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A B S T R A C T

Continuous cover forestry (CCF) is forest management based on ecological principles and this management
type is currently re-visited in many countries. CCF woodlands are known for their structural diversity in terms
of tree size and species and forest planning in CCF needs to make room for multiple forest development
pathways as opposed to only one management target. As forest management diversifies and management types
such as CCF become more common, models used for projecting forest development need to have a generic
and flexible bottom-up design. They also need to be able to handle uncertainty to a larger extent and more
comprehensively than is necessary with single, traditional forest management types. In this study, a spatial
tree model was designed for analyzing a data set involving 18 plots from CCF stands in Southern Finland.
The tree model has specific ingrowth, growth and mortality model components, each including a spatially
explicit competition effect involving neighboring trees. Approximations were presented that allow inference
of the model components operating in annual steps based on time-series measurements from several years.
We employed Bayesian methodology and posterior predictive distributions to simulate forest development
for short- and long-term projections. The Bayesian approach allowed us to incorporate uncertainties related
to model parameters in the projections, and we analyzed these uncertainties based on three scenarios: (1)
known plot and tree level random effects, (2) known plot level random effects but unknown tree level random
effects, and (3) unknown random effects. Our simulations revealed that uncertainties related to plot effects
can be rather high, particularly when accumulated across many years whilst the length of the simulation step
only had a minor effect. As the plot and tree effects are not known when tree models are applied in practice,
in such cases, it may be possible to significantly improve model projections for a single plot by taking one-off
individual-tree growth measurements from the plot and using them for calibrating the model. Random plot
effects as used in our tree model are also a way of describing environmental conditions in CCF stands where
other traditional descriptors based on stand height and stand age fail to be suitable any more.
1. Introduction

Continuous cover forestry (CCF) is a type of forest management
which is based on ecological principles (e.g., Kruse et al., 2023).
Definitions of CCF usually include a number of tenets that can vary
between countries and organizations involved (Pommerening and Mur-
phy, 2004; O’Hara, 2014; Pommerening, 2023). The most prominent
tenet of CCF is the requirement to abandon the practice of large-scale
clearfelling and to favor more environmentally friendly harvesting and
natural regeneration methods. There are also many semi-synonyms to
CCF that we adopted in this paper; while objectives, definitions and
standards implied by these semi-synonyms can differ (Palik et al., 2021;
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Puettmann et al., 2015; Kruse et al., 2023), our modeling approach also
applies to any other semi-synonym.

In Fennoscandia, rotation forest management (RFM) has been the
dominant forest management type for more than 50 years. RFM typ-
ically involves homogeneous even-aged, mono-species forest stands,
simple forest structure with mostly one canopy layer and final harvest-
ing through clearfelling where all trees are removed from site in a single
operation and the forest stand is eventually replanted.

The historic roots of CCF can be traced back to at least the second
half of the 19th century (Peng, 2000; Pommerening and Murphy,
2004). In recent decades, CCF was re-discovered in different parts of
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the world (Kruse et al., 2023). At the same time there has also been
an increasing dissatisfaction of European societies with industrialized
forms of plantation and RFM. CCF is now being promoted in Fennoscan-
dia due to societary pressure and the potential for better economic
profitability on poor sites and for its possible benefits to biodiversity,
carbon sequestration and storage, and to the landscape (see, e.g.,
Kuuluvainen et al., 2012; Lundqvist, 2017; Hertog et al., 2022). Also,
forest management types in which no explicit choice is made between
RFM and CCF are fostered in Fennoscandia (Pukkala, 2018).

As the forest structure resulting from different forest management
types becomes more complex, there is a need for more generalized mod-
eling approaches that can handle any forestry situation and spatial tree
structure. In Central Europe, this change to more generalized model
designs started in the early 1990s and included individual-oriented,
spatially explicit bottom-up approaches that allowed the greatest pos-
sible flexibility in terms of tree size and species composition but also in
terms of spatial forest structure (Pretzsch, 2009). The most flexible tree
models for projecting forest dynamics are spatially explicit, since such
models are able to project any type of horizontal and vertical forest
structure. Spatially explicit tree models typically include spatial inter-
actions between trees by accounting for the local neighborhood of each
tree (e.g., Garcia, 2014; Nothdurft, 2020). The modeling of thinnings
and other interventions typical of CCF are also made markedly easier in
spatial tree models. Thus, spatially explicit approaches are particularly
attractive in the context of CCF and other management types where
much structural variability may occur within stands, and, as a benefit,
model projections can also include traditional RFM as a special case. In
uneven-aged CCF forests, the appearance of tree seedlings and saplings
as a consequence of natural regeneration is mostly heterogeneous, and
the modeling of these small trees plays a crucial role, especially when
forest development is projected for a long time period (Lappi and
Pukkala, 2020).

The predictors of spatially explicit tree models typically include tree
size, a measure of environmental conditions (in forestry also referred
to as ’site quality’) and a characteristic of tree interaction which is usu-
ally termed competition index (Reineke, 1933; Biging and Dobbertin,
1995).

Competition indices are often used to describe how the interaction
among trees including the competition for resources decreases growth
compared to the maximum growth possible at a given site. They can
be interpreted as proxies describing the resource allocation in individ-
ual trees. Spatial (or distance-dependent) competition measures take
the location of each tree into account. A large number of different
competition measures are documented in the literature (e.g., Schnei-
der et al., 2006; Eerikäinen et al., 2007; Häbel et al., 2019; Bianchi
et al., 2020; Zhou et al., 2022). Some of these are defined only at
the locations of subject trees, while others can quantify competition
loads at any location in a forest stand. Particularly in forest ecology,
spatially explicit tree modeling have much focused on describing spatial
tree interactions by so-called competition kernels, which are kernels
of probability density functions describing how trees affect the growth
and/or survival of its neighboring trees (Pommerening and Grabarnik,
2019). In this context, the term individual based models (IBMs) or
growth-interaction models is often used (Cronie et al., 2013; Redenbach
and Särkkä, 2013; Häbel et al., 2019). As previously mentioned, the
emergence of new trees is often heterogeneous in CCF; thus, in our
study, we considered the effect of neighboring trees not only on growth
and mortality, but also on ingrowth, by means of a spatially explicit
individual-tree competition measure defined at any location in the
stand. Such general competition measures are likely to contribute to
flexibility as required in models applied in the context of CCF.

Environmental conditions, such as climate and soil, determine the
growth potential of the trees of a forest stand. They can be described by
characteristics related to the ground vegetation (Cajander, 1949) or al-
ternatively by certain stand height and basal-area characteristics (Pret-
2

zsch, 2009; Lappi and Bailey, 1988; Salas-Eljatib, 2020). However,
many assumptions used in tree models developed for RFM do not hold
in the context of CCF (see the extensive review from Skovsgaard and
Vanclay, 2008). Particularly, stand age is not defined in CCF, i.e., the
trees of a forest stand can potentially have a considerable age range
and the age of individual trees is commonly unknown.

From a statistical point of view, different types of uncertainties
are present in projections carried out by any tree model. Such un-
certainties are likely to increase when tree models are generalized
so that they can include CCF scenarios. Bayesian methodologies have
been applied, e.g., in the context of tree growth (Nothdurft, 2020),
tree mortality (Wyckoff and Clark, 2000), plant interactions (Schneider
et al., 2006), and forecasting forest yield at stand level (Nyström and
Ståhl, 2001), but we are not aware of many tree models that explicitly
include uncertainty in the modeling process and projections (Green
and Strawderman, 1996; Wilson et al., 2019). The Bayesian statistical
approach for parameter estimation provides a natural way to include
the parameter uncertainty in tree model projections (Gelman et al.,
2014; Sirkiä et al., 2015).

The parameters of any tree model typically need to be estimated
from empirical data, such as from long-term forest monitoring sites.
Such time series data have a nested structure (e.g., repeated measure-
ments within trees, several trees within plots and several tree measure-
ments within calendar years). The nested structure of the data implies
complex dependence structures between observations that should be
taken into account in parameter estimation and inference. A natural
way to consider this dependence is through multilevel models in-
cluding group effects, which are often commonly known as random
effects (Bürkner, 2017; Mehtätalo and Lappi, 2020). Random effects
can also be predicted for the groups represented by the observed data,
which allows predictions at different levels of hierarchy in the data.
However, when applying the model for the projection of forest stands
that were not part of the data used for fitting the model, the random
effects are not known. If the variability between the forest monitoring
plots is large, the unknown random effect may then potentially be a
large source of errors in growth predictions.

When predictions are carried out for long time periods, the predic-
tive model is applied iteratively, e.g., in annual or multi-year steps
according to the model framework. After the first step, the growth
model therefore uses predictors (e.g., tree size, competition index)
based on predictions made in the previous simulation step. In classic,
frequentistic statistical models, the predicted values are estimates of a
conditional expectation of the variable, which have a lower variance
than the true values. Furthermore, if the explanatory variables enter
the model after a nonlinear transformation, they can introduce a bias
to the predictions (see also Wilson et al., 2019). These problems can
be avoided by using predictive distributions instead of the classic
prediction. One possibility is to apply Monte Carlo simulations (e.g.,
Kangas, 1999). In this study, we employed Bayesian inference where
predictions naturally are generated from the posterior predictive dis-
tribution, i.e., the distribution of unobserved values conditional on the
observed values (e.g., Gelman et al., 2014).

The aim of this study is

(i) to introduce and analyze a spatially explicit tree model that is
suitable for CCF, and not restricted to a specific forest manage-
ment type,

(ii) to handle uncertainties of model projections in a realistic way,
(iii) to allow predictions for any time intervals, not only for those

that were specific to the tree survey periods of the monitoring
sites which provided the data for the model fitting

(iv) to include all necessary components for the projection of forest
development, but still keep the model sufficiently simple to be
widely applicable.

We hypothesized that the proposed tree model - equipped with Bayesian
inference - is sufficiently flexible to simulate CCF forest development

along with the associated uncertainty. We modeled ingrowth, growth
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Fig. 1. The locations of the ERIKA plots in Southern Finland. Background map (C) National Land Survey of Finland 2022.
and mortality of trees, and as part of our validation, projected the
forest plots involved for a period of 15 years without thinning events.
We quantified the influence of different lengths of projection steps
on the accuracy of the model output. We further studied how the
knowledge of random plot and tree effects influence the accuracy of the
predictions: in addition to the 15-year projections that did not include
thinnings, we also studied the accuracy associated with a projection
over 100 years. The latter involved thinnings that were based on simple
rules and followed official recommendations. Finally, we discussed
potential model applications and extensions.

2. Material and methods

2.1. Data

We analyzed data from 18 Norway spruce (Picea abies (L.) Karst.)
dominated stands in five areas (2–7 stands in each) in Southern Finland
(Fig. 1). The data belong to a long-term experiment of permanent CCF
sample plots involving selective harvesting, conducted in the ERIKA
research project at the Natural Resources Institute Finland (Valkonen
et al., 2020b). The stands were naturally regenerated and had a history
of complex structures and partial harvests. Utilizing the existing struc-
tural complexity, selective thinning was carried out in all the stands
between 1985 and 1988. The selective thinning was repeated in 16
stands in 1996. Four stands were not thinned in 1996 due to low total
basal area. Selective thinning was repeated again in all stands in 2011.
As part of the thinning operations, all trees with defects or damage
were removed first, and then healthy trees mainly from larger diameter
classes (>25 cm) were cut until a certain target basal area was achieved.
Since thinning and harvesting operations tend to be both selective and
very similar in CCF, we used both terms as synonyms in this study.
3

Sixteen stands belonged to the submesic Myrtillus type site classifica-
tion, suggesting medium fertility, while four stands can be described
as mesic Oxalis-Myrtillus woodland communities, suggesting higher
fertility (Cajander, 1949; Tonteri et al., 1990). Using environmental
characteristics, namely temperature sum (the accumulated temperature
over 5 ◦C in degree days), site classification, and an index determined
by the proximity to the sea and lakes, the site index was estimated
as the expected height of the dominant trees in an even-aged, mono-
species stand of Norway spruce at the age of 100 years in the same
place (Hynynen et al., 2002). Here we settled on an approach where
the site quality classes based on ground vegetation were transformed
to values that describe the site index for even-aged management. In
our data analyses, the index describes the environmental conditions of
the stand, although not with the same meaning as for even-aged RFM
stands.

We had data available from single plots of size 40 m × 40 m that
were set up in the central part of each stand. Stand size ranged from
1.5 ha to 2.0 ha and the plots were chosen to represent the site and
structural variation within each stand. Tree measurements in the plots
commenced in 1991 and were repeated every fifth growing season
until 2016; only in two cases, a plot was measured after six growing
seasons, and in one case after four growing seasons. For each tree,
species, stem diameter at breast height (dbh), tree height, and local
stem-center coordinates were recorded. The thinnings in 1996 and
2011 were carried out immediately after the measurements. The site
index of the 20 plots varied between 25.9 m and 33 m and mean dbh
between 5.8 and 15 cm (Table 1). There was much variation across
plots and trees concerning the amount of competition that was exerted
by neighboring trees at the location of a tree and measured by the
competition index (Table 1). Additional details on the experimental
design, study sites and measurements can be found in Bianchi et al.
(2020), Hynynen et al. (2019) and Valkonen et al. (2020b).
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Table 1
Summary of the (a) plot-specific site index, mean stem diameter (dbh) and mean
relascope basal area (RBA) competition index (minimum, mean, maximum), and (b)
tree dbh and RBA competition index (10% quantile, mean and 90% quantile). The
tree-specific RBA is defined in Eq. (1) (Section 2.2.1); mean RBA of a plot is the mean
over all trees of the plot.

(a) Plot level Min Mean Max

Site index 25.9 28.4 33
Mean dbh [cm] 5.8 9.5 15
Mean RBA [m2∕ha] 10 15 21

(b) Tree level 10% Mean 90%

dbh [cm] 0.6 9.0 24
RBA [m2∕ha] 6 15 26

In total, the data available to modeling included 17153 growth ob-
ervations (change in stem diameter between two consecutive measure-
ents) from 5206 trees, with an absolute mean annual stem diameter

rowth rate of 2 mm and an interquartile range of 0.7 to 2.9 mm. For
odeling tree mortality, we had 18 423 observations of tree status live

r dead, originating from 5635 trees in total. Among these observations
here were 1206 trees that had died, mostly as a consequence of wind
nd snow, followed by competition and harvesting damage (Valkonen
t al., 2020a). Further, a total of 3360 trees reaching or surpassing
height of 1.3 m above ground level (referred to as ingrowth trees)
ere observed, on average 40 ingrowth trees per measurement time
nd sample plot or 49 ingrowth trees per hectare and year. According to
he management plan (dated 1996 and 2011), a total of 1732 trees were
ut in the 18 plots altogether and less than 400 trees were harvested
r were missing for other reasons. These trees were excluded from the
odeling data immediately after the thinning events.

Norway spruce (Picea abies) amounted to 75% of the total basal
rea across all plot measurements. The proportions of Scots pine (Pinus
sylvestris L.), European aspen (Populus tremula L.), and birch (Betula
pendula Roth and Betula pubescens Ehrh.) were all between 4%–8%.
Among the ingrowth trees, 57% were Norway spruce. The proportions
of aspen and birch were 4%–7%, but 25% of the ingrowth trees
were other broadleaves. We modeled all species together, because the
numbers of trees of species other than Norway spruce were rather low.

2.2. Tree model

Our tree model for predicting stand dynamics includes three com-
ponents: ingrowth, stem diameter and height growth, and mortality.
All three components of forest development are influenced by tree
competition. The competition is modelled in a spatially explicit way
(Section 2.2.1). The model components are independent and do not
share any parameters. All three models operate in annual steps. We did
not model harvests.

2.2.1. Competition
In this study, we used a competition index that is based on the

concepts of basal area of larger trees (BAL; Wykoff, 1990) and that of
relascope sampling simulated at the location of each tree 𝑖 (Eerikäinen
et al., 2014) with a basal area factor (BAF) 𝑞 = 2. This implies that
all trees with a basal area larger than that of subject tree 𝑖 contributed
to the competition index of tree 𝑖, provided they were included in a
simulated relascope sample carried out at the location of tree 𝑖 with a
BAF of 𝑞 = 2. Formally, the relascope basal area (RBA) index for tree 𝑖
t plot 𝑝 at time 𝑡 is

𝑝𝑖,𝑡 = 𝑞
∑

𝑗≠𝑖
1
( 𝑑𝑝𝑗,𝑡

dist𝑖,𝑗
> 2 ⋅

√

𝑞, 𝑑𝑝𝑗,𝑡 > 𝑑𝑝𝑖,𝑡

)

, (1)

here dist𝑖,𝑗 is the distance between the locations of the trees 𝑖 and 𝑗
f plot 𝑝 and 𝑑𝑝𝑖,𝑡 is the stem diameter of tree 𝑖 in plot 𝑝 at time 𝑡.

The RBA index can be interpreted as the sum of influences of
4

eighboring trees that are larger than the subject tree 𝑖: Each tree 𝑗
s assumed to have a zone of influence that extends up to a distance
𝑝𝑗,𝑡∕(2 ⋅

√

𝑞) from its location. The competition load of tree 𝑖 is equal
o the sum of influences of those (larger) trees whose zone of influence
verlaps the location of tree 𝑖.

The individual influences of all trees in plot 𝑝 can also be summed
p at any location 𝑥 in plot 𝑝 to yield the competition field

𝑝𝑥,𝑡 = 𝑞
∑

𝑗
1
( 𝑑𝑝𝑗,𝑡

dist𝑥,𝑗
> 2 ⋅

√

𝑞
)

, (2)

where dist𝑥,𝑗 is the distance between location 𝑥 and tree 𝑗 in plot 𝑝. The
alue of the competition field is equal to the competition index (Eq. (1))
omputed for a tree of size 0 at location 𝑥 and corresponds to the basal
rea per hectare sampled at location 𝑥 using relascope sampling and a

BAF of 𝑞.
We used the RBA index (Eq. (1)) in the growth and mortality model

components, and the competition field (Eq. (2) in the ingrowth sub-
model. While growth and mortality are specific to each existing tree,
the ingrowth model component takes care of the emergence of new
trees at any location 𝑥 in plot 𝑝.

2.2.2. Ingrowth
We assume that new trees emerge in a time interval ranging from

time 𝑡 to 𝑡 + 1, according to a Poisson process with intensity

𝜆𝑝,𝑡(𝑥) = exp
(

𝛼0 + 𝑢ingrowth
𝑝 + 𝛼1

𝐻𝑝𝑥,𝑡

10
+ 𝛼2(SI𝑝 − 28) + 𝛼3

GDD5𝑝𝑡

1000

)

, (3)

where 𝛼0, 𝛼1, 𝛼2 and 𝛼3 are model parameters, 𝑢ingrowth
𝑝 ∼

𝑁(0, 𝜎2𝑢,ingrowth) is the random plot effect, 𝐻𝑝𝑥,𝑡 is the value of compe-
tition field (Eq. (2)) at location 𝑥 at time 𝑡, SI𝑝 is the site index of plot
𝑝, and GDD5𝑝𝑡 is the temperature sum for plot 𝑝 in year 𝑡 (see Mbogga
et al., 2009). The constants in Eq. (3) were used to coarsely standardize
the covariates.

2.2.3. Growth
Our stem diameter growth model has the following conceptual form:

future stem diameter = current stem diameter + (4)
potential growth × competition effect +
error

According to this concept, potential growth can be understood as
growth that could be observed if the tree grew in the open landscape in
absence of any competition from other trees, and this potential growth
is reduced by inter-tree competition (see e.g., Pommerening et al.,
2011; Cronie et al., 2013; Häbel et al., 2019). Our tree height sub-model
has the same conceptual form. More precisely, our stem diameter and
tree height sub-models for tree 𝑖 in plot 𝑝 for the next year 𝑡 + 1 are

𝑑𝑝𝑖,𝑡+1 = 𝑑𝑝𝑖,𝑡 + 𝑓d
pot(𝑑𝑝𝑖,𝑡) ⋅𝐻

d-trans
𝑝𝑖,𝑡 + 𝜖d

𝑝𝑖,𝑡+1, and (5)

ℎ𝑝𝑖,𝑡+1 = ℎ𝑝𝑖,𝑡 + 𝑓h
pot(ℎ𝑝𝑖,𝑡) ⋅𝐻

h-trans
𝑝𝑖,𝑡 + 𝜖h

𝑝𝑖,𝑡+1, (6)

respectively, where

𝑓d
pot(𝑑) = 𝑑𝛽

d
1 exp

(

𝛽d
0 + 𝑢d-growth

𝑝 + 𝑣d-growth
𝑝𝑖 + 𝛽d

2
𝑑 − 10
10

+

𝛽d
3 (SI𝑝 − 28) + 𝛽d

4 thinning𝑡 + 𝛽d
5

GDD5𝑝𝑡

1000

)

(7)

and

𝑓h
pot(ℎ) = ℎ𝛽

h
1 exp

(

𝛽h
0 + 𝑢h-growth

𝑝 + 𝑣h-growth
𝑝𝑖 + 𝛽h

2
ℎ − 10
10

+

𝛽h
3 (SI𝑝 − 28) + 𝛽h

4 thinning𝑡 + 𝛽h
5

GDD5𝑝𝑡

1000

)

. (8)

Here 𝛽d
0 ,… , 𝛽d

5 and 𝛽h
0 ,… , 𝛽h

5 are fixed effect parameters, 𝑢d-growth
𝑝 and

𝑢h-growthℎ
𝑝 are random plot effects, 𝑣d-growth

𝑝𝑖 and 𝑣h-growth
𝑝𝑖 are random tree

effects, and 𝜖d
𝑝𝑖,𝑡+1 and 𝜖h

𝑝𝑖,𝑡+1 are the residuals. The variable thinning𝑡
accounts for the frequently observed fact that trees are unable to use
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newly available growing space immediately after thinning (Mehtätalo
et al., 2014) and indicates whether more or less than 5 years elapsed
since the last thinning. It is thinning𝑡 = 1 for the years 𝑡 = 1996,… , 2000
and 𝑡 = 2011,… , 2015, and 0 otherwise. Further, the competition effects
are equal to

𝐻d-trans
𝑝𝑖,𝑡 = 1 − exp

(

−10𝜈d∕𝐻𝑝𝑖,𝑡
)

, and (9)

𝐻h-trans
𝑝𝑖,𝑡 = 1 − exp

(

−10𝜈h∕𝐻𝑝𝑖,𝑡
)

, (10)

where 𝜈d and 𝜈h are additional model parameters and 𝐻𝑝𝑖,𝑡 is the
competition index (Eq. (1)). This transformed competition effect scales
the competition index value to the scale [0, 1]; the transformation was
chosen following Häbel et al. (2019). The smaller 𝜈d, the smaller 𝐻 trans

𝑝𝑖,𝑡
and the larger the effect of competition on the growth of tree 𝑖. Similar
to the ingrowth model (Eq. (3)), the constants in Eqs. (7) and (9)
are used for coarse standardization of the covariates. The random plot
effects (𝑢d-growth

𝑝 , 𝑢h-growth
𝑝 ) and random tree effects (𝑣d-growth

𝑝 , 𝑣h-growth
𝑝 )

are assumed to follow the zero-mean two-dimensional normal distri-
butions with variances (𝜎2𝑢,d-growth, 𝜎

2
𝑢,h-growth) and (𝜎2𝑣,d-growth, 𝜎

2
𝑣,h-growth),

and correlations 𝜌𝑢 and 𝜌𝑣, respectively. The residuals of the two
model components, (𝜖d

𝑝𝑖,𝑡+1, 𝜖
h
𝑝𝑖,𝑡+1), are also assumed to follow the two-

dimensional normal distribution with variances 𝜎2𝜖-d and 𝜎2𝜖-h, and cor-
relation 𝜌𝜖 .

2.2.4. Mortality
We modeled mortality using a generalized linear model with

Bernoulli response and the complementary log–log link function. We
hypothesized that large trees mainly died as a consequence of diseases
and windthrow, while small trees predominantly died because of com-
petition. Therefore, we assumed that the probability of a tree 𝑖 in plot 𝑝
to die in a time interval from 𝑡 to 𝑡+1 depends both on the current size
of the tree and influence of the other trees. Our final mortality model
also includes a quadratic form of the competition index and, thus, its
linear predictor is defined as

𝜋𝑝𝑖,𝑡 = 𝛾0 + 𝛾1
𝑑𝑝𝑖,𝑡 − 10

10
+ 𝛾2

𝐻𝑝𝑖,𝑡

10
+ 𝛾3

𝐻2
𝑝𝑖,𝑡

100
+ 𝑢mortality

𝑝 + 𝛾4(SI𝑝 − 28), (11)

where 𝛾0, 𝛾1, 𝛾3 are model parameters, 𝑢mortality
𝑝 ∼ 𝑁(0, 𝜎2𝑢,mortality) is the

random plot effect, and the constants result from the coarse standard-
ization for estimation and interpretation purposes. The probability of
tree 𝑖 to die is then 1 − exp(− exp(𝜋𝑝𝑖,𝑡)).

2.3. Inference

The recorded data provided tree observations at survey times
𝑡1, 𝑡2,… , 𝑡𝑛, for example, in our study for every fifth year with some
exceptions of four- and six-year intervals. Therefore, for the inference
of our model operating in annual steps, we needed some simplifying as-
sumptions and resulting approximations (see Section 2.3.1). Employing
these approximations, we performed Bayesian inference (Section 2.3.2)
and model evaluation using posterior predictive check with multiple
characteristics (Section 2.3.3). Finally, we simulated forest dynamics
according to different scenarios, both for a 15-year period without
thinnings (Section 2.3.4) and for 100 years, this time applying thinnings
as described in Section 2.3.5.

2.3.1. Approximations for the inference
We assumed that the observation intervals are short compared to the

ree growth rate so that the effects of the neighboring trees as modeled
y the competition index (Eq. (1)), field (Eq. (2)) and the temperature
um (GDD5) are approximately constant over the five-year observation
eriods. Therefore, the nonlinear predictors 𝜇d

𝑝𝑖,𝑡 = 𝑓d
pot(𝑑𝑝𝑖,𝑡) ⋅ 𝐻

d-trans
𝑝𝑖,𝑡

and 𝜇h = 𝑓h (ℎ ) ⋅ 𝐻h-trans of the growth model are approximately
5

𝑝𝑖,𝑡 pot 𝑝𝑖,𝑡 𝑝𝑖,𝑡
constant on the interval ranging from 𝑡 to 𝑡 + 𝑠. This implies that the
ean absolute annual growth of stem diameter during 𝑠 years is

𝑑𝑝𝑖,𝑡+𝑠 − 𝑑𝑝𝑖,𝑡
𝑠

≈ 𝜇d
𝑝𝑖,𝑡 +

1
𝑠

𝑡+𝑠
∑

𝑡
𝜖d
𝑝𝑖,𝑡+1

𝑑
= 𝜇d

𝑝𝑖,𝑡 + 𝜖d
𝑝𝑖,𝑡,𝑠,

where 𝜖d
𝑝𝑖,𝑡,𝑠 ∼ 𝑁(0, ( 1

√

𝑠
𝜎2𝜖-h)

2), and 𝜎2𝜖-h is the residual error in the
rowth sub-model (Eq. (5)), and an analogous term applied to tree
eight growth. Here 𝑋

𝑑
= 𝑌 denotes that 𝑋 and 𝑌 have the same

istribution.
In the ingrowth model, we approximated the competition field 𝐻𝑝𝑥,𝑡

Eq. (2)) of plot 𝑝 by a piecewise constant function evaluated at the
enter points of a 1 m × 1 m grid, in a similar manner as, e.g., in Rue
t al. (2009), Møller et al. (1998) and Kuronen et al. (2021). Based on
ur assumption, the intensity (Eq. (3)) according to which the ingrowth
rees emerge stays approximately the same over the observation period.
hen, according to the ingrowth sub-model, the number 𝑛 of ingrowth
rees on a grid cell of size 1 m × 1 m during an observation period of
years is Poisson distributed with intensity 𝑠𝜆𝑝,𝑡(𝑥). This means that a

tandard generalized linear model applies with offset log 𝑠.
Based on our assumption, the linear predictor 𝜋𝑝𝑖,𝑡 of the mortality

odel (Eq. (11)) is also approximately the same over an observation
eriod of 𝑠 years. Given the model parameters, the probability of tree 𝑖
n plot 𝑝 to die in a time interval ranging from 𝑡 to 𝑡 + 𝑠 is therefore
− exp(− exp(log 𝑠 + 𝜋𝑝𝑖,𝑡)). The complementary log–log link function

onveniently allows to specify the model as a standard generalized
inear model with offset log 𝑠.

.3.2. Parameter estimation
The models introduced in Section 2.2 were fit using the R pack-

ge brms (Bürkner, 2017). The brms package is specialized in fitting
ayesian generalized (non)linear multivariate multilevel models using

Stan’ (Stan Development Team, 2022) for full Bayesian inference. We
btained 4000 samples from the posterior distribution of the param-
ters of each model, with effective sample sizes of model parameters
etween 400 and 5000.

Bayesian inference requires specifying prior distributions to all pa-
ameters of the models. In our study, we applied uninformative priors
or all parameters (Gelman et al., 2014). The ingrowth and mortality
odels used the default flat prior distributions of the brms package

or all parameters. For the growth model we specified other priors for
ome of the parameters: The prior of 𝜎2𝜖-d and 𝜎2𝜖-h was exponential
ith a mean of 1000, for 𝜈-parameters (Eqs. (9) and (10)) the prior
as exponential with a mean of 10, and for 𝑓d

pot(𝑑𝑝𝑖,𝑡) and 𝑓h
pot(ℎ𝑝𝑖,𝑡), a

ormal distribution with a standard deviation of 1000 was used.

.3.3. Model evaluation
We applied posterior predictive check (Gelman et al., 2014) with

ifferent characteristics to evaluate the goodness-of-fit of our forest
ynamics model as follows: To compare model predictions with ob-
erved data for as long a period as possible, we chose to consider
he longest period not involving any thinnings, namely 1996–2011. As
tarting population we used the tree patterns in 1996, excluding the
rees that were harvested in 1996 and a few trees that went missing
y 2001. With each set of parameter values of the 4000 posterior
amples (see Section 2.3.2), we then simulated forest development for
ach plot across the 15-year period including ingrowth, growth and
ortality. At their emergence, the ingrowth trees were assigned stem
iameters of 0.1 cm and heights of 1.35 m. As a result we obtained
000 realizations from the posterior predictive distribution of our tree
odel. We then calculated different characteristics for each simulation,

esulting in posterior predictive distributions of these characteristics
a)–(h) explained in the following.

Our plot-level characteristics of main interest were

(a) the total basal area of trees and

(b) the total volume of trees
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in 2001, 2006 and 2011. The tree volume was obtained by the variable
form-factor volume equation proposed by Kangas et al. (2023) which
requires stem diameter and height as input variables. Further, we
compared the observed and simulated tree patterns of 2011 by the

(c) numbers of trees in different stem diameter classes ([5, 10),
[10, 15), [15, 20), [20, 25),… , [60, 65) cm),

(d) pair correlation functions 𝑔(𝑟),
(e) mark variograms 𝛾𝑚(𝑟) of tree stem diameters, and
(f) mean height of trees in different stem diameter classes ([5, 10),

[10, 15), [15, 20), [20, 25), [25, 30), ≥30 cm).

hese characteristics (c)–(f) were computed for trees with stem diame-
ers ≥5 cm. We evaluated the smallest trees through

(g) the numbers of ingrowth events in the periods 1996–2001,
2001–2006 and 2006–2011, and

he mortality through

(h) the volume (m3/ha) of the trees that died in the same three
periods.

Characteristics (d) and (e) summarize the spatial patterns of ob-
erved and simulated trees including their stem diameters as so-called
arks (e.g., Illian et al., 2008). The pair correlation function 𝑔(𝑟)
escribes the spatial structure of the tree pattern relative to the pattern
f complete spatial randomness (CSR, Poisson forest): values 𝑔(𝑟) > 1
ndicate more and values 𝑔(𝑟) < 1 indicate less points at distance 𝑟
part from each other than would be expected under CSR. By contrast,
he mark variogram 𝛾𝑚(𝑟) measures dependencies in the stem diameter
arks of two trees that are distance 𝑟 apart from each other: if 𝛾𝑚(𝑟) < 1,

then the difference between the stem diameters of trees with distance 𝑟
apart from each other tends to be smaller than the average difference,
while 𝛾𝑚(𝑟) > 1 suggests larger difference. The reference case 𝛾𝑚(𝑟) = 1
corresponds to independent stem diameters of trees.

We summarized the posterior predictive distributions of the char-
acteristics (a)–(h) using global envelopes (Myllymäki et al., 2017;
Myllymäki and Mrkvička, 2023). The presented 95% global envelopes
represent the central regions in which 95% of the posterior predictive
simulations of the characteristic lies; the remaining 5% of the simu-
lations are outside the region for some year 𝑡, stem diameter class,
distance 𝑟 or period, depending on the characteristic.

2.3.4. Scenarios
For the aforementioned 15-year simulation, we considered three

different scenarios corresponding to increasing levels of uncertainties,
namely

(i) a simulation where both plot and tree effects were known,
(ii) a simulation where only the plot effects were known, and

(iii) a simulation where both plot and tree effects were unknown.

In our modeling work, we estimated all random effects. Case (i) com-
pares the full model with the data. However, the plot and tree effects
are not known when tree models are applied in practice (case (iii)).
If measurements of tree growth are available for some trees of the
plot, the random plot effects can be predicted, e.g., by applying mixed-
effect model calibration (Mehtätalo and Lappi, 2020) or a Bayesian
approach (Sirkiä et al., 2015). Case (ii) gives information on the
maximum benefit that can be obtained by using such an approach.
In all simulations, the random effects were drawn from their posterior
distributions. In the case of an unknown random effect of plot 𝑝 or tree
𝑖, each posterior sample was drawn from the posterior distribution of
a randomly chosen existing plot or tree, allowing a different plot or
tree to be chosen each time. Hereby the posterior draws represent the
variation across existing plots or trees.

We calculated the 15-year simulations using both annual and five-
year time steps in separate model simulations to understand the poten-
6

tial problems caused by simulation intervals that are shorter than five
Fig. 2. Posterior distributions of the parameters of the ingrowth sub-model (Eq. (3)),
stem diameter (dbh) and height growth sub-model (Eqs. (5)–(6)) and mortality model
component (Eq. (11)). The solid vertical lines in the densities denote the posterior
means. The names in brackets after the parameters refer to the respective variables.

years. In simulation practice, the need for annual simulation steps can
arise, for example, when a growth model is used for updating forest
data to match a current point in time or when thinning operations
are scheduled for a time within a 5-year simulation period. Annual
simulation steps are also useful for harmonizing data sets collected in
different years; such updated data are often required in forest planning
and in large national and international research projects. Annual values
of competition effects and temperature sum (GDD5) were applied in
annual steps, while the five-year step simulations were based on the
competition quantified in the first year and on the average GDD5 of
the five-year period.

2.3.5. Long-term projection including thinnings
To study the projections and the corresponding prediction inter-

vals over a long time period, we also simulated forest development
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Fig. 3. Total basal area (m2∕ha) and total volume (m3∕ha) in 2001, 2006 and 2011 for three plots VES01, LAP07, SUO2P and three different scenarios (gray bars, see legend).
he solid lines represent the observed values. The area covered by each of the three different gray bars corresponds to the 95% global envelopes computed from the posterior
redictive distribution based on 5-year time steps.
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or 100 years, based on the 1996 patterns as the starting popula-
ion. In these simulations, we mimicked the thinnings applied in the
lots (Bianchi et al., 2020) as follows. We aimed at a residual basal area
f 12 m2 ha−1 according to the forest management recommendations
n open heathland forests in southern Finland (Tapio, 2023). Thinnings
ere applied every five years, if the basal area exceeded 22 m2 ha−1,
hich is the limit that the basal area should exceed before thinning is

ecommended. For simplification, we removed trees in random order
ntil the residual basal area of 12 m2 ha−1 was achieved. In these
imulations, we monitored the total yield of volume, i.e., the sum of
he current volume of live trees and the volume removed across the
ears from 1996 to the current year. The temperature sum (GDD5) was
bviously not known for this period: the GDD5 values observed for
996–2023 were used, and fixed to the average of the last five years
2019–2023) in the following simulation years.

. Results

.1. Parameter estimates

The site index did not affect ingrowth or mortality but had a mild
ffect on growth: the posterior distributions of the corresponding co-
fficients in the ingrowth (Eq. (3)) and mortality sub-model (Eq. (11))
ere around zero, while the coefficient of the site index in the stem
iameter and height growth sub-models (Eqs. (5) and (6)) were slightly
ositive (Fig. 2). The temperature sum (GDD5) has a positive effect
oth on ingrowth and growth. The influence of neighboring trees as
escribed by the RBA-index (Eqs. (1) and (2)) decreased ingrowth.
his influence also decreased growth, as assumed by the growth sub-
odel (Eqs. (5)–(6)). For mortality, the effect of RBA was such that a
oderate amount of competition led to a lower mortality probability.
7

t should be noted that large trees by definition (Eq. (1)) cannot have m
high competition load. Furthermore, in the mortality model, stem
iameter had a negative effect, i.e., small trees were more likely to
ie which matches field observations (Monserud and Sterba, 1999).
n the growth sub-model, the coefficient associated with the thinning
ndicator variable was negative, suggesting that growth was slower
p to five years after a thinning, as expected. The random plot and
ree effects related to stem diameter and height growth were highly
orrelated.

The variability between trees was higher than that between plots.
he variation between plots was also high compared to the effect of the
ite index (posterior median (50% uncertainty interval)): the standard
eviation of the stem diameter related plot effects is 3.6 (2.8–5.2)
imes the coefficient of the site index. Therefore, a symmetric 95%
ncertainty interval of the plot effects corresponds to a 14-m (11–20 m)
ariability in the site index.

.2. 15-Year simulations

In this section, plot VES01 represents the example of a plot where
he predictions were rather good with respect to all chosen characteris-
ics. SUO2P is an example where unexplained factors affected the forest
evelopment. Further, LAP07 is an example in the Lapinjärvi region,
here the forest development was also potentially affected by factors
ot included in our models. The simulation results of all 18 plots are
resented in the Supplementary Materials.

The observed basal area and volume values mostly lie between the
5% global envelopes of posterior predictive distributions, particularly
or scenarios (i) and (iii) (Figs. 3, S1 and S2). For scenario (ii), where
ree effects were unknown, the observed data were outside the 95%
lobal envelopes of the predictions in a few more cases, e.g., plot
AP07. Further, the results for plots SUO2P and EVO02 (see Supple-

entary Materials) show an unexpected drop in basal area in 2006.
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Fig. 4. Total number of trees and the mean height in different stem diameter (dbh) classes in 2011 for three plots VES01, LAP07, SUO2P and three different scenarios (gray
bars, see legend). The solid line and red crosses represent the observed values. The area covered by each of the three different gray bars corresponds to the 95% global envelopes
computed from the posterior predictive distribution based on 5-year time steps.
Here unexplained factors have affected the growth, as discussed in
Section 4. With known random effects, the variability of the posterior
predictive distributions of basal area is rather low, and considerably
higher when the random effects are unknown. In general, the uncer-
tainty increases a bit with unknown random tree effects, but much more
with unknown random plot effects.

Regarding the stem diameter distributions (Fig. 4 and S3), the
variations in the numbers of trees with stem diameters ≥5 cm appear
to be captured rather well. In plot LAP07, only the number of trees in
the smallest stem diameter class is larger than predicted by the model.
The simulated height distributions were similar to the observed distri-
butions (Figure S4), and the mean heights in different stem diameter
classes (Fig. 4 and S5) were realistic compared to the height–diameter
curves estimated using the same data (Siipilehto et al., 2023). The
spatial characteristics of the simulated patterns of trees were also
similar to the corresponding observed characteristics (Fig. 5), except
for plot EVO02 (Figures S6 and S7).

The numbers of ingrowth trees and the basal area of the dead trees
were simulated rather adequately (Figs. 6, S8 and S9). When both
the plot and tree effects were unknown (scenario (iii)), the numbers
of ingrowth trees had very large variability. The number of ingrowth
trees varies highly across the plots, making this number a rather
difficult variable to be predicted. Judging by the spatial characteristics
(Figure S10), the dispersion of these smallest trees was not completely
adequately projected by our model. The observed patterns of ingrowth
trees are more clustered in some plots than our model predicts. Some
extraordinary events (such as storms, bark beetles) led to rather high
observed mortality in some plots, but this is still within the model
variability.
8

3.3. Comparison of simulations with annual and 5-year steps

In the previous section, we presented the results of simulations
progressing in 5-year steps (between 1996 and 2011), i.e., largely
following the temporal pattern of re-measurements in the monitoring
plots with only few exceptions. As explained in Section 2.3.4, there are
situations where the simulation in one-year steps is helpful.

When comparing the results obtained from using 1- and 5-year
simulation steps, we detected some small differences in the posterior
predictive distributions for the total basal areas (Figs. 7 and S11–S13)
and stem diameter distributions (Figs. 8 and S14–S16): The variability
of the basal area predictions was a bit larger when 1-year steps were
applied. Regarding the stem diameter distributions, there were also
some small differences, but with no clear trend. The model did not
show any major problems in projections based on annual time steps.
It appears that the use of short simulation steps is largely fine.

3.4. Comparison of the effects of the site index and plot effect

To study the effect of the site index and plot effect, we considered
plot VES01. We computed the posterior mean basal area after 15 years
assuming that the site index would be either 25.9 m (minimum of the
data), 28.4 m (mean of the data) or 33 m (maximum of the data)
and that the plot effect in the growth model would be either zero or
±1.96�̂�𝑢,d-growth cm, where �̂�𝑢,d-growth = 0.228 cm is the posterior mean
of the standard deviation of the plot effect. The plot effects in the
height growth, ingrowth and mortality sub-models and the tree effects
in the diameter and height growth model components were simulated
according to the unknown plot and tree effects scenario.

Basal area after 15 years of simulation varied from 25 to 31 m2∕ha
along with the site index (zero plot effect), whereas the plot effect led
to variation ranging from 23 to 32 m2∕ha (Table 2). Thus, the plot had
a somewhat larger effect on the mean basal area than the site index.
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Fig. 5. The pair correlation function 𝑔(𝑟) and the mark variogram 𝛾𝑚(𝑟) of stem diameter (dbh), computed for the trees with dbh ≥ 5 cm in the three plots VES01, LAP07, SUO2P
in 2011. Red curves correspond to the observed characteristics, gray curves represent the three different scenarios given in the legend. The band between two curves of each
scenario corresponds to the 95% global envelope from the posterior predictive distribution based on 5-year time steps.
Table 2
Posterior mean basal area (and 95% uncertainty interval) in plot VES01 after 15 years
assuming minimum, maximum and mean site index (SI) of the plots and either no plot
effect or a plot effect of magnitude ±1.96�̂�𝑢,growth.

SI/Plot effect −1.96�̂�𝑢,growth 0 1.96�̂�𝑢,growth

Minimum 25.1 (20.4, 28.3)
Mean 23.5 (19.8, 25.9) 26.8 (22.7, 29.5) 32.3 (27.7, 36)
Maximum 30.5 (25.5, 35.5)

3.5. Long-term simulation

Finally, we simulated the forest development for 100 years using 5-
year steps including thinnings carried out to achieve the recommended
residual basal area of 12 m2∕ha−1 every time when the current stand
basal area exceeded 22 m2∕ha−1, as explained in Section 2.3.4. The
amount of uncertainty in the total yield of basal area (Figure S17) and
volume (Figs. 9 and S18) given known random effects was moderate.
It should be noted that the simulations were carried out under the
assumption that the environmental conditions would not change after
the first 28 years in the 100 years of the long-term simulation. With
unknown random effects, the yield, however, turned out to be highly
uncertain. For example, the total volume yield over 100 years in plot
LAP07 ranged from 500 to 1800 m3∕ha when the random effects were
not known and from 1300 to 1900 m3∕ha when the plot effects were
known. The same can be concluded for the total yield of basal area
(Figure S21).

4. Discussion

CCF is increasingly considered an alternative in Finland and other
9

European countries where until recently RFM was the standard. The
tenets of CCF, as documented in the international literature (Pom-
merening and Murphy, 2004; O’Hara, 2014; Franklin et al., 2018),
suggest a greater diversity of forest structure and a wider range of forest
development pathways than what is currently known for traditional
RFM. In addition, climate change is likely to add even more variability
to the development of forest ecosystems. This situation requires tree
models that are both as general as possible and sufficiently detailed to
simulate the influence and evolution of forest structure including the
associated uncertainties.

In our study, we introduced a spatial tree model to meet these
requirements. The Bayesian methods were used for estimating the cor-
responding model parameters and their distributions. Following this,
we simulated CCF forest development from the posterior predictive
distribution of the tree model according to three different scenarios.
In this process, we explicitly took parameter uncertainties into ac-
count. We simulated stand dynamics based on ingrowth, growth, and
mortality model components, each including the effect of neighboring
trees. Random tree and plot effects were incorporated in the models
according to the structure of the observed data. The contribution of the
tree and plot effects to the predictive performance was also analyzed.

Our model captured the forest development of the observed CCF
data set adequately, as indicated by various characteristics that we
used for evaluating the behavior of the tree model. As with any model
approach, there is naturally room for improvement. Particularly, the
observed ingrowth of regeneration trees in the plots has a high vari-
ability that was not completely reproduced by our current tree model.
The ingrowth model component could, for example, be extended by a
cluster point process model (see e.g., Kuronen et al., 2021), but accord-
ing to our previous experience, such an approach is computationally
rather demanding and might still not capture all the variability present
in the spatial structure of the smallest trees. Site quality information
within plots might also help to explain the spatial patterns of ingrowth
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Fig. 6. The number of ingrowth trees and the volume per hectare of the dead trees (mortality, m3∕ha) during the three five-year-periods ending in 2001, 2006 and 2011 for the
three plots VES01, LAP07, SUO2P. The red crosses represent the observed values. Different scenarios (see Section 2.3.4) are shown in different gray bars. The area covered by
each of the three different gray bars corresponds to the 95% global envelopes computed from the posterior predictive distribution based on 5-year time steps.
trees, particularly since the boreal forest is known to be nutrient-poor
and ingrowth trees compete with parent trees (Högberg et al., 2021).
From the practical point of view of model application, the incomplete
description of the spatial pattern of the smallest trees is a minor issue,
because the dispersion of trees with a stem diameter larger than 5 cm
was simulated sufficiently well (Fig. 5). Since most of the small trees
are removed or die rather early, the modeling of ingrowth trees just
needs to coincide with an appropriate density and sufficiently realistic
spatial pattern of the remaining trees. Furthermore, the stem diameter
and height distributions were also adequately simulated (Fig. 4 and
the Figures S3–S5 in the Supplementary Materials). Size distributions
such as stem diameter distributions are important in CCF, since they
are a crucial characteristic of forest structure and they are also related
to demographic and self-organization processes on which CCF heavily
relies (Pommerening, 2023).

The tree model could be further extended, e.g., to include separate
models for different species, but this may require a more extensive
and diverse data set. The dominance of Norway spruce in our data is
motivated by the experience that from among the three most common
and commercially important tree species (Scots pine, Norway spruce
and birch species), only Norway spruce can regenerate and survive
when selective cuttings are applied on the fertile sites of Southern
Finland (Kellomäki, 2022).

While growth conditions during the growing season may cause
quite high variation in the growth and ingrowth rates of a given
year (Mäkinen et al., 2022), we included the location-specific time
varying temperature sum as an explanatory variable in our ingrowth
and growth sub-models. An extension here may include annual random
effects, but their derivation from longer observation periods can require
more extensive approximations or changes to the current tree model.
10

For example, if an annual random effect is normally distributed, the
accumulated random effect on the observation period is not. Thus, such
a model no longer fits the brms framework (see Section 2.3.1).

In our long-term simulations, we applied a simple thinning method
where trees were thinned in a random fashion without considering
their locations; this can be further extended to include more reasonable
alternatives that take the current spatial neighborhood of trees into
account, as is commonly done in CCF practice. However, the selected
approach demonstrates sufficiently well how uncertainty is propagated
across years in long-term simulations.

There were also some unexpected factors that affected the growth
or death of trees and thus the stand basal area during the period
1996–2011, which were not explicitly included in the model design.
As a result of unplanned harvesting or tree mortality caused by forest
operations, many trees disappeared between 2001 and 2006 in plot
EVO02. This led to an unexpected drop in stand basal area which also
affected the spatial characteristics applied in this study, because tree
mortality did not occur spatially randomly. There was also a European
spruce bark beetle (Ips typographus L.) outbreak in Lapinjärvi (LAP)
between 2006 and 2011. This is the likely reason for the rather high
observed basal area of dead trees in 2011 (Fig. 6), and for the relatively
low observed stand basal area in 2011, which is close to the lower
bound of the 95% predicted basal area and volume envelopes (Fig. 3).
Some storm events occurred in Suonenjoki (SUO) between 2001 and
2006, which caused windthrow and thus decreased the stand basal area
in plot SUO2P. As we did not model storm events, our tree model was
unable to predict this extraordinarily large basal-area depression.

There are also some issues related to the data that should be noted
when interpreting the results. Among the trees that died and were
considered as part of tree mortality, wind and snow were the most
common causes of mortality. Biotic causes were rare, and some 6%
of the total loss in the number of trees could be attributed to inter-
tree competition and about 7% to harvesting damage, but for more
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Fig. 7. The total basal area (m2∕ha) of the three plots VES01, LAP07, SUO2P across years when using 1-year and 5-year simulation steps and the three scenarios defined in
ection 2.3.4 (rows). Color indicates the step size and the corresponding bars show the 95% global envelopes computed from the posterior predictive distributions.
han half the causes of death remained unknown (Valkonen et al.,
020b). Thus, even though the RBA competition index appeared to
xplain tree mortality well (Figs. 2), it is not possible to make far-
eaching conclusions as to the reasons for why mortality happened. It
s interesting that harvesting damage was another important cause of
ree mortality (Valkonen et al., 2020b). Particularly when large trees
re felled, they may heavily damage neighboring residual trees that
ventually die in the aftermath (Pretzsch et al., 2017). With the ongoing
ntroduction of CCF this problem definitely needs to be addressed and
orest operators involved in harvesting require more training.

In all our posterior predictive simulations where a random effect
as unknown (scenarios (ii) and (iii) in Section 2.3.4), a random effect
as drawn from the posterior distribution of a random plot or tree cho-

en from the data used for modeling. We also tested the alternative that
he random effects were instead drawn from the normal distribution
hat was implied by the posterior distribution of the standard deviation
f random effects. The differences between the two alternatives were,
owever, minor.

We tested various alternatives to different model components. For
xample, in this study we used the RBA index (Eq. (1)), but we orig-
nally tested also other measures of competition, particularly different
ariants of the Hegyi index (see e.g., Bianchi et al., 2020; Pitkänen
t al., 2022) and Gaussian kernels (Pommerening et al., 2011; Häbel
t al., 2019). In our exploratory analysis, they showed a performance
imilar to the selected RBA with very little difference. When selecting
easures of competition there are also computational aspects to con-

ider: if measures of competition include parameters to be estimated,
hese measures must be computed in each iteration of the MCMC.
his can be a considerable computational burden. Additionally such a
odel cannot be specified in the brms package, but Bayesian inference

ould be implemented for these types of models in Stan (Stan Develop-
ent Team, 2023). Such an implementation constitutes a considerable
11
amount of additional work and is quite cumbersome in terms of exper-
imenting with the model design. For these reasons, in this study, we
settled on the RBA index (Eq. (1)) for explaining growth and mortality,
and a corresponding competition field (Eq. (2)) derived from the sum
of individual influences of all trees was used in the ingrowth model
component.

The simulation results revealed that without knowing the plot and
tree random effects, the uncertainties in the simulations can be very
high. Furthermore, uncertainty increases rapidly as the simulation
period length increases. The poor quality of long-term predictions has
been well known (Kangas, 1999; Pretzsch, 2009), but has not yet
been properly modeled and included in decision making (de Pelle-
grin Llorente et al., 2023). The Bayesian approach that we adopted
in our tree model might therefore significantly improve the quality of
growth simulations especially by producing a realistic description of the
uncertainty related to the model parameters. Monte Carlo simulation as
used, for example by Kangas (1999), can be applied, too, but taking
into account all sources of uncertainty, such as those related to the
estimation errors of random effects and non-normality of the parameter
estimation errors, can be more easily handled in a Bayesian con-
text. Kangas (1999) also suggested to consider the correlations between
the uncertainties of the parameters, which again is straightforward in
the Bayesian framework.

In our results, the variation of plot effects led to a variability
of stem diameter growth similar to that which is caused by a 11–
21 m variability of the site index. Therefore predicting plot effects can
potentially give much better information on the growth potential of a
site than the traditional site index, which is anyway difficult to estimate
correctly in the context of CCF (Pretzsch, 2009). The plot effects can be
predicted using measurements of growth of a few sample trees adopting
approaches similar to those that have been used, e.g., for predicting tree
height–diameter and height–age curves (Mehtätalo and Lappi, 2020;
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Fig. 8. The numbers of trees in different stem diameter classes in 2011 of the three plots VES01, LAP07, SUO2P when using 1-year and 5-year simulation steps and the three
scenarios defined in Section 2.3.4 (rows). Color indicates the step size and the corresponding bars show the 95% global envelopes computed from the posterior predictive
distributions.
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Sirkiä et al., 2015). The observed strong correlation between the plot
effects of stem diameter and height sub-models implies that height
measurements, which can be based on LiDAR measurements carried
out by drones, could be used to infer information on the plot effects
of diameter growth. However, the estimated variability of plot effects
was unexpectedly high compared to the effect of the site index, which
can have been partially caused by the poor quality and small variability
of the site index measurements in our data and by the fact that our plot
effects included both variability between plots (within the same stand)
and variability between stands. These effects could not be separated
because we did not have several plots from the same stand.

5. Conclusions

The simulation results demonstrated that our spatial tree model was
sufficiently flexible to adequately describe the dynamics in CCF forests
in Southern Finland. Based on the assumption that the observation
periods are short in comparison to the corresponding tree growth
rates, it turned out to be straightforward to accommodate ingrowth,
growth and mortality model components in a generalized multivariate
(non)linear multilevel model framework implemented in the R package
brms (Bürkner, 2017). This design and the inclusion of spatially explicit
competition makes the tree model a versatile alternative to modeling
forest dynamics according to various forest management types.

The Bayesian approach allows for straightforward simulations of
various quantities from their posterior predictive distributions, thus
accounting for uncertainties at different levels and accumulating them
over several growth periods (years). We explored these uncertainties in
different scenarios. Our experiments suggest that plot or stand effects
can have rather high variability; therefore, it makes sense to identify
individual-tree growth measurements which can capture this stand
effect and to apply it for improved predictions with less uncertainty.
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Fig. 9. Total yield (volume m3∕ha) in the three plots LAP07, SUO2P and VES01 across 100 years when using 5-year step simulations and thinning intensity according to official
recommendations. The three different scenarios (see Section 2.3.4) are shown in different gray bars. The area covered by each of the three different gray bars corresponds to the
95% global envelopes computed from the posterior predictive distributions.
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