pots were prepared for each wheat variety, 
and three unplanted bulk soil control pots were also 
set up using the same soil and fertilisation. Plants were 
grown in a glasshouse (20 °C, 16 h/day light regime) 
and watered daily or as required with tap water.

Pots were harvested at the start of flowering (Zadoks 
growth stage 61; approximately 10 weeks growth post 
vernalisation; [73]), resulting in twenty rhizosphere 
samples and three bulk soil samples. Loose soil from 
the root system of a given pot was carefully removed. 
A 10 g subsample of root system was transferred to a 
50 ml Falcon tube and 30 ml sterile water added. Next, 
samples were shaken vigorously for 10 min using an 
orbital shaker to release rhizosphere soil. After this 
time 4 ml soil suspension was centrifuged (2 min, RT, 
15,000 rpm), supernatant discarded, and remaining 
soil was flash frozen in liquid nitrogen and stored at 
− 80 °C.

DNA extraction and sequencing
Genomic DNA was extracted from the bulk soil and 
rhizosphere soil sample (~ 0.25 g) using the Dneasy 
PowerSoil Pro kit (Qiagen, Venlo, Netherlands) and 
stored at − 80 °C. Extractions were performed accord-
ing to the manufacturer’s instructions and with the use 
of the MP Biomedicals FastPrep-24 machine twice for the 
bead-beating step at 30 s at 5.5 m   s−1. DNA purity and 
concentrations were measured with a NanoDrop 1000 
spectrophotometer (Thermo Fisher Scientific, Wilm-
ington, DE, United States), as well as a Qubit 2.0 Fluor-
imeter using the dsDNA HS assay kit (Thermo Fisher 
Scientific). 0.6 µg of DNA for each sample was sent to 
Novogene (UK) Company Limited for library preparation 
and sequencing using Illumina NovaSeq 6000 platform 
(HWI-ST1276) using a 150 bp paired-end sequencing 
strategy. An average of 2.658 raw paired reads, ranging 
between 1.668 – 3.468) per sample was obtained.

Raw reads were processed with fastx_artifacts_filter 
(http:// hanno nlab. cshl. edu/ fastx_ toolk it/ index. html; 
v0.0.14) to remove sequencing artefacts, and Trimmo-
matic (http:// www. usade llab. org/ cms/? page= trimm 
omatic; v0.39; [4]) with a minimum length of 80 bp. Qual-
ity checked reads were assigned to taxa using DIAMOND 
(https:// github. com/ bbuch fink/ diamo nd; v2.0.13; [6]) 
and AnnoTree (http:// annot ree. uwate rloo. ca/ annot ree/ 
app/ downl oads. html; v1.2; [15, 39]) for prokaryote iden-
tification. KEGG Orthology (KO) molecular functional 
identifiers were assigned by MEGAN6 Ultra (https:// 
softw are- ab. cs. uni- tuebi ngen. de/ downl oad/ megan6/ 
welco me. html; v6.24.23; [3, 18]) and used to extract indi-
vidual gene sequences for each functional KEGG identi-
fier. Thus, processing resulted in two abundance tables 
for further analysis, one where reads were aligned to 
prokaryote taxa and another to functional genes.

Statistical analysis
Data processing
Taxa and functional genes were removed if their total 
count was < 10 reads. Only taxa assigned to Phyla 
or lower were kept for further analysis and reads 

Table 1 Characteristics of the cultivars used in this study including the year of release, pedigree, ancestry and the presence of 
dwarfing genes

*Table was modified from Kavamura et al. [19] and Lovegrove et al. [29]

Cultivar Year Pedigree Ancestry Dwarfing gene

Chidham white chaff 1790 Not recorded Heritage No

Red lammas 1850 Not recorded Heritage No

Malacca 1997 Riband*(Rendezvous)*Apostle Modern Rht2

Gallant 2009 (Malacca*Charger)*Xi-19 Modern Rht2

http://hannonlab.cshl.edu/fastx_toolkit/index.html
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/bbuchfink/diamond
http://annotree.uwaterloo.ca/annotree/app/downloads.html
http://annotree.uwaterloo.ca/annotree/app/downloads.html
https://software-ab.cs.uni-tuebingen.de/download/megan6/welcome.html
https://software-ab.cs.uni-tuebingen.de/download/megan6/welcome.html
https://software-ab.cs.uni-tuebingen.de/download/megan6/welcome.html
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unclassified to functional genes were removed. This 
resulted in 5,908,371,442 reads for the taxonomy table 
and 4,392,129,033 for the functional table and in both 
cases samples with the most reads roughly double those 
with the lowest number of reads.

All statistical analysis and visualisation of results was 
done in R version 4.3.3 [49]. Alpha and beta diversities 
were calculated from rarefied data [68] while differen-
tial abundance analysis was done using DESeq2 variance 
stabilisation technique [36] to normalise taxonomy and 
function abundance tables. The rarefied tables were cal-
culated by normalizing sequence number to minimum 
sample size (159,120,960 and 118,292,681 for taxonomy 
and function tables respectively) by random subsampling 
without replacement using rarefy_even_depth function 
in the phyloseq package version 1.46 [37]. Rarefaction 
curve analysis was used to test that the subsampling of 
sequences still yielded sufficient resolution of prokaryote 
communities and their functional genes (Fig. S1).

Alpha and beta diversity
To test whether the sample type, including heritage 
wheat rhizosphere, modern wheat rhizosphere and bulk 
soil, impacted alpha diversity, we obtained observed and 
Chao1 richness and Shannon diversity from the rarefied 
taxonomy and functional tables using estimate_richness 
function in the phyloseq package. Normality and homo-
geneity of variances of alpha diversity measures were 
tested before performing type 3 one-way ANOVA to 
account for unbalanced design due to fewer replicates in 
the bulk soil samples, and Tukey’s honest significant dif-
ferences (HSD) with sample type as a main factor.

Sample differences of the rarefied taxonomy and func-
tional tables were visualised with principal coordinate 
analysis (PCoA) plots using Bray Curtis dissimilarity. To 
statistically test for differences between sample types 
we used Permutational Multivariate Analysis of Vari-
ance (PERMANOVA) with Bray Curtis distance matrices 
using adonis2 in the vegan package version 2.6–4 [42] 
with 9999 permutations. Pairwise comparisons of each 
group were evaluated with pairwise.adonis using a false 
discovery rate correction for multiple tests. We evaluated 
differences among sample variability using homogeneity 
of multivariate dispersions tests (betadisper), followed 
by ANOVAs to compare the mean distance-to-centroid. 
Pairwise dispersion comparisons were carried out using 
Tukey’s HSD.

Differential abundance analysis
Differential abundances of individual 21,805 taxa and 
10,189 functional genes were calculated using DESeq2 
package version 1.42.1 [28] which is particularly powerful 
for small datasets [24]. Maximum-likelihood estimates 

for the log2-fold change between conditions associated 
with each gene or taxa were calculated using a negative 
binomial generalized linear model. Contrasts between 
each level of sample type were made and tests of signifi-
cance were conducted using Wald’s test, employing α = 
0.05 and a Benjamin–Hochberg false discovery rate (q) 
of 0.05 to control type I error rate in the face of multi-
ple comparisons. Bayesian adaptive shrinkage was then 
applied to reduce the log2-fold change towards zero for 
taxa or genes with low mean counts or a high dispersion 
in their count distribution [60]. We then considered taxa 
or genes to be enriched in a particular sample type only 
if the resulting shrunken log2-fold changes were > 1 or 
< −1, i.e. double in abundance [54, 57].

Differential abundance analysis was done on all genes 
but for visualisation we only showed those that were 
considered enriched in a particular sample type and we 
compared the results of the analysis from these against 
ten housekeeping genes used as a baseline. These house-
keeping genes were selected to cover different parts of 
the genome and that encode proteins involved in differ-
ent metabolic activity, except for the ribosomal genes, 
similar to the gene selection in multilocus sequence typ-
ing (MLST; [30, 62]). These included signal recognition 
particle protein (ffh), glutamine synthetase (glnA), DNA 
gyrase (gyrB), transcription termination factor Rho (rho), 
50S ribosomal protein L9 (rplI), 50S ribosomal subunit 
protein L17 (rplQ), RNA polymerase (rpoZ), DNA topoi-
somerase I (topA), nucleoside-specific channel-forming 
protein (tsx), ATP synthase F1, β-subunit (atpD).

Results
Alpha diversity
Overall, alpha diversity differences were statistically sig-
nificant between sample types, i.e., bulk soil and rhizos-
phere soil from modern and heritage cultivars, for both 
taxonomy and function of the prokaryote communi-
ties (Fig. 1a, c). Heritage cultivars harboured fewer taxa 
(observed and chao1) in their rhizospheres than bulk 
soils and modern rhizospheres; however, when rare-
fied read abundances were considered, their communi-
ties were the most diverse (Shannon’s species diversity). 
Functional genes followed a similar pattern, though the 
differences were less profound. Shannon’s diversity was 
marginally greater in heritage rhizospheres and more 
genes ascribed to modern than heritage rhizospheres. 
Wheat rhizospheres regardless of cultivar were found to 
have a higher functional diversity than bulk soil samples.

Beta diversity
We found very similar PERMANOVA results for both 
taxonomy and function-assigned genes, whereby a high 
proportion of variation between samples was explained 
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by sample type (bulk soil, modern and heritage wheat 
rhizospheres; Table  2). Pairwise comparisons between 
sample types were all significantly different with the high-
est  R2 between heritage rhizosphere and bulk soils. This 
difference is partly explained by significantly different 

dispersions between groups for taxonomy and function 
(ANOVA, F = 11.9, p < 0.001; F = 6.8, p = 0.006, respec-
tively). Posthoc comparisons revealed that all groups dif-
fered in dispersion for taxonomy, but for function, there 
was less dispersion in the bulk soil samples compared to 

Fig. 1 Diversity measures of the taxonomy and function of prokaryote communities. Alpha diversity is represented in plots (a) and (c), and Principal 
Coordinate Analysis (PCoA) plots based on Bray–Curtis dissimilarity demonstrate beta diversity in plots (b) and (d), for taxonomy and function 
respectively. Significant differences are shown between sample types, bulk soil samples (circles) and the rhizospheres of modern (squares) 
and heritage (triangles) wheat whereby sample types with the same letter are not statistically different from each other. Colours differentiate 
between the wheat different cultivars

Table 2 PERMANOVA and Tukey’s pairwise results for both taxonomy and function of Prokaryote communities. All combinations of 
sample type, bulk soil (BS) and rhizosphere soil of modern (M) and heritage (H) cultivars, were present. Significant differences in bold, 
i.e., p < 0.05, and p values of pairwise tests have been adjusted for multiple comparisons using a false-discovery rate correction

Bold indicates Welch Two Sample tests (p < 0.05) using a false-discovery rate correction to adjust for multiple comparisons

Variable/ Taxonomy Function

Pairwise comparison R2 F p R2 F p

Sample type 0.63 21  < 0.001 0.72 25.6  < 0.001
BS vs M 0.55 13.7 0.004 0.59 15.5 0.004
BS vs H 0.66 21.5 0.004 0.76 34.9 0.004
M vs H 0.46 15.6  < 0.001 0.56 23.3  < 0.001
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modern (padj = 0.056) and heritage (padj = 0.004) rhizo-
spheres. Nevertheless, the PCoA clearly supports the 
PERMANOVA results that sample type is an important 
factor in determining the prokaryote taxonomy and func-
tion since they were clustered separately in multivariate 
space (Fig.  1b, d). Most of the variation was explained 
by PCoA 1 for both taxonomy and functional datasets 
which demonstrated that, from the cultivars included 
here, modern wheat cultivars harbour prokaryote com-
munity profiles that are more similar to bulk soil than 
heritage cultivars do. The shift in the prokaryote commu-
nity was represented by an increasing relative abundance 
of Pseudomonadota (Proteobacteria) and Bacteroidota 
from bulk soil to rhizosphere soil of modern and heritage 
wheats and a higher proportion of Acidobacteroidota in 
bulk soil samples (Fig. S2).

Differential abundance
Out of 21,805 taxa and 10,189 functional genes, 5072 
(23%) and 1719 (17%) respectively were differentially 
abundant for at least one contrast between the sample 
types (Fig.  2; Ward p < 0.05, FDR < 0.05, shrunken log2 
fold > 1 or <  − 1).These differentially abundant taxa 
and functional genes make up 46% and 5% of total raw 
reads, respectively. The primary aim of this work is to 

compare abundances of genes between wheat ancestral 
genotypes. However, the biggest contrast was between 
heritage rhizosphere and bulk soil prokaryote communi-
ties whereby 4975 taxa and 1712 functional genes were 
differentially abundant. Modern rhizosphere communi-
ties were more similar to bulk soil communities than the 
heritage rhizosphere communities with 1114 taxa and 
194 functional genes differentially abundant, 78 and 89% 
less than the heritage vs bulk soil contrast, respectively. 
Despite this difference, the taxa that were enriched in 
either the heritage or modern wheat rhizosphere sam-
ples, compared with the bulk soil, belonged mostly to 
the same three phyla, Pseudomonadota, Bacteroidota 
and Actinomycetota (Actinobacteria), which when com-
bined, accounted for 95% and 92% of the enriched taxa 
respectively (Fig. S3). Bulk soil samples were enriched in 
taxa from a wide range of phyla when compared to both 
rhizosphere types, dominated by Bacillota (Firmicutes), 
but the highest proportion of taxa belonging to various 
rare phyla (phyla that contain less than 5% of all enriched 
taxa). Interestingly, 19 of the 20 most abundant func-
tional genes that were enriched in heritage rhizospheres 
relative to bulk soil samples, were also more abundant 
in heritage than modern rhizosphere samples (ANOVA, 
p < 0.05; Table  S1). The one exception being K07305 

Fig. 2 Ternary plots of differentially abundant taxonomy (a) and function (b) of prokaryote communities. Each point represents a taxa (a) 
or functional gene (b) and their position represents the contribution of the indicated sample type, bulk soil, modern and heritage rhizospheres, 
to the total normalised abundance. Taxa or functional genes are significantly different in abundance for different contrasts (Ward p < 0.05, FDR 
< 0.05, shrunken log fold changes > 1) and their colours indicate the group they are enriched in (i.e., higher abundance). Taxa or functional 
genes enriched in ‘all wheat’ samples, i.e., rhizosphere samples regardless of ancestry, were determined by contrasts with bulk soil samples 
and vice versa for enriched in bulk soil. Enriched in heritage rhizospheres was determined compared with modern rhizospheres, regardless of bulk 
soil and vice versa for modern. Therefore, some points could be characterised by two colours but the comparison between heritage and modern 
rhizospheres is the one presented as this is the most relevant for our hypothesis. Prokaryote housekeeping genes were included in b as a reference 
for differentially abundant functional genes (see methods for a list of housekeeping genes)
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(peptide-methionine (R)-S-oxide reductase) which was 
equally abundant in the rhizosphere of heritage and 
modern but has low representation in bulk soil samples. 
It was found that 13 genes out of these 20 most abundant 
genes were also more abundant in modern rhizospheres 
compared to bulk soil samples.

There were 1414 taxa and 113 functional genes that 
were differentially abundant between the modern and 
heritage rhizosphere communities, most of which (95%) 
were enriched in the heritage rhizosphere communi-
ties (Fig.  3). The taxa enriched in the heritage rhizos-
phere communities followed the same pattern as when 
compared to bulk soil whereby 96% of reads were from 
Pseudomonadota, Bacteroidota and Actinomycetota (Fig. 
S3). The modern rhizosphere communities were mostly 
enriched in Bacillota, Pseudomonadota, Spirochaetota 
and the highest proportion of enriched taxa belonged to 
rare phyla (phyla that contain less than 5% of all enriched 
taxa). The differentially abundant functional genes 
belong to 15 different functional groups whereby herit-
age rhizospheres had enriched genes belonging to each 
group (6,574,723 raw reads) and the six functional genes 
enriched in the modern rhizospheres belonged to three 
categories (3257 raw reads; Fig.  3b). Of the 107 genes 

enriched in the rhizospheres of heritage wheats, 40% of 
reads mapped to genes associated with secondary metab-
olism, 21% with plant cell wall degradation, 10% with 
two-component sensor regulation, 8% with membrane 
transport, 12% with primary metabolism (other than cell 
wall degradation), 2% with secretion systems, 2% to tran-
scriptional regulation and the remaining 5% to quorum 
sensing, cell cycle, biofilm formation, antibiotic resist-
ance, motility, defence, and secondary messaging func-
tions (Table 3).

The reads assigned to the differentially abundant 
functional genes between heritage and modern rhizo-
spheres were re-processed though our bioinformatic 
pipeline and assigned to taxa. This allowed us to look 
for taxonomic differences and potential important taxa 
for these functions. Out of the 107 functional genes 
enriched in heritage rhizospheres, 87% had higher 
taxa richness in the heritage rhizospheres, but only 
37% had higher taxa diversity (Shannon’s diversity). 
This suggests that evenness in these communities may 
be important whereby dominant taxa could be driving 
these differences in function (Table 3). This was further 
evident by the differences in the community composi-
tion, based on the relative abundance of phyla, between 

Fig. 3 Differentially abundant taxonomy (a) and function (b) of prokaryote communities between modern and heritage wheat rhizospheres. Taxa 
and functional genes have been assigned to Class or functional group (based on KEGG orthology) respectively and the number of differentially 
abundant taxa or functional genes in each group are listed to the right of each plot. Only significant (Ward p < 0.05, FDR < 0.05,) and large (at least 
double; shrunken log2 fold > 1 or < −1 differences are shown except for the 10 housekeeping genes included for reference against the differentially 
abundant functional genes
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Table 3 Summaries of the taxa assigned to the 113 functional genes identified as differentially abundant between heritage and 
modern wheat rhizospheres. The functional genes are identified by the Kyoto Encyclopaedia of Genes and Genomes identifier (KEGG 
ID) and put into broad functional groups. The total read count refers to the total number of reads for each functional gene found in 
bulk soil and rhizosphere samples normalised by DESeq2 size factors for each sample. The proportion of reads belonging to either 
heritage or modern rhizosphere samples are indicated and genes enriched in the heritage and modern rhizospheres are separated 
by the horizontal line. Reads were reassigned to the taxa containing that gene and richness was calculated as the observed richness, 
i.e., the total number of taxa in either tall or semi-dwarf samples containing the corresponding functional gene, and Shannon’s 
diversity is the richness weighted by normalised read count to consider the evenness of the community. Numbers in bold represent 
significant differences between the means of either richness or diversity between heritage and modern rhizosphere samples (n = 20) 
as determined by Welch Two Sample t-tests (p < 0.05) using a false-discovery rate correction to adjust for multiple comparisons

KEGG ID Function Gene name Total read count Proportion of read count Observed richness 
(mean ± sd)

Shannons diversity 
(mean ± sd)

(Normalised) Modern (%) Heritage (%) Modern Heritage Modern Heritage

K14266 Secondary metabo-
lism

tryptophan 7-halo-
genase [EC:1.14.19.9]

2,417,360 27 71 174 ± 19 243 ± 19 3.5 ± 0.1 3.7 ± 0.1

K16397 Secondary metabo-
lism

epothilone polyke-
tide synthase D

29,204 23 72 11 ± 2 11 ± 2 1.8 ± 0.1 1.5 ± 0.3

K16403 Secondary metabo-
lism

O-methyltransferase 4801 22 74 5 ± 1 6 ± 1 1.3 ± 0.2 1.0 ± 0.1

K14627 Secondary metabo-
lism

dehydratase 
[EC:4.2.1.-]

3362 22 75 5 ± 2 10 ± 2 1.3 ± 0.3 1.7 ± 0.2

K14368 Secondary metabo-
lism

3-alpha-mycarosy-
lerythronolide B des-
osaminyl transferase 
[EC:2.4.1.278]

2491 21 74 4 ± 1 7 ± 1 1.2 ± 0.3 1.4 ± 0.3

K11009 Secondary metabo-
lism

murine toxin 2377 21 76 3 ± 1 4 ± 1 0.9 ± 0.2 0.6 ± 0.4

K19885 Secondary metabo-
lism

dichlorochromopyr-
rolate synthase/
catalase [EC:1.21.98.2 
1.11.1.6]

1871 16 80 3 ± 1 5 ± 1 0.6 ± 0.4 0.9 ± 0.2

K21212 Secondary metabo-
lism

NDP-hexose 
2,3-dehydratase

1851 20 76 3 ± 1 5 ± 1 0.8 ± 0.3 1.2 ± 0.3

K16448 Secondary metabo-
lism

methylation protein 
MtfA

1573 16 81 2 ± 1 5 ± 1 0.6 ± 0.4 1.1 ± 0.2

K15968 Secondary metabo-
lism

tetracenomycin F2 
cyclase [EC:4.2.1.154]

1019 19 76 2 ± 1 4 ± 1 0.4 ± 0.4 1.1 ± 0.2

K20086 Secondary metabo-
lism

tryptophan oxidase 
VioA [EC:1.4.3.-]

203 8 91 0 ± 0 2 ± 1 0.0 ± 0.0 0.2 ± 0.2

K20090 Secondary metabo-
lism

violacein synthase 
[EC:1.14.13.224]

191 8 92 0 ± 0 1 ± 1 0.0 ± 0.0 0.1 ± 0.3

K20088 Secondary metabo-
lism

violacein biosynthe-
sis protein VioE

125 10 84 0 ± 0 1 ± 1 0.0 ± 0.0 0.3 ± 0.3

K18578 Cell wall degradation xyloglucan-specific 
exo-beta-1,4-glu-
canase [EC:3.2.1.155]

609,196 25 73 120 ± 12 146 ± 10 3.7 ± 0.1 3.6 ± 0.1

K18651 Cell wall degradation oligoxyloglucan 
reducing-end-spe-
cific cellobiohydro-
lase [EC:3.2.1.150]

537,163 25 73 112 ± 11 131 ± 9 3.5 ± 0.0 3.5 ± 0.1

K18786 Cell wall degradation cellobionic acid 
phosphorylase 
[EC:2.4.1.321]

75,143 20 78 18 ± 4 24 ± 3 2.3 ± 0.1 2.0 ± 0.1

K18576 Cell wall degradation xyloglucan-specific 
endo-beta-1,4-glu-
canase [EC:3.2.1.151]

69,699 26 70 28 ± 4 40 ± 5 2.5 ± 0.1 2.7 ± 0.1

K01202 Primary metabolism galactosylcerami-
dase [EC:3.2.1.46]

322,927 27 68 66 ± 10 83 ± 5 3.1 ± 0.1 3.1 ± 0.1
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Table 3 (continued)

KEGG ID Function Gene name Total read count Proportion of read count Observed richness 
(mean ± sd)

Shannons diversity 
(mean ± sd)

(Normalised) Modern (%) Heritage (%) Modern Heritage Modern Heritage

K20455 Primary metabolism 2-methylcitrate 
dehydratase 
(2-methyl-trans-
aconitate forming) 
[EC:4.2.1.117]

150,825 27 69 24 ± 4 32 ± 3 2.1 ± 0.1 2.2 ± 0.1

K02847 Primary metabolism O-antigen ligase 
[EC:2.4.1.-]

101,796 27 70 54 ± 7 79 ± 12 3.2 ± 0.1 3.2 ± 0.2

K08961 Primary metabolism chondroitin-sulfate-
ABC endolyase/
exolyase [EC:4.2.2.20 
4.2.2.21]

45,190 20 77 18 ± 3 20 ± 2 1.8 ± 0.1 1.9 ± 0.1

K08325 Primary metabolism NADP-dependent 
alcohol dehydroge-
nase [EC:1.1.-.-]

36,347 26 71 21 ± 4 30 ± 3 2.5 ± 0.2 2.6 ± 0.1

K00211 Primary metabolism prephenate dehy-
drogenase (NADP +) 
[EC:1.3.1.13]

33,022 25 73 7 ± 2 9 ± 2 0.6 ± 0.2 0.7 ± 0.2

K03181 Primary metabolism chorismate lyase 
[EC:4.1.3.40]

26,153 27 69 22 ± 3 26 ± 5 2.6 ± 0.1 2.4 ± 0.2

K01085 Primary metabolism glucose-1-phos-
phatase [EC:3.1.3.10]

13,928 24 73 13 ± 3 17 ± 2 2.1 ± 0.2 1.7 ± 0.4

K01355 Primary metabolism omptin [EC:3.4.23.49] 10,723 25 75 7 ± 2 13 ± 2 1.0 ± 0.4 1.8 ± 0.3
K01819 Primary metabolism galactose-6-phos-

phate isomerase 
[EC:5.3.1.26]

8410 24 72 10 ± 1 13 ± 2 2.1 ± 0.1 2.0 ± 0.1

K16215 Primary metabolism 2-ketoarginine 
methyltransferase 
[EC:2.1.1.243]

4920 22 73 6 ± 1 7 ± 2 1.3 ± 0.3 1.0 ± 0.2

K00998 Primary metabolism CDP-diacylglycerol–-
-serine O-phos-
phatidyltransferase 
[EC:2.7.8.8]

4027 24 72 4 ± 1 5 ± 1 1.1 ± 0.2 1.1 ± 0.2

K21280 Primary metabolism 3-hydroxy-4-meth-
ylanthranilyl-[aryl-
carrier protein] 
5-monooxygenase 
[EC:1.14.13.223]

3575 15 84 2 ± 1 2 ± 1 0.4 ± 0.3 0.0 ± 0.0

K12455 Primary metabolism CDP-abequose syn-
thase [EC:1.1.1.341]

3208 17 80 5 ± 1 6 ± 1 1.4 ± 0.2 0.7 ± 0.2

K21239 Primary metabolism virion DNA-directed 
RNA polymerase 
[EC:2.7.7.6]

3016 18 81 2 ± 1 2 ± 0 0.2 ± 0.2 0.1 ± 0.1

K19033 Primary metabolism 30S ribosomal pro-
tein S31

2812 27 68 6 ± 2 9 ± 1 1.4 ± 0.2 1.9 ± 0.1

K03397 Primary metabolism indoleacetate–-
-lysine synthetase 
[EC:6.3.2.20]

413 10 88 0 ± 0 1 ± 1 0.0 ± 0.0 0.1 ± 0.2

K05874 Sensor regulator methyl-accepting 
chemotaxis protein 
I, serine sensor 
receptor

483,244 25 72 108 ± 18 178 ± 22 3.4 ± 0.1 3.8 ± 0.1

K17060 Sensor regulator two-component 
system, sensor 
histidine kinase AauS 
[EC:2.7.13.3]

76,045 28 70 32 ± 5 45 ± 6 3.0 ± 0.1 3.0 ± 0.2
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Table 3 (continued)

KEGG ID Function Gene name Total read count Proportion of read count Observed richness 
(mean ± sd)

Shannons diversity 
(mean ± sd)

(Normalised) Modern (%) Heritage (%) Modern Heritage Modern Heritage

K05876 Sensor regulator methyl-accepting 
chemotaxis protein 
III, ribose and galac-
tose sensor receptor

38,854 19 79 15 ± 2 24 ± 2 2.2 ± 0.1 2.5 ± 0.2

K19611 Sensor regulator ferric enterobactin 
receptor

3275 9 91 2 ± 2 4 ± 2 0.4 ± 0.4 0.6 ± 0.5

K07786 Sensor regulator MFS transporter, 
DHA2 family, 
multidrug resistance 
protein

2193 15 82 3 ± 1 6 ± 1 1.0 ± 0.3 1.1 ± 0.4

K06080 Sensor regulator RcsF protein 572 5 95 0 ± 0 1 ± 0 0.0 ± 0.0 0.0 ± 0.1

K10235 Membrane transport alpha-glucoside 
transport system 
ATP-binding protein

117,671 27 71 40 ± 6 55 ± 6 3.0 ± 0.1 3.2 ± 0.1

K16088 Membrane transport outer-membrane 
receptor for ferric 
coprogen and ferric-
rhodotorulic acid

107,196 22 77 36 ± 12 64 ± 11 2.7 ± 0.4 3.0 ± 0.2

K16210 Membrane transport oligogalacturonide 
transporter

89,287 28 70 30 ± 3 35 ± 5 2.5 ± 0.2 2.5 ± 0.2

K02532 Membrane transport MFS transporter, 
OHS family, lactose 
permease

58,021 19 79 17 ± 1 24 ± 3 2.3 ± 0.1 2.3 ± 0.2

K16552 Membrane transport polysaccharide 
biosynthesis/export 
protein ExoF

34,802 26 72 13 ± 4 20 ± 4 1.8 ± 0.3 2.2 ± 0.2

K11734 Membrane transport aromatic amino acid 
transport protein 
AroP

24,606 26 64 22 ± 3 27 ± 2 2.6 ± 0.1 2.4 ± 0.2

K08156 Membrane transport MFS transporter, 
DHA1 family, 
arabinose polymer 
utilization protein

19,358 19 79 12 ± 3 19 ± 3 1.9 ± 0.3 1.7 ± 0.4

K10094 Membrane transport nickel transport 
protein

12,104 21 78 10 ± 2 15 ± 2 2.0 ± 0.2 1.9 ± 0.1

K11934 Membrane transport outer membrane 
protein X

9090 23 73 9 ± 2 11 ± 1 1.9 ± 0.2 1.4 ± 0.2

K16553 Membrane transport succinoglycan 
exporter

8372 15 84 5 ± 2 9 ± 2 1.3 ± 0.2 1.5 ± 0.4

K16348 Membrane transport entericidin B 3282 22 77 5 ± 1 10 ± 3 1.5 ± 0.2 1.9 ± 0.3
K10975 Membrane transport allantoin permease 1617 11 86 1 ± 1 1 ± 1 0.2 ± 0.4 0.1 ± 0.1

K16347 Membrane transport entericidin A 1086 21 77 3 ± 2 5 ± 1 0.7 ± 0.5 1.1 ± 0.2

K11743 Membrane transport spermidine export 
protein MdtJ

699 18 79 1 ± 2 5 ± 0 0.3 ± 0.5 1.2 ± 0.2

K16696 Membrane transport exopolysaccha-
ride (amylovoran) 
exporter

409 11 87 0 ± 1 2 ± 1 0.0 ± 0.1 0.3 ± 0.3

K12285 Biofilm formation MSHA biogenesis 
protein MshO

25,345 27 70 17 ± 3 24 ± 4 2.5 ± 0.1 2.6 ± 0.1

K12280 Biofilm formation MSHA biogenesis 
protein MshJ

20,898 26 70 14 ± 1 20 ± 4 2.3 ± 0.1 2.1 ± 0.1

K12284 Biofilm formation MSHA biogenesis 
protein MshN

17,259 24 71 10 ± 2 14 ± 2 1.8 ± 0.1 1.6 ± 0.1

K10927 Biofilm formation MSHA pilin protein 
MshD

15,335 27 69 13 ± 2 21 ± 2 2.2 ± 0.2 2.6 ± 0.1
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Table 3 (continued)

KEGG ID Function Gene name Total read count Proportion of read count Observed richness 
(mean ± sd)

Shannons diversity 
(mean ± sd)

(Normalised) Modern (%) Heritage (%) Modern Heritage Modern Heritage

K20961 Biofilm formation diguanylate cyclase 
[EC:2.7.7.65]

14,724 21 77 9 ± 1 11 ± 2 1.4 ± 0.3 1.1 ± 0.2

K10926 Biofilm formation MSHA pilin protein 
MshC

11,966 25 71 13 ± 2 18 ± 2 2.3 ± 0.2 2.4 ± 0.1

K12286 Biofilm formation MSHA biogenesis 
protein MshP

11,500 26 71 10 ± 2 16 ± 2 2.0 ± 0.2 2.4 ± 0.1

K12281 Biofilm formation MSHA biogenesis 
protein MshK

4887 23 74 6 ± 1 9 ± 2 1.5 ± 0.1 1.3 ± 0.2

K19731 Quorum sensing LuxR family transcrip-
tional regulator, 
quorum-sensing sys-
tem regulator CciR

53,445 27 70 37 ± 4 51 ± 7 3.0 ± 0.2 3.1 ± 0.1

K20326 Quorum sensing protein XagA 29,432 23 74 17 ± 4 23 ± 3 2.0 ± 0.2 2.2 ± 0.2

K20268 Quorum sensing rhizosphere induced 
protein

10,459 25 72 12 ± 4 23 ± 4 2.0 ± 0.4 2.4 ± 0.3

K20267 Quorum sensing type IV secretion 
system protein TrbH

3586 21 78 4 ± 1 6 ± 2 1.1 ± 0.3 1.5 ± 0.3

K20275 Quorum sensing nematocidal protein 
AidA

2480 22 76 4 ± 1 8 ± 2 1.1 ± 0.2 1.4 ± 0.2

K20272 Quorum sensing TraR antiactivator 1414 22 78 3 ± 1 5 ± 1 0.8 ± 0.4 1.4 ± 0.3
K03477 Transcriptional 

regulation
DeoR family tran-
scriptional regulator, 
ulaG and ulaABCDEF 
operon transcrip-
tional repressor

93,668 28 68 49 ± 5 55 ± 5 3.1 ± 0.1 2.9 ± 0.1

K21825 Transcriptional 
regulation

AraC family tran-
scriptional regulator, 
L-arginine-respon-
sive activator

31,901 25 71 26 ± 3 32 ± 2 2.7 ± 0.1 2.6 ± 0.2

K05372 Transcriptional 
regulation

AraC family transcrip-
tional regulator

5092 24 74 8 ± 3 14 ± 2 1.7 ± 0.4 2.1 ± 0.2

K19060 Transcriptional 
regulation

TetR/AcrR fam-
ily transcriptional 
regulator, macrolide 
resistance operon 
repressor

3198 22 76 6 ± 2 11 ± 2 1.5 ± 0.4 1.7 ± 0.2

K12820 Transcriptional 
regulation

pre-mRNA-splicing 
factor ATP-depend-
ent RNA helicase 
DHX15/PRP43 
[EC:3.6.4.13]

1417 11 87 1 ± 1 2 ± 1 0.1 ± 0.3 0.2 ± 0.2

K12059 Secretion systems conjugal transfer 
pilus assembly 
protein TrbC

17,109 26 72 18 ± 3 23 ± 6 2.4 ± 0.2 2.5 ± 0.3

K12688 Secretion systems autotransporter 
serine protease 
[EC:3.4.21.-]

10,969 18 80 7 ± 2 16 ± 3 1.5 ± 0.2 1.9 ± 0.4

K11017 Secretion systems hemolysin activa-
tion/secretion 
protein

9861 24 73 12 ± 3 17 ± 2 2.2 ± 0.1 2.0 ± 0.3

K18380 Secretion systems type III secretion 
control protein HpaB

5890 21 77 3 ± 1 7 ± 3 1.0 ± 0.2 1.3 ± 0.3

K12069 Secretion systems conjugal transfer 
pilus assembly 
protein TraA

5753 23 75 9 ± 3 11 ± 1 1.9 ± 0.2 1.7 ± 0.2
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Table 3 (continued)

KEGG ID Function Gene name Total read count Proportion of read count Observed richness 
(mean ± sd)

Shannons diversity 
(mean ± sd)

(Normalised) Modern (%) Heritage (%) Modern Heritage Modern Heritage

K04338 Secretion systems curli production 
assembly/transport 
component CsgF

4827 27 68 9 ± 2 16 ± 3 2.0 ± 0.2 2.3 ± 0.3

K18373 Secretion systems type III secretion 
protein HrpB1

4535 23 75 5 ± 1 8 ± 2 1.3 ± 0.2 1.5 ± 0.3

K11889 Secretion systems type VI secretion 
system protein ImpN 
[EC:2.7.11.1]

4012 15 85 3 ± 2 7 ± 1 0.6 ± 0.5 1.3 ± 0.1

K11909 Secretion systems type VI secretion 
system protein VasI

2984 20 79 6 ± 3 10 ± 3 1.4 ± 0.4 1.6 ± 0.4

K03202 Secretion systems type IV secretion 
system protein VirB7

2396 22 77 5 ± 2 8 ± 3 1.2 ± 0.5 1.6 ± 0.6

K12083 Secretion systems type IV secretion 
system protein PtlH 
[EC:7.4.2.8]

1536 20 76 3 ± 1 4 ± 0 0.8 ± 0.3 0.6 ± 0.2

K12228 Secretion systems TrbB protein 614 17 82 1 ± 1 4 ± 2 0.1 ± 0.2 1.2 ± 0.4
K20555 Secretion systems type IV secretion 

system protein TrbK
613 21 79 1 ± 1 3 ± 1 0.2 ± 0.3 0.9 ± 0.4

K13454 Secretion systems type III effector 
protein AvrRpm1

77 0 100 0 ± 0 0 ± 1 0.0 ± 0.0 0.0 ± 0.0

K19216 Antibiotic resistance metallo-beta-lac-
tamase class B IND 
[EC:3.5.2.6]

8968 18 80 4 ± 2 9 ± 2 0.7 ± 0.4 1.2 ± 0.4

K18793 Antibiotic resistance beta-lactamase class 
D OXA-23 [EC:3.5.2.6]

6092 9 90 3 ± 1 3 ± 1 0.5 ± 0.4 0.1 ± 0.0

K19101 Antibiotic resistance beta-lactamase class 
C FOX [EC:3.5.2.6]

5827 20 73 6 ± 2 9 ± 1 1.4 ± 0.3 1.7 ± 0.2

K22335 Antibiotic resistance beta-lactamase 
class D OXA-114 
[EC:3.5.2.6]

4627 22 76 7 ± 3 13 ± 3 1.6 ± 0.5 2.0 ± 0.3

K19213 Antibiotic resistance beta-lactamase class 
D OXA-12 [EC:3.5.2.6]

1995 17 80 3 ± 1 8 ± 2 0.7 ± 0.5 1.6 ± 0.2

K02399 Motility flagellar biosynthesis 
protein FlgN

22,038 24 72 19 ± 3 28 ± 5 2.4 ± 0.2 2.1 ± 0.2

K07345 Motility major type 1 subunit 
fimbrin (pilin)

9256 25 72 13 ± 4 23 ± 3 2.2 ± 0.3 2.5 ± 0.2

K04643 Secondary mes-
saging

sensory rhodopsin 6337 9 89 4 ± 2 8 ± 2 1.1 ± 0.5 1.0 ± 0.5

K20966 Secondary mes-
saging

c-di-GMP phos-
phodiesterase 
[EC:3.1.4.52]

4168 19 79 5 ± 1 7 ± 2 1.3 ± 0.2 1.6 ± 0.2

K11964 Defence pellino [EC:2.3.2.27] 2541 16 84 3 ± 2 6 ± 2 0.7 ± 0.6 1.5 ± 0.4
K13964 Defence serpin B7 1767 16 79 3 ± 1 3 ± 1 0.5 ± 0.2 0.2 ± 0.2
K08566 Defence plasminogen activa-

tor [EC:3.4.23.48]
1624 17 83 2 ± 2 6 ± 1 0.5 ± 0.6 1.5 ± 0.2

K01352 Defence granzyme 
A [EC:3.4.21.78]

659 25 72 2 ± 1 5 ± 2 0.5 ± 0.5 1.3 ± 0.4

K13448 Calcium sensors calcium-binding 
protein CML

1065 16 80 1 ± 1 3 ± 1 0.2 ± 0.2 0.3 ± 0.2

K10857 Cell cycle exodeoxyribonucle-
ase X [EC:3.1.11.-]

48,331 27 70 26 ± 3 35 ± 5 2.1 ± 0.2 2.2 ± 0.2

K13586 Cell cycle holdfast attachment 
protein HfaB

29,948 26 72 13 ± 1 14 ± 2 2.2 ± 0.1 2.0 ± 0.1

K18642 Cell cycle crescentin 10,803 22 78 6 ± 1 7 ± 1 1.3 ± 0.3 1.2 ± 0.2
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heritage and modern rhizospheres for each differen-
tially abundant gene (Table  S2). In the heritage rhizo-
spheres the dominant phyla or class often assigned to a 
higher proportion of reads than in the modern rhizos-
pheres, except where a function was only carried out by 
taxa from a single phylum.

Discussion
We compared the shotgun metagenomic profiles of 
prokaryote communities from the rhizospheres of pre- 
(heritage) and post-green revolution (modern) wheat 
cultivars and found clear differences between these 
groupings. We also confirmed our hypothesis that 
taxonomic changes relate to changes in the potential 
function of these communities, with the main differ-
ence being a comparative depletion of many functional 
genes in modern wheat  rhizospheres. Furthermore, 
the addition of unplanted bulk soil controls in our 
study confirms that the rhizosphere microbiome of 
modern cultivars differentiate less from bulk soil than 
those derived from heritage cultivars in terms of both 
taxonomy and function. These observations evidence 
that wheat breeding during the green revolution have 
resulted in cultivars with reduced ability to select a 
rhizosphere microbiome from the bulk soil microbial 
reservoir.

Taxonomic differences
When using shotgun metagenomics instead of phyloge-
netic marker gene analysis, we identified tenfold more 
differentially abundant prokaryote taxa between herit-
age and modern cultivars than in our previous study [19]. 
Both studies found that most differentially abundant taxa 
belonged to Pseudomonadota, Bacteroidota and Actino-
mycetota and were enriched in heritage cultivars, though 
our results showed 95% enrichment compared with 69% 
previously. We also found higher species richness in 
modern rhizospheres, supporting their reduced selec-
tivity, while Shannon’s diversity was higher in heritage 
rhizospheres in our study but not in Kavamura et al. [19]. 
These minor discrepancies could result from additional 
cultivars or different edaphic factors and growing condi-
tions between studies.

Reid et al. [51] found that chemical fertilization impacts 
root microbiome structure regardless of plant genotype. 
However, we used fertilized soil in our study to reflect 
common wheat growing conditions and because poly-
ploid wheats showed reduced capacity to select for plant 
growth promoting bacteria despite fertilization treat-
ment. Our results also supported this study by demon-
strating a loss of Bacteroidota in modern cultivars in both 
relative abundance and differentially abundant taxa. This 
is also consistent with other wheat domestication studies 
[1, 47, 53]. Bacteroidota are important for plant pathogen 

Table 3 (continued)

KEGG ID Function Gene name Total read count Proportion of read count Observed richness 
(mean ± sd)

Shannons diversity 
(mean ± sd)

(Normalised) Modern (%) Heritage (%) Modern Heritage Modern Heritage

K13585 Cell cycle holdfast attachment 
protein HfaA

8477 19 81 7 ± 1 10 ± 1 1.7 ± 0.2 2.0 ± 0.2

K14781 Cell cycle ATP-dependent 
RNA helicase DHR2 
[EC:3.6.4.13]

1029 8 91 0 ± 0 1 ± 0 0.0 ± 0.0 0.0 ± 0.0

K13831 Primary metabolism 3-hexulose-6-phos-
phate synthase/6-
phospho-3-hexuloi-
somerase [EC:4.1.2.43 
5.3.1.27]

2008 56 18 3 ± 1 1 ± 1 1.0 ± 0.2 0.1 ± 0.3

K00608 Primary metabolism aspartate carba-
moyltransferase 
[EC:2.1.3.2]

319 88 10 2 ± 1 0 ± 0 0.7 ± 0.5 0.0 ± 0.0

K21346 Primary metabolism methionine transam-
inase [EC:2.6.1.88]

311 62 14 2 ± 1 0 ± 0 0.5 ± 0.3 0.0 ± 0.0

K05660 Membrane transport ATP-binding cassette, 
subfamily B (MDR/
TAP), member 5

136 74 7 1 ± 1 0 ± 0 0.1 ± 0.2 0.0 ± 0.0

K07991 Motility archaeal preflagel-
lin peptidase FlaK 
[EC:3.4.23.52]

602 22 4 1 ± 1 0 ± 0 0.2 ± 0.2 0.0 ± 0.0

K02383 Motility flagellar protein FlbB 55 97 1 0 ± 1 0 ± 0 0.1 ± 0.2 0.0 ± 0.0

Bold indicates Welch Two Sample tests (p < 0.05) using a false-discovery rate correction to adjust for multiple comparisons



Page 14 of 19Smith et al. Environmental Microbiome           (2025) 20:64 

protection and phosphorus uptake [26]. Domestication 
has also been shown to enrich Actinobacteria and phyla 
commonly associated with bulk soil, such as Acidobac-
teriota and Verrucomicrobiota [1, 47, 53, 19]. By includ-
ing unplanted bulk soil controls, our study confirms that 
modern wheat rhizosphere microbiomes more closely 
resemble bulk soil than heritage cultivars, indicating less 
filtering of prokaryote taxa in modern varieties.

Functional gene differences
Bulk soil vs rhizosphere soils
As described in the results section, 19 of the 20 most 
abundant genes that are enriched in heritage rhizos-
pheres compared to bulk soils are also more abundant 
in heritage than modern rhizospheres, but to a lesser 
extent (Table S1). This suggests that the selective ability 
of modern cultivars is diminished in comparison to herit-
age cultivars, and the rhizosphere microbiomes in mod-
ern are a ‘middle ground’ between bulk soil and heritage 
rhizospheres (Fig.  1d). The exception was K07305 (pep-
tide-methionine (R)-S-oxide reductase), which showed 
equal abundance in heritage and modern rhizosphere 
microbiomes but was significantly higher than in bulk 
soil (approximately 500 K mean normalized reads per 
rhizosphere sample versus 48 K per bulk soil sample). 
This enzyme repairs oxidatively damaged proteins. We 
hypothesize that its high abundance in the rhizosphere 
reflects intense metabolic activity and consequent free 
radical generation. The prevalence of this gene appears 
crucial for rhizosphere competence regardless of wheat 
genotype. Future studies could determine whether 
expression of this gene is essential for microbial coloniza-
tion of the plant-root environment.

Heritage vs modern rhizospheres
Shotgun metagenomic analysis of samples from the 
rhizosphere of heritage and modern wheat cultivars 
resulted in the detection of clear differential abundance 
in reads mapping to 113 genes. With 107 genes enriched 
in the rhizospheres of heritage wheats, these results pos-
sibly indicate that the genetic potential of the host plant 
to influence the root microbiome structure and function 
has been reduced as a consequence of wheat breeding 
during the green revolution. We discuss the functions 
associated with genes enriched in the rhizospheres of 
heritage wheats (see KEGG IDs in brackets) under 11 
major categories below in order of highest read counts 
allocated per category. Not all 107 genes are discussed 
in detail but see Table 3 and Table S2 for a summary in 
terms of read counts and taxonomic information. The 
six genes enriched in the modern rhizosphere samples 
assign to primary metabolism, membrane transport and 

motility, but in much fewer read counts (3 K reads) than 
those enriched in heritage cultivars (6.5 M reads).

Secondary metabolism There were 13 differentially abun-
dant genes relating to secondary metabolism with a total 
of 2.6 M reads assigned over all samples. Of these reads, 
98% were most similar to genes associated with biosyn-
thesis of staurosporine (K14266, K19885, K20086, K20090 
and K20088), a natural product antibiotic originally iso-
lated from the bacterium Streptomyces staurosporeus [43], 
with mode of action being through competitive protein 
kinase inhibition, with this family of molecules exhibiting 
anti-cancer potential [70]. In addition, reads were asso-
ciated with terpenoid and polyketide antibiotic synthesis 
(K16397, K16403, K14627, K14368, K21212, K16448 and 
K15968) as well as bacterial toxin production (K11009). 
The high number of differentially abundant genes associ-
ated with antibiotic production could indicate that niche 
occupancy competition of rhizosphere microbiome com-
munity members in pre-green revolution wheat is driven 
by an arms race, which could provide a novel underex-
ploited resource for natural product discovery and the 
development of the next generation of antibiotics.

Cell wall degradation A total of 1.3 M reads were found 
to map to four differentially abundant genes for plant cell 
wall degradation (K18651, K18578, K18576 and K18786). 
Although this function has long been associated with 
plant pathogen function [22, 69], cellulolytic activity has 
also been linked to enhanced plant root length by facili-
tating the sloughing-off of root cap cells from root tips 
which assists the growing root in penetrating soil [10]. It 
has also been found that cell wall degradation is essential 
for Rhizobium symbiotic infection of legume roots [52]. 
It follows that this function could also be important for 
microbial colonisation of the plant environment, micro-
bial mediation of plant root architecture and access to an 
overwintering energy source for microbes on crop resi-
dues. With such high enrichment of these genes in her-
itage wheat rhizospheres therefore demonstrates that a 
potentially important function to facilitate plant-micro-
bial interactions has been degraded in modern wheat.

Primary metabolism In addition to cell wall degrada-
tion, a further 809 K reads mapped to genes associated 
with primary metabolism. These can primarily be subdi-
vided into the metabolism of carbohydrates (380 K reads), 
lipids (340 K reads), proteins (46 K reads), co-factors/vita-
mins (27 K reads), and enzymes involved in core primary 
metabolism (15 K reads). These observations are con-
gruent with the classes of genes most abundant in mem-
brane transport. The most abundant of the differentially 
abundant primary metabolism genes was associated with 
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sphingolipid metabolism through the action of galac-
tosylceramidase (K01202, 336 K reads). Sphingolipids 
are a class of membrane bound lipid which act as signal 
bioactive molecules [67]. It has been proposed that Bac-
teroidota, predominant members of the mammalian gut 
microbiome, utilise sphingolipids as an energy source as 
well as to mediate signal transduction and stress response 
pathways, facilitating their persistence in this environ-
ment [2]. Our dataset found that Actinomycetota made 
up the highest proportion of taxa with this gene (47%) 
demonstrating it is not a Bacteroidota specific function 
in the wheat root environment. It could be the case that 
microbe-microbe and microbe-plant sphingolipid-based 
signalling is also crucial in commensal colonisation of the 
plant root environment as is proposed in the human gut.

Sensor regulator Approximately 640 K reads were found 
to map to differentially abundant genes associated with 
two component sensor-regulation systems, most of which 
(510 K reads) were assigned to serine detection (K05874). 
In addition, a sensor receptor gene for monosaccharides 
(ribose and galactose; K05876) was also in high abun-
dance. It will be interesting in future work to determine 
the amino acid to sugar ratio and the relative contribution 
of amino acids in the root exudates of heritage compared 
to modern wheats and determine whether detection of 
these molecules is important for chemoattraction into the 
root zone as a prerequisite to rhizosphere colonisation of 
heritage wheat.

Membrane transport A total of 520 K reads mapped 
to differentially abundant genes associated with mem-
brane transport and the vast majority (435 K reads) 
were associated with uptake systems. However, export 
systems were largely associated with polysaccharide 
transport, presumably as a prerequisite to biofilm for-
mation (e.g. K16552, K16553, K16696). Regarding 
import systems, these were categorised as metal (iron 
and nickel; K10094, K16088), purine (K10975), aromatic 
amino acids (K11734), though the vast majority of these 
reads were associated with ATP-binding cassette and 
MFS sugar uptake systems (alpha-glycosides, arabinose, 
lactose and oligogalacturonides) with a total of 280 K 
reads assigned (K02532, K10235, K16210, K08156). The 
observation that bacteria in the rhizosphere have a high 
level of uptake transport systems has previously been 
studied in rhizobia [34], though this is the first time 
that an enhancement in these systems is associated with 
the root microbiome of pre-green revolution wheats. 
It is interesting that there was no perceived difference 
in abundance detected between heritage and modern 
wheats for genes associated with organic acid uptake 
systems and implies that the green revolution develop-

ment of wheat has perhaps not impacted the root exu-
dation profile of these molecules to the same extent for 
amino acids and sugars. Furthermore, a recent study by 
[32], suggested that plants also exude hemicelluloses. 
Although there is not an apparent enrichment in glycan 
importing TonB-dependent transporter genes in our 
data, the high abundance of genes encoding xyloglucan 
degrading enzymes implies that breakdown products of 
these molecules could be imported via high affinity sys-
tems.

Biofilm formation and  quorum sensing Approximately 
234 K reads mapped to genes associated with quorum 
sensing and biofilm formation. Reads mapping to genes 
associated with mannose sensitive haemagglutinin 
(MSHA) pilus biogenesis [mshJ, (K12280) mshK (K12281), 
mshN (K12284), mshO (K12285) and mshP (K12286)] are 
total 83 K reads. This molecule has been shown to be cru-
cial for the attachment of microbes to surfaces (Marsh 
and Taylor, 1999; Dalisay et al., 2006). It therefore follows 
that the increased differential abundance of MSHA could 
reflect their importance for microbial persistence in the 
heritage wheat rhizosphere microbiome.

In addition, approximately 106 K reads mapped to 
genes associated with quorum sensing. The most abun-
dant of these, at 56 K reads, being assigned as the LuxR 
family transcriptional regulator gene cciR (K19731) 
which has previously been implicated in exopolysaccha-
ride (EPS) synthesis and controlling biofilm formation 
[74]. Our data suggests that transcriptional regulators are 
also important for biofilm formation in the root environ-
ment and emphasised in pre-green revolution wheat.

Transcriptional regulation Approximately 142 K reads 
were assigned to transcriptional regulation, and almost 
100 K are ascribed to the DeoR family transcriptional reg-
ulator (K03477). In E. coli, a DeoR family transcriptional 
regulator, UlaR, was found to be responsible for suppress-
ing transcription of the divergent ulaG and ulaABCDEF 
operons (which catabolise L-ascorbate), under ascorbate 
depleted conditions [11]. Interestingly, ascorbate has been 
shown to be released from plant roots under conditions of 
salt stress and influences root elongation [25, 31]. It could 
follow that exudation of ascorbate into the rhizosphere 
profoundly affects root microbiome colonisation patterns 
in heritage wheat cultivars.

Secretion systems A total of 76 K reads mapped to secre-
tion systems, and interestingly, type III (K13454, K18380, 
K18373, K18380), IV (K03202, K12083, K120555) and 
type VI (K11889, K11909) secretion systems are predomi-
nately overrepresented in heritage wheat rhizospheres, 
all of which use machinery to directly breach and deliver 
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secreted proteins across host cell membranes as opposed 
to other secretion system types which release toxins into 
the extracellular milieu [16].

Antibiotic resistance Approximately 29 K reads were 
assigned to differentially abundant genes involved in anti-
biotic resistance (K19216, K18793, K19101, K22335 & 
K19213). These were related to beta-lactamase function, 
which has been shown to be well represented in isolates of 
the soil dwelling bacterium Bacillus subtilis [5]. Evidence 
suggests that its production facilitates rhizosphere coloni-
sation by the plant pathogen Fusarium oxysporum [12]. It 
is interesting that the number of reads in this category is 
far exceeded by the number of reads for antibiotic produc-
tion (e.g. staurosporine biosynthesis). This could indicate 
that microbial strategy for rhizosphere colonisation of 
heritage wheat rhizospheres have an offensive emphasis.

Motility There were two differentially abundant genes 
relating to motility, but the majority of the reads (23 K 
reads) were assigned to the flagellar chaperone biosynthe-
sis gene flgN (K02399). This gene has been shown to be 
required for flagellum-based motility in Bacillus subtilis 
[9] and is involved in the regulation and assembly of the 
flagellum, and its enhanced differential abundance in the 
rhizosphere of heritage wheat suggests that it is important 
for the colonisation of this environment.

Secondary messaging Approximately 10 K reads were 
assigned to secondary messaging, especially cyclic di 
GMP (c-di-GMP) phosphodiesterase (K20966) which has 
previously been shown to be important for the rhizos-
phere colonisation of wheat by Pseudomonas fluorescens 
[27]. The activity of c-di-GMP is important for the pro-
duction of EPS and biofilm formation.

Conclusions
Our data showed that modern wheat has a reduced 
rhizosphere effect when compared with heritage wheat. 
In addition, we observed a depletion of a wide range of 
functional genes in modern wheat, indicating a func-
tional deterioration in the rhizosphere microbiome 
associated with the green revolution. Wheat breeding 
during the green revolution has profoundly influenced 
the selection and function of the root microbiome, and 
this is evidenced by reduced abundance in genes such 
as those involved in secondary metabolism as well as 
cell wall degradation. As such it seems that the root 
microbiome of heritage wheats have adopted a two-
pronged strategy of exclusion of microbial competitor 
reduction through antibiotic production (e.g. stauro-
sporine production) as well as the metabolism of plant 

derived nutrients. The latter seems to be via utilisation 
of cell wall constituents as a nutrient source to estab-
lish in this environment as well as through sphingolipid 
metabolism – it is unclear to what extent the latter 
function is also important for plant–microbe signal-
ling. The green revolution combined wheat dwarfing 
with the application of synthetic chemical fertilisers. 
Our previous work has highlighted that application of 
synthetic fertiliser reduces the selection of nutrient-
solubilising bacteria in the rhizosphere [50]. It will be 
interesting to ascertain the impact of the combination 
of these factors for global microbiome function, and 
to determine the specific contribution of Rht mutant 
alleles, responsible for wheat dwarfing, by studying the 
microbiome of isogenic wheats. Finally, we believe our 
results are of striking importance and highlight that if 
implementation of microbiome facilitated agriculture 
is to be introduced as part of a sustainable crop pro-
duction strategy an overhaul of wheat breeding pro-
grammes will be necessary to consider plant–microbe 
interactions, especially in the root environment.
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