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Abstract
Forests are essential for regulating the climate, enhancement of air quality, and the pres-
ervation of biodiversity. However, tree falls pose significant risks to infrastructure, par-
ticularly powerlines, leading to widespread blackouts and substantial damage. Traditional 
methods for monitoring tree fall risks, such as field surveys, are often costly, time-consum-
ing, and lack real-time capabilities. While airborne Light Detection and Ranging (LiDAR) 
provides precise data for monitoring tree fall risks, it still faces challenges related to fre-
quency of data acquisition and high costs. In response to the European Space Agency’s call 
for more cost-effective monitoring approaches, this study investigates the potential of using 
very high-resolution optical satellite data, specifically from Pléiades satellite imagery, for 
assessing tree fall risks to powerlines. Key forest structure metrics such as canopy com-
plexity using the Rumple Index, canopy height, as well as distance to powerlines were ana-
lyzed across four study sites in Finland and Switzerland. Sites with simpler canopy struc-
tures exhibited stronger correlations between stereo and LiDAR height measurements (R2 
values up to 0.64). Stereo-based measurements can overall provide acceptable accuracy 
(ca. 96.57%) in detecting trees compared with LiDAR data. The results demonstrated that 
the Rumple Index can identify areas with simpler canopy structures, where stereo-based 
height measurements yield high accuracy. These findings suggest the potential of hybrid 
approaches that integrate both stereo imagery and airborne LiDAR data, tailored to site-
specific characteristics, for accurate risk assessments. This study contributes to the ongo-
ing efforts in developing an understanding of vegetation management along powerlines, to 
inform decision-makers in their endeavors to identify and mitigate risks associated with 
tree falls.

Keywords Tree fall · Canopy height estimation · Pléiades · Airborne LiDAR · Sentinel-2 · 
Rumple Index

1 Introduction

Forests are essential for regulating the climate, enhancement of air quality, and the preserva-
tion of biodiversity (Brockerhoff et al. 2017; Mooney et al. 2009; Mori et al. 2017). Although 
forests provide numerous ecosystem services (Akbari et al. 2001; Alvey 2006), tree falls can 
pose risks to various types of infrastructure such as powerlines (Guggenmoos 2003; Ituen 
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et al. 2008). The risk of tree falls on powerlines presents a hazardous threat to power trans-
mission systems, and causes substantial economic damage (Farmer and Allen 2006; Poulos 
and Camp 2011). To address this issue, the development of efficient methods for monitoring 
and managing tree fall risk is crucial (Jinqiu et al. 2021; Louit et al. 2009; Sittithumwat et al. 
2004).

Traditional methods of monitoring trees that pose a risk to powerlines typically involve 
field surveys to remove dangerous trees (Poulos and Camp 2011). However, this approach 
has proven to be expensive, time-consuming, and often lacks timely detection capabilities on 
a large scale (Ituen and Sohn 2010). Airborne laser scanning based on Light Detection and 
Ranging (LiDAR) sensors offers promising avenues for assessing the risk of tree-related dam-
age compared with traditional methods (Guan et al. 2021; Ituen et al. 2008; Salas 2021; Wed-
agedara et al. 2023). However, the use of airborne LiDAR still faces several challenges when it 
comes to monitoring dangerous trees. Firstly, airborne LiDAR data acquisition is usually con-
ducted infrequently, which limits its ability to provide timely monitoring, despite the need for 
real-time information (Ahmad et al. 2013). Secondly, airborne LiDAR data acquisition tends 
to be financially costly compared to satellite, needing specialized equipment and personnel 
involved in large-scale monitoring projects.

Given the rising concerns regarding the risks of tree falls, this study focuses on assessing 
where tree falls may cause danger for infrastructures such as powerlines, responding to the 
European Space Agency’s call to find more cost-efficient approaches for monitoring the risks 
posed by trees. Here, we used Pléiades satellite data to obtain stereo images with spatial reso-
lutions in the sub-meter range across the four sites in Finland and Switzerland (Hobi and Gin-
zler 2012; Loghin et al. 2020; Piermattei et al. 2018; Wang et al. 2023; Ye et al. 2021). In the 
stereoscopy technique, by acquiring two or more overlapping images from slightly different 
perspectives, three-dimensional information to calculate canopy height can be calculated (De 
Franchis et al. 2014a, d). Numerous studies have demonstrated the feasibility of using very 
high-resolution optical satellite data for canopy height estimation (Stone et  al. 2016). Nev-
ertheless, the accuracy of canopy height estimation using stereo-based height measurements 
via optical satellite data, which is essential for monitoring the risk of tree fall, exhibits a wide 
range of values, varying from relatively weak (Lin et al. 2020; Persson et al. 2013; St‐Onge 
et al. 2008; Ullah et al. 2020) to strong performance reported (Breaban et al. 2022; Tong et al. 
2012; Ye et al. 2021). The research questions of this study include: (1) can very high-resolu-
tion optical satellite data effectively replace airborne LiDAR as a reliable alternative for accu-
rately monitoring tree fall risks? and (2) in which situation optical satellite data can be used to 
assess tree fall risks?

This study aims to assess whether tree falls, regardless of their cause, could result in dam-
age to powerlines. The approach utilizes stereo-based techniques derived from optical satellite 
images. We will mainly focus on monitoring tree-related powerline damage risk by estimating 
key parameters such as canopy height, canopy complexity using the Rumple Index, and tree-
to-powerline distance, and provide the comparison between the results of very high-resolution 
optical data and airborne LiDAR. This study contributes to the ongoing efforts in developing 
an understanding of vegetation management along powerlines, to inform decision-makers in 
their endeavors to identify and mitigate risks associated with tree falls.
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2  Material and method

2.1  Overview

The flow diagram in Fig. 1 depicts the key procedural steps employed in this study. We first 
obtained and preprocessed Pléiades stereo images (Sect. 2.3.1) and employed the Satellite 
Stereo Pipeline (S2P) method to calculate canopy height using optical data (Sect. 2.4.1). 
Additionally, we obtained airborne LiDAR data (Sect.  2.3.2) to estimate canopy height 
and tree crown characteristics (Fig. 1, Sect. 2.4.2). We obtained ancillary data (Sect. 2.3.3) 
by obtaining land cover map using the European Space Agency (ESA) land cover map, 
Normalized Difference Vegetation Index (NDVI) maps using the Sentinel-2 data and the 
Rumple Index maps using airborne LiDAR data (Sect.  2.4.3). By integrating the layers 

Fig. 1  Flow diagram depicting the key procedural steps employed in this study. We used stereo images 
obtained from optical satellites along with airborne LiDAR data to estimate canopy height and crown char-
acteristics. Additionally, by integrating various data layers and methods, we calculate land cover, vegetation 
cover, and the Rumple Index. RPC refers to Rational Polynomial Coefficients. Ancillary data has been used 
to explain the findings of this study
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and methods, we focused on land cover, vegetation cover, canopy height, tree crown char-
acteristics, and canopy surface roughness of the canopy across the study sites to calculate 
the risks of tree falls (Sect. 2.4.4). Statistical analysis has been performed to compare the 
results of different study sites in Sect. 2.4.5.

2.2  Study sites

This project was funded by the European Space Agency and aimed to explore the potential 
of stereo images in monitoring tree fall risks. Due to data availability, we have selected two 
study sites in Finland that we call Site 1 and Site 2, and two study sites in Switzerland that 
we call Site 3 and Site 4 (Figs. 1A and 3A in Supplementary material). Table 1 shows the 
areas, extents, and mean slopes, based on Global Multi-resolution Terrain Elevation Data 
2010 (GMTED2010) (Survey 2010). The Copernicus Global Land Cover Layers (CGLS-
LC100) map for the period 2015–2019 at 100-m spatial resolution was used to analyze for-
est types across the study sites (Buchhorn et al. 2020). The CGLS-LC100 data shows the 
majority of forests in Site 1 and 2 are evergreen needle-leaf forests, whereas the majority of 
forests in Site 3 and 4 are deciduous broad-leaf and mixed forests (Fig. 4A).

2.3  Material

2.3.1  Pléiades stereo images

The Pléiades satellite constellation, comprising two identical satellites (Pléiades 1A and 
Pléiades 1B), provides very high-resolution optical images with a revisit interval of 24 h 
(User Guide, date of access: 04.09.2024). We used Pléiades to capture panchromatic 
images with a 70  cm nadir resolution and at a nominal resolution of 50  cm, covering a 
20 km swath footprint. All Pléiades images in this study have been taken at the acquisition 
Mode PX. More information has been provided in Table 2.

2.3.2  Airborne LiDAR data

Airborne LiDAR data is used to obtain the three-dimensional structure of forests across the 
study site, with the potential to provide highly accurate and detailed measurements (Mallet 
and Bretar 2009; Wulder et al. 2008). The airborne LiDAR data of all four sites (LAS for-
mat, version 1.4) were processed with lastool and las2las tool (version 201003) (Isenburg 
2014) and the R package lidR (version 4.0.3) (Roussel et al. 2020). The airborne LiDAR 

Table 1  Site characteristics including area (ha), geographic coordinates (latitude and longitude in decimal 
degrees), and mean slope (°) for the study locations. Sites 1 and 2 are located in Finland, and Sites 3 and 
4 are located in Switzerland

Area (hectares) Longitude (degree) Latitude (degree) Mean slope 
(degree)

Site 1 5.97 27.42–27.43 61.42 to 61.43 1.01
Site 2 6.66 27.37–27.37 61.45 to 61.45 2.38
Site 3 18.96 8.88–8.89 47.26 to 47.27 13.47
Site 4 20.87 8.97–8.98 47.26 to 47.27 7.20
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dataset used in this study was obtained from associated Head Power companies in Fin-
land and Switzerland and encompasses a point density of 105.76 pulses/m2. The positional 
accuracy of the data is sub-meter with a scale factor of 0.01 applied to the X, Y, and Z 
coordinates. In the airborne LiDAR data of Sites 1 and 2, the coordinate reference system 
employed was ETRS89/EUREF_FIN_TM35FIN. In the airborne LiDAR data of Sites 3 
and 4, the coordinate reference system employed in the data was CH1903 + /LV95.

2.3.3  Sentinel‑2 and land cover data

We used ‘Copernicus Sentinel data [2023]’ to assess vegetation cover in our study sites. 
Sentinel-2 provides high-resolution, multi-spectral imaging data with a wide swath cover-
age, which provides data at a 10 m spatial resolution. Sentinel-2 Level-2A is atmospheri-
cally corrected using the Sen2Cor processor (version 2.5.5), by applying numerous atmos-
pheric models, and measuring aerosol, and cloud masks.

We also utilized the ESA WorldCover 2021 product, which offers a high-resolution land 
cover map at a spatial resolution of 10 m on a global scale. ESA land cover data is calcu-
lated by the intergeneration of Sentinel-1 and Sentinel-2 datasets and includes 11 distinct 
land cover categories (Zanaga et al. 2022). The overall accuracy of the dataset is 76.7% by 
producing the dynamic yearly Copernicus Global Land Service Land Cover (CGLS-LC) 
(Buchhorn et al. 2020).

2.4  Method

2.4.1  Canopy height and tree crown estimation using airborne LiDAR

We performed the classification of the 3D point cloud data into the ground and non-ground 
points using the progressive morphological filter (Zhang et al. 2003). The acquisition and 
preprocessing of airborne LiDAR data were carried out in the lidR in R (Roussel et  al. 
2020). A crucial step in the preprocessing pipeline involved the generation of a Digital 
Terrain Model (DTM) through the application of the triangulation interpolation methods 
extracted from each study site (Roussel et al. 2020).

Table 2  Stereo image acquisition details for Pléiades satellites in different study sites in Finland and Swit-
zerland,  including acquisition date, solar irradiance (W/m²/micrometer), solar azimuth (°), solar elevation 
(°), and along-track incidence angles (°). Sites 1 and 2 are located in Finland, and Sites 3 and 4 are located 
in Switzerland

Acquisition date Solar irradiance 
(watt/m2/microm-
eter)

Solar 
azimuth 
(degree)

Solar 
elevation 
(degree)

Along the 
track incidence 
(degree)

Site 1 and 2 (Pléi-
ades 1A)

2021-09-27 
10:02:29.8

1540 180 26 19/17

Site 1 and 2 (Pléi-
ades 1B)

2021-09-27 
10:03:20.5

1540 180 26 20/− 10

Site 3 and 4 (Pléi-
ades 1A)

2021-10-01 
10:25:48.9

1549 164 38 − 8/9

Site 3 and 4 (Pléi-
ades 1B)

2021-10-01 
10:26:24.1

1549 164 38 − 7/9
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We calculated the Digital Surface Model (DSM), which represents the height of a sur-
face by selecting the highest point within the DTM map (Popescu 2007; Ruiz et al. 2014). 
Point-to-raster algorithms were employed, involving the establishment of a grid with a one-
meter resolution to detect the highest point within each grid cell and assign it to the cor-
responding pixel. We then calculated the height map by calculating the difference between 
DTM and DSM. To enhance the quality and completeness of the height map, we adopted 
a technique that involved replacing each point with a small circle of known diameter to 
simulate the footprint of laser beams. This approach increased the point cloud density and 
facilitated the smoothing of the height map (Baltsavias 1999; Roussel et al. 2020).

As this study focuses on the risk of trees for powerlines, we segmented individual 
trees to create a mask of tree no tree. To do that, we employed a watershed algorithm that 
involves treetops detection by utilizing a local maximum function in a variable window fil-
ter. This involved assigning the tag of a treetop to the highest cell within a circular window, 
where the size was dynamically adjusted based on the height observations of the cell at its 
center to segment individual trees (Pau et al. 2010; Vincent and Soille 1991). By progres-
sively incorporating neighboring pixels surrounding each treetop into the corresponding 
tree object, we terminated the segmentation process when another tree or the background 
region was encountered.

2.4.2  Canopy height estimation using optical data

We employed S2P to calculate canopy heights in each study site using Pléiades images (de 
Franchis et al. 2014b). The S2P provides a robust result in comparison with other meth-
ods for generating 3D elevation models from high-resolution stereo images obtained from 
Earth observation satellites (Dandini et al. 2022; Gao et al. 2023). To accomplish canopy 
height estimation from the optical data, we initiated the process by partitioning the input 
images into smaller tiles. This division allowed us to process the images at a local host 
computer and approximate the push broom camera using an affine camera model. By doing 
so, we could simplify the search for corresponding points between each stereo image pair. 
Next, we refined the calibration data for each tile. This step involved correcting any biases 
present in the Rational Polynomial Coefficients (RPC) functions, which are used to model 
the cameras, as explained in the Pléiades Imagery User Guide. Pléiades stereo images 
are equipped with a pair of RPC functions that facilitate the conversion between image 
coordinates and geographic coordinates on the globe and allow for the mapping of three-
dimensional points in object space to the image plane. In this projection, the 3D points are 
represented by their spheroidal coordinates in the World Geodetic System (WGS 84). By 
refining the calibration data, we ensured that the epipolar constraints derived from the cam-
era parameters were as precise as possible. After calibrating the data, we performed stereo 
image rectification. This process involved adjusting the images to align the corresponding 
epipolar lines, which simplified the matching of points between stereo pairs. This step sig-
nificantly improved the accuracy of the subsequent matching and reconstruction processes. 
For stereo matching, we used a standard algorithm to find correspondences between the 
rectified tile pairs. The algorithm determined the disparity between the images, which rep-
resents the difference in pixel coordinates of corresponding points. Finally, we combined 
the local refinements from all the processed tiles to compute a global correction of the 
calibration to identify the best possible continuity between the 3D points computed from 
different tiles to calculate DSM. As optical satellite data cannot penetrate forests directly 
for DTM creation, stereo image-based approaches are typically necessary to obtain a DTM 
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from various sources, including the Shuttle Radar Topography Mission (SRTM) (Jarvis 
et al. 2008). Although such datasets are widely and freely available, they have been sub-
jected to limitations in accuracy and resolution. Hence, to ensure a fair assessment of dif-
ferences in canopy height estimation between airborne LiDAR and stereo methods (Gold-
bergs et al. 2019), we utilized an accurate DTM obtained from airborne LiDAR data as a 
consistent baseline to calculate height maps. The DTM represents the terrain elevation, 
excluding above-ground features such as vegetation and buildings, and remains relatively 
stable through time.

2.4.3  NDVI, land cover map, and Rumple Index

To ensure the quality of Sentinel-2 data, we applied mask pixels classified as cloud shadow, 
cloud, and thin cirrus with a threshold of 20 percent. Next, we used Sentinel-2 data red 
band (Red) and the near-infrared band (NIR) with a temporal resolution of 10 days between 
2019-01-01 and 2022-01-01 for calculating NDVI (Eq. 1). The NDVI represents vegeta-
tion cover, ranging from − 1 to 1, where a value of − 1 indicates bare land while a value 
of 1 indicates dense vegetation cover. We used the mean function to present the map of the 
NDVI.

We utilized the Rumple Index which evaluates information measuring the horizontal 
and vertical variation of canopy structure using the airborne LiDAR data (Nadkarni et al. 
2004; Parker et  al. 2004). The Rumple Index  (m2/m2) is calculated by dividing the total 
surface area of the canopy (including any gaps present on the surface) by the ground sur-
face area. To compute this index, we used airborne LiDAR data (Sect. 2.3.1) and employed 
a method outlined by Parker et al. (2004), which involved creating a three-dimensional tri-
angular irregular network using the grid points of the canopy surface. The Rumple Index 
is then calculated by summing the areas of all the triangles formed with this approach and 
dividing it by the ground surface area at a 10 m spatial resolution as shown in Eq. (2):

We used the NDVI, land cover map, and Rumple Index to explain the findings derived 
from the stereoscopy and height measurements using optical satellite data.

2.4.4  Identifying trees posing a potential danger

We developed a simple approach to identify trees posing potential danger in the vicinity of 
powerlines to address the main objectives of this study (Fig. 2, Fig. 6A). To this end, we used 
canopy height data from Sect. 2.4.1. and 2.4.2. and we calculated the nearest distance of each 
object to powerlines considering the heterogeneity of the area following (Van Etten and Hij-
mans 2010). We assume the following abstractions: The surrounding terrain of the powerlines 
is of constant height, which we without loss of generality choose to be 0. A tree is equivalent 
to a tuple (x, T), the tree top position is denoted as x = (x1, x2, 0) ∈ ℝ

3 and the highest point 
of the tree is exactly T ≥ 0 above it, i.e., its coordinates are (x1, x2, T). A powerline is equivalent 
to a tuple (a, b), with a ∈ ℝ

3 and b ∈ ℝ
3 so that the powerline is the line segment parallel to 

the ground from a to b, and its height is denoted as H = a3 = b3. If the line segment from a to 

(1)NDVI =
NIR − Red

NIR + Red

(2)Rumple Index =
3Dcanopy surfacemodel area

ground area
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b intersects the closed sphere with radius T and center x, we call (x, T) and (a, b) in danger-
ous configuration. Assuming that the line segment from a to b extends infinitely, then (x, T) 
and (a,b) are in a dangerous configuration if and only if the closest point p = (p1, p2, H) ∈ ℝ
3 on the line through a and b is an element of the closed sphere with radius T and center x. 
Let y be (p1, p2, 0) and d the distance between x and y. We consider the affine 2-dimensional 
space S spanned by the affine basis x, p, and (0, 0, 1). Then, (x, T) and (a, b) are in dangerous 
configuration if and only if p is an element of the closed circle of radius T with center x in S. 
Equivalently, 

√

d2 + H2 ≤ T , which in turn is equivalent to H ≤

√

T2 − d2.
We used the canopy height ( T  ) and shortest distance to a powerline ( d ) and use them 

to compute F =
√

T2 − d2 . As the height of the powerline is known to be at least H′ , we 
consider all pixels with F < H′ as not dangerous. The remaining pixels are colored accord-
ing to M meter bands, i.e., H� +Mi ≤ F < H� +M(i + 1) for i ∈ {0,1,…} , representing 
increasing levels of risk. The results have been represented at 5 classes of lowest to highest 
risk of danger at 1-m spatial resolution.

We computed the Overall Accuracy (OA) as an evaluation metric for assessing the per-
formance of stereo images in detecting dangerous trees. To evaluate the performance of the 
stereo images in detecting dangerous trees, we first constructed a contingency table (CT) 
by comparing the data obtained from the stereo image analysis with the airborne LiDAR 
data (Phillips 1995). Next, we calculated the OA as the ratio of the sum of correctly clas-
sified samples (SoCC) to the total number of samples (TNS) in the dataset multiplied by 
100, according to the formula in Eq. (3):

All the analyses in the Result Section are performed at pixel level, excluding QA estima-
tion which is at tree level (Fig. 6A). We limited our investigation of tree fall potential to trees 

(3)QA =

∑

SoCC
∑

TNS
∗ 100

Fig. 2  Identification of potentially dangerous trees near powerlines using spatial configuration analysis. 
This image shows the affine 2-dimensional space S 
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with a maximum height of 32-m, as measured by airborne LiDAR, due to the high uncertain-
ties associated with the methods in this study for trees exceeding this height.

2.4.5  Statistical metrics

We used several statistical metrics to compare the performance of LiDAR and optical 
images in calculating mean values of canopy height at 1 m spatial resolution, which are 
outlined in this section.

We computed the mean (µ) as a central measure of the data distribution. The mean is 
calculated as the sum of all data points divided by the total number of observations as 
shown in Eq. (4):

We measure the standard deviation (SD), which quantifies the degree of variability or 
distribution within a dataset relative to the mean of the same data. The SD is derived from 
the variance, as demonstrated in Eq. (5)

Skewness (SK) provides insights into the asymmetry of the distribution. It is calculated 
in Eq. (6):

The skewness value indicates the extent and direction of deviation from a symmetric 
distribution. A positive skewness indicates a longer tail on the right side of the distribution, 
while a negative skewness indicates a longer tail on the left side.

Kurtosis (K) similarly measures the shape of the distribution by assessing the presence 
of outliers or extreme values. It is calculated in Eq. (7):

A positive kurtosis indicates a relatively peaked distribution, with more values concen-
trated around the mean and heavier tails compared to a normal distribution. Conversely, a 
negative kurtosis suggests a flatter distribution, with fewer values concentrated around the 
mean and lighter tails compared to a normal distribution.

Moreover, we computed the coefficient of variation (CV) as an additional measure of 
data variability. It provides a relative measure of variation independent of the scale of the 
data, so that larger values indicate greater variability, and allows for comparison and inter-
pretation of variability across different datasets. It was calculated using Eq. (8):

(4)μ =
1

n

∑n

i=1
xi

(5)SD =

√

1

n − 1

∑n

i=1
(xi − μ)2

(6)SK =

1

n

∑n

i=1
(xi − μ)3

�

1

n

∑n

i=1
(xi − μ)2

(7)
K =

1

n

∑n

i=1
(xi − μ)4

�

�

1

n

∑n

i=1
(xi − μ)2

�4

(8)CV =
100 ∗ SD

μ
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We used Cross-tabulation analysis, a statistical method to examine the relationship 
between two categorical variables, for comparing the risk of tree fall for powerlines meas-
urements by airborne Lidar and stereo (Momeni et al. 2018).

3  Results

3.1  Forest structure characteristics

The airborne LiDAR- and stereo-based height  estimation and  the statistical analysis, 
including mean, maximum, minimum, median, standard deviation, coefficient of variation, 
kurtosis, and skewness were computed to explore the key characteristics of the forests in 
each study site (Tables 3 and 4, Figs. 3 and 4).   

The airborne LiDAR-based height estimation (Table  3) showed the mean   can-
opy  heights, ranging from 7.71  m (Site 1) to 12.58  m (Site 3). The maximum canopy 
height of 32  m and the minimum height of around zero was observed (Table  3). The 
median height values spanned from 0.27 m (Site 4) to 12.05 m (Site 3). The relatively high 
height value variability within the forest stands was presented by standard deviations rang-
ing from 7.69 m (Site 1) to 10.83 m (Site 3). Site 2 and Site 4 also displayed relatively high 
standard deviation values of 9.13 m and 8.37 m, respectively. The coefficient of variation 
ranged from 86.12% (Site 3) to 131.26% (Site 4). Site 1 and Site 2 also displayed notable 
variations with CV values of 99.84% and 93.82%, respectively. Site 4 exhibited the lowest 
kurtosis value of −1.50, and Site 3 displayed a kurtosis value of −1.34. Site 2 and Site 1 
exhibited kurtosis values of −1.23 and −0.79. On the other hand, Site 3 displayed the low-
est skewness value of −0.10. Site 1 and Site 4 exhibited similar skewness values of −0.07, 
while Site 2 showed skewness of −0.05.

Table 3  Statistical analyses of canopy height measurements using airborne LiDAR data for each site. The 
SD refers to standard division and the CV refers to the coefficient of variation. Sites 1 and 2 are located in 
Finland, and Sites 3 and 4, are located in Switzerland

Mean (m) Max (m) Min (m) Median (m) SD (m) CV (%) Kurtosis Skewness

Site 1 7.71 31.88 0 5.3 7.69 99.84 − 0.79 − 0.07
Site 2 9.74 32.00 0 6.15 9.13 93.82 − 1.23 − 0.05
Site 3 12.58 32.00 0 12.05 10.83 86.12 − 1.34 − 0.10
Site 4 8.42 32.00 0 0.27 8.37 131.26 − 1.50 − 0.07

Table 4  Statistical analyses of canopy height measurements using stereo images for each site. The SD refers 
to standard division and the CV refers to the coefficient. Sites 1 and 2 are located in Finland, and Sites 3 and 
4, are located in Switzerland

Mean (m) Max (m) Min (m) Median (m) SD (m) CV (%) Kurtosis Skewness

Site 1 4.66 31.91 0 1.62 5.20 111.66 − 1.38 0.04
Site 2 10.14 31.04 0 12.66 7.47 73.62 − 1.38 − 0.01
Site 3 10.23 31.99 0 6.21 10.34 101.03 − 1.36 0.01
Site 4 5.36 31.99 0 1.25 8.97 167.19 − 1.43 0.02
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The stereo-based height measurements in Table  4 showed the mean canopy 
heights, ranging from 4.66 m (Site 1) to 10.23 m (Site 3). Site 2 exhibited a mean height of 
10.14 m and Site 4 displayed the mean height of 5.36 m. The maximum height measure-
ments obtained from stereo images aligned closely with the airborne LiDAR data, reach-
ing around 32  m in all study sites. Similarly, the minimum height measurements from 
stereo images (Table 4) and airborne LiDAR (Table 3) both recorded values around zero. 
The median height values obtained from stereo images ranged from 1.25 m (Site 4) to  

Fig. 3  Spatial variability of height map measurements using airborne LiDAR data. A and B, which are 
Sites 1 and 2, are located in Finland, and C and D, which are Sites 3 and 4, are located in Switzerland. The 
maps are generated with a 1 m spatial resolution using the Universal Transverse Mercator (UTM) coordi-
nate system. The black lines represent powerlines
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12.66 m (Site 2), which was relatively similar to a range of median data observed in air-
borne LiDAR data (Table 3). The standard deviation values for stereo-based height meas-
urements ranged from 5.20 m (Site 1) to 10.34 m (Site 3). As in Table 3, Site 3 displayed 
the highest standard deviation value  of  10.34 m. The CV values obtained from stereo 
images analysis also exhibited a similar trend to the airborne LiDAR-derived CV values. 
Site 4 demonstrated the highest CV value of 167.19%, while Site 2 and Site 1 also dis-
played notable variations with CV values of 73.62% and 111.66%, respectively. Site 3 

Fig. 4  Spatial variability of height map measurements using stereo images in meter units. A and B, which 
are Sites 1 and 2, are in Finland, and C and D, which are Sites 3 and 4, are in Switzerland. The maps are 
generated with a 1 m spatial resolution using the Universal Transverse Mercator (UTM) coordinate system. 
The black lines represent powerlines
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exhibited a relatively low CV value of 101.03% which aligned with its lower variability 
observed in the airborne LiDAR data. Kurtosis values from stereo images analysis also 
relatively matched with the airborne LiDAR results. More specifically, Site 4 exhibited the 
lowest kurtosis value of −1.43, while Site 3 displayed a kurtosis value of −1.36. Site 2 and 
Site 1 exhibited kurtosis values of −1.38 and −1.38. Regarding skewness values of stereo 
image analysis, all values were approximately close to zero by 0.04, −0.01, 0.01, and 0.02 
in Site 1 to Site 4, respectively.

3.2  Land cover, NDVI, and Rumple Index

In this section, detailed information about the land cover type, NDVI, and Rumple Index 
for each study site was provided (Table  5, Fig.  5, and Fig.  5A of supplementary mate-
rial). For Site 1, the land cover analysis revealed a predominant presence of forest. The 
mean NDVI value of this study site was 0.52. The mean Rumple Index value of 5.46 was 
obtained for Site 1, which corresponded to the horizontal and vertical variation of the can-
opy structure. The land cover analysis of Site 2 indicated the dominant presence of forests, 
similar to Site 1. The mean Rumple Index value of 7.68 was larger compared with Site 1. 
Site 3 exhibited a mosaic of forest and cropland classes. The land cover analysis revealed a 
moderate vegetation density that was indicated by a mean NDVI value of 0.73. The moder-
ate mean Rumple Index value of 3.09 was significantly lower than the mean Rumple Index 
values in Site 1 and 2. Lastly, Site 4 presented a predominance of the forest and shrublands 
classes. The relatively high mean NDVI value of 0.71 indicated a relatively dense vegeta-
tion cover. The mean Rumple Index value of 2.54 was lower than other study sites (Ali-
bakhshi 2020). 

3.3  The risk of the tree falls using airborne LiDAR data versus stereo images

Table 5 provides a concise summary of the comparative analysis between airborne LiDAR 
and stereo-based height estimation. The coefficient of determination (R2) values presented 
the strength of the relationship between height estimation via airborne LiDAR and stereo 
for all values in the extent of the study sites (Table 5 and Fig. 6). The R2 values at Site 1 
and Site 2 were 0.30 and 0.39, respectively. In contrast, the R2 values at Site 3 and Site 4 
were 0.64 and 0.62, respectively. 

In addition to height estimation, the study assessed the mean NDVI and mean Rumple 
Index. Both Site 3 and Site 4 displayed higher mean NDVI values (0.73 and 0.71, respec-
tively) compared to Site 1 and Site 2 (0.52 and 0.55, respectively). Regarding Rumple 

Table 5  Summary of comparison 
between airborne LiDAR-
based and stereo-based height 
estimation, as well as NDVI, and 
Rumple Index in each study site. 
The R2 represents the strength of 
the relationship between airborne 
LiDAR- and stereo-based height 
estimation. Sites 1 and 2 are 
located in Finland, and Sites 3 
and 4 are located in Switzerland

Mean LiDAR Mean stereo R
2 Mean NDVI Mean 

Rumple 
Index

Site 1 7.71 4.66 0.30 0.52 5.46
Site 2 9.74 10.14 0.39 0.55 7.68
Site 3 12.58 10.23 0.64 0.73 3.09
Site 4 8.42 5.36 0.62 0.71 2.54
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Index values, Site 3 and Site 4 showed lower mean values (3.09 and 2.54, respectively) 
compared to Site 1 and Site 2 (5.46 and 7.68, respectively).

In addition to the quantitative analysis (Table  5), a bar plot was constructed to visu-
ally represent the relationship between airborne LiDAR measurements of forest height and 
the corresponding observations derived from stereo images (Fig. 7). The bar plot covered 
the entire range of airborne LiDAR measurements and suggests that, on average, stereo 
observations tended to increase as the height measurements obtained from airborne LiDAR 

Fig. 5  Spatial variability of Rumple Index, ranging between 1 and 20, in each study site. A and B, which 
are Sites 1 and 2, are located in Finland, and C and D, which are Sites 3 and 4, are located in Switzerland. 
The maps  are generated with a 10  m spatial resolution using the Universal Transverse Mercator (UTM) 
coordinate system. The black lines represent powerlines
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increase. This may show that stereo-based analyses might have the ability to capture the 
overall patterns and variability in estimating canopy height. However, for values below 
8 m, significant disagreements between the stereo observations and the corresponding air-
borne LiDAR measurements become apparent. These deviations were visually represented 
by notable differences in bar lengths or heights (Fig. 7).

Aiming to identify potential associations between the airborne LiDAR- and stereo-
based measurements and the characteristics of the surface as represented by the Rum-
ple Index, further analysis was conducted (Fig. 8). The best agreements between air-
borne LiDAR- and stereo-based height measurements were observed within a specific 

Fig. 6  Relationship between height map obtained from airborne LiDAR (x-axis) and stereo images (y-axis) 
in meter units. A and B, which are Sites 1 and 2, are in Finland, and C and D, which are Sites 3 and 4, are 
in Switzerland. Blue color refers to a lower density of points and red color refers to a higher density of 
points
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range of the Rumple Index, specifically between 1 and 3. Remarkably, Sites 3 and 4, 
which exhibited superior R2 values also represent lower mean Rumple Index values 
(Fig. 7 and Table 5).

Following Sect.  2.4.4, we assessed the risk of tree falls  by using  cross-tabulation 
analysis between the detected dangerous trees using stereo images and airborne LiDAR 
data, categorizing them into five classes ranging from one (very high risk) to five (no 
risk). Our results (Fig.  9 and Fig.  10) demonstrated a significant level of agreement 
between the classifications derived from stereo images and airborne LiDAR data for 
the sites  in Finland (Site A and B), as depicted in Fig.  9, with an estimated quality 
assurance of nearly 100% for the sites  in Finland. The sites in Finland  underwent a 
clear-cutting of trees near the powerlines which may explain the absence of risky trees 
in the context of this study based on our measurements. Additionally, Site 3 and Site 
4 exhibited an agreement level of 95.16% and 92.14%, respectively. Although the sites 
in Finland did not reveal any dangerous trees, we included the results in this study to 
address false positive detections, where trees not posing a risk are incorrectly identi-
fied as hazardous. Using Fig. 9 and Fig. 10, data availability of stereo-based measure-
ments and airborne LiDAR-based measurements can be visually compared.

Fig. 7  Relationship between airborne LiDAR- vs stereo-based height estimation. A and B, which are Sites 
1 and 2, are in Finland, and C and D, which are Sites 3 and 4, are in Switzerland. The plots show for each 
interval of airbone LiDAR-based height estimations, the mean value of stereo-based height estimations and 
the error bars designate the minimum and maximum values in these intervals
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4  Discussion

We assessed the risk of tree fall-down for monitoring purposes, with a focus on calcu-
lating the accuracy of stereo-based height measurement in comparison with airborne 
LiDAR-based height measurement, as canopy height is an important parameter to 
calculate the tree fall risk potentials. The results revealed varying levels of accuracy 
between the stereo-based height estimations, and airborne LiDAR-based height estima-
tions, where Sites 3 and Site 4 displayed relatively stronger correlations (R2 = 0.64 and 
0.62, respectively) compared with Site 1 and Site 2 (R2 = 030 and 0.39, respectively) 
(Table 5). The lower mean Rumple Index values in Sites 3 and Site 4 (Table 5, Fig. 5) 

Fig. 8  Relationship between airborne LiDAR- vs stereo-based heigh estimation in a different range of Rum-
ple Index (each value v on the x-axes stands for the interval (v −1, v + 1]; > v means (v, ∞)). A and B, 
which are Sites 1 and 2, are in Finland, and C and D, which are Sites 3 and 4, are in Switzerland. The blue 
color refers to height measurements using airborne LiDAR data and the orange color refers to height meas-
urements using stereo images in different ranges of the Rumple Index
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implied a relatively simpler and less complex surface compared to Site 1 and Site 2 
(Table 5). As stereo techniques rely on distinctive features and matching algorithms that 
perform optimally in less complex environments (de Franchis et al. 2014c, 2014d), the 
reduced complexity in surface, presented by the Rumple Index in this study, can facili-
tate the performance of height measurements using optical satellite data. The Rumple 
Index presents the horizontal and vertical variation of the canopy structure (Nadkarni 
et al. 2004; Parker et al. 2004). Previous studies have reported Rumple Index can be con-
trolled by forest type, forest structure, and biodiversity (Dayal et al. 2020; Fagua et al. 
2021; Solano et al. 2022). Our study revealed that when the Rumple Index is approxi-
mately two, indicating a relatively simple canopy structure, stereo images yielded 
higher accuracy results (Fig.  8, Table  5). Kane et  al. (2008) showed a surface with a 
Rumple Index around two can be classified as simple canopies.  The cross-tabulation 

Fig. 9  Dangerous tree detection. A and B, which are Sites 1 and 2, are  located in Finland, and C and D, 
which are Sites 3 and 4, are located in Switzerland. The maps are generated with a 1-meter spatial resolu-
tion using the UTM (Universal Transverse Mercator) coordinate reference system. The black lines represent 
powerlines. Class one represents very high risk and class five represents no risk
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analysis (Fig. 9 and Fig. 10) showed a significant agreement between stereo image- and 
airborne LiDAR-based classifications for tree fall risk, particularly in simpler canopy 
environments. While the sites in Finland did not contain any dangerous trees due to 
prior clear-cutting near powerlines, their inclusion was critical for evaluating false 
positive detections. This ensures the method’s robustness in identifying non-hazardous 
trees accurately. Sites 3 and 4 further demonstrated high agreement levels (95.16% and 
92.14%, respectively). The data availability of stereo-based measurements and airborne 
LiDAR-based measurements can be visually compared, highlighting a potential source 
of uncertainty in stereo-based analyses (Fig. 9, Fig. 10).

Fig. 10  Dangerous tree detection derived from stereo images. A and B, are Sites 1 and 2, which are located 
in located Finland, and C and D, are Sites 3 and 4, which are in located Switzerland. The layer has a 
1-meter spatial resolution using the Universal Transverse Mercator (UTM) coordinate system. The black 
lines represent powerline. The class one represents very high risk and class five represents lowest risk
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The stereo-based height estimation results from our study (Tables 3 and 4) as well as 
results of previous studies, revealed a wide range of performance, from relatively weak 
(Lin et al. 2020; Persson et al. 2013; St‐Onge et al. 2008; Ullah et al. 2020) to strong (Brea-
ban et  al. 2022; Tong et  al. 2012; Ye et  al. 2021). This variability in performance was 
largely influenced by the type of objects being measured. Studies focusing on buildings, 
that had simpler, well-defined structures, tended to achieve higher accuracy, consistently 
reporting errors of approximately one meter (Breaban et  al. 2022; Tong et  al. 2012; Ye 
et al. 2021; Zeng et al. 2014). However, when evaluating forest ecosystems that inherently 
had more complex surfaces (Lin et al. 2020; Persson et al. 2013; St‐Onge et al. 2008; Ullah 
et al. 2020) than simple objects such as buildings, comparable accuracy levels to our study 
was reported (Tables 3 and 4). Specifically, in forested areas, the error in height estimation 
using stereo imagery can increase from 1.23 m in bare land to 4.24 m in more intricate eco-
systems (St‐Onge et al. 2008). It was reported that by excluding outliers, the R2 value for 
height estimation improved from 0.53 to 0.91 when comparing airborne LiDAR and stereo 
imagery (St‐Onge et al. 2008). Although removing outliers can significantly improve the 
R2 values, considering the specific objective of monitoring dangerous trees in this study, 
every single tree should be counted in the risk assessment. Furthermore, previous studies 
reported varying R2 values between 0.47 and 0.7 in different forests with different tree spe-
cies (Hosseini et al. 2019; Wang et al. 2021), where the R2 value in coniferous forests was 
higher than in deciduous forests. Needleleaf forests are typically characterized by dense, 
evergreen trees with needle-like leaves that often have a more uniform appearance com-
pared with deciduous forests (Alibakhshi et al. 2020). The consistent structure and color of 
needle leaves forests may make it easier for stereo-matching algorithms to find correspond-
ences between pixels. However, our results showed contrasting results, with lower R2 val-
ues observed in coniferous forests in Finland compared to Switzerland. This discrepancy 
can be related to the presence of additional factors influencing the performance of stereo-
matching algorithms such as variations in forest structure, canopy complexity, and environ-
mental conditions (Sect. 2.4.2). This can again emphasize the importance of the Rumple 
Index in explaining the performance of stereo-based height measurement.

In this study, we initially obtained and analyzed SkySat stereo images to generate height 
maps, which provided stereo images with a spatial resolution of around 0.5 m. However, 
persistent errors in the images remained unresolved in the year 2021, despite our efforts in 
refining codes and requesting re-tasking from the Planet company. High uncertainty in the 
geolocation of the SkySat cameras and inconsistent orientation of individual scenes have 
been already reported (Bhushan et  al. 2021; d’Angelo and Reinartz 2021), which could 
potentially explain the issues we encountered. As a result, we decided to exclude these 
images from the analysis, as their inclusion could introduce uncertainties and potential 
inaccuracies in our findings. Hence, we conclude the technology used in SkySat images is 
not still capable of being used in monitoring canopy height at least in our study sites.

Regarding the limitation of stereo imagery for height estimation, it should be noted 
that the algorithm (Sect. 2.4.2) requires a relatively coarse resolution of input to enable 
accurate matching of stereo image pairs in all study sites. This requirement arises from 
the need to identify corresponding features between the images. However, this enhanced 
resolution can lead to an increased occurrence of missing values in the resulting height 
calculation, when compared to the more comprehensive airborne LiDAR-based height 
measurement (Figs. 3 and 4). Furthermore, stereo imaging relies on the visibility of dis-
tinct features, and when the requirements are not fulfilled, it can result in height values 
with gaps or missing information. The presence of missing values implies that certain 
trees may not have their heights accurately estimated using the stereo imagery-based 



7071Natural Hazards (2025) 121:7051–7076 

approach. Consequently, these missed trees could potentially pose risks or have the 
potential to cause damage, as their height and associated hazards may go unnoticed. 
In addition, the decreased resolution can lead to a loss of detail in the resulting height 
calculations. While we validated our stereo-based height measurements against airborne 
LiDAR data, we acknowledge that ground-truth data from field observations would pro-
vide a more rigorous accuracy assessment.

To enhance the accuracy of height estimation based on stereo imagery, several poten-
tial avenues warrant exploration. In our research, we made significant progress in this 
regard by incorporating an artificial neural network (ANN) approach, which resulted in 
notable improvements in the R2 values. Specifically, our preliminary findings indicate 
that the R2 values were enhanced to approximately 0.8 through the utilization of ANN 
techniques (detailed results to be published separately in a forthcoming manuscript). 
The integration of multi-source data, such as fusing stereo images with airborne LiDAR 
data or high-resolution optical imagery, holds promise for capturing complementary 
information and enhancing the accuracy of height mapping using stereo images. For 
example, the results (Table  5) highlight that NDVI can be one strong predictor that 
can enhance the potential for integrating multi-source data to improve height estima-
tion accuracy. Additionally, advancements in image processing techniques, including 
improved stereo matching algorithms and robust DSM generation methods, can contrib-
ute to better height estimation.

It is important to emphasize that this study primarily focused on the development of 
an approach for measuring the risk of tree falls for powerlines. However, by assessing 
forest-related risks, the results can be further refined (Lee and Ham 2023; Pellikka and 
Järvenpää, 2003). For example, slender trees may tend to exhibit a higher susceptibility 
to falling. In addition, various environmental factors, such as snow or wind, and the type 
of tree play a pivotal role (Pellikka et al. 2000). Some species may be prone to experi-
encing crown snapping and some tree species may be prone to experiencing topple over 
with their root systems. By considering the time of the year (Molarius et al. 2014), for-
est type, and forest age, more comprehensive information on the risk of tree falls can be 
obtained. Regarding the limitation of this study, it should be noted that optical satellite 
data may cause complexities due to georeferencing, cloud, and shadowing effects and 
high error in estimating trees taller than 32-m, which limits the application of this study 
to when the highest quality satellite data are available (Fig. 9, Fig. 10). In addition, the 
model used in this study does not consider the line sag curve and assumes the lines are 
always the same height as powerlines throughout the year. To enhance the accuracy of 
our tree fall detection method, we recommend future studies focusing on incorporating 
additional contextual information beyond elevation changes. By combining elevation 
data with these additional layers of information, the classification model will become 
more robust, particularly in complex and heterogeneous forest environments.

Despite the advantages of direct height measurement provided by airborne LiDAR, it 
is important to acknowledge that stereo imagery still offers acceptable accuracy (mean 
96.57%) in detecting risky trees, as demonstrated in our study (Sect. 3.3., Fig. 9). These 
findings align with a previous study that reported 98% accuracy (Ma et al. 2020). Our 
research adds knowledge to understanding stereo-based techniques and their potential 
for monitoring hazardous trees. By demonstrating the feasibility and effectiveness of 
stereo imagery along with the limitations in detecting risky trees, our study highlights 
the value of this approach as a cost-effective and accessible alternative to airborne 
LiDAR for tree hazard management and ensuring public safety.
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5  Conclusion

This study highlighted the potential of very high-resolution optical satellite data as a valu-
able tool for tree fall risk monitoring and vegetation management. By comparing canopy 
height estimations derived from optical satellite data with those obtained from airborne 
LiDAR, we demonstrated the feasibility of using optical satellite data as a cost-effec-
tive alternative  or complimentary data for monitoring tree fall risks for powerlines. The 
analysis of four study sites in Finland and Switzerland revealed varying levels of accu-
racy in height estimations, with stronger correlations observed in sites with lower Rumple 
Index values. An important takeaway from this study is the utility of the Rumple Index 
as a pre-assessment metric for selecting areas where stereo imagery can reliably substi-
tute airborne LiDAR data. By identifying simpler canopy structures, the Rumple Index can 
help to optimize resource allocation for tree fall risk monitoring. However, the study also 
acknowledges the inherent limitations of stereo-based techniques, such as susceptibility 
to environmental factors like cloud cover and shadowing, as well as challenges in highly 
complex canopy environments. These findings emphasize the need for hybrid approaches 
that use both stereo imagery and airborne LiDAR data, depending on site-specific char-
acteristics for comprehensive and accurate risk assessments. This balanced integration of 
technologies can offer an adaptable solution to meet the growing demands of vegetation 
management for infrastructure protection. This research contributes to a growing body of 
knowledge aimed at refining forest management practices by using  high-resolution opti-
cal satellite data availability and actionable insights for enhancing the resilience of critical 
infrastructure against natural hazards.
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