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Abstract The introduction of non-native algae 
becoming invasive is a driver of ecosystem change in 
many coastal areas, and understanding the ecologi-
cal consequences of these introductions is important. 
Here we use a trait-based approach to demonstrate 
potential differences between native and invasive 
algal communities. A set of functional traits was 
applied to the most commonly occurring native and 
invasive algal species. We included the recently dis-
covered alga Chondria tumulosa A.R. Sherwood & 
Huisman (2020) to predict its potential invasiveness 
on the local algal assemblages. The results indicate 
that invasive macroalgae have introduced certain 
novel functional traits to algal communities in the 
Main Hawaiian Islands. These algae occupy and share 

a specific part of the trait space, which has two key 
implications, either that invasive algae can alter the 
functional composition of local assemblages by intro-
ducing new trait values and outcompete the native 
flora, or, if their traits differ from those of native 
species, invaders might occupy habitats or utilize 
resources in a way that instead complement native 
species. An evaluation of C. tumulosa showed that 
this species has a high potential of becoming inva-
sive and causing declines in the functional diversity 
of coastal habitats. Moreover, this study illustrates 
that trait-based analysis can provide a useful tool for 
evaluating the invasive potential of algal species and 
increasing understanding of ecological consequences 
of such invasions.

Keywords Macroalgae · Algal blooms · Functional 
diversity · Invasive algal species · Habitat effects · 
Macroalgal communities

Introduction

Interactions among species underpin the ecological 
functions of a system and subsequently its provision 
of ecosystem services (Mouillot et al. 2013; Mauffrey 
et al. 2020). These interactions are strongly linked to 
the functional role of a species, which is dictated by 
its traits—that species’ morphological, behavioral 
and phenological characteristics (Violle et  al. 2007; 
Cappelatti et  al. 2020; Mammola et  al. 2021). In 
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short, a species’ traits and its responses to abiotic and 
biotic factors determine functional roles in ecological 
communities and shape ecosystem functions (Cad-
otte et al. 2015). Viewing a system through the lens 
of trait-based ecology can provide strong insights into 
the relationships between community structure and 
ecosystem functioning (Dı́az and Cabido 2001). Sev-
eral studies of terrestrial plant communities indicate 
that the explanatory power of functional diversity is 
greater than species diversity in explaining ecosys-
tem processes (Dı́az and Cabido 2001; Mokany et al. 
2008; Cadotte et  al. 2011). Within terrestrial plant 
communities, trait-based ecology has proven useful in 
predicting community responses to disturbances such 
as introductions of invasive species (Drenovsky et al. 
2012; Kunstler et  al. 2016; Mathakutha et  al. 2019; 
Palma et  al. 2021; Kaushik et  al. 2022). Compared 
to terrestrial ecology, trait-based studies are not as 
commonly applied to marine systems. The number 
of studies has increased substantially during the two 
last decades, but mainly for fish (Halpern and Floeter 
2008; D’agata et  al. 2014; Bellwood et  al. 2019; 
Mihalitsis and Bellwood 2019), while similar studies 
remain scarce for algae (but see e.g., Mauffrey et al. 
2020; Fong et al. 2023).

Within coral reef ecology, macroalgae are com-
monly described based on growth form (Littler and 
Littler 1980), and there is generally a lack of spe-
cies-specific or functional-group resolution based on 
other traits. For example, the growth form described 
as “fleshy macroalgae” or its equivalent is usually 
an indicator of degraded reef health, irrespective of 
traits such as native or non-native status, growth 
rates, substrate preferences and palatability, which 
all can contribute to competitive success and ecosys-
tem functions. In contrast, by describing ecological 
strategies of a species by using functional diversity 
it is possible to adopt a multidimensional perspective 
which is highly relevant considering the complexity 
and heterogeneity of marine macroalgae (Fong et al. 
2023). Moreover, separating the impact of a single 
species on an ecological community is challenging, 
but by choosing ecologically relevant traits based on 
literature and analyzing differences in functionality 
among communities, this species- based understand-
ing is possible.

Though introductions can constitute a negligi-
ble change in overall species diversity, the recipi-
ent community may experience outsized impacts on 

functional diversity if the invader possesses novel 
traits (Dı́az and Cabido 2001; Pyšek et al. 2020) and/
or becomes very abundant (Kaushik et  al. 2022). 
Potential consequences of invasions include loss of 
functional diversity, but there is also a possibility 
that invasive species could add new ecological func-
tions, especially in species-poor locations (Karlson 
et  al. 2024). Furthermore, the functional traits of a 
species can contribute to an invader’s success by con-
trasting strategies, although invasion success is also 
context dependent (Drenovsky et  al. 2012; Mouillot 
et al. 2013; Kaushik et al. 2022). In order to predict 
the success of invasive species, several approaches 
and hypotheses are applied. One such hypothesis is 
the Darwin naturalization conundrum which explores 
how invasive species might either compliment or 
compete with native species based on trait differences 
and phylogenetic similarity (Marx et  al. 2016; Cad-
otte et al. 2018). For example, non-native species may 
have functional traits that differ from those of native 
communities, allowing the invader to exploit an 
empty niche (Funk et al. 2008; Karlson et al. 2024). 
Alternatively, the invader may possess similar traits 
to the species already present, but also have the abil-
ity to monopolize resources and consequently out-
compete and smother native flora and fauna (Franzén 
2004; Funk et al. 2008; Mouillot et al. 2013; Karlson 
et al. 2024). The success of a marine invader will be 
further impacted by environmental filters (e.g. toler-
ance of salinity and turbidity), which can vary sub-
stantially among geographical locations (Blackburn 
et  al. 2011; Jungblut et  al. 2018). Therefore, a spe-
cies that is invasive in one location may not always be 
problematic in another, making it difficult to predict 
negative effects of any one invader in a new ecosys-
tem (Kaushik et al. 2022).

To estimate invasion potential of any particular 
algal species, Nyberg and Wallentinus (2005), sug-
gested a functional traits approach. They could show 
that many invasive species shared certain traits for 
successful establishment, dispersal and spread, such 
as the ability to reproduce both sexually and asexu-
ally, a large thallus size and generalist substrate pref-
erences, although this was not true across all algal 
groups (Nyberg and Wallentinus 2005; Littler and 
Littler 1980). However, these results were identified 
without considering existing traits of native commu-
nities, thus limiting the effectiveness of this early con-
tribution. Clearly, an important aspect of predicting 
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effects of invasions is examining the functional traits 
of the invasive species in relation to the native flora 
and how invasions may alter this dynamic.

The Hawaiian archipelago is vulnerable to intro-
ductions of non-native species, due to its isolated 
location where ecosystems historically have been 
subjected to little change (Carlquist 1974; Vitousek 
et  al. 1987; Cox et  al. 2013). Since the 1950s, 20 
different macroalgal species have been identified 
as introduced, of which six are recognized as inva-
sive: Acanthophora spicifera, Avrainvillea lacerata, 
Eucheuma denticulatum, Gracilaria salicornia, Hyp-
nea musciformis and Kappaphycus alvarezii, all pre-
sent on the island of O‘ahu, where the majority of 
the introductions were initiated (Smith et  al. 2002; 
Carlton and Eldredge 2009; Cox et  al. 2013). Most 
focus has been on negative effects by algal introduc-
tions on reef building corals, but there are also indi-
cations that invasive algae monopolize habitat at the 
expense of native algal communities (Lapointe and 
Bedford 2011). Native macroalgae, or limu, play 
important roles in the Hawaiian culture, and are used 
as food, medicine and for spiritual purposes (Abbott 
1978, 1992; Cox et al. 2013; McDermid et al. 2019). 
Ecologically, limu are important primary producers, 
contributing to carbon and nutrient flows and provide 
key ecological functions such as nursery and feeding 
habitat for fish and invertebrates (Fulton et al. 2019, 
2020; McDermid et al. 2019).

This study aims to explore differences between 
native and non-native invasive macrophytes from 
a representative subset of the species pool in the 
Main Hawaiian Islands (MHI) by using a trait-based 
approach and discussing potential additions or losses 
of ecological traits in the invaded communities. We 
hypothesize that there will be differences in func-
tional traits between the native and non-native algal 
group, and that this difference may be more pro-
nounced for functional traits that relate to interac-
tions among species, such as competitive abilities. 
To explore the feasibility of this approach in reveal-
ing mechanisms underlying how nuisance and poten-
tially invasive algae may fit into a recipient ecosys-
tem and estimate their potential to become invasive, 
the recently described alga Chondria tumulosa Sher-
wood and Huisman (2020), (Sherwood et  al. 2020) 
is included as a case study. Although C. tumulosa is 
not yet confirmed from the MHI, evidence from the 
Papahānaumokuākea Marine National Monument 

(PMNM) in the northwestern Hawaiian archipelago 
suggests that it may have the potential to become 
invasive if introduced (Sherwood et  al. 2020; Fumo 
et al. 2024). We therefore evaluate whether this spe-
cies clusters in trait space with other invasive species. 
Two types of functional traits are investigated; first, 
traits that are related to ecological niche space/habi-
tat selection (e.g., salinity tolerance and depth), sec-
ond, traits that are related to interactions among reef 
plants and may affect competitive abilities/ecological 
success (e.g., growth rates and reproduction strate-
gies). Finally, differences in functional traits between 
native and invasive non-native species and potential 
ecosystem effects of an invasion of C. tumulosa are 
discussed.

Methods

Study species and functional traits

In order to select commonly occurring macro-
phytes in Hawaiian waters, species were derived 
from five different comprehensive inventory studies; 
one from the PMNM (Vroom and Braun 2010) and 
four from the MHI (Carlton and Eldrige 2009; Cox 
et al 2013; LaValle et al. 2020; Fuller et al. 2024). 
This was complimented by a species list from the 
course “Quantitative Underwater Ecological Sur-
veying Techniques” (QUEST), taught to research 
divers at the University of Hawai‘i and tailored by 
phycologists over the last nearly 50 years to include 
the commonest species encountered in Hawai‘i 
(Table  1). All species observed in the five field 
studies and listed in QUEST were included, and two 
species (Centroceras clavulatum and Dictyopteris 
australis) were added due to personal observations 
of the authors, although not listed in the described 
studies. Three species were excluded (Caulerpella 
ambigua, Jania sp, and Wrangelia elegantissima) 
because literature data (e.g. growth rate, salin-
ity tolerance, depth preferences, palatability) were 
lacking for a majority of the chosen traits. This 
resulted in a total of 96 macrophytes; 39 belong-
ing to rhodophyta, 22 belonging to phaeophyceae, 
30 belonging to chlorophyta, one species of ochro-
phyta, three cyanobacteria and one seagrass species 
(Table 1). Of these, eight were non-native, 87 were 
putatively native to Hawai‘i (Carlton and Eldredge 



 M. Eggertsen et al.148 Page 4 of 22

Vol:. (1234567890)

Ta
bl

e 
1 

 T
he

 m
ac

ro
ph

yt
e 

sp
ec

ie
s 

th
at

 w
er

e 
in

cl
ud

ed
 in

 th
e 

stu
dy

. “
O

rig
in

 a
nd

 in
va

si
ve

 p
ot

en
tia

l”
 d

es
cr

ib
es

 if
 a

 s
pe

ci
es

 is
 n

at
iv

e 
to

 H
aw

ai
‘i 

or
 n

ot
 a

nd
 “

Re
fe

re
nc

e 
oc

cu
rr

en
ce

” 
de

no
te

s w
hi

ch
 st

ud
y 

th
e 

sp
ec

ie
s i

n 
qu

es
tio

n 
w

as
 d

er
iv

ed
 fr

om

Ph
yl

a
Sp

ec
ie

s
O

rig
in

 a
nd

 in
va

si
ve

 p
ot

en
tia

l
Re

fe
re

nc
e 

or
ig

in
Re

fe
re

nc
e 

oc
cu

rr
en

ce

R
ho

do
ph

yt
a

Ac
an

th
op

ho
ra

 p
ac

ifi
ca

N
at

iv
e

K
ra

ft 
(1

97
9)

, H
ui

sm
an

 e
t a

l. 
(2

00
7)

C
ox

 e
t a

l. 
(2

01
3)

, L
aV

al
le

 e
t a

l. 
(2

02
0)

, 
Fu

lle
r e

t a
l. 

(2
02

4)
; Q

U
ES

T
Ac

an
th

op
ho

ra
 sp

ic
ife

ra
In

va
si

ve
 n

on
-n

at
iv

e
D

ot
y 

(1
96

1)
, K

ra
ft 

(1
97

9)
, S

m
ith

 e
t a

l. 
(2

00
2)

Sm
ith

 e
t a

l (
20

02
), 

C
ar

lto
n 

an
d 

El
dr

ig
e 

(2
00

9)
Am

an
si

a 
gl

om
er

at
a

N
at

iv
e

A
ga

rd
h 

(1
82

2)
, R

oc
k 

(1
91

3)
, A

bb
ot

t 
(1

99
9)

, H
ui

sm
an

 e
t a

l. 
(2

00
7)

Q
U

ES
T

As
pa

ra
go

ps
is

 ta
xi

fo
rm

is
N

at
iv

e
C

ha
m

be
rla

in
 (1

88
0)

, A
bb

ot
t (

19
84

), 
A

bb
ot

t (
19

99
), 

H
ui

sm
an

 e
t a

l. 
(2

00
7)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
, C

ox
 e

t a
l. 

(2
01

3)
, Q

U
ES

T
Bo

tr
yo

cl
ad

ia
 sk

ot
ts

be
rg

ii
N

at
iv

e
M

ag
ru

de
r a

nd
 H

un
t (

19
79

), 
H

ui
sm

an
 

et
 a

l. 
(2

00
7)

C
ox

 e
t a

l. 
(2

01
3)

C
en

tro
ce

ra
s c

la
vu

la
tu

m
N

at
iv

e
C

ha
m

be
rla

in
 (1

88
0)

, S
et

ch
el

l (
19

05
), 

A
bb

ot
t (

19
99

), 
H

ui
sm

an
 e

t a
l. 

(2
00

7)
Th

is
 st

ud
y

C
ho

nd
ri

a 
tu

m
ul

os
a

In
va

si
ve

 n
on

-n
at

iv
e

Sh
er

w
oo

d 
et

 a
l. 

(2
02

0)
Sh

er
w

oo
d 

et
 a

l. 
(2

02
0)

D
as

ya
 ir

id
es

ce
ns

N
at

iv
e

Sc
hl

ec
h 

(1
99

0)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

; Q
ue

st
D

ic
ho

to
m

ar
ia

 m
ar

gi
na

ta
N

at
iv

e
B

ut
te

rs
 (1

91
1)

, P
ap

en
fu

ss
 e

t a
l. 

(1
98

2)
Fu

lle
r e

t a
l. 

(2
02

4)
; Q

U
ES

T
D

ud
re

sn
ay

a 
ha

wa
iie

ns
is

N
at

iv
e

Le
e 

(1
96

3)
, R

ob
in

s a
nd

 K
ra

ft 
(1

98
5)

, 
A

bb
ot

t (
19

99
), 

H
ui

sm
an

 e
t a

l. 
(2

00
7)

Th
is

 st
ud

y

Eu
ch

eu
m

a 
de

nt
ic

ul
at

um
In

va
si

ve
 n

on
-n

at
iv

e
G

le
nn

 a
nd

 D
ot

y 
(1

98
1)

, A
bb

ot
t (

19
99

), 
Sm

ith
 e

t a
l. 

(2
00

2)
Sm

ith
 e

t a
l. 

(2
00

2)
, C

ar
lto

n 
an

d 
El

dr
ig

e 
(2

00
9)

G
al

ax
au

ra
 ru

go
sa

N
at

iv
e

M
ag

ru
de

r a
nd

 H
un

t (
19

79
), 

A
bb

ot
t 

(1
99

9)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

, C
ox

 e
t a

l. 
(2

01
3)

G
an

on
em

a 
fa

ri
no

su
m

N
at

iv
e

A
bb

ot
t (

19
45

, 1
98

4)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

G
ib

sm
ith

ia
 h

aw
ai

ie
ns

is
N

at
iv

e
D

ot
y 

(1
96

3)
, M

ag
ru

de
r a

nd
 H

un
t (

19
79

), 
H

ui
sm

an
 e

t a
l. 

(2
00

7)
Q

U
ES

T

G
ra

ci
la

ri
a 

co
rn

op
ifo

lia
N

at
iv

e
H

ar
ve

y 
an

d 
B

ai
le

y 
(1

85
1)

, A
ga

rd
h 

(1
85

2)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
Q

U
ES

T

G
ra

ci
la

ri
a 

sa
lic

or
ni

a
In

va
si

ve
 n

on
-n

at
iv

e
A

bb
ot

t (
19

99
), 

Sm
ith

 e
t a

l. 
(2

00
2,

 2
00

4)
Sm

ith
 e

t a
l. 

(2
00

2)
, C

ar
lto

n 
an

d 
El

dr
eg

e 
(2

00
9)

, C
ox

 e
t a

l. 
(2

01
3)

, F
ul

le
r e

t a
l. 

(2
02

4)
; Q

U
ES

T
G

ra
ci

la
ri

a 
tik

va
hi

ae
In

va
si

ve
 n

on
-n

at
iv

e
A

bb
ot

t (
19

87
), 

A
bb

ot
t (

19
99

), 
C

ar
lto

n 
an

d 
El

dr
ed

ge
 (2

00
9)

C
ar

lto
n 

an
d 

El
dr

ed
ge

 (2
00

9)

G
ra

te
lo

up
ia

 fi
lic

in
a

N
at

iv
e

C
ha

m
be

rla
in

 (1
88

0)
, S

et
ch

el
l (

19
05

), 
H

ui
sm

an
 e

t a
l. 

(2
00

7)
Q

U
ES

T

G
ym

no
go

ng
ru

s d
ur

vi
lle

i
N

at
iv

e
A

ga
rd

h 
(1

84
7)

, A
bb

ot
t (

19
99

), 
H

ui
sm

an
 

et
 a

l. 
(2

00
7)

Fu
lle

r e
t a

l. 
(2

02
4)

; Q
U

ES
T



Non‑native ecologically successful algae in the Hawaiian archipelago have highly competitive… Page 5 of 22 148

Vol.: (0123456789)

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ph
yl

a
Sp

ec
ie

s
O

rig
in

 a
nd

 in
va

si
ve

 p
ot

en
tia

l
Re

fe
re

nc
e 

or
ig

in
Re

fe
re

nc
e 

oc
cu

rr
en

ce

H
al

op
le

gm
a 

du
pe

rr
ey

i
N

at
iv

e
D

ot
y 

et
 a

l. 
(1

97
4)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
H

al
ym

en
ia

 sp
p

N
at

iv
e

C
ha

m
be

rla
in

 ()
, R

oc
k 

(1
91

3)
Q

U
ES

T

H
yp

ne
a 

ce
rv

ic
or

ni
s

N
at

iv
e

M
sh

ig
en

i (
19

78
), 

A
bb

ot
t (

19
81

)
C

ox
 e

t a
l. 

(2
01

3)

H
yp

ne
a 

ch
or

da
ce

a
N

at
iv

e
M

sh
ig

en
i (

19
78

), 
M

ag
ru

de
r a

nd
 H

un
t 

(1
97

9)
C

ox
 e

t a
l. 

(2
01

3)

H
yp

ne
a 

m
us

ci
fo

rm
is

In
va

si
ve

 n
on

-n
at

iv
e

A
bb

ot
t (

19
87

), 
Sm

ith
 e

t a
l. 

(2
00

2)
, V

er
-

m
ei

j e
t a

l. 
(2

00
9)

C
ox

 e
t a

l. 
(2

01
3)

, F
ul

le
r e

t a
l. 

(2
02

4)
; 

Q
U

ES
T

K
al

ly
m

en
ia

 th
om

ps
on

ii
N

at
iv

e
A

bb
ot

t a
nd

 M
cD

er
m

id
 (2

00
2

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)

K
ap

pa
ph

yc
us

 a
lv

ar
ez

ii
In

va
si

ve
 n

on
-n

at
iv

e
D

ot
y 

(1
98

5)
, A

bb
ot

t (
19

99
), 

Sm
ith

 e
t a

l. 
(2

00
2)

C
ar

lto
n 

an
d 

El
dr

ed
ge

 (2
00

9)
, F

ul
le

r e
t a

l. 
(2

02
4)

La
ur

en
ci

a 
de

nd
ro

id
ea

N
at

iv
e

Ts
ud

a 
(1

96
5)

, A
bb

ot
t (

19
99

), 
H

ui
sm

an
 

et
 a

l. 
(2

00
7)

Th
is

 st
ud

y;
 V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

La
ur

en
ci

a 
m

cd
er

m
id

ae
N

at
iv

e
M

cD
er

m
id

 (1
98

8)
, S

m
ith

 (1
99

2)
C

ox
 e

t a
l. 

(2
01

3)

Li
ag

or
a 

sp
p 

(L
ia

go
ra

 d
iv

ar
ic

at
a/

pe
re

n-
ni

s)
N

at
iv

e
A

bb
ot

t (
19

99
), 

H
ui

sm
an

 e
t a

l. 
(2

00
7)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
; Q

U
ES

T

M
ar

te
ns

ia
 h

aw
ai

ie
ns

is
N

at
iv

e
Sh

er
w

oo
d 

et
 a

l. 
(2

01
9)

Q
U

ES
T

M
ar

te
ns

ia
 ts

ud
ae

N
at

iv
e

Sh
er

w
oo

d 
et

 a
l. 

(2
01

9)
Q

U
ES

T

Pe
ys

so
nn

el
ia

 sp
p

N
at

iv
e

D
ic

ki
e 

(1
87

7)
, L

em
m

er
m

an
n 

(1
90

5)
, 

M
ag

ru
de

r a
nd

 H
un

t (
19

79
)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0

Po
rt

ie
ri

a 
ho

rn
em

an
ni

i
N

at
iv

e
C

ha
m

be
rla

in
 (1

88
0,

 1
88

1)
, T

su
da

 (1
96

5)
, 

A
bb

ot
t (

19
99

), 
H

ui
sm

an
 e

t a
l. 

(2
00

7)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

; Q
U

ES
T

Pr
ed

ae
a 

we
ld

ii
N

at
iv

e
K

ra
ft 

an
d 

A
bb

ot
t (

19
71

), 
H

ui
sm

an
 e

t a
l. 

(2
00

7)
Q

U
ES

T

Pt
er

oc
la

di
el

la
 c

ae
ru

le
sc

en
s

N
at

iv
e

Re
ed

 (1
90

7)
, M

ac
C

au
gh

ey
 (1

91
8)

, 
A

bb
ot

t (
19

99
), 

H
ui

sm
an

 e
t a

l. 
(2

00
7)

C
ox

 e
t a

l. 
(2

01
3)

; Q
U

ES
T

Pt
er

oc
la

di
el

la
 c

ap
ill

ac
ea

N
at

iv
e

Re
ed

 (1
90

7)
, A

bb
ot

t (
19

99
), 

H
ui

sm
an

 
et

 a
l. 

(2
00

7)
C

ox
 e

t a
l. 

(2
01

3)
; Q

U
ES

T

Ra
m

ic
ru

st
a 

ha
wa

iie
ns

is
N

at
iv

e
Sh

er
w

oo
d 

et
 a

l. 
(2

02
1)

Fu
lle

r e
t a

l. 
(2

02
4)

To
ly

pi
oc

la
di

a 
gl

om
er

ul
at

a
N

at
iv

e
D

ot
y 

et
 a

l. 
(1

97
4)

Q
U

ES
T

Tr
ic

ho
gl

oe
a 

re
qu

ie
ni

i
N

at
iv

e
Pa

pe
nf

us
s (

19
46

), 
H

ui
sm

an
 e

t a
l. 

(2
00

7)
C

ox
 e

t a
l. 

(2
01

3)
; Q

U
ES

T
Ph

ae
op

hy
ce

ae
As

te
ro

ne
m

a 
br

ev
ia

rt
ic

ul
at

um
N

at
iv

e
Ts

ud
a 

(1
96

5)
, R

av
an

ko
 (1

97
0)

C
ox

 e
t a

l. 
(2

01
3)

C
hn

oo
sp

or
a 

im
pl

ex
a

N
at

iv
e

A
ga

rd
h 

(1
84

8)
, L

em
m

er
m

an
n 

(1
90

5)
, 

M
ag

ru
de

r a
nd

 H
un

t (
19

79
)

C
ox

 e
t a

l. 
(2

01
3)



 M. Eggertsen et al.148 Page 6 of 22

Vol:. (1234567890)

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ph
yl

a
Sp

ec
ie

s
O

rig
in

 a
nd

 in
va

si
ve

 p
ot

en
tia

l
Re

fe
re

nc
e 

or
ig

in
Re

fe
re

nc
e 

oc
cu

rr
en

ce

C
ol

po
m

en
ia

 si
nu

os
a

N
at

iv
e

C
ha

m
be

rla
in

 (1
88

0)
, A

bb
ot

t a
nd

 H
ui

sm
an

 
(2

00
4)

C
ox

 e
t a

l. 
(2

01
3)

; Q
U

ES
T

D
ic

ty
op

te
ri

s a
us

tra
lis

N
at

iv
e

C
ha

m
be

rla
in

 (1
88

0)
, A

bb
ot

t a
nd

 H
ui

sm
an

 
(2

00
4)

, H
ui

sm
an

 e
t a

l. 
(2

00
7)

Th
is

 st
ud

y

D
ic

ty
ot

a 
ac

ut
ilo

ba
N

at
iv

e
A

ga
rd

h 
(1

84
8)

, R
oc

k 
(1

91
3)

, A
bb

ot
t a

nd
 

H
ui

sm
an

 (2
00

4)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
C

ox
 e

t a
l. 

(2
01

3)
, F

ul
le

r e
t a

l. 
(2

02
4)

D
ic

ty
ot

a 
ce

yl
an

ic
a

N
at

iv
e

Se
tc

he
ll 

(1
90

5)
, M

ag
ru

de
r a

nd
 H

un
t 

(1
97

9)
, A

bb
ot

t a
nd

 H
ui

sm
an

 (2
00

4)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

D
ic

ty
ot

a 
fr

ia
bi

lis
N

at
iv

e
Ti

ld
en

 (1
90

1)
, T

su
da

 (1
96

5)
, A

ge
gi

an
 a

nd
 

A
bb

ot
t (

19
85

)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

D
ic

ty
ot

a 
sa

nd
vi

ch
en

si
s

N
at

iv
e

A
ga

rd
h 

(1
84

8)
, R

ee
d 

(1
90

7)
, M

ag
ru

de
r 

an
d 

H
un

t (
19

79
)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
, C

ox
 e

t a
l. 

(2
01

3)

D
is

tro
m

iu
m

 fl
ab

el
la

tu
m

N
at

iv
e

A
bb

ot
t a

nd
 H

ui
sm

an
 (2

00
4)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
H

yd
ro

cl
at

hr
us

 c
la

th
ra

th
us

N
at

iv
e

C
ha

m
be

rla
in

 (1
88

0)
, T

su
da

 (1
96

5)
, 

M
ag

ru
de

r a
nd

 H
un

t (
19

79
)

C
ox

 e
t a

l. 
(2

01
3)

; Q
U

ES
T

Lo
bo

ph
or

a 
ob

sc
ur

a
N

at
iv

e
Ti

ld
en

 (1
90

1)
, T

su
da

 (1
96

5)
, A

ge
gi

an
 a

nd
 

A
bb

ot
t (

19
85

)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

, C
ox

 e
t a

l. 
(2

01
3)

, F
ul

le
r e

t a
l. 

(2
02

4)
; Q

U
ES

T
Pa

di
na

 a
us

tra
lis

N
at

iv
e

M
ag

ru
de

r a
nd

 H
un

t (
19

79
), 

A
bb

ot
t a

nd
 

H
ui

sm
an

 (2
00

4)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
Fu

lle
r e

t a
l. 

(2
02

4)

Pa
di

na
 sa

nc
ta

e-
cr

uc
is

N
at

iv
e

M
ag

ru
de

r a
nd

 H
un

t (
19

79
), 

A
bb

ot
t a

nd
 

H
ui

sm
an

 (2
00

4)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
H

ui
sm

an
 e

t a
l. 

(2
00

7)
, V

ro
om

 a
nd

 B
ra

un
 

(2
01

0)
; Q

U
ES

T
Pa

di
na

 th
iv

ya
e

N
at

iv
e

D
ot

y 
an

d 
N

ew
ho

us
e 

(1
96

6)
, M

ag
ru

de
r 

an
d 

H
un

t (
19

79
), 

H
ui

sm
an

 e
t a

l. 
(2

00
7)

H
ui

sm
an

 e
t a

l. 
(2

00
7)

, V
ro

om
 a

nd
 B

ra
un

 
(2

01
0)

; Q
U

ES
T

Sa
rg

as
su

m
 a

qu
ifo

liu
m

N
at

iv
e

M
ag

ru
de

r (
19

88
), 

A
bb

ot
t a

nd
 H

ui
sm

an
 

(2
00

4)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
Fu

lle
r e

t a
l. 

(2
02

4)
; Q

U
ES

T

Sa
rg

as
su

m
 o

bt
us

ifo
liu

m
N

at
iv

e
G

au
di

ch
au

d 
(1

82
6)

, M
ag

ud
er

 (1
98

8)
Fu

lle
r e

t a
l. 

(2
02

4)
; Q

U
ES

T
Sa

rg
as

su
m

 p
ol

yp
hy

llu
m

N
at

iv
e

G
au

di
ch

au
d 

(1
82

6)
, M

ag
ru

de
r (

19
88

), 
A

bb
ot

t a
nd

 H
ui

sm
an

 (2
00

4)
, H

ui
sm

an
 

et
 a

l. 
(2

00
7)

Q
U

ES
T

Sp
ha

ce
la

ri
a 

no
va

e-
ho

lla
nd

ia
e

N
at

iv
e

A
ge

gi
an

 a
nd

 A
bb

ot
t (

19
85

), 
H

ui
sm

an
 

et
 a

l. 
(2

00
7)

H
ui

sm
an

 e
t a

l. 
(2

00
7)

, C
ox

 e
t a

l. 
(2

01
3)

Sp
ha

ce
la

ri
a 

ri
gi

du
la

N
at

iv
e

Ti
ld

en
 (1

90
1)

, T
su

da
 (1

96
5)

, H
ui

sm
an

 
et

 a
l. 

(2
00

7)
H

ui
sm

an
 e

t a
l. 

(2
00

7)
, C

ox
 e

t a
l. 

(2
01

3)

Sp
ha

ce
la

ri
a 

tr
ib

ul
oi

de
s

N
at

iv
e

Ti
ld

en
 (1

90
1)

, T
su

da
 (1

96
5)

, H
ui

sm
an

 
et

 a
l. 

(2
00

7)
H

ui
sm

an
 e

t a
l. 

(2
00

7)
, C

ox
 e

t a
l. 

(2
01

3)



Non‑native ecologically successful algae in the Hawaiian archipelago have highly competitive… Page 7 of 22 148

Vol.: (0123456789)

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ph
yl

a
Sp

ec
ie

s
O

rig
in

 a
nd

 in
va

si
ve

 p
ot

en
tia

l
Re

fe
re

nc
e 

or
ig

in
Re

fe
re

nc
e 

oc
cu

rr
en

ce

St
yp

op
od

iu
m

 fl
ab

el
lif

or
m

e
N

at
iv

e
D

ot
y 

an
d 

N
ew

ho
us

e 
(1

96
6)

, D
ot

y 
et

 a
l. 

(1
97

4)
, M

ag
ru

de
r a

nd
 H

un
t (

19
79

), 
H

ui
sm

an
 e

t a
l. 

(2
00

7)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
; Q

U
ES

T

Tu
rb

in
ar

ia
 o

rn
at

a
N

at
iv

e
A

ga
rd

h 
(1

84
8)

, T
ild

en
 (1

90
1)

, T
su

da
 

(1
96

5)
, A

bb
ot

t a
nd

 H
ui

sm
an

 (2
00

4)
, 

H
ui

sm
an

 e
t a

l. 
(2

00
7)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
, L

aV
al

le
 e

t a
l. 

(2
02

0)
, F

ul
le

r e
t a

l. 
(2

02
4)

; Q
U

ES
T

C
hl

or
op

hy
ta

Av
ra

in
vi

lle
a 

er
ec

ta
In

va
si

ve
 n

on
-n

at
iv

e
W

ad
e 

et
 a

l. 
(2

01
8)

, S
he

rw
oo

d 
an

d 
G

ui
ry

 
(2

02
3a

, b
)

Q
U

ES
T

Av
ra

in
vi

lle
a 

la
ce

ra
ta

In
va

si
ve

 n
on

-n
at

iv
e

B
ro

sto
ff 

(1
98

9)
, v

an
 d

e 
Ve

rg
 a

nd
 S

m
ith

 
(2

02
2)

, T
ho

rn
to

n 
et

 a
l. 

(2
02

4)
Fu

lle
r e

t a
l. 

(2
02

4)

Bo
od

le
a 

co
m

po
si

ta
W

ee
dy

 n
at

iv
e

C
ha

m
be

rla
in

 (1
88

0,
 1

88
1)

, S
et

ch
el

l 
(1

92
6)

, H
ui

sm
an

 e
t a

l. 
(2

00
7)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)

Bo
rn

et
el

la
 sp

ha
er

ic
a

N
at

iv
e

Eg
er

od
 (1

95
2)

, T
su

da
 (1

96
5)

, M
ag

ru
de

r 
an

d 
H

un
t (

19
79

), 
A

bb
ot

t a
nd

 H
ui

sm
an

 
(2

00
4)

C
ox

 e
t a

l. 
(2

01
3)

Br
yo

ps
is

 p
en

na
ta

N
at

iv
e

C
ha

m
be

rla
in

 (1
88

0)
, T

su
da

 (1
96

5)
, 

A
bb

ot
t a

nd
 H

ui
sm

an
 (2

00
4)

, H
ui

sm
an

 
et

 a
l. 

(2
00

7)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
; Q

U
ES

T

C
au

le
rp

a 
ra

ce
m

os
a

N
at

iv
e

C
ha

m
be

rla
in

 (1
88

0)
, E

ub
an

k 
(1

94
6)

, 
A

ge
gi

an
 a

nd
 A

bb
ot

t (
19

85
), 

A
bb

ot
t a

nd
 

H
ui

sm
an

 (2
00

4)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
; Q

U
ES

T

C
au

le
rp

a 
se

rr
ul

at
a

N
at

iv
e

H
ow

e 
(1

93
4)

, E
ub

an
k 

(1
94

6)
, T

su
da

 
(1

96
5)

, A
bb

ot
t (

19
84

)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0

C
au

le
rp

a 
se

rt
ul

ar
io

id
es

N
at

iv
e

Eu
ba

nk
 (1

94
6)

, M
ag

ru
de

r a
nd

 H
un

t 
(1

97
9)

, A
bb

ot
t a

nd
 H

ui
sm

an
 (2

00
4)

, 
H

ui
sm

an
 e

t a
l. 

(2
00

7)

Fu
lle

r e
t a

l. 
(2

02
4)

; Q
U

ES
T

C
au

le
rp

a 
ta

xi
fo

lia
N

at
iv

e
C

ha
m

be
rla

in
 (1

88
0)

, L
em

m
er

m
an

n 
(1

90
5)

, E
ub

an
k 

(1
94

6)
, M

ag
ru

de
r a

nd
 

H
un

t (
19

79
), 

A
bb

ot
t a

nd
 H

ui
sm

an
 

(2
00

4)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
, F

ul
le

r e
t a

l. 
(2

02
4)

; Q
U

ES
T

C
au

le
rp

a 
we

bb
ia

na
N

at
iv

e
Eu

ba
nk

 (1
94

6)
, T

su
da

 (1
96

5)
, A

bb
ot

t a
nd

 
H

ui
sm

an
 (2

00
4)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)

C
ha

et
om

or
ph

a 
an

te
nn

in
a

N
at

iv
e

Ti
ld

en
 (1

90
1)

, R
ee

d 
(1

90
7)

, T
su

da
 

(1
96

5)
, A

bb
ot

t a
nd

 H
ui

sm
an

 (2
00

4
Fu

lle
r e

t a
l. 

(2
02

4)

C
la

do
ph

or
a 

se
ri

ce
a

N
at

iv
e

A
bb

ot
t a

nd
 H

ui
sm

an
 (2

00
4)

, S
m

ith
 e

t a
l. 

(2
00

5)
Q

U
ES

T

C
od

iu
m

 a
ra

bi
cu

m
N

at
iv

e
Ti

ld
en

 (1
90

1)
, R

ee
d 

(1
90

7)
, T

su
da

 
(1

96
5)

, A
bb

ot
t (

19
89

)
Fu

lle
r e

t a
l. 

(2
02

4)



 M. Eggertsen et al.148 Page 8 of 22

Vol:. (1234567890)

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ph
yl

a
Sp

ec
ie

s
O

rig
in

 a
nd

 in
va

si
ve

 p
ot

en
tia

l
Re

fe
re

nc
e 

or
ig

in
Re

fe
re

nc
e 

oc
cu

rr
en

ce

C
od

iu
m

 e
du

le
N

at
iv

e
Eg

er
od

 (1
95

2)
, T

su
da

 (1
96

5)
, A

bb
ot

t a
nd

 
H

ui
sm

an
 (2

00
4)

C
ox

 e
t a

l. 
(2

01
3)

, V
ro

om
 a

nd
 B

ra
un

 
(2

01
0)

; Q
U

ES
T

C
od

iu
m

 re
ed

ia
e

N
at

iv
e

C
ha

m
be

rla
in

 (1
88

0)
, E

ge
ro

d 
(1

95
2)

, 
A

bb
ot

t a
nd

 H
ui

sm
an

 (2
00

4)
, H

ui
sm

an
 

et
 a

l. 
(2

00
7)

Q
U

ES
T

D
ic

ty
os

ph
ae

ri
a 

ca
ve

rn
os

a
W

ee
dy

 n
at

iv
e

C
ha

m
be

rla
in

 (1
88

0)
, T

ild
en

 (1
90

1)
, 

Eg
er

od
 (1

95
2)

, T
su

da
 (1

96
5)

, S
tim

so
n 

et
 a

l. 
(2

00
1)

, A
bb

ot
t a

nd
 H

ui
sm

an
 

(2
00

4)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
, C

ox
 e

t a
l. 

(2
01

3)
, F

ul
le

r e
t a

l. 
(2

02
4)

; Q
U

ES
T

D
ic

ty
os

ph
ae

ri
a 

ve
rs

lu
sy

ii
N

at
iv

e
Se

tc
he

ll 
(1

92
6)

, H
ow

e 
(1

93
4)

, E
ge

ro
d 

(1
95

2)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

, C
ox

 e
t a

l. 
(2

01
3)

, F
ul

le
r e

t a
l. 

(2
02

4)
; Q

U
ES

T
H

al
im

ed
a 

di
sc

oi
de

a
N

at
iv

e
H

ow
e 

(1
93

4)
, E

ge
ro

d 
(1

95
2)

, A
bb

ot
t a

nd
 

H
ui

sm
an

 (2
00

4)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

, C
ox

 e
t a

l. 
(2

01
3)

, F
ul

le
r e

t a
l. 

(2
02

4)
; Q

U
ES

T
H

al
im

ed
a 

di
st

or
ta

N
at

iv
e

Ts
ud

a 
(2

01
4)

, S
he

rw
oo

d 
an

d 
G

ui
ry

 
(2

02
3a

, b
)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)

H
al

im
ed

a 
gr

ac
ili

s
N

at
iv

e
G

ilb
er

t (
19

62
), 

A
bb

ot
t a

nd
 H

ui
sm

an
 

(2
00

4)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

H
al

im
ed

a 
ka

na
lo

an
a

N
at

iv
e

Ve
rb

ru
gg

en
 e

t a
l. 

(2
00

6)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
Q

U
ES

T

H
al

im
ed

a 
op

un
tia

N
at

iv
e

D
ic

ki
e 

(1
87

7)
, L

em
m

er
m

an
n 

(1
90

5)
, 

H
ow

e 
(1

93
4)

, M
ag

ru
de

r a
nd

 H
un

t 
(1

97
9)

, A
bb

ot
t a

nd
 H

ui
sm

an
 (2

00
4)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
, F

ul
le

r e
t a

l. 
(2

02
4)

; Q
U

ES
T

H
al

im
ed

a 
ve

la
sq

ue
zi

i
N

at
iv

e
A

bb
ot

t (
19

89
), 

A
bb

ot
t a

nd
 H

ui
sm

an
 

(2
00

4)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

M
ic

ro
di

ct
yo

n 
se

tc
he

lli
an

um
N

at
iv

e
Eg

er
od

 (1
95

2)
, A

bb
ot

t (
19

89
), 

A
bb

ot
t a

nd
 

H
ui

sm
an

 (2
00

4)
, H

ui
sm

an
 e

t a
l. 

(2
00

7)
V

ro
om

 a
nd

 B
ra

un
 (2

01
0)

, C
ox

 e
t a

l. 
(2

01
3)

; L
aV

al
le

 e
t a

l. 
(2

02
0)

; Q
U

ES
T

Ne
om

er
is

 a
nn

ul
at

a
N

at
iv

e
Eg

er
od

 (1
95

2)
, A

bb
ot

t a
nd

 H
ui

sm
an

 
(2

00
4)

, H
ui

sm
an

 e
t a

l. 
(2

00
7)

V
ro

om
 a

nd
 B

ra
un

 (2
01

0)
, C

ox
 e

t a
l. 

(2
01

3)
; Q

U
ES

T
U

lv
a 

fle
xu

os
a

N
at

iv
e

Le
m

m
er

m
an

n 
(1

90
5)

, R
ee

d 
(1

90
7)

, T
su

da
 

(1
96

5)
, A

bb
ot

t a
nd

 H
ui

sm
an

 (2
00

4)
C

ox
 e

t a
l. 

(2
01

3)

U
lv

a 
la

ct
uc

a
W

ee
dy

 n
at

iv
e

G
au

di
ch

au
d 

(1
82

6)
, T

ild
en

 (1
90

1)
, 

A
bb

ot
t a

nd
 H

ui
sm

an
 (2

00
4)

, H
ui

sm
an

 
et

 a
l. 

(2
00

7)
, D

ai
le

r e
t a

l. 
(2

01
2)

C
ox

 e
t a

l. 
(2

01
3)

; Q
U

ES
T

U
lv

a 
pr

ol
ife

ra
N

at
iv

e
Ti

ld
en

 (1
90

1)
, R

ee
d 

(1
90

7)
, A

bb
ot

t a
nd

 
H

ui
sm

an
 (2

00
4)

Fu
lle

r e
t a

l. 
(2

02
4)

; Q
U

ES
T

U
lv

a 
re

tic
ul

at
a

N
at

iv
e

G
ilb

er
t (

19
62

), 
D

ot
y 

et
 a

l. 
(1

97
4)

, 
M

ag
ru

de
r a

nd
 H

un
t (

19
79

), 
A

bb
ot

t a
nd

 
H

ui
sm

an
 (2

00
4)

C
ox

 e
t a

l. 
(2

01
3)



Non‑native ecologically successful algae in the Hawaiian archipelago have highly competitive… Page 9 of 22 148

Vol.: (0123456789)

2009) and one, C. tumulosa, was cryptogenic (i.e., 
of unknown origin). We use the US Federal Govern-
ment definition of an invasive species, which states 
that an invasive species is “a species not native to 
the region or area whose introduction (by humans) 
causes or is likely to cause harm to the economy or 
the environment, or harms animal or human health.” 
(National Invasive Species Council 2005). Although 
this definition does not categorize C. tumulosa as 
an invasive because of its unknown origin, we have 
chosen to include it in the invasive group, consid-
ering its highly invasive characteristics and its sud-
den appearance in the PMNM, among other traits 
as likely indications of non-native status (see Carl-
ton and Schwindt 2024). Species of native status 
that displayed invasive characteristics were termed 
“weedy” instead of “invasive”. Liagora divaricata 
and L. perennis were pooled because these species 
are highly similar in habitat preferences, ecology 
and in physical appearance (Huisman et  al. 2007), 
making field identifications uncertain.

Chondria tumulosa displays extreme weedy char-
acteristics and is currently only known from the 
PMNM (Sherwood et  al. 2020). This alga was first 
observed in 2016 at Manawai (Pearl and Hermes 
Atoll), exhibiting a thick, mat-like morphology, 
smothering and killing underlying flora and fauna 
(Sherwood et  al. 2020; Lopes et  al. 2023). The spe-
cies is now established at Kuaihelani and Hōlanikū 
to the northwest of Manawai (Lopes et  al. 2023). 
Despite the biogeographic barrier just to the southeast 
of Manawai (Toonen et al. 2011; Fumo and Sherwood 
2023), it remains possible that this alga is capable of 
dispersal into the MHI (Fumo et al. 2024). The intro-
duction of C. tumulosa in the MHI would likely have 
negative ecological effects on local flora and fauna, 
due to its weedy and invasive characteristics (Sher-
wood et al. 2020; Fumo et al. 2024).

The additional macrophytes were selected based 
on their common occurrence around O‘ahu and their 
presence across diverse habitats. This selection cri-
terion draws from terrestrial plant ecology studies, 
which demonstrate that abundant species exert a dis-
proportionately large influence on ecosystem func-
tioning (Gaston 2010; Kaushik et  al. 2022). Moreo-
ver, common species often play a key role in defining 
and shaping ecosystems, because their abundance 
makes them ecologically significant, as they con-
tribute substantially to both ecosystem structure and Ta
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functions (Smith and Knapp 2003; Gaston and Fuller 
2008).

A total of 15 functional traits (both continu-
ous and categorical) were selected, mainly based on 
the review by Nyberg and Wallentinus (2005) who 
applied functional traits to predict an invasive poten-
tial for an alga. Data for all traits included in the study 
were drawn from literature (Table 2, Online Resource 
1). For species where no literature data was available 
for the specific traits, assumption-based data from 
related species were used (Online Resource 1). When 
information for a specific trait was missing without 
possibilities to extrapolate from other species, that 
trait category was excluded from the study. Func-
tional traits were assigned to two different categories 
depending on type; (1) traits related to habitat selec-
tion/niche occupation, and (2) species interactions 
traits. Due to the strong environmental filtering effect 
wave exposure can impose on marine organisms, 
both producers and consumers (Dayton 1975; Beja-
rano et al. 2017), and its positive impact on primary 
production (Leigh et  al 1987; Roff et  al. 2015) and 
dispersal due to fragmentation of macrophytes, the 
trait “wave exposure score”, i.e. the degree of wave 
exposure a species tolerate, was included in both cat-
egories (Table 2). Trait categorization was applied in 
order to reduce complexity of the statistical analysis 
and increase interpretation of the results, as analyzing 
all traits simultaneously may lead to masking of dis-
tinct patterns and thus less ecologically meaningful 
(Lavorel and Garnier 2002; Violle et al. 2007).

Category A, habitat selective traits, included six 
traits: “minimum salinity”, “maximum salinity”, 
“minimum depth”, “maximum depth”, “wave expo-
sure” and “substrate”, which all describe occupied 
habitat/niche. Category B, species interaction traits, 
included nine traits. “Reproductive score” is linked 
to a species’ ability to disperse and increase its pres-
ence in a location. For this trait, data was binned in 
intervals depending on life history, modified from 
definitions in Nyberg and Wallentinus (2005). 
“Growth strategy” corresponds to the capitalization 
of substrate by a species, “maximum size” reflects 
the ability to assimilate light and is listed as an inva-
sive trait because a large thallus can shade other, 
smaller species, allow a species to outgrow predation 
by herbivores (Briggs et al. 2018) and also translates 
to substrate capitalization (depending on vertical or 
horizontal growth). We are aware that this application 

of macrophyte size is a simplification because size 
also impacts nutrient uptake and carbon acquisition, 
(Hein et  al. 1995), relationships that were beyond 
the scope of this study to include. “Palatability” and 
“allelopathy” are both linked to competitive success, 
because top-down control induced by herbivores can 
decrease biomass of macroalgae and allelopathy may 
give species a competitive release and thus advantage 
over other species. Information about binning of these 
two traits into five categories can be found in Online 
Resource 2. “Seasonality” may impact competition 
among macrophytes because species with dramatic 
seasonal growth patterns may be displaced by species 
present year-round when resources become available 
during senescence. “Growth rate” allows a rapidly 
growing species to outgrow its competitors and effi-
ciently invade new habitats. “Morphology”, which 
here refers to functional growth form, is a widely 
used approach in ecological studies of macroalgae, 
closely linked to competition for resources such as 
nutrient uptake and light assimilation (see e.g., Littler 
and Littler 1980; Balata et al. 2011).

Statistical analyses

Ordination of macrophytes according to functional 
traits

To evaluate potential differences in functional traits 
between native and non-native macrophytes and how 
C. tumulosa might fit into the picture, a principal 
coordinate analysis (PCoA) was conducted.

All 96 macrophyte species were included and 
grouped according to origin (native or non-native) 
(Table  1). Chondria tumulosa was grouped in the 
non-native category, due to its invasive characteristics 
(Sherwood et al. 2020), hereafter called the invasive 
group. Two separate analyses were conducted, one 
for each category of traits (A and B, Table  2). The 
first analysis included “minimum salinity” (continu-
ous), “maximum salinity” (continuous), “minimum 
depth” (continuous), “maximum depth” (continu-
ous), “substrate” (categorical) and “wave exposure 
score” (categorical) and the second “growth strategy 
(categorical)”, “reproductive score” (ordinal factor), 
“palatability” (ordinal factor), “allelopathy” (ordinal 
factor), “growth rate” (continuous), “size” (continu-
ous), “seasonality” (dichotomous factor) and “wave 
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Table 2  Functional traits included in the study and how they were classified in the statistical analyses. A: habitat selective trait, B: 
species’ interaction traits. A more detailed description of how the definitions were categorized can be found in Online Resource 1

Functional trait Type Range Definition Ecological significance

Minimum  salinityA Continuous 0.01–30 (psu) The minimum salinity where 
the species is found

Distribution and habitat prefer-
ences

Maximum  salinityA Continuous 33–45 (psu) The maximum salinity where 
the species is found

Distribution and habitat prefer-
ences

Minimum  depthA Continuous 0.01–10 (m) The minimum recorded depth 
of the species

Distribution and habitat prefer-
ences

Maximum  depthA Continuous 3–150 (m) The maximum recorded depth 
of the species

Distribution and habitat prefer-
ences

Wave exposure  scoreA,B Categorical 1–6 1: Low
2: Low-intermediate
3: Intermediate
4: Intermediate-high
5: High
6: Low to high wave exposure

Distribution and habitat prefer-
ences, dispersal and growth, 
herbivory escape, resource 
acquisition capabilities

SubstrateA Categorical 1–4 1: Hard (limestone and basalt)
2: Soft (psammophytic sub-

strates)
3: Hard + soft
4. Hard/soft + epiphytic

Distribution and habitat prefer-
ences

Reproductive  scoreB Ordinal 1–11 1–10 1: Dioecious gametophyte. 
Fertile only short period

2: Dioecious gametophyte. 
Fertile long/many periods

3: Monoecious gametophyte. 
Not self-fertile and only for 
short period

4: Monoecious gametophyte. 
Not self-fertile, long/many 
periods

5: Monoecious gametophyte. 
Self-fertile

6: Large part of thallus fertile 
short period

7: Large part of thallus fertile 
long/many periods

8: Asexual spores, sexual 
reproduction may or may 
not occur

9: Low/intermediate frag-
mentation rates, sexual 
reproduction may or may 
not occur

10: High fragmentation rates, 
sexual reproduction may or 
may not occur

Dispersal and growth/com-
petition with other benthic 
species
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exposure score” (categorical). Continuous variables 
were log(x + 1) transformed in order to reduce the 
risk of distances becoming skewed due to differences 
in scales among variable types (Pavoine et al. 2009).

Multidimensional functional space was computed 
using a modified Gower distance-based matrix from 
package ade4 (Dray and Dufour 2007). This type 
of Gower distance is suitable for mixed variables, 

and can also handle missing data (Pavoine et  al. 
2009), which was feasible because certain species 
were lacking data for a few trait categories. The rep-
resentation of each variable in the global distance 
was computed by using the kdist function in the 
ade4 package (Dray and Dufour 2007; Pavoine et al. 
2009). The Gower distance-based matrix was trans-
formed to Euclidian distances by Lingoes (1971) 

Table 2  (continued)

Functional trait Type Range Definition Ecological significance

Growth  strategyB Categorical/.ordinal 1–4 1: Solitary
2: Patch-forming (≤ 1 m in 

diameter)
3: Meadow-forming (psam-

mophytic species, ability 
to create stands > 1 m in 
diameter)

4: Canopy-forming (ability 
to create stands > 1 m in 
diameter)

5: Mat-forming (ability to 
create stands > 1 m in 
diameter)

Habitat occupation and com-
petition with other benthic 
species, habitat formers for 
associated species

SizeB Continuous 3–> 200 (cm) Maximum size (horizontally 
or vertically)

Resource competition (sub-
strate, sunlight, nutrients) 
and herbivory escape

PalatabilityB Ordinal 1–5 1: None
2: Low
3: Medium
4: Medium–high
5: High

Vulnerability to top-down con-
trol/functionality as foraging 
grounds for herbivores

AllelopathyB Ordinal 1–5 1: None
2: Low
3: Medium
4: Medium–high
5: High

Resource competition (e.g. for 
substrate with other benthic 
organisms) and herbivory 
escape

SeasonalityB Categorical/ordinal 0,1 0: Non-seasonal
1: Seasonal

Competition for substrate, 
habitat formers

Growth  rateB Continuous 1–16 (%) Percent biomass per day Resource competition (sub-
strate, sunlight, nutrients) 
and herbivory escape

Morphology/functional  formB Categorical 1–12 1: Coarsely branched
2: Siphonous
3: Thick leathery
4: Combined
5: Foliose
6: Gelatinous
7: Jointed calcareous
8: Hollow spherical
9: Filamentous
10: Prostrate
11: Crustose
12: Tubular

Resource competition (nutrient 
acquisition), growth, habitat 
formers for associated 
organisms, implications for 
herbivory and interactions 
with other benthic species
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transformation (Pavoine et al. 2009) and visualized 
using principal coordinates analysis (PCoA) dis-
playing the first two axis.

All statistical analyses were conducted in R ver-
sion 4.1.2 (R Core Team 2024) and figures edited in 
Inkscape 1.2 (Inkscape Developers 2022).

Results

Ordination of macrophyte species according to 
functional traits

Four of the functional traits in the habitat selective 
category; “minimum salinity”, “maximum salin-
ity”, “substrate” and “wave exposure score” had 
high correlations (> 0.5) with each other, and were 
subsequently considered to be adequately repre-
sented in the distance matrix. The first axis of the 
PCoA explained 21.8%, and the second 16.2% of the 
observed variation (Fig. 1a). Species were organized 
into clusters and invasive species were present in 
almost all clusters with the exception of Gracilaria 
salicornia, which was slightly separated from clus-
ters (Fig.  1a). Invasive species reported to be found 
growing together in previous studies were ordinated 
close to each other, such as Eucheuma denticulatum 
and Kappaphycus alvarezii, Acanthophora spicif-
era and Hypnea musciformis and Avrainvillea erecta 
and A. lacerata. Chondria tumulosa was ordinated in 
the same cluster as G. tikvahiae, an invasive species 
which is present on the MHI but not yet established 
(Fig. 1a).

In the species interaction category, the func-
tional trait “growth strategy” was the only one with 
a high (> 0.5) correlation value. Five traits had cor-
relation values > 0.3, which were “wave exposure 
score”, “morphology”, “palatability”, “seasonality” 
and “reproductive score”. The first axis of the PCoA 
explained 16.5%of the observed variation, and the 
second 11.7% (Fig.  1b). The invasive species clus-
tered together with the exception for A. erecta and 
A. lacerata, which were organized together with the 
majority of the Halimeda species (Fig.  1b). In this 
category, C. tumulosa was clustered together with the 
majority of the invasive species, which were occu-
pying a part of the distance matrix where few native 
species were found (Fig. 1b).

Discussion

Invasive macroalgae have introduced certain func-
tional traits not previously found (or rarely found) in 
the shallow water habitats in the MHI, likely linked to 
their invasive success. Moreover, there was substan-
tial overlap between the invasive and native macro-
phyte species for habitat selective traits, but less so for 
species’ interaction traits. Habitats in the MHI which 
have shifted towards invasive algal communities 
where a few highly successful traits currently domi-
nate, may experience a substantial decline in overall 
functional diversity. In the MHI, such areas are most 
common on the island of O‘ahu, on the reefs outside 
Waikīkī and Kāne‘ohe Bay bay (Smith et  al. 2004; 
Neilson et al. 2018), and in the PMNM on Manawai 
(Sherwood et al. 2020; Lopes et al 2023). The results 
illustrate how this trait-based approach can be used to 
enhance our knowledge of ecological consequences 
of future and ongoing marine algal invasions.

There was a rather large overlap in habitat selec-
tive traits of native versus invasive macrophytes. The 
only alga that did not overlap with any other mac-
rophyte was G. salicornia, probably because of this 
species’ ability to thrive in hyposaline conditions and 
grow on both soft and hard substrates. However, this 
does not imply that G. salicornia complements the 
native species pool, because it is also found in high 
densities on reefs subjected to marine conditions 
where it aggressively outcompetes local flora and 
fauna (Smith et al. 2004). Rather, this illustrates that 
some species might not be one or the other (i.e. com-
plementary or competitive), but instead capable of 
existing as both. This highlights the need to interpret 
results with caution combined with a solid ecological 
knowledge of the ecosystem in question. Considering 
the species interaction traits, overlaps between native 
and invasive algae were smaller and non-native inva-
sives were organized close to each other, indicating 
similarities. Many of the invasive species shared traits 
such as a mat-forming growth strategy, a large thal-
lus size, were non-seasonal and reproduced asexually 
by fragmentation. This aligns with our hypothesis, 
that differences in functional traits between the native 
and invasive groups are more pronounced for traits 
that are related to species interactions than for traits 
related to habitat selection.

The overlap in habitat selective traits between 
invasive and native algae illustrates that invasive 
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species in the MHI can successfully establish them-
selves across a range of habitats, where they may 

outperform native species, as indicated by the differ-
ent trait space occupied by the invasive algal group. 
This finding aligns with previous studies in plant 
ecology, where invasive species have flourished at 
the expense of native ones (MacDougall and Turking-
ton 2005). In the MHI, invasive algae can be found 
from the shoreline to mesophotic depths (~ 0 to 90 
m), on both hard and soft substrates, where they risk 
to become competitive superior (Veazey et al 2019). 
The results suggests that in areas where certain types 
of invasive algae are dominant, a substantial amount 
of functional diversity may be lost. Mat-forming 
invasive species, such as Eucheuma denticulatum, 
G. salicornia and Kappaphycus alvarezii all have 
the capacity to grow in high densities and efficiently 
outcompete other species (Kamalakannan et al. 2010; 
Martinez et  al. 2012). Consequently, the habitats 
where these species dominate can become strikingly 
dissimilar in comparison to non-invaded areas (Mar-
tinez et al. 2012; Neilson et al. 2018), and thus drive 
local seascape modifications. Such modifications 
include transformations from high-complexity sys-
tems with canopy forming macroalgae and corals to 
less complex mat-forming algae, resulting in homog-
enization of the local seascape, loss of habitat struc-
ture and potentially reduced biodiversity (Strain et al. 
2014). Thick algal mats create unfavorable micro-
habitats due to alterations of physical and chemical 
conditions beneath them, such as low oxygen condi-
tions, low irradiance and low pH values (Hauri et al. 
2010; Martinez et al. 2012). Critical ecosystem func-
tions provided by corals and macroalgae in coral reef 
ecosystems include calcium carbonate production and 
erosion, primary production in support of herbivory, 
secondary production and predation, and nutrient 
acquisition and release (Brandl et  al. 2019). Estab-
lishment of a mat-forming invasive species may com-
promise a majority of these functions, in particular if 
the invader is not consumed by herbivores, as appears 
to be the case with C. tumulosa.

A mat-forming growth strategy, especially in com-
bination with a large thallus size and rapid growth 
rates, are traits that are described from invasive spe-
cies elsewhere (Nyberg and Wallentinus 2005). Intro-
duced species with these traits should thus be a cause 
of concern because they have the potential to monop-
olize substrate, overgrow slower-growing species and 
outcompete species with a seasonal growth cycle, 
such as Sargassum spp., that once was common in 

Fig. 1  Graphical representation of ordination of all species 
derived from the principal coordinate analysis (PCoA). The 
more similar species are, based on their functional traits, the 
closer they are organized together. Plots show a habitat selec-
tive traits, and b species interaction traits. The case study spe-
cies, Chondria tumulosa, is indicated by a star, and invasive 
species are indicated by text in bold. A. paci = Acanthophora 
pacifica, A. spici = Acanthophora spicifera, A. glom = Aman-
sia glomerata, A. taxi = Asparagopsis taxiformis, A. brev = 
Asteronema breviarticulatum, A. erec = Avrainvillea erecta, A. 
lace = Avrainvillea lacerata, B. comp = Boodlea composita, B. 
spha = Bornetella sphaerica, B. skott = Botryocladia skottsber-
gii, B. penn = Bryopsis pennata, C. race = Caulerpa racemosa, 
C. serr = Caulerpa serrulata, C. sert = Caulerpa sertularoides, 
C. taxi = Caulerpa taxifolia, C. webb = Caulerpa webbiana, C. 
ante = Chaetomorpha antennina, C. clav = Centroceras cla-
vulatum, C. impl = Chnoospora implexa, C. tumu = Chondria 
tumulosa, C. frag = Chrysocystis fragilis, C. seri = Cladophora 
seriacea, C. arab = Codium arabicum, C. edul = Codium 
edule, C. reed = Codium reediae, C. sinu = Colpomenia sinu-
osa, D. irid = Dasya iridescens, D. marg = Dichotomaria mar-
ginata, D. aus = Dictyopteris australis, D. cave = Dictyospha-
eria cavernosa, D. vers = Dictyosphaeria verslusyii, D. acut = 
Dictyota acutiloba, D. ceyl = Dictyota ceylanica, D. frag = Dic-
tyota friabilis, D. sand = Dictyota sandvicensis, D. flab = Dis-
tromium flabellatum, D. hawa = Dudresnaya hawaiiensis, E. 
denti = Eucheuma denticulatum, G. rugo = Galaxaura rugosa, 
G. fari = Ganonema farinosum, G. hawa = Gibsmithia hawai-
iensis, G. coro = Gracilaria coronopifolia, G. sali = Gracilaria 
salicornia, G. tikv = Gracilaria tikvahiae, G. fili = Grateloupia 
filicina, G. durv = Gymnogongrus durvillei, H. disc = Halim-
eda discoidea, H. dist = Halimeda distorta, H. grac = Halim-
eda gracilis, H. kana = Halimeda kanaloana, H. opun = Hal-
imeda opuntia, H. vela = Halimeda velasquezii, H. hawa = 
Halophila hawaiiana, H. dupe = Haloplegma duperreyi, Haly 
sp = Halymenia sp, H. clat = Hydroclathrus clathratus, H. 
cerv = Hypnea cervicornis, H. chor = Hypnea chordacea, H. 
musc = Hypnea musciformis, K. thom = Kallymenia thomp-
sonii, K. alva = Kappaphycus alvarezii, L. dend = Laurencia 
dendroidea, L. mcde = Laurencia mcdermidae, L. cros = Lep-
tolyngbya crosbyana, Lia spp = Liagora dicaricata/perennis, L. 
obsc = Lobophora obscura, L. maju = Lyngbya majuscula, M. 
hawa = Martensia hawaiiensis, M. tsud = Martensia tsudae, M. 
setc = Microdictyon setchellianum, N. annu = Neomeris annu-
lata, P. aus = Padina australis, P. sanc = Padina sanctae-crucis, 
P. thiv = Padina thivyae, Peys sp = Peyssonnelia sp, P. horn = 
Portieria hornemannii, P. weld = Predaea weldii, P. caer = 
Pterocladiella caerulescens, P. capi = Pterocladiella capillacea, 
R. hawa = Ramicrusta hawaiiensis, S. aqui = Sargassum aqui-
folium, S. obtu = Sargassum obtusifolium, S. poly = Sargas-
sum polyphyllum, S. nova = Sphacelaria novae-hollandiae, S. 
rigi = Sphacelaria rigidula, S. tribu = Sphacelaria tribuloides, 
S. flab = Stypopodium flabelliforme, S. hydn = Symploca hyd-
noides, T. glom = Tolypiocladia glomerulata, T. requ = Tricho-
gloea requienii, T. orn = Turbinaria ornata, U. flex = Ulva flex-
uosa, U. lact = Ulva lactuca, U. prol = Ulva prolifera, U. reti = 
Ulva reticulata, V. vent = Valonia ventricosa

◂
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nearshore areas on O‘ahu (Glenn et  al. 1990; Smith 
et  al. 2002; Kinzie 2008), and small gelatinous red 
algae with short seasonal appearances (Guimaraes 
and Amado-Filho 2008; Gabriel et al. 2017).

Large, canopy-forming algae (e.g., fucoids and 
Sargassum spp.) harbor high densities of epifauna 
(Råberg and Kautsky 2008; Hansen et  al. 2010; 
Fraser et al. 2020; Chen et al. 2021) and often provide 
nursery and foraging habitats for fish (Fulton et  al. 
2020). Numerous studies have underscored the nega-
tive effects on biodiversity and ecological functions 
induced by regime shifts from coral to algal domi-
nation (Hughes et  al. 1994; Bellwood et  al. 2006; 
Pratchett et al. 2011, 2014), and highlighted that inva-
sive species can amplify the occurrence, intensity 
and persistence of such shifts (Williams and Smith 
2007; Fong and Paul 2011). Introduction of the nui-
sance species Chondria tumulosa to the MHI, would, 
as indicated by this study, likely not be an exception. 
Based on species interaction traits, this species was 
similar to the non-native macrophyte group (and also 
to the weedy native Ulva lactuca). One major differ-
ence however, is that both E. denticulatum and K. 
alvarezii in the invasive group are highly palatable 
and their biomass can be controlled by herbivores 
(Neilson et  al. 2018; Eggertsen et  al. 2021), which 
is not the case for C. tumulosa, which is thus far 
reported to be avoided by herbivores (Sherwood et al. 
2020). Top-down control, which has shown to be a 
successful management strategy to control blooms of 
E. denticulatum and K. alvarezii, might thus not be a 
useful mitigation measure for C. tumulosa.

To what extent C. tumulosa can compete with 
the present flora and fauna on O‘ahu can only be 
speculated upon, yet the dominance of the species 
at Manawai implies the consequences may be dire. 
As opposed to the other invasive algae presented 
here, which largely occur between 1 and 3  m (with 
the exception of Avrainvillea erecta and A. lacerata), 
C. tumulosa can be found much deeper; it extends to 
20 m with high biomass at 10–15 m (Sherwood et al. 
2020). This alga may therefore pose a threat to the 
native algal species in the MHI (and corals/benthos), 
which until now have escaped competition with inva-
sive algae due to their greater depth range. Several of 
these species may be susceptible to competition due 
to seasonal growth cycles, small sizes and solitary 
or patchy growth forms. In addition, if established in 
high densities, an invader such as C. tumulosa may 

also reduce ecological functionality of the local coral 
reefs, which further can result in habitat loss, impair-
ment of nutrient transfers from primary producers 
to higher trophic levels and disturbances to nutri-
ent acquisition and retention within the ecosystem 
(Brandl et al. 2019).

The invasive algae in the MHI have a set of traits 
that have enabled them to be successful on O‘ahu, 
and it is highly likely that C. tumulosa may be equally 
successful, but with the additional possibility to 
extend to and dominate in deeper reef areas. Another 
reason for concern is the dispersal potential of C. 
tumulosa which is linked to its substrate preferences. 
Similar to A. spicifera and H. musciformis, C. tumu-
losa has the ability to disperse via drifting fragments 
or rafting i.e., hitchhiking by attaching itself to other 
species or floating objects (Smith et al. 2002; Vermeij 
et al. 2009; Fumo et al. 2024). An introduction of C. 
tumulosa to the MHI would likely result in rapid dis-
persal with distribution patterns potentially equal to 
that of A. spicifera (Smith et al. 2002; O’Doherty and 
Sherwood 2007). This dispersal potential is in con-
trast to the other invasive mat-forming species such 
as E. denticulatum, G. salicornia and K. alvarezii, 
which all have restricted distributions in the MHI due 
to their dispersal strategies with negatively buoyant 
fragments that cannot be transported over long dis-
tances (Russell 1983; Smith et al. 2002).

In the MHI, shifts from functionally diverse native 
algal communities to assemblages dominated by inva-
sive species may exhibit reduced functional diversity. 
Future studies of epifaunal assemblages of the differ-
ent algal communities (native and non-native) and 
their roles as a key habitat for different life stages 
of fish are necessary to understand potential links 
between habitat shifts and higher trophic levels and 
subsequent ecosystem effects. Also, functional diver-
sity models are only representatives of the traits that 
are chosen for the analyses. Several functional traits 
and more refined data sets for species, which may 
have improved the accuracy of the models, were 
excluded from this study due to a lack of published 
ecological information for many of the species in the 
study. These traits included temperature tolerance, 
nutrient-scape preferences and surface-to-volume 
ratios. Knowledge gaps as such should be addressed 
in future studies in order to refine and expand the 
applicability of trait-based models. Also, our study 
only contains a subset of the approximately 660 algal 
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species present in Hawaiian waters (Sherwood and 
Guiry 2023a, b), and although it was not feasible to 
include all species in this review, the selection of spe-
cies could have impacted the results.

In summary, our study indicates that C. tumulosa 
possesses a combination of traits that maximizes 
its potential for invasion and functional success in 
Hawai‘i. We find it highly likely, that if introduced 
to the MHI, this species would be yet another driver 
in a shift towards low-complexity and low-diversity 
habitats. Eradications of introduced species are rarely 
successful and often costly, and might not be possible 
for C. tumulosa based on its functional traits. For this 
species, it is therefore critical to minimize the risk of 
it reaching the MHI.

Conclusions

We have demonstrated how trait-based analyses can 
provide a novel tool for evaluating the invasive poten-
tial of algal species using the Hawaiian flora as a 
case study. Applying these analyses to the algal com-
munity of the Hawaiian archipelago clearly showed 
that there are pronounced differences in functional 
traits between native and non-native algal communi-
ties accompanied by a substantial decline in overall 
functional richness in areas dominated by non-native 
algae. The introductions of invasive macroalgae have 
led to habitats characterized by species with a few 
highly successful traits that were uncommon before 
their arrival, and which decrease the habitat suit-
ability for many other species. The results from this 
study also indicate that the newly described Chon-
dria tumulosa has high potential of establishing and 
becoming invasive in the MHI. In short, C. tumulosa 
shared functional traits that are shown to be highly 
competitive in successful invasive algal species in 
Hawai‘i, such as a mat-forming tendency, a large size, 
reproduction through fragmentation and the ability to 
grow both on soft and hard substrate and as an epi-
phyte. An alga that possesses these traits should be 
considered as having a high invasive potential.
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