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Abstract: Estimation of reliability and stress–strength parameters is important in the manufacturing
industry. In this paper, we develop shrinkage-type estimators for the reliability and stress–strength
parameters based on progressively censored data from a rich class of distributions. These new
estimators improve the performance of the commonly used Maximum Likelihood Estimators (MLEs)
by reducing their mean squared errors. We provide analytical asymptotic and bootstrap confidence
intervals for the targeted parameters. Through a detailed simulation study, we demonstrate that the
new estimators have better performance than the MLEs. Finally, we illustrate the application of the
new methods to two industrial data sets, showcasing their practical relevance and effectiveness.

Keywords: bootstrap; lifetime; preliminary test; progressive censoring; reliability; stress–strength;
Stein-type shrinkage estimators
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1. Introduction

The reliability function, denoted by R(t), is defined as the probability of a failure-free
operation until time t. Thus, if the random variable X denotes the lifetime of an item or
a system, then R(t) = P(X > t). Another measure of reliability under a stress–strength
setup is the probability 𝒫 = P(X > Y), which represents the reliability of an item or a
system of random strength X subject to random stress Y, under a bivariate setting. These
two reliability measures are frequently used in many applications. There is a substantial
body of literature on the estimation and testing of the parameters R(t) and 𝒫 under
progressive censoring. For instance, ref. [1] proposed shrinkage estimators of R(t) for the
one-parameter exponential distribution. The authors of [2,3] estimated R(t) under type-I
and type-II censoring, while for estimating 𝒫 , they used the complete sample case. This
strategy’s exceptional benefits have attracted extensive academic research, as evidenced by
studies such as [4–11].

There are many scenarios in life-testing and reliability experiments in which units are
lost or removed from the experiment before failure. This removal may be unintentional,
as in the case of an unexpected breakdown of an experimental unit, or it may be designed
into the study. Unintentional loss may occur due to unforeseen circumstances such as lack of
funding or lack of access to testing facilities. However, units are often deliberately removed
from the test for reasons such as freeing up testing facilities for other experiments, saving
time and money, or meeting ethical considerations in experiments involving human subjects.
Among the various censoring schemes, the Type-II progressive censoring scheme has
become very common in recent years because it allows the experimenter to remove active
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units during the experiment. The Maximum Likelihood Estimators (MLEs) are commonly
used to estimate the reliability parameters under Type-II progressive censoring ([12]).
However, the efficiency of MLEs can be enhanced by integrating non-sample information,
often available in the form of prior hypotheses regarding the parameter under consideration.
Shrinkage estimation is one approach to amalgamate this non-sample information with
existing estimators, and a comprehensive exploration of shrinkage and similar estimation
methodologies is provided by [13,14].

Motivated by the potential improvements in estimation accuracy, our study focuses
on devising shrinkage estimators for reliability and stress–strength parameters within a
specific family of lifetime distributions. These parameters play crucial roles in assessing
the performance and reliability of various systems, ranging from mechanical components
to medical devices. Our research goes beyond mere theoretical formulation; we introduce
novel shrinkage-type estimators that incorporate out-of-sample information, thereby of-
fering a practical and robust solution to estimation challenges encountered in real-world
scenarios. By addressing limitations inherent in traditional models, our proposed estima-
tors exhibit superior performance, as demonstrated through rigorous simulation studies.
Furthermore, our study underscores the practical relevance of these estimators by show-
casing their efficacy in industrial contexts by applying them to real-world data. Through
real-world applications, we illustrate how our shrinkage estimators can facilitate more
accurate and reliable assessments of system reliability and stress–strength parameters.

The rest of this manuscript is organized as follows. In Section 2, we give a brief
introduction to existing results on the MLEs and then outline and develop the proposed
improved estimation strategies for the reliability measures. The exact biases and efficiencies
of the proposed estimators are also derived in this section. Section 3 contains an extensive
simulation study to evaluate the performance of the proposed estimators. Section 4 is
devoted to the application of the methods to real data sets. We give some concluding
remarks in Section 5.

2. Methods
2.1. The MLEs under Progressive Censoring

In this paper, we consider progressive Type-II censoring schemes, where from a
total of n units placed on a life-test, only m are completely observed until failure. At the
time of the first failure, R1 out of the remaining n − 1 units are randomly withdrawn
(or censored) from the life-testing experiment. Subsequently, at each subsequent failure,
a predetermined number of units are censored: R2 out of the n − 2 − R1 remaining units
after the second failure, and so on. The process continues until the m-th failure, at which
point all the remaining Rm = n − m − R1 − ... − Rm−1 units are censored. This censoring
occurs progressively in m stages, encompassing special cases such as the complete sample
situation (when m = n and all Ri = 0 for i = 1, . . . , m) and the conventional Type-II right
censoring situation (when all Ri = 0 for i = 1, . . . , m − 1 and Rm = n − m).

In this scheme, the quantities R1, R2, . . . , Rm (and hence m) are predetermined. As a
result, the censoring times (T’s) are random, but the number of units failing before each
censoring time is fixed. For an in-depth discussion, see [15]. This censoring scheme has been
extensively studied by researchers, including [16–19]; see also [20] for additional details.

Consider n independent units subjected to a life-test, with their failure times
X1, X2, . . . , Xn being identically distributed with cumulative distribution function F(x) and
probability density function f (x). Assume that the prefixed number of failures to observe
is m and that the progressive Type-II right censoring scheme is given by (R1, R2, . . . , Rm).
The m completely observed failure times are denoted by X(R1,R2,...,Rm)

i:m:n for i = 1, 2, . . . , m.
For brevity, when the censoring scheme is clear from the context, we use the notation Xi:m:n
for i = 1, 2, . . . , m to refer to these failure times, keeping in mind that they depend on the
specific censoring scheme (R1, R2, . . . , Rm).
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Following [12], we assume that the random variable X follows a distribution with the pdf

f (x; a, λ, θ) = λG′(x; a, θ) exp{−λG(x; a, θ)} ; x > a ≥ 0, λ > 0. (1)

Here, G(x; a, θ) is a function of x and may also depend on the (known) parameters a,
and θ, were the latter is called a vector of parameters.

We denote this family of lifetime distribution as CN and designate X ∼ CN (a, λ, θ, G)
to indicate that X is distributed according to the CN distribution. We avoid specifying the
G(.) function and complete our treatment in this paper under the general form. However,
specific forms of this function lead to more than ten known classes of distributions such as
the exponential (obtained when G ≡ x ), the Lomax, the Pareto, the one- and two-parameter
exponential, the Weibull, and the Burr distribution (see [2] for details).

The Maximum Likelihood Estimators (MLEs) of λ and R(t) are, respectively, given by

λ̂ =
m
Sm

, (2)

R̂(t) = exp
{
− m

Sm
G(t; a, θ)

}
, (3)

where Sm = ∑m
i=1 G(Xi; a, θ) + ∑m

i=1 RiG(Xi; a, θ).
For the estimation of𝒫 , let X ∼ CN (a, λ1, θ1, G) be independent of Y ∼ CN (a, λ2, θ2, G)

so that

𝒫 =
λ1

λ1 + λ2
, (4)

and hence the MLE of 𝒫 is

𝒫 =
λ̂1

λ̂1 + λ̂2
, (5)

where λ̂1 = m1
Sm1

, λ̂2 = m2
Tm2

, Sm1 = ∑m1
i=1 G(Xi; a, θ1) + ∑m1

i=1 RiG(Xi; a, θ1), and Tm2 =

∑m2
i=1 G(Yi; a, θ2) + ∑m2

i=1 RiG(Yi; a, θ2).

2.2. The Proposed Estimators of R(t)

Sometimes, due to past knowledge or experience, the experimenter may be in a posi-
tion to make an initial guess on some of the parameters of interest. This prior information
can be expressed in the form of the following set of hypotheses:{

Ho : R(t) = R0(t) = R0
Ha : R(t) ̸= R0(t) = R0

,

where R0 ∈ [0, 1] is a known constant and t is a fixed point in time. These hypotheses are
equivalent to Ho : λ = λo against Ha : λ ̸= λo, where λo =

log(1/R0)
G(t;a,θ) .

The prior information about the R(t), which we just formulated in terms of a null
and an alternative hypothesis, may or may not be correct. One possible way of testing the
hypotheses is to retain Ho if

A = {L; C1 ≤ L ≤ C2}, (6)

where C1 = χ2
(2m)(

α
2 ) and C2 = χ2

(2m)(1 −
α
2 ) and L = 2λoSm ∼ χ2

(2m), and α is the level of
significance. This is justified by the fact that Sm has gamma distribution.

Following [21], define the preliminary test (PT) estimator based on MLE as

R̂PT(t) = R̂(t)− (R̂(t)− R0)I(A), (7)
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where I(A) is the indicator function of the set A.
Note that the PT estimator depends on the level of significance of α. Further, R̂PT(t), is

not smooth due to the extreme choices of R(t), hence this is not an appropriate estimator
for lifetime and duration studies. Stein-type estimators produce all possible values in
between the unrestricted estimator (R̂(t)) and restricted estimator (R0) depending on the
sample values of the test statistic used for the preliminary test, which shrinks toward the
target vector parameter or its estimator. Therefore, we define the Stein-type shrinkage (S)
estimator given by

R̂S(t) = R̂(t)− (R̂(t)− R0)dL−1 = R̂(t)− d(R̂(t)− R0)

2λoSm
, (8)

where d is an appropriate nonnegative bounded constant. For more details on Stein-type
shrinkage estimators in general and in the context of reliability, see [21–30].

2.2.1. Bias and Mean Square Errors

In this section, we derive the bias, variance, and mean square errors (MSE) of the
proposed estimators. For notation convenience, we define the following quantities:

• φ1 = E(R̂(t)I(A)) =
∫ c2

β
c1
β

exp(−( 2mλG(t;a,θ)
w + w

2 ))w
m−1

2mγ(m)
dw

• φ2 = E(R̂2(t)I(A)) =
∫ c2

β
c1
β

exp(−( 4mλG(t;a,θ)
w + w

2 ))w
m−1

2mγ(m)
dw

• φ3 = E(I(A)) =
(

H2m(
c2
β )− H2m(

c1
β )

)
• φ4 = E(R̂(t)) = 2(mλG(t;a,θ))

m
2

Γ(m)
Km(2

√
mλG(t; a, θ))

• φ5 = E(R̂2(t)) = 2(2mλG(t;a,θ))
m
2

Γ(m)
Km(2

√
2mλG(t; a, θ))

• φ6 = E( 1
S2

m
) = λ2

(m−1)(m−2)

• φ7 = E( R̂(t)
S2

m
) = λ

2m−2γ(m)
(4mλG(t; a, θ))

m−1
2 Km−1(2

√
mλG(t; a, θ))

• φ8 = E( R̂2(t)
Sm

) = λ
2m−2γ(m)

(8mλG(t; a, θ))
m−1

2 Km−1(2
√

2mλG(t; a, θ))

• φ9 = E( R̂(t)
S2

m
) = λ2

2m−3γ(m)
(4mλG(t; a, θ))

m−2
2 Km−2(2

√
mλG(t; a, θ))

• φ10 = E( R̂2(t)
S2

m
) = λ2

2m−3γ(m)
(8mλG(t; a, θ))

m−2
2 Km−2(2

√
2mλG(t; a, θ))

• φ11 = E( 1
Sm

) = λ
(m−1)

where β = λo
λ and Hk(∆) denote the cumulative distribution function (cdf) of a non-central

chi-square distribution with k degrees of freedom and non-centrality parameter, ∆, while
Kr(.) is the modified Bessel function of second kind of order r (see [31]).

The following two theorems, whose proofs are relegated in the Appendix A, summa-
rize the bias and MSE expressions of the estimators of R(t):

Theorem 1. The bias expressions for the unrestricted, PT, and S estimators are given by

(i) Bias(R̂(t)) = φ4 − R(t),
(ii) Bias(R̂PT(t)) = Bias(R̂(t))− φ1 + R0 φ3,
(iii) Bias(R̂S(t)) = Bias(R̂(t))− d

2λo
φ7 +

dR0
2λo

φ11.

Theorem 2. The MSE expressions of the unrestricted, PT, and S estimators are given by

(i) MSE(R̂(t)) = φ5 − 2R(t)φ4 + R2(t),
(ii) MSE(R̂PT(t)) = φ5 − φ2

4 − φ2 − φ2
1 + R2

0 φ3(1 − φ3) + 2φ3(φ1 − φ4) + 2φ1 φ4

+
(
Bias(R̂PT(t)

)2,
(iii) MSE(R̂S(t)) = MSE(R̂(t)) + d2

4λ2
o
[φ10 + R2

0 φ6 − 2R0 φ9] − d
λo
[φ8 − (R0 + R(t))φ7 +

R0R(t)φ11].
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From the MSE expressions above, one can deduce the value of d that minimizes
MSE(R̂S(t)) as d = 2λo [φ8−(R0+R(t))φ7+R0R(t)φ11]

[φ10+R2
0 φ6−2R0 φ9]

. Furthermore, the relative efficiency (RE)

of PT and S estimators, relative to the unrestricted MLE, can be also deduced from the
above theorem as

RE(R̂PT(t)) =
MSE(R̂(t))

MSE(R̂PT(t))

=
φ5 − 2R(t)φ1 + R2(t)

φ5 − φ2
4 − φ2 − φ2

1 + R2
0 φ3(1 − φ3) + 2R0 φ3(φ1 − φ4) + 2φ1 φ4 +

(
Bias(R̂PT(t)

)2 ,

and

RE(R̂S(t)) =
MSE(R̂(t))
MSE(R̂S(t))

=
φ5 − 2R(t)φ1 + R2(t)

φ5 − 2R(t)φ1 + R2(t) + d2

4λ2
o
[φ7 + R2

0 φ3 − 2R0 φ6]− d
λo
[φ5 − (R0 + R(t))φ4 + R0R(t)φ8]

.

Figures 1 and 2 display plots of the relative efficiency expressions above for the
exponential model (G(x; a, θ) = x) with R0 = 0.70. Based on these figures, the PT estimator
has better performance near R(t) = R0 = 0.70, while such performance deteriorates as
we move away from this R0. While the S estimator becomes worse than the MLE, away
from the point 0.7, the PT estimator has a wider range where it outperforms the MLE and
away fro R0 = 0.7, it converges to the MLE from above. This means that the S estimator
dominates the MLE, uniformly, in terms of MSE.

Figure 1. The relative efficiency plot of the PT estimator based on R0 = 0.7 with n = 100, m = 10,
t = 5, λ0 = 0.07, and progressive censoring scheme R = (25, 10, 7, 5, 3, 10, 9, 5, 7, 9).

Figure 2. The relative efficiency plot of the S estimator based on R0 = 0.7 with n = 100, m = 10,
t = 5, λ0 = 0.07, progressive censoring scheme R = (25, 10, 7, 5, 3, 10, 9, 5, 7, 9) and α = 0.05.
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2.2.2. Bootstrapped Confidence Intervals

In this section, we describe an algorithm based on bootstrap-t for building confidence
intervals for the proposed estimators [32]. For this, we need variance formulae for the
proposed estimators which can be easily deduced from the theorems in the previous section
as follows:

Corollary 1. The variance expressions of the unrestricted, PT, and S estimators are given by

(1) Var(R̂(t)) = φ5 − (φ4)
2 (9)

(2) Var(R̂PT(t)) = φ5 − φ2
4 − φ2 − φ2

1 + R2
0 φ3(1 − φ3) + 2R0 φ1 φ3 +

2φ1 φ4 − 2R0 φ3 φ4 (10)

(3) Var(R̂S(t)) = φ5 − 2R(t)φ4 + R(t)2 +
d2

4λ2
o
[φ10 + R2

0 φ6 − 2R0 φ9]

− d
λo

[φ8 − (R0 + R(t))φ7 + R0R(t)φ11]−
(

φ4 − R(t)− d
2λo

φ7 +
dR0

2λo
φ11

)2
.(11)

The following Algorithm 1 formalizes the procedure for computing the bootstrapped
confidence intervals.

Algorithm 1 Bootstrap-t CI for R(t) Based on the Bootstrap Variance Estimate

Step 1. Based on the independent observed samples X(R1,R2,...Rm)
i:m:n , i = 1, ..., m with progres-

sive Type-II right censoring scheme (R1, R2, . . . , Rm), compute λ̂, R̂(t), R̂PT(t) and R̂S(t)
from (2), (3), (7) and (8), respectively.

Step 2. Generate X⋆
i:m:n ∼ Exp(λ̂), i = 1, ..., m. Use them to obtain λ̂⋆, R̂⋆(t), R̂PT⋆(t) and

R̂S⋆(t).
Step 3. Repeat Step 2 for B times and derive R̂⋆

(b)(t), R̂PT⋆
(b) (t), and R̂S⋆

(b)(t), b = 1, . . . , B.
Step 4. For each iteration of Step 3, design another parametric bootstrap procedure to

estimate the standard deviation of R̂⋆
(b)(t), say σ̂(R̂⋆

(b)(t)). More precisely, repeat Step 2

for b′ = 1, . . . , B′′, with λ̂⋆ instead of λ̂, and then calculate

σ̂(R̂⋆
(b)(t)) =

√√√√ 1
B′ − 1

B′

∑
b=1

(R̂⋆⋆
(b′)(t)− R̄⋆⋆(t))2

where R̄⋆⋆(t) = 1
B′ ∑B′

b′=1 R̂⋆⋆
(b′)(t).

Step 5. Let t⋆ =
(

t⋆(1), . . . , t⋆(B)

)⊤
, where t⋆(b) =

R̂⋆
(b)(t)−R̂(t)

σ̂(R̂⋆
(b)(t))

, b = 1, . . . , B.

Step 6. Compute the 100(1 − α)% bootstrap-t CI for R(t) as(
R̂(t)− t⋆1− α

2
σ̂(R̂(t)), R̂(t)− t⋆α

2
σ̂(R̂(t))

)
, where t⋆γ is 100γ%th percentile of t⋆ given by

Step 5 and σ̂(R̂(t)) =
√

V̂ar(R̂(t)) given by (9). This process is carried out for other
proposed estimators.

2.2.3. Consistency of the Estimators

The consistency of an estimator refers to its behavior as the sample size increases
indefinitely. It analytically hard to proof consistency of the new estimators. Therefore, we
used a simulation experiment to investigate the consistency of these proposed estimators.
A consistent estimator is expected to converge to the true parameter value as the sample
size grows. Therefore, as we increase the number of samples, we assess how the absolute
errors (difference between the true parameter and its estimates) of the estimators change.
Figure 3 illustrates that for some values of the parameters, there is a decreasing trend in
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the absolute error with increasing sample size. This trend indicates that the estimators are
approaching the true parameter value, demonstrating their consistency.

Figure 3. Consistency analysis of the proposed estimators of R(t), R0 = 0.7 for m = 10,
t = 5, λ0 = 0.07, α = 0.05, progressive censoring scheme R = (25, 10, 7, 5, 3, 10, 9, 5, 7, n − ∑m−1

i=1 Ri),
and G(x; a, θ) = x.

2.3. The Proposed Estimators of 𝒫

Similar to the constructions performed in the previous subsection, suppose we are
provided with the following set of hypotheses:{

Ho : 𝒫 = 𝒫o
Ha : 𝒫 ̸= 𝒫o

,

where 𝒫o ∈ [0, 1] is a known constant. For k = 𝒫o/(1−𝒫o), these hypotheses are equivalent
to Ho : λ1 = kλ2 against the alternative H1 : λ1 ̸= kλ2. Using the familiar likelihood ratio
test, we accept Ho if

A =

[
(x, y) :

{
km1

m2
F α

2
(2m1, 2m2) < L <

km1

m2
F1− α

2
(2m1, 2m2)

}]
,

where L =
Sm1
Tm2

follows the F-distribution with (2m1, 2m2) degrees of freedom. Making the
transformation

W =

(
1 +

λ2

λ1
F
)−1

,

the pdf of W turns out to be

f (w) =

(
m2λ2
m1λ1

)m2

B(m1, m2)
.

wm2−1(1 − w)m1−1[
1 +

(
m2λ2
m1λ1

− 1
)

w
]m1+m2

; 0 < w < 1.

and

ψ(l, q) = E(
Wl

(1 − W)q ) =

(
m2λ2
m1λ1

)m2

B(m1, m2)

∫ 1

0

wm2+l−1(1 − w)m1−q−1[
1 +

(
m2λ2
m1λ1

− 1
)

w
]m1+m2

dw

=
(−1)l+m2−1

B(m1, m2)

(
m1λ1

m2λ2

)l(
1 − m1λ1

m2λ2

)−m1−m2−l+q+1 m1−q−1

∑
i=0

(−1)i
(

m1 − q − 1
i

)(
m1λ1

m2λ2

)i

m2+l−1

∑
j=0

(−1)j
(

m2 + l − 1
j

)
I
(

m2λ2

m1λ1
; j + i − m1 − m2

)
, (12)
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where

I(c; p) =
∫ c

1
tp dt

=

{
(cp+1−1)

p+1 ; p ̸= 1
log c; p = −1.

Now, define the PT estimator of 𝒫 as

𝒫 PT = 𝒫 − (𝒫 −𝒫o)I(A). (13)

The S estimator of 𝒫 given by

𝒫 S = 𝒫 − (𝒫 −𝒫o)dL−1 = 𝒫 − (𝒫 −𝒫o)d
Tm2

Sm1

, (14)

where d is a proper nonnegative bounded constant.

2.3.1. Bias and Mean Square Errors

Again, we define the following symbols for ease of presentation,

• ψ1 = E(𝒫 ) = E
(

1 + λ̂2
λ̂1

)−1
= E

(
1 + λ2

λ1
F
)−1

= E(W),

• ψ2 = E(𝒫 2) = E(W2),

• ψ3 = E(𝒫 I(A)) =
∫ (

1+kF1− α
2
(2m1,2m2)

)−1

(
1+kF α

2
(2m1,2m2)

)−1 w f (w)dw,

• ψ4 = E(𝒫 2 I(A)) =
∫ (

1+kF1− α
2
(2m1,2m2)

)−1

(
1+kF α

2
(2m1,2m2)

)−1 w2 f (w)dw,

• ψ5 = E(I(A)) =
∫ (

1+kF1− α
2
(2m1,2m2)

)−1

(
1+kF α

2
(2m1,2m2)

)−1 f (w)dw.

Now, by using the above notations, we collect the biases and mean square errors of all
the estimators of 𝒫 in the following two theorems.

Theorem 3. The bias expressions for the unrestricted, PT, and S estimators are given by

(i) Bias(𝒫 ) = ψ1 −𝒫
(ii) Bias(𝒫 PT) = Bias(𝒫 )− ψ3 +𝒫oψ5,
(iii) Bias(𝒫 S) = Bias(𝒫 )− d m2

m1
ψ(2, 1) + d𝒫o

m2
m1

ψ(1, 1).

For the proof, refer to Appendix A.

Theorem 4. The MSE expressions for the unrestricted, PT, and S estimators are given by

(i) MSE(𝒫 ) = ψ2 − 2𝒫 ψ1 +𝒫 2,
(ii) MSE(𝒫 PT) = MSE(𝒫 )− ψ4 + 2𝒫 ψ3 +𝒫o(𝒫o − 2𝒫 )ψ5,

(iii) MSE(𝒫 S) = MSE(𝒫 ) + d2
(

m2
m1

)2[
ψ(4, 2)− 2𝒫oψ(3, 2) +𝒫 2

o ψ(2, 2)
]

− 2d m2
m1

[ψ(3, 1)− (𝒫o +𝒫 )ψ(2, 1) +𝒫 𝒫oψ(1, 1)].

The proof is similar to Theorem 2.
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The value of d that minimizes MSE(𝒫 S) is d = ψ(3,1)−(𝒫o+𝒫 )ψ(2,1)+𝒫 𝒫oψ(1,1)
ψ(4,2)−2𝒫oψ(3,2)+𝒫 2

o ψ(2,2)
. The

efficiency expression for PT and S estimators relative to MLE is, respectively,

RE(𝒫 PT) =
MSE(𝒫 )

MSE(𝒫 PT)

=
ψ2 − 2𝒫 ψ1 +𝒫 2

ψ2 − 2𝒫 ψ1 +𝒫 2 − ψ4 + 2𝒫 ψ3 +𝒫o(𝒫o − 2𝒫 )ψ5
,

and

RE(𝒫 S) =
MSE(𝒫 )

MSE(𝒫 S)

=
ψ2 − 2𝒫 ψ1 +𝒫 2

MSE(𝒫 ) + d2
(

m2
m1

)2
[ψ(4, 2)− 2𝒫oψ(3, 2) +𝒫 2

o ψ(2, 2)]− 2d m2
m1

[ψ(3, 1)− (𝒫o +𝒫 )ψ(2, 1) +𝒫 𝒫oψ(1, 1)]
.

Figures 4 and 5 represent the relative efficiency of PT and S estimators in the expo-
nential model with known 𝒫 = 0.50. Again, we can see that the PT estimator has a better
performance when the parameter values are close to the true value of close to 𝒫 = 0.50
and as we move away from that point, its performance deteriorates quickly. On the other
hand, the Stein-type estimator has a much larger range where it performs better than the
unrestricted MLE estimator.

Figure 4. The RE of the preliminary test estimator based on 𝒫 = 0.5.

Figure 5. The RE of the Stein-type estimator based on 𝒫 = 0.5.
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2.3.2. Bootstrapped Confidence Intervals

In this section, we propose an algorithm based on bootstrap-t for building confidence
intervals for the proposed estimators ([32]). For this, we need variance formulae for the
proposed estimators which can be easily deduced from the theorems in the previous section
as follows:

Corollary 2. The variance expressions of the unrestricted, PT, and S estimators are given by

(1) Var(𝒫 ) = ψ2 − ψ2
1 (15)

(2) Var(𝒫 PT) = ψ2 − ψ4 − ψ2
1 +𝒫oψ5(𝒫o − 2ψ1 + 2ψ3 −𝒫oψ5)− ψ3(ψ3 − 2ψ1) (16)

(3) Var(𝒫 S) = ψ2 − 2d
m2

m1
[ψ(3, 1)−𝒫oψ(2, 1)] + (

dm2

m1
)2
[
ψ(4, 2)− 2𝒫oψ(3, 2) +𝒫 2

o ψ(2, 2)
]

−ψ2
1 − (

dm2

m1
)2ψ2(2, 1)− (

d𝒫om2

m1
)2ψ2(1, 1) + 2d

m2

m1
ψ1ψ(2, 1)− 2d𝒫o

m2

m1
ψ1ψ(1, 1)

+2(
dm2

m1
)2𝒫oψ(2, 1)ψ(1, 1). (17)

The following Algorithm 2 formalizes the procedure for computing the bootstrapped
confidence intervals 𝒫 .

Algorithm 2 Bootstrap-t CI for 𝒫 Based on the Bootstrap Variance Estimate

Step 1. Based on the independent observed samples X
(R1,R2,...Rm1 )

i:m1 :n1
, i = 1, ..., m1 with pro-

gressive Type-II right censoring scheme (R1, R2, . . . , Rm1) and Y
(R′

1,R′
2,...R′

m2
)

j:m2 :n2
, j = 1, ..., m2

with progressive Type-II right censoring scheme (R′
1, R′

2, . . . , R′
m2
), λ̂1, λ̂2, 𝒫 , 𝒫 PT and

𝒫 S estimators from (2), (5), (13), and (14), respectively.
Step 2. Generate X⋆

i:m1 :n1
∼ Exp(λ̂1), i = 1, ..., m1 and Y⋆

j:m2 :n2
∼ Exp(λ̂2), j = 1, ..., m2. Use

them to obtain λ̂⋆
1 , λ̂⋆

2 , 𝒫 ⋆, 𝒫 PT⋆, and 𝒫 S⋆.
Step 3. Repeat Step 2 for B times and derive 𝒫 ⋆

(b), 𝒫
PT⋆
(b) , and 𝒫 S⋆

(b) , b = 1, . . . , B.
Step 4. For each iteration of Step 3, design another parametric bootstrap procedure to

estimate the standard deviation of R̂⋆
(b)(t), say σ̂(𝒫 ⋆

(b)(t)). More precisely, repeat Step 2

for b′ = 1, . . . , B′′, with λ̂⋆
1 and λ̂⋆

2 instead of λ̂1 and λ̂2, and then calculate

σ̂(𝒫 ⋆
(b)) =

√√√√ 1
B′ − 1

B′

∑
b=1

(𝒫 ⋆⋆
(b′) −𝒫 ⋆⋆)2

where 𝒫 ⋆⋆ = 1
B′ ∑B′

b′=1 𝒫
⋆⋆
(b′).

Step 5. Let t⋆ =
(

t⋆(1), . . . , t⋆(B)

)⊤
, where t⋆(b) =

𝒫 ⋆
(b)−𝒫

σ̂(𝒫 ⋆
(b))

, b = 1, . . . , B.

Step 6. Compute the 100(1 − α)% bootstrap-t CI for 𝒫 as
(
𝒫 − t⋆1− α

2
σ̂(𝒫 ),𝒫 − t⋆α

2
σ̂(𝒫 )

)
,

where t⋆γ is 100γ%th percentile of t⋆ given by Step 5 and σ̂(𝒫 ) =
√

V̂ar(𝒫 ) given by (15).
This process is carried out for other proposed estimators.

3. Simulation Study

Here we conduct a Monte Carlo simulation study with a small sample size to assess
the performance of the estimators proposed in this paper. The simulation setting and
assumptions are as follows:
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R(t): The true value of reliability is taken to be 0.50 at t = 3;
m: number of observed failures is taken to be 10;
n: sample size was taken to be 100;
λo: obtained from R0 = {0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65} (the prior guesses of R(t));
R = (R1, . . . , Rm): progressive Type-II censoring schemes which are taken to be

Scheme 1 (S1): R = (90, 0, 0, 0, 0, 0, 0, 0, 0, 0); Scheme 2 (S2): R = (0, 0, 0, 0, 90, 0, 0, 0, 0, 0);
and Scheme 3 (S3): R = (0, 0, 0, 0, 0, 0, 0, 0, 0, 90).

For each combination of R and R0, 500 Monte Carlo samples of size n = 100 were
generated from the distribution given in (1), taking G(x; a; θ) = x. The proposed estimators
for R(t) are calculated under progressive Type-II censoring and their CIs are computed
according to Algorithms 1 and 2. Let (L, U) be a CI of R(t) and (Li, Ui), i = 1, 2, . . . , 500,
observed values of lower and upper bounds of the proposed CI. The empirical expected
length and coverage probability of the intervals are, respectively, computed as

EL =
1

500

500

∑
i=1

(Ui − Li) CP =
1

500

500

∑
i=1

I(Li ≤ R ≤ Ui).

Table 1 represents the coverage probability (CP) and expected length (EL) of the
estimators for R(t) under the three progressive Type-II censoring schemes (S1, S2 and S3)
from an exponential model. From this table, we can see that the proposed estimators have,
in most of the cases, higher coverage probabilities and shorter expected lengths than the
usual estimators. This is more evident near the prior information R0, as the S and PT
estimators have CPs closer to the target 0.95 with shorter ELs. In general, the asymptotic
intervals are conservative while the intervals based on bootstrap are liberal.

As for the estimation of 𝒫 , the simulation setup was as follows:
𝒫 : the true value of 𝒫 = P(X > Y) is taken to be 𝒫 = 0.70;
𝒫o: the prior guesses of 𝒫 are taken to be {0.6, .67, 0.68, .69, .7, .71, .72, .75, .8};
m1: number of censored observations of X is taken to be 10;
m2: number of censored observations of Y is taken to be 8;
R = (R1, . . . , Rm1): progressive Type-II censoring schemes for X, assumed to be

Scheme 1 (S1): R = (90, 0, 0, 0, 0, 0, 0, 0, 0, 0); Scheme 2 (S2): R = (0, 0, 0, 0, 90, 0, 0, 0, 0, 0);
and Scheme 3 (S3): R = (0, 0, 0, 0, 0, 0, 0, 0, 0, 90);

R′ = (R′
1, . . . , R′

m2
): progressive Type-II censoring schemes of Y, assumed to be

Scheme 1 (S1): R′ = (112, 0, 0, 0, 0, 0, 0, 0); Scheme 2(S2): R′ = (0, 0, 0, 112, 0, 0, 0, 0); and
Scheme 3(S3): R′ = (0, 0, 0, 0, 0, 0, 0, 112).

For each combination of 𝒫 and 𝒫o, 500 samples of size n1 = 100 were generated for
X from the distribution given in (1), taking λ1 = 0.3 and G(x; a1; θ1) = x and 500 samples
of size n2 = 120 were generated for Y from the same distribution with λ2 = 1

𝒫 − 1 and
G(y; a2; θ2) = y. The proposed estimators for 𝒫 are calculated under progressive Type-II
censoring and their CIs are computed by using Algorithm 2.

The results of these simulations are presented in Table 2.
The shrinkage-type estimators, PT and S, outperform the MLEs both in their CPs

and Els and this is more pronounced than the case of the estimation of R(t). The PT
estimator has shorter expected lengths in the asymptotic CIs as compared to the bootstrap
CIs. In general, for the S estimator, the asymptotic CIs are conservative while the bootstrap
CIs are liberal. As we expected all confidence intervals are close to their theoretical coverage
and are shortest near the true values of 𝒫 .
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Table 1. The CP and EL of R(t) = 0.5 with varying R0 and the three schemes.

R̂(t) R̂PT(t) R̂S(t)

Boot. Asymp. Boot. Asymp. Boot. Asymp.
Scheme R0 CP EL CP EL CP EL CP EL CP EL CP EL

1 0.35 0.89 0.54 0.85 0.43 0.90 0.51 0.76 0.61 1.00 0.47 0.85 0.29
2 0.40 0.85 0.54 0.85 0.43 0.89 0.37 0.89 0.50 0.98 0.36 0.95 0.21
3 0.45 0.86 0.54 0.84 0.43 0.87 0.30 0.91 0.40 0.91 0.27 0.97 0.19
4 S1 0.50 0.86 0.55 0.84 0.43 0.90 0.25 0.93 0.41 0.95 0.24 0.93 0.18
5 0.55 0.86 0.54 0.84 0.43 0.94 0.33 0.92 0.29 0.93 0.31 0.88 0.19
6 0.60 0.83 0.54 0.84 0.43 0.94 0.53 0.93 0.26 0.94 0.43 0.87 0.20
7 0.65 0.83 0.54 0.85 0.43 0.95 0.74 0.88 0.28 0.99 0.56 0.86 0.22

8 0.35 0.89 0.54 0.83 0.43 0.92 0.51 0.74 0.60 1.00 0.47 0.83 0.29
9 0.40 0.86 0.54 0.85 0.43 0.89 0.38 0.83 0.51 0.99 0.36 0.96 0.21
10 0.45 0.88 0.54 0.85 0.43 0.88 0.28 0.89 0.40 0.93 0.27 0.97 0.19
11 S2 0.50 0.87 0.55 0.84 0.43 0.92 0.24 0.91 0.42 0.97 0.24 0.95 0.18
12 0.55 0.87 0.54 0.84 0.43 0.92 0.33 0.92 0.29 0.93 0.31 0.90 0.19
13 0.60 0.86 0.54 0.85 0.43 0.92 0.52 0.92 0.27 0.96 0.43 0.88 0.20
14 0.65 0.88 0.55 0.983 0.43 0.98 0.76 0.90 0.28 0.97 0.56 0.91 0.22

15 0.35 0.88 0.54 0.84 0.43 0.90 0.50 0.72 0.60 1.00 0.47 0.82 0.29
16 0.40 0.89 0.54 0.84 0.43 0.87 0.38 0.83 0.51 0.97 0.36 0.95 0.21
17 0.45 0.87 0.54 0.84 0.43 0.85 0.28 0.87 0.40 0.91 0.27 0.97 0.19
18 S3 0.50 0.90 0.55 0.85 0.43 0.93 0.24 0.91 0.42 0.96 0.24 0.95 0.18
19 0.55 0.90 0.54 0.85 0.43 0.93 0.34 0.92 0.30 0.95 0.31 0.90 0.19
20 0.60 0.88 0.54 0.86 0.43 0.95 0.54 0.88 0.27 0.96 0.43 0.88 0.20
21 0.65 0.89 0.54 0.86 0.43 0.97 0.75 0.85 0.29 0.99 0.56 0.88 0.22

Table 2. The CP and EL of 𝒫 with 𝒫 = 0.70.

𝒫 𝒫 PT 𝒫 S

Boot. Asymp. Boot. Asymp. Boot. Asymp.
Scheme 𝒫0 CP EL CP EL CP EL CP EL CP EL CP EL

1 0.60 0.89 0.47 0.85 0.39 0.76 0.49 0.95 0.22 1.00 0.39 0.87 0.26
2 0.67 0.89 0.47 0.87 0.39 0.85 0.50 0.95 0.19 1.00 0.39 0.91 0.24
3 0.68 0.88 0.47 0.85 0.39 0.91 0.50 0.95 0.19 0.99 0.39 0.88 0.23
4 0.69 0.89 0.47 0.86 0.39 0.91 0.49 0.82 0.19 0.98 0.39 0.91 0.23
5 S1 0.70 0.88 0.47 0.85 0.39 0.93 0.45 0.90 0.19 0.98 0.39 0.90 0.23
6 0.71 0.89 0.47 0.83 0.39 0.92 0.47 0.97 0.20 0.95 0.39 0.90 0.23
7 0.72 0.89 0.47 0.84 0.39 0.92 0.46 0.63 0.20 0.95 0.39 0.91 0.23
8 0.75 0.88 0.48 0.86 0.39 0.94 0.44 0.60 0.21 0.97 0.39 0.95 0.24
9 0.80 0.89 0.47 0.85 0.39 0.88 0.41 0.70 0.29 0.95 0.39 0.97 0.29

1 0.60 0.89 0.47 0.85 0.39 0.79 0.49 0.95 0.21 1.00 0.39 0.89 0.26
2 0.67 0.88 0.47 0.84 0.39 0.80 0.50 0.95 0.20 0.99 0.39 0.90 0.24
3 0.68 0.88 0.47 0.85 0.39 0.90 0.50 0.93 0.20 0.99 0.39 0.89 0.23
4 0.69 0.89 0.48 0.86 0.39 0.92 0.49 0.95 0.20 0.98 0.39 0.91 0.23
5 S2 0.70 0.88 0.47 0.85 0.39 0.95 0.48 0.93 0.19 0.97 0.39 0.90 0.23
6 0.71 0.88 0.47 0.84 0.39 0.93 0.47 0.97 0.20 0.97 0.39 0.91 0.23
7 0.72 0.88 0.47 0.84 0.39 0.92 0.46 0.97 0.20 0.96 0.39 0.92 0.23
8 0.75 0.88 0.47 0.85 0.39 0.85 0.44 0.89 0.21 0.97 0.39 0.95 0.24
9 0.80 0.88 0.48 0.84 0.39 0.81 0.41 0.73 0.30 0.95 0.39 0.96 0.29

1 0.60 0.88 0.47 0.85 0.39 0.78 0.49 0.94 0.21 1.00 0.39 0.88 0.26
2 0.67 0.89 0.47 0.85 0.39 0.79 0.50 0.93 0.20 1.00 0.39 0.89 0.24
3 0.68 0.88 0.48 0.84 0.39 0.85 0.50 0.94 0.20 0.98 0.39 0.89 0.23
4 0.69 0.89 0.48 0.85 0.39 0.91 0.49 0.93 0.20 0.98 0.39 0.89 0.23
5 S3 0.70 0.89 0.47 0.84 0.39 0.91 0.48 0.93 0.20 0.97 0.39 0.90 0.23
6 0.71 0.89 0.47 0.86 0.39 0.94 0.47 0.92 0.19 0.97 0.39 0.93 0.23
7 0.72 0.89 0.47 0.85 0.39 0.92 0.46 0.95 0.20 0.97 0.39 0.93 0.23
8 0.75 0.88 0.47 0.85 0.39 0.95 0.44 0.88 0.22 0.96 0.39 0.95 0.24
9 0.80 0.88 0.47 0.85 0.39 0.89 0.42 0.78 0.29 0.96 0.39 0.96 0.29

4. Applications to Real Data Sets

In this section, we analyze the performance of the proposed estimators using two real
data sets, separately for the case of R(t) and 𝒫 .
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4.1. Time to Breakdown of an Insulating Fluid between Electrodes

Here, we consider the real data set used in [33]. This data set consists of 19 measure-
ments of time to breakdown (in minutes) of insulating fluid between electrodes at a voltage
of 34 kV, listed as follows (see also [34]):

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91 32.52 3.16 4.85 2.78 4.67 1.31 12.06 36.71 72.89.

Of these, nine were progressively censored values under the scheme (R1 = 2, R2 = 2,
R3 = 0, R4 = 0, R5 = 0, R6 = 0, R7 = 1, R8 = 1, R9 = 4) as

0.19 0.78 1.31 2.78 4.15 4.67 4.85 6.50 8.01

The authors of [35] applied the Kolmogorov–Smirnov (K-S) test as well as the Chi-
Square test to show that the Weibull distribution is a suitable model for the time to break-
down at each fixed voltage level. The MLEs of the parameters of the Weibull distribution
are estimated as p̂ = 0.7708, λ̂ = 6.8865. Hence, R̂(t)|t=2 = 0.7488. On the other hand,
ref. [35] estimated R̂(t)|t=2 = 0.7041 using upper record values. In the current analysis, we
choose the latter value as a prior guess, i.e., R0 = 0.7041. Having this in hand, the resultant
estimators are given in Table 3. Although we do not know the actual biases in the various
estimation procedures, as the true value is unknown, we can see from the table that the
confidence intervals based on the proposed improved estimators are shorter compared to
the MLE.

Table 3. Estimators of R(t) in time to breakdown data under the assumption R̂o|t=2 = 0.7041.

α = 0.05 Estimated Value Variance Bootstrap CI B = 200 Asymp. CI

R̂(t) 0.7041 0.0067 (0.59490, 0.8605) (0.5884, 0.9092)
R̂PT(t) 0.7041 0.0024 (0.6879, 0.7284) (0.6074, 0.8007)
R̂S(t) 0.7330 0.0015 (0.6942, 0.9185) (0.6568, 0.8093)

4.2. Stress–Strength of the Carbon Fibers

In this part, we analyze the data reported by [36]. These data represent the strength
measured in GPA for single carbon fibers and impregnated 1000-carbon fiber tows. Single
fibers were tested under tension at gauge lengths of 20mm (Data Set 1) and 10mm (Data
Set 2) with sample sizes 69 and 63, respectively. These data have been used previously
by [2,37–40]. After subtracting 0.75 from all the points of these data sets, [38] observed
that the Weibull distributions with equal shape parameters were best fit to both data sets.
The MLEs of the parameters of the Weibull distribution fitted to data set 1 are λ̂1 = 0.0046
and p̂1 = 5.5049, respectively. Similarly, for the data set 2, λ̂2 = 0.0023 and p̂2 = 5.0494.
In order to facilitate comparisons, we have used two different progressively censored
samples using two different sampling schemes tabulated in Tables 4 and 5, generated
by [40]. The generated data and the corresponding censoring schemes are presented in
Table 6.

We used 𝒫o = 0.1788 obtained by [40] as prior information and computed the proposed
estimators and their CIs, summarized in Table 7. From Table 7, we can see the lengths of
the CIs (both asymptotic and bootstrap confidence intervals) are shorter when using the
improved estimators.

Table 4. Data Set 1 (gauge length of 20 mm).

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726
2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585



Mathematics 2024, 12, 1599 14 of 18

Table 5. Data Set 2 (gauge length of 10 mm).

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937
2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
4.225 4.395 5.020

Table 6. Data and the corresponding censored schemes.

i, j 1 2 3 4 5 6 7 8 9 10

xi 1.312 1.479 1.552 1.803 1.944 1.858 1.966 2.027 2.055 2.098
Ri 1 0 1 2 0 0 3 0 1 50

yj 1.901 2.132 2.257 2.361 2.396 2.445 2.373 2.525 2.532 2.575
R′

j 0 2 1 0 1 1 2 0 0 44

Table 7. Estimators of 𝒫 for gauge data under prior information 𝒫o = 0.1788.

α = 0.05 Estimated Value Asymp. CI Boot. CI

𝒫 0.1767 (0.0156 0.3377) (0.1311 0.2535)
𝒫 PT 0.1788 (0.0205 0.3370) (0.1779 0.2471 )
𝒫 S 0.1777 (0.1037 0.2518) (0.1652 0.1941)

5. Discussion

In various contexts, quality engineers focus on estimating parameters such as reliabil-
ity, denoted by R(t), and stress–strength, denoted by 𝒫 . These parameters are typically
estimated using Maximum Likelihood Estimators (MLEs). The accuracy of MLEs can be en-
hanced by integrating the current data with available prior knowledge about the parameters.
In this paper, we propose improved estimates for these parameters using shrinkage-type
estimators, particularly when the sample data are progressively censored within a broad
family of parametric lifetime distributions. We have developed both asymptotic and boot-
strap confidence intervals for the reliability parameters based on these improved estimators.
Numerical simulations indicate that our new estimators outperform traditional MLEs in
terms of mean squared errors across almost the entire parameter space. The procedures for
deriving our proposed estimates are straightforward, requiring only the MLEs, which can
be computed using common open-source optimization software like the optim function in
R software (v4.4.0) [41]. However, a notable limitation of our methodology is its substantial
reliance on non-sample information. To address this issue, we suggest adopting a Bayesian
approach, where the prior non-sample information can be effectively incorporated through
Bayesian prior distributions.
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Appendix A

In this section, we sketch the proofs of theorems in the body of the manuscript.
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Proof of Theorem 1.

Bias(R̂(t)) = E
(

R̂(t)− R(t)
)
= E(e−

m
Sm G(t;a,θ))− R(t)

=
∫ ∞

0
exp{−mG(t; a, θ)

Sm
}λmSm−1

m e−λSm

Γ(m)
dsm − R(t)

=
1

Γ(m)

∫ ∞

0
wm−1 exp{−(

2mλG(t; a, θ)

w
+

w
2
)}dw − R(t)

=
2

Γ(m)
{mλG(t; a, θ)}

m
2 Km(2

√
mλG(t; a, θ))− R(t) = φ4 − R(t),

and

Bias(R̂PT(t)) = E
(

R̂(t)− (R̂(t)− R0)I(A)− R(t)
)

= E
(

R̂(t)− R(t)
)
− E(R̂(t)I(A)) + R0E(I(A))

= Bias(R̂(t))− E
(

R̂(t)I(C1 ≤ L ≤ C2
)
+ R0E(I(C1 ≤ L ≤ C2)),

where C1 = χ2
(2m)(

α
2 ) , C2 = χ2

(2m)(1 −
α
2 ) and L = 2λoSm ∼ χ2

(2m). Then assuming β = λo
λ ,

we have

Bias(R̂PT(t) = Bias(R̂(t))− E
(

e−
2mλ

w G(t;a,θ)I(
C1

β
≤ w ≤ C2

β
)

)
+ R0E

(
C1

β
≤ w ≤ C2

β

)
= Bias(R̂(t))−

∫ c2
β

c1
β

exp(−( 2mλG(t;a,θ)
w + w

2 ))w
m−1

2mγ(m)
dw + R0

(
H2m(

c2

β
)− H2m(

c1

β
)

)
= Bias(R̂(t))− φ1 + R0 φ3,

and

Bias(R̂S(t)) = E
(

R̂S(t)− R(t)
)
= E

(
R̂(t)− d(R̂(t)− R0)

2λoSm
− R(t)

)
= Bias(R̂(t))− d

2λo
E
(

R̂(t)
Sm

)
+

R0d
2λo

E
(

1
Sm

)

= Bias(R̂(t))− d
2λo

E

 e−
mG(t;a,θ)

Sm

Sm

+
R0d
2λo

E
(

2λ

2λSm

)

= Bias(R̂(t))− dλ

λo

∫ ∞

0

exp(−( 2mλG(t;a,θ)
w + w

2 ))w
m−2

2mγ(m)
dw +

R0d
2λo

E
(

2λ

w

)
= Bias(R̂(t))− dλ

2m−1λoΓ(m)
(4mλG(t; a, θ))

m−1
2 Km−1

(
2
√

mλG(t; a, θ)

)
+

R0d
2λo

λ

Γ(m)

= Bias(R̂(t))− d
2λo

φ7 +
R0d
2λo

φ11.

□
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Proof of Theorem 2.

MSE(R̂(t)) = E
(

R̂(t)− R(t)
)2

= E
(

R̂2
)
− 2R(t)E(R̂) + R2(t)

= E
(

exp(−4mλG(t; a, θ)

w
)

)
− 2R(t)E

(
exp(−2mλG(t; a, θ)

w
)

)
+ R2(t)

=
2(2mλG(t; a, θ))

m
2

Γ(m)
Km(2

√
2mλG(t; a, θ))− 4R(t)

(mλG(t; a, θ))
m
2

Γ(m)
Km(2

√
mλG(t; a, θ)) + R2(t)

= φ5 − 2R(t)φ4 + R2(t).

MSE(R̂PT(t)) = Var
(

R̂PT(t)
)
+

(
Bias(R̂PT(t)

)2,
first, we derive variance of PT estimator as follows,

Var
(

R̂PT(t)
)

= Var
(
(R̂(t)− (R̂(t)− R0)I(A)

)
= Var(R̂(t)) + Var

[
R̂(t)− R0)I(A)

]
− 2Cov

(
R̂(t), R̂(t)− R0)I(A)

)
= E(R̂2(t))− E2(R̂(t))− E(R̂2(t)I(A))− E2(R̂(t)I(A)) + R2

0

[
E(I(A))− E2(I(A))

]
+2R0E(R̂(t)I(A)E(I(A)) + 2E(R̂(t))E(R̂(t)I(A))− 2R0E(R̂(t))E(I(A))

= φ5 − φ2
4 − φ2 − φ2

1 + R2
0 φ3(1 − φ3) + 2R0 φ3(φ1 − φ4) + 2φ1 φ4.

Then, we have,

MSE(R̂PT(t)) = φ5 − φ2
4 − φ2 − φ2

1 + R2
0 φ3(1 − φ3) + 2R0 φ3(φ1 − φ4) + 2φ1 φ4 +

(
Bias(R̂PT(t)

)2
.

MSE(R̂S(t)) = E
(

R̂S(t)− R(t)
)2

= E
(

R̂(t)− d(R̂(t)− R0)

2λoSm
− R(t)

)2

= MSE(R̂(t)) +
d2

4λ2
o

E
(
(R̂(t)− R0)

2

S2
m

)
− d

λo
E
(
(R̂(t)− R(t))(R̂(t)− R0)

Sm

)
= MSE(R̂(t)) +

d2

4λ2
o

[
E
(

R̂2(t)
S2

m

)
+ R2

0E
(

1
S2

m

)
− 2R0E

(
R̂(t)
S2

m

)]
− d

λo

[
E
(

R̂2(t)
Sm

)
− (R0 + R(t))E

(
R̂(t)
Sm

)
+ R0R(t)E

(
1

Sm

)]
= MSE(R̂(t)) +

d2

4λ2
o

[
φ10 + R2

0 φ6 − 2R0 φ9

]
− d

λo
[φ8 − (R0 + R(t))φ7 + R0R(t)φ11].

□

Proof of Theorem 3.

Bias(𝒫 ) = E(𝒫 )−𝒫 = E(W)−𝒫 = ψ1 −𝒫 ,

Bias(𝒫 PT) = E(𝒫 PT)−𝒫 = E
(
𝒫 − (𝒫 −𝒫o)I(A)

)
−𝒫

= Bias(𝒫 )− E(𝒫 I(A)) +𝒫oE(I(A)) = Bias(𝒫 )− ψ3 +𝒫oψ5,

Bias(𝒫 S) = E(𝒫 S)−𝒫 = E
(
𝒫 − (𝒫 −𝒫o)dL−1

)
−𝒫 = Bias(𝒫 )− dE(𝒫 L−1) + d𝒫oE(L−1),

according to L−1 = m2
m1

𝒫
1−𝒫

and 12, so, we have,

Bias(𝒫 S) = Bias(𝒫 )− d
m2

m1
E
(

𝒫 2

1 −𝒫

)
+ d𝒫o

m2

m1
E
(

𝒫

1 −𝒫

)
= Bias(𝒫 )− d

m2

m1
ψ(2, 1) + d𝒫o

m2

m1
ψ(1, 1).

□
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