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ABSTRACT
Microbial transformation of soil organic matter plays a critical role in carbon (C) cycling making it essential to understand how 
land use and management practices influence microbial physiology and its connection to C dynamics. One factor that is likely to 
impact soil microbial physiology is crop diversification via its influence on belowground diversity (e.g., chemical heterogeneity 
of C inputs, microbial community composition). However, the effect of crop diversification measures on microbial physiology 
and potential effects on C cycling in agricultural soils is still unclear. To address this knowledge gap, we sampled topsoil from 
eight experimental sites covering different crop diversification measures across Europe (i.e., cover crops, ley farming, vegetation 
stripes). We used the 18O- labelling method to analyse microbial C use efficiency (CUE), growth, respiration and biomass C. 
Additionally, a second sampling at five selected sites examined whether the growing season influenced the impact of crop diver-
sification. Meta- analysis revealed no overall effect of crop diversification on CUE, microbial activity, biomass or soil organic C 
(SOC). However, the effects varied with the type of diversification measure: cover crops did not affect carbon processing, vege-
tation stripes increased microbial activity, and ley farming enhanced CUE. The largest variation in CUE was observed between 
samplings at the same sites, indicating seasonal dynamics. Temperature, precipitation and photosynthetically active radiation 
predicted seasonal variation in CUE (R2 = 0.36). While cover crops did not significantly impact C storage in our study, both ley 
farming and vegetation stripes increased SOC. The overall effect of crop diversification on SOC seems to be decoupled from 
highly temporally variable CUE in the bulk soil and rather relate to C- inputs.
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1   |   Introduction

To mitigate climate change and simultaneously promote soil fer-
tility, soil organic carbon (SOC) stocks must be preserved and 
increased. Microbial decomposition and transformation drive 
SOC dynamics, with microbial metabolic performance being 
considered a key control (Liang et al. 2017; Soong et al. 2020). 
In this context, microbial carbon use efficiency (CUE) measures 
the proportion of total C uptake that microbes invest in growth 
rather than respiration (Manzoni et  al.  2012). A high CUE is 
expected to reduce CO2 losses per unit of C that is taken up by 
microbes and thus support efficient C conversion into microbial 
biomass. This may positively affect overall SOC storage in the 
long- term. Microbial debris is a key component of stable soil or-
ganic matter because a fraction of microbial- derived compounds 
and necromass eventually interact with mineral surfaces, 
forming mineral- associated organic matter which is consid-
ered the most stable form of SOC. Thus, microbial C transfor-
mation into biomass likely contributes to stabilisation of SOC 
(Kallenbach et  al.  2016; Liang et  al.  2020). Due to the critical 
role of microbial C transformation in C cycling, the influence 
of land use and management practices on microbial physiology 
and its connection to C dynamics is becoming increasingly im-
portant (e.g., Malik et al.  2018; Poeplau et al.  2019; Schroeder 
et  al.  2024). Knowledge about management effects on CUE is 
a key component in controlling C dynamics in climate- smart 
agroecosystems.

Crop diversification measures are a potentially attractive 
practice for enhancing SOC storage in agricultural soils. Such 
measures may include the incorporation of an additional plant 
species into the crop rotation either sequentially or spatially (i.e., 
intercropping or the growth of cover crops). They may affect 
SOC in various ways, one of which being altered microbial phys-
iology and/or community composition due to altered composi-
tion of carbon input (De Graaff et  al.  2010; Domeignoz- Horta 
et al. 2024). Microbial community composition and the quality 
of soil organic matter are important drivers of CUE (Sinsabaugh 
et al. 2016; Soares and Rousk 2019) and both are likely to be in-
fluenced by crop diversification. Based on the assumption that a 
higher aboveground plant diversity produces soil organic matter 
with greater molecular diversity (Lehmann et  al.  2020), there 
are two contrasting potential mechanisms how and why CUE 
changes in response to crop diversification: (1) higher molecu-
lar diversity creates more microbial niches, thus the community 
overall can make use of the available C more efficiently, that is, 
CUE increases; and (2) the higher diversity of inputs results in 
a less specialised community, which does not necessarily need 

to feed efficiently on the available substrates, that is, CUE de-
creases. Thus, crop diversification may alter microbial CUE and 
C transformation with unknown outcome.

Knowledge of how crop diversification alters microbial CUE in 
arable soils is scarce (e.g., Bölscher et al. 2016; Liu et al. 2023). 
The results of Domeignoz- Horta et al. (2024) suggest that plant 
diversity in a barley- intercropping system may indeed have a 
positive effect on rhizosphere CUE by increases in stand plant 
biomass and positive effects on microbial community network 
connectivity. However, it is unclear to which extent positive 
effects of plant diversification would extend to the bulk soil. 
Diversification of grassland species did not result in changes 
in bulk CUE (Prommer et al. 2020). A positive correlation was 
reported between tree biodiversity and bulk CUE in a subtropi-
cal forest (Duan et al. 2023). In that particular study, α- diversity 
of tree species (Shannon index) explained 18% of variation in 
CUE (positive correlation) along a natural diversity gradient 
(45 plots at 20 m × 20 m). However, given that tree diversity at 
this natural gradient is also a result of differences in soil proper-
ties and microclimate, the isolated effect of aboveground plant 
diversity on CUE remains uncertain. For example, CUE was 
positively correlated to soil pH (R2 = 0.33), which varied along 
a diversity gradient (range 5.8–7.6) and explained more varia-
tion in CUE than tree species diversity (Duan et al. 2023). When 
aboveground plant diversity is increased at arable field- scale, 
soil properties are either unaltered (e.g., texture) or are subject 
to changes in other management practices rather than diver-
sification itself (e.g., soil pH, nutrient status). Changes in CUE 
with crop diversification measures may be more directly linked 
to changes in aboveground plant diversity. Here, we investigate 
changes in bulk soil CUE as this is the spatial scale which needs 
to be targeted for increasing SOC stocks. Crop diversification 
is a very broad concept and has a spatial (inclusion of an ad-
ditional crop species during the same time, e.g., intercropping) 
and temporal component (inclusion of an additional crop species 
into the crop rotation, e.g., cover crops) (Messéan et al. 2021). In 
the latter case, also the physiological response of the microbial 
community to crop diversification could have a distinct inter-
annual dynamic. For example, CUE may change in response to 
cover crops, but only during the time when cover crops are actu-
ally growing. In addition, seasonal patterns of CUE may arise, 
with higher CUE during cold seasons (Schnecker et al.  2023). 
It is unclear whether the potential effects of crop diversifica-
tion measures on CUE exceed seasonal variation of CUE and 
whether changes in bulk CUE may be linked to SOC dynamics. 
Therefore, this study investigated whether crop diversification 
measures have an impact on bulk CUE, how these effects vary 
by season, and whether changes in microbial physiology due to 
crop diversification measures can be linked to changes in SOC.

Europe has a pedoclimatic gradient with diverse agricultural 
systems and crop diversification measures differ accordingly. 
The most common measure of crop diversification in Central 
and Northern Europe are cover crops introduced into crop ro-
tations of annual crops, mostly cereals (Eurostat  2022). Cover 
crops as such are less common in Southern Europe (Fendrich 
et al. 2023). This may be partly related to the scarcity of water 
(Blanchy et al. 2023), but also to perennial crops such as olive, 
fruit or vine orchards, which cover large agricultural areas and 
are a substantial part of Mediterranean agroecosystems. In 

Summary

• It is unknown whether crop diversification affects mi-
crobial C transformation.

• This pan- European study evaluated crop diversifica-
tion effects on microbial CUE.

• Microbial CUE did not change with crop diversifica-
tion in general, but varied with season.

• Microbial activity can increase C transformation inde-
pendent of microbial physiology.
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Spain, for example, permanent crops account for about 20% of 
the agricultural area (Eurostat 2022). In perennial crop systems, 
crop diversification can be implemented as vegetation cover 
stripes (e.g., grass or natural vegetation) as compared to bare fal-
low. Further measures of crop diversification aiming to increase 
C accrual include the introduction of temporal grassland into 
rotations of annual crops, known as ley farming. In this context, 
France's National Research Institute for Agriculture, Food and 
Environment (INRAE) recommends ley farming and cover crop 
systems as effective measures to support SOC accrual (Launay 
et al. 2021). Additionally, the introduction of vegetation stripes 
in permanent crops is considered moderately beneficial for SOC 
accumulation (Pellerin et al. 2019). Given their potential positive 
effect on SOC, these measures are suitable for investigating the 
link between crop diversification, microbial physiology and C 
storage.

Our objective was to investigate whether crop diversification 
measures alter microbial CUE across a pan- European pedo-
climatic gradient, thereby potentially influencing C storage. 

We aimed to cover the general effect of crop diversification on 
microbial CUE in arable soils and therefore included long- term 
field sites representative for different crop diversification mea-
sures across Europe, mimicking the complexity of real- farm sce-
narios. In addition, we covered the temporal component of crop 
diversification effects on CUE by analysing samples taken in 
two different seasons. To best of our knowledge, this study is the 
first to investigate the combined impact of crop diversification 
measures and seasonal variability on microbial CUE in arable 
soils at a pan- European scale.

2   |   Materials and Methods

2.1   |   Site Selection and Sampling

In total, eight field experiments along a pan- European pedo-
climatic gradient were chosen to represent crop diversification 
across Europe (Figure 1). Sites had to include at least one diver-
sified treatment representative of crop diversification practices 

FIGURE 1    |    The selected experimental sites along the pan- European pedoclimatic gradient cover different measures, that is, cover crops (violet), 
ley farming (green), and vegetation stripes (yellow) representative for crop diversification across Europe.
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typical in the respective region, as well as a non- diversified 
control. Mean annual temperature (MAT) and precipitation 
(MAP) ranged from 8.9°C to 18.5°C and 578 to 1529 mm, respec-
tively (Table 1). Vegetation length varied between 365 (e.g., the 
Netherlands) and 218 days per year (Lithuania) (Table 1). Using a 
principal component analysis including climate and soil param-
eters, the sites could be clearly separated, which confirmed the 
successful establishment of a pedoclimatic gradient by our site 
selection (Figure S1). Crop diversification measures included in-
troduction of (i) cover crops or (ii) temporal grassland in annual 
crop rotations (the latter hereafter referred to as ley farming), 
and (iii) introduction of vegetation stripes between perennial 
crops (Figure  1). Table  2 provides an overview on the experi-
mental layout of each field experiment as included in this study. 
For further details on experimental sites, see the available lit-
erature: Sweden (e.g., Aronsson and Torstensson 1998; Poeplau 
et al. 2015), the Netherlands (e.g., Elhakeem et al. 2023), Czech 
Republic (e.g., Hakl et  al.  2021), and France (e.g., Hu and 
Chabbi 2022). Detailed information on the management in the 
years of sampling at each site is given in Table S1.

To cover the temporal dimension of crop diversification, sam-
ples were taken twice during the vegetation period (Table S1). 
More specifically, for cover crop sites samples were taken (i) in 
early spring and prior to the establishment of the main crops 
(i.e., April) and (ii) in late autumn when the plant biomass of 
the cover crop was expected to be highest (i.e., November or 
December). A third sampling was conducted in the Netherlands 
(i.e., August), which served as the core site within the project. 
This sampling was a pre- test, but since the data was valuable, 
it was included in this study. The repeated, temporal sampling 
took place at five out of eight locations. This restriction was due 
to time and access limitation, but sampling in different seasons 
included sites representative for different environmental condi-
tions and crop diversification measures (Table S1). Topsoil was 
sampled from 0 to 20 cm. At each plot, 5–20 cores (depending on 
surface area and soil core diameter) were taken in a w- shaped 
sampling and combined into one representative composite sam-
ple. After manual removal of large organic material and stones, 

the composite sample was homogenised using a trowel. The 
samples were shipped to the Thünen Institute in Braunschweig 
(Germany) on cool pads and stored at −20°C thereafter. Prior 
further analysis, soil samples were thawed and sieved to 2 mm.

2.2   |   General Soil Parameters

Bulk soil total organic C and total N content were determined 
on dried (60°C) and ball- milled aliquots by dry combustion 
(TOC- VCPH/CPN/TNM- 1 analyser). Additionally, samples with 
soil pH > 6.5 were analysed for carbonates via stepwise com-
bustion at 450°C for 12 h (TOC- VCPH/CPN/TNM- 1 analyser). 
Water holding capacity was quantified by soaking 10 g soil (40°C 
oven- dried) placed on a cotton wool- padded funnel with water. 
The water content quantified when water runoff stopped was 
assumed to represent 100 %WHC. Soil pH was measured in a 
1:5 w/v ratio of soil to H2O (1 h shaking horizontally, 200 rpm) 
on 40°C oven- dried samples. Texture and bulk density data was 
provided by the respective site managers (Table 3). Total organic 
carbon, total N and water holding capacity were determined 
on the same topsoil samples obtained for CUE measurements. 
Table 3, presents a mean ± standard deviation of all samplings, 
treatments and blocks. Single plot measurements can be re-
trieved from the raw data provided in the accompanying Zenodo 
repository.

2.3   |   Determination of 18O- CUE

We used the 18O- CUE method as described by Spohn et al. (2016), 
with the same modifications described in Poeplau et al. (2019) 
and Schroeder et  al.  (2021). In the 18O- labelling method, mi-
crobial growth is determined based on the incorporation of 
18O- labelled water into newly formed DNA (Schwartz  2007). 
In contrast to conventional 13C- labelling methods where the C 
substrate added could affect microbial activity and metabolic ef-
ficiency, no additional C is added when the 18O- water is added to 
the soil sample. Therefore, it is a valuable method to determine 

TABLE 1    |    Selected experimental sites across the pan- European pedoclimatic gradient.

Country Experiment

EPSG 4326
MAT 
(°C)

MAP 
(mm)

Growing 
season 
(days)

Köppen 
GeigerLatitude Longitude

Sweden Mellby R0- 8403 56.496 13.04 7.7 925 242 19

Lithuania Dotnuva LAMMC 
cover crops

55.413 23.864 7.2 615 218 19

The Netherlands Wageningen Clever 
Cover Cropping

51.995 5.659 10.2 888 365 10

Czech Republic Prage Ruzyně 50.085 14.301 8.9 578 269 19

Austria St. Florian 48.212 14.383 9.8 856 280 19

France Lusignan 46.413 0.12 11.9 878 365 10

Slovenia Koper 45.5a 13.7a 14.3 1529 365 9

Spain Seville Benacazón 37.343 −6.229 18.5 600 256 12

Note: Climate data source: CHELSA Bioclim (Karger et al. 2017; Karger et al. 2018).
aNo permission to share exact coordinates; rounded to one decimal.
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TABLE 2    |    Experimental layout of experimental sites, with the treatments considered for this study.

Site ID Land use
Established 

in Baseline and treatments nreplicates ntotal ctrl div

Cover crops

Sweden Cropland 1983 Spring grain dominated crop rotation
C: w/o catch crop;
D: with ryegrass

3 6 C D

Lithuania Cropland 2022 0: control bare soil;
2: mustard

4 (2);
1 (0)

5 0 2

The 
Netherlands

Cropland 2016 Wheat- maize (2022)- potato- 
barley- pea- barley crop rotation

Fallow: crop rotation w/o cover crop;
crop rotation with cover 

crops as follows
V: vetch;
R: radish;
O: oats;

VO: vetch, oats;
VR: vetch, radish;
OR: oats, radish;

VOR: vetch, oats, radish

5 40 Fallow VOR

Czech 
Republic

Cropland 2021 Spring barley followed by 
different cover crops

CT: control
SA: cover crop = sinapis alba
SA + F: cover crop = sinapis 

alba + fagopyrum

4 12 CT SA + F

Austria Cropland 2020 Barley- maize crop rotation
fallow: crop rotation w/o cover crop;

crop rotation with cover 
crops as follows

white lupine;
aqua pro: phacelia, linseed, sunflower, 
bristle oat, niger, sorghum, safflower

3 9 Fallow Aqua 
pro

Ley farming

France Cropland;
ley;

grassland

2005 T1: maize, wheat, barley since 2005;
T2: 3- year grassland followed 

by 3- year crops sequence;
T5: permanent grassland since 2005

4 12 T1 T2

Vegetation stripes

Slovenia Perennial 
crop

1997 Vineyard with different 
interrow management

BC: bare cover with tillage 
to control weeds;

PG: permanent natural 
vegetation cover

4 8 BC PG

Spain Perennial 
crop

2009 Olive orchard with different 
interrow management

CT: bare cover with surface 
tillage to control weeds

MC: mixed natural vegetation cover

2 (CT);
4 (MC)

6 CT MC

Note: Sites are grouped according to diversification measures. To assess the effect of crop diversification on microbial carbon use efficiency along the European 
gradient, reference (ctrl) and diversified (div) treatment were selected as indicated.
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the metabolic efficiency during decomposition of soil organic 
matter (Geyer et al. 2019). This was particularly useful in this 
study, where crop diversification was hypothesised to affect 
CUE by greater diversity of chemical compounds and thus by 
altering organic matter.

Briefly, two aliquots (approx. 350 mg dry weight) of pre- 
incubated soil samples (1 week at 15°C, water content ad-
justed to 45% of water holding capacity (WHC)) were weighed 
into Eppendorf vials, placed into 20 mL glass vials (WICOM 
Germany GmbH) and crimp- sealed. The amount of 18O- water 
(80 at% 18O, diluted from 97 at% 18O) needed to adjust a label 
of 20 at% and a water content of approx. 60%WHC in the final 
soil solution was added to one of the aliquots through the sep-
tum using a syringe (Hamilton). The headspace atmosphere 
of this vial was then replaced immediately (within 1 min after 
water addition) with a standard gas of known CO2 concen-
tration (350 ppm) by evacuating the vial (drop in pressure to 
2 mbar) and flushing with standard gas adjusting a pressure of 
1300 mbar. To assess the initial CO2 concentration, standard 
gas blanks (n = 3) were included. Bi- distilled water was added 
to the second, non- labelled aliquot at the same amounts as to 
the labelled aliquot. Samples and blanks were incubated for 
exactly 24 h at 15°C in the dark before taking a gas sample 
(20 mL) from the labelled vial using a 25 mL gas- tight syringe 
(SGE Syringe, Trajan Scientific and Medical). Gas samples 
were analysed for CO2 concentration using a gas chromato-
graph equipped with an GC PAL autosampler (CTC Analytics) 
and a helium ionisation detector for CO2 detection at an in-
jection volume of 1 mL and an oven temperature of 220°C 
(Agilent 7890A GC, Agilent Technologies). Subsequently, vials 
were de- crimped, Eppendorf vials closed and soil was directly 
frozen in liquid nitrogen and stored at −80°C until the ex-
traction of the DNA.

The DNA was extracted from the whole sample (350 mg) using the 
FastDNA SPIN Kit for Soil (MP Biomedicals) following the stan-
dard protocol, with an extension of the centrifugation to 15 min 
in step five (15,000 rpm, Sigma 4- 16KS). The DNA concentra-
tion in the extracts was quantified with the QuantiT PicoGreen 
dsDNA Kit (Invitrogen). Subsamples of 60 μL of the DNA eluate 
were transferred to silver capsules (IVA Analysetechnik) and 
oven- dried at 60°C for 12 h. Isotopic analysis of 18O in the dried 

DNA were conducted on labelled and non- labelled samples 
using a high- temperature conversion/elemental analyser (TC/
EA) (Thermo Fisher Scientific) coupled with a Delta V Plus iso-
tope ratio mass spectrometer via a ConFloIV interface (Thermo 
Fisher Scientific).

To be able to convert the amount of DNA produced into C directed 
to growth, the microbial biomass C to total DNA extracted ratio is 
needed, that is, fDNA ratio. Therefore, microbial biomass C was 
determined for each sample after the pre- incubation by chloro-
form fumigation extraction (Vance et al. 1987). Fumigation was 
conducted with excess chloroform (CHCl3) at room temperature 
for 24 h in the dark. Non- fumigated and fumigated aliquots (5 g) 
were extracted with 0.5 M K2SO4 solution in a 1:4 w/v soil- to- 
extractant ratio (horizontal shaker, 30 min at 200 rpm), filtered 
(hw3, Sartorius Stedim Biotech) and stored frozen at −20°C 
until further analysis. Total organic C in the extracts was deter-
mined as non- purgeable organic carbon (NPOC) analysed in a 
1:4 v/v extract dilution after removal of total inorganic C by add-
ing 15% HCl in order to adjust to pH 2–3 and outgassing emerg-
ing CO2 for 5 min with artificial air (Dimatoc 2000, DIMATEC 
Analysetechnik). Microbial biomass C was calculated using an 
extraction factor kEC = 0.45 (Joergensen 1996).

Microbial respiration (CRespiration) was calculated from the in-
crease in CO2 concentration within 24 h incubation using the 
ideal gas equation according to Equation (1):

where p is the pressure (kPa) in the vial (130 kPa), V is the vol-
ume (L) of the vial headspace, R is the universal gas constant 
(8.314 L kPa K−1 mol−1), T is the temperature (K) at which the 
standard gas is injected into the vial (293 K), M is the molecular 
mass of carbon (12.01 g mol−1), and ΔCO2 is the increase in CO2 
concentration (ppm) during the incubation time of 24 h (h).

Microbial growth (CGrowth) was calculated based on the incor-
poration of 18O from the labelled soil solution into the microbial 
DNA based on the enrichment, the average proportion of oxygen 

(1)
CRespiration

(

ng C g−1soil h−1
)

=
p×V

R×T
× M×ΔCO2

×
1

g soil×24 h
×1000

TABLE 3    |    General soil parameters: Soil texture, bulk density (BD), water holding capacity (WHC), soil organic carbon content (SOC) and soil 
C:N ratio.

Site ID Clay (%) Silt (%) Sand (%) BD (g cm−3) pH WHC (% w/w) SOC (g kg−1) CN

Sweden 6 43 46 1.24 6.0 ± 0.1 47 ± 3 31.6 ± 4.7 23 ± 1

Lithuania 11 39 50 1.31 7.5 ± 0.1 60 ± 3 25.9 ± 5.9 11 ± 1

The Netherlands 2 12 83 1.49 6.1 ± 0.2 34 ± 4 13.2 ± 5.2 15 ± 3

Czech Republic 23 64 13 1.35 8.2 ± 0.1 58 ± 5 19.6 ± 1.2 11 ± 1

Austria 19 76 5 NA 7.0 ± 0.4 51 ± 4 11.8 ± 1.0 15 ± 3

France 18 66 17 1.47 6.4 ± 0.4 51 ± 4 11.5 ± 1.5 12 ± 3

Slovenia 22 45 33 1.38 8.4 ± 0.1 51 ± 7 14.3 ± 5.6 11 ± 3

Spain 17 37 46 1.17 8.5 ± 0.1 39 ± 4 10.9 ± 2.7 15 ± 4

Note: Values are given as mean ± standard deviation.
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in DNA and a sample specific conversion factor from DNA (μg 
DNA g−1 soil) to Cmic (μg C g−1 soil), that is, fDNA according to 
Equation (2):

where DNA O (μg) is the total amount of O in the DNA eluate 
derived from the isotopic analysis, DNA 18O (at% excess) is the 
difference in at % 18O between the labelled and the unlabelled 
natural abundance control samples, and the enrichment of the 
final soil solution is adjusted to 20 at% 18O. The average % w/w 
of O in DNA is 31.21 (C39H44O24N14P4).

The microbial carbon use efficiency (CUE) is defined as the 
share of C directed to microbial growth (i.e., CGrowth) to total C 
metabolised, that is, the sum of C directed to growth and respi-
ration (CGrowth) (Manzoni et al. 2012):

2.4   |   Data Analysis

Statistical analyses and data visualisation were conducted 
in R v4.4.0 (2024- 04- 24 ucrt) (R Core Team  2024) using 
RStudio v2024.04.0 (Posit team  2024). R packages used are 
listed in the supplemental material. Unless otherwise stated, 
values are given as mean ± standard deviation. Data and R 
code used for this study are freely available at (DOI: 10.5281/
zenodo.13271731).

We performed a weighted meta- analysis on the effects of crop 
diversification on microbial CUE, associated parameters, and 
SOC, to generalise the effect of crop diversification on micro-
bial C transformation across experimental sites. The meta- 
analysis approach takes into account the heterogeneity of the 
experimental sites (e.g., experimental layout, management, 
soil characteristics, pedoclimatic zones) by treating individual 
experimental sites as individual studies, representing single 
observations on the magnitude of the treatment effect, that is, 
effect size.

The meta- analysis was conducted as three- level random ef-
fect meta- analysis using the log response ratio ln(RR) as effect 
size and weighing by the inverse variance. Some of the stud-
ied sites included more than one diversified treatment (e.g., 
the Netherlands). To warrant the independence of effect sizes, 
only one effect size per study should be extracted (Gurevitch 
and Hedges 1999). Therefore, we selected the control (ctrl) and 
the most diverse (div) treatment for the meta- analysis (Table 2). 
However, since seasonality accounted for higher variation in 
CUE data than treatment or site, we included all sampling times 
separately in the meta- analysis. To acknowledge the dependence 
of effect sizes derived from the same experimental site, site was 
included as a cluster in the random- effect model. Inclusion of a 
third sampling in the Netherlands, compared to two samplings 
at other sites, did not introduce bias to the statistical analysis, as 
the model accounted for data dependency.

We extracted the means of response variables, the number 
of replicates and corresponding standard deviations for the 
diversified and control treatments. The used effect size (log 
response ratio) allows to summarise values with large varia-
tion across studies, thus allowing the comparison of the effect 
sizes of different response variables (Fohrafellner et al. 2023). 
For each response variable, the response ratio (RR) was cal-
culated as:

where Xdiv and X
ctrl

 represent the response variable means of the 
diversified and control treatment, respectively. The statistical 
analyses were performed on the natural logarithm of RR due to 
its more normal distribution in small samples compared to that 
of RR (Hedges et al. 1999; Fohrafellner et al. 2023).

In the random- effect meta- analysis, between- study variance is 
acknowledged by including an estimate of the variance of the 
distribution of true effect sizes τ2 as error term in the inverse 
variance calculation, which is then used as a weighing factor. 
The weighted mean of ln(RR) over all studies was calculated as 
follows (Fohrafellner et al. 2024):

where ln(RR)i is the log response ratio for study i, n is the num-
ber of studies and wi is the weight for study i, defined as the in-
verse of the sum of variance of study i (Vi) and the heterogeneity 
τ2 (i.e., between- study variance).

τ2 was estimated using the restricted estimated maximum likeli-
hood method. Kenward- Roger adjustment was used to generate 
the 95% confidence intervals (CIs) around the pooled effect sizes. 
Crop diversification effects were considered significant, if the 
95% CI did not overlap with zero and the random- effect model 
p- value was < 0.05. The Lithuanian site was excluded from the 
meta- analysis, due to missing replication of ctrl.

High heterogeneity of effect sizes between studies could result in 
over-  or underestimation of the true effect size, for example when 
one heavier weight study points into a completely different direc-
tion than other studies. But also grouping factors, such as diversi-
fication measure, could induce between- study heterogeneity. The 
heterogeneity of effect sizes was tested using Cochrane's Q test, 
with p- value < 0.05 indicating that the effect sizes vary signifi-
cantly between studies. The I2 statistic is defined as the percentage 
of variability in the effect sizes that is not caused by sampling error, 
with 25%, 50%, and 75% indicating low, moderate and substantial 
between- study heterogeneity in effect sizes, respectively (Harrer 
et al. 2022). We conducted a subgroup analysis with diversification 
measure as categorical moderator. To test whether response ratios 
differed between subgroups, that is, diversification measures, we 
used Cochrane's Q test, where p < 0.05 indicates that diversifica-
tion measure explains a significant amount of variability in the 
effect sizes ln(RR). Given the small number of studies for ley farm-
ing and vegetation stripes, we fixed between- study (i.e., observa-
tions) heterogeneity to a common estimate between subgroups to 

(2)

CGrowth
(

ng C g−1 soil h−1
)

= DNA O ×
DNA 18O

enrichment

×
100

31.21
× fDNA×

1

g soil×24 h
×1000

(3)CUE =
CGrowth

CGrowth + CRespiration

(4)RR =
X
div

X
ctrl

(5)ln(RR) =

∑n
i=1 wi × ln(RR)i

∑n
i=1 wi

 13652389, 2025, 2, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.70078 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [25/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.13271731
https://doi.org/10.5281/zenodo.13271731


8 of 15 European Journal of Soil Science, 2025

avoid imprecise estimates of τ2 (Harrer et al. 2022). Results were 
back- transformed and reported as RR.

To assess the effects of sampling time and treatment (indepen-
dent variables) on microbial CUE (response variable) at each 
individual site, we employed two- way analysis of variance 
(ANOVA), including all treatments (Table  2). We used the 
Shapiro–Wilk test (p < 0.05) and visual inspection of the Q–Q 
plots to test for the normality assumption of residuals, which 
was fulfilled. According to the Levene test, all data used for 
ANOVA analysis exhibited homogeneity of variances. To 
further investigate treatment effects on CUE, Cmic, CGrowth, 
CRespiration, and SOC at the ley farming site in France—the only 
site where crop diversification led to a significant change in 
CUE according to the meta- analysis—a linear mixed- effects 
model with sampling and treatment as fixed factors was fit-
ted without interaction of these two (no significant difference 
between models with and without interaction and lower AIC 
without interaction). Block was introduced as a random factor, 
allowing for a random intercept.

Differences in CUE between samplings could follow sea-
sonal patterns. However, assigning seasons to sampling 
dates along the pedoclimatic gradient is not trivial: While 
one can clearly indicate a winter sampling during December 
in Sweden, weather conditions differ considerably when 
sampling in December in Spain. To investigate the potential 
influence of season on CUE, we therefore extracted numer-
ical seasonal predictors. A period of 3 months was chosen to 
obtain a picture of the environmental conditions that may 
have shaped the microbial community in the period prior to 
sampling. We extracted daily weather data for the respective 
site coordinates from the National Aeronautics and Space 
Administration (NASA) Langley Research Center (LaRC) 
Prediction of Worldwide Energy Resource (POWER) Project 
funded through the NASA Earth Science/Applied Science 
Program, that is, NASA POWER project, for a 3- month pe-
riod prior to each sampling event: mean daily air temperature 
at 2 m (T2M), the bias corrected average of total precipitation 
at the Earth's surface (PRECTOTCORR), and the total photo-
synthetically active radiation incident at the Earth's surface 
(ALLSKY_SFC_PAR_TOT).

Figure 2 illustrates the predictor extraction based on 3- month 
weather data. Mean daily temperature was fitted over time and 
the slope of the regression extracted as a predictor (slope tem-
perature) to represent the shift from warm to cold season and 
vice versa. The flatter the curve, the more likely the sampling 
was carried out during a time of steady temperatures, that is, 
summer or winter. However, slope temperature alone does not 
distinguish cold and warm seasons. Therefore, the distance of 
the mean 3- month temperature to the mean annual tempera-
ture was retrieved as additional predictor (Δ temperature), 
where Δ temperature > 0 and Δ temperature < 0 indicate warm 
and cold season, respectively. The cumulative precipitation 
was normalised to mean annual precipitation to represent the 
relative amount of yearly precipitation having occurred in the 
time before sampling (Σ precipitation). It has to be noted that 
the indicator for precipitation does not consider fluctuations 
in rainfall in the period before sampling. The sample- specific 
water content referred to dry mass at time of sampling was 

included as additional information on water availability in the 
driver analysis. Last, the cumulative photosynthetically active 
radiation incident over the 3- month period was summed (Σ 
PAR). We tested the autocorrelation between the potential pre-
dictors. The extracted weather predictors confirmed that the 
two samplings at each of the five sites were indeed conducted 
at different times of the year, that is, warm and cold season 
(Table S2).

To assess potential seasonal drivers of CUE, we employed a lin-
ear mixed- effects model with slope temperature, Δ temperature, 
Σ precipitation, water content, and Σ PAR as fixed effects, and 
site as random effect (random intercept). Scales differed be-
tween the parameters, for example slope temperature ranged 
between −4.2°C and 2.4°C per day, whereas Σ precipitation 
ranged between 8 and 42 %MAP. Therefore, CUE and predictor 
variables were centred by its mean and normalised by its stan-
dard deviation, that is, z- transformed, prior to driver analysis, 
allowing to assess how much of the variation in the predictor 
variable explained a certain variation in CUE. A visual inspec-
tion of residual plots was used to check for deviations from ho-
moscedasticity or normality. Significance of the fixed effects 
was assessed at a significance level of α = 0.05. The p- values 
were Tukey corrected.

3   |   Results

3.1   |   Crop Diversification Effect Across the EU 
Gradient

Our results revealed that crop diversification had no overall 
effect on microbial CUE, growth, respiration, biomass C or 
SOC (Figure 3). However, the heterogeneity of observed effect 

FIGURE 2    |    Example of the extraction of seasonal predictors from 
3- month weather data prior sampling. The fitted slope over 3- month 
daily temperatures was extracted (slope temperature [°C d−1]) to rep-
resent the direction and extent of temperature change during the time 
before sampling. The difference between mean 3- month temperature 
(M3MT) and mean annual temperature (MAT), that is, Δ temperature 
(°C), identifies cold and warm seasons. The precipitation predictor Σ 
precipitation (%MAP) is the sum of daily precipitation during 3- month 
period divided by mean annual precipitation (MAP).
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sizes was generally high (except for CUE) (Table  S3), which 
was partly explained by differences between diversification 
measures. CUE effect sizes showed low to moderate heteroge-
neity across observations (I2 = 34%, pQ = 0.114), with observed 
RR ranging from 0.83 to 1.21. However, ley farming was the 
only measure (psubgroup = 0.036) which increased CUE (RR 
95% CI: 1.00–1.47, n = 2, nsites = 1). We observed heterogeneous 
effects of crop diversification on CGrowth (I2 = 89%, pQ < 0.001) 
and CRespiration (I2 = 90%, pQ < 0.001). This was explained by 
vegetation stripes significantly increasing microbial activ-
ity, that is, CGrowth (RR 95% CI: 1.48–3.43, n = 4, nsites = 2) and 
CRespiration (RR 95% CI: 1.48–3.43, n = 4, nsites = 2), whereas the 
other measures showed no effect (CGrowth: psubgroup = 0.015; 
CRespiration: psubgroup = 0.008). Likewise, the effect of crop diver-
sification on microbial biomass C was heterogeneous across 
our observations (I2 = 88%, pQ < 0.001), without significant 
differences between measures (psubgroup = 0.276). Regardless, 
vegetation stripes increased Cmic (RR 95% CI: 1.10–3.27, n = 4, 
nsites = 2). Crop diversification tended to generally increase 
SOC (RRoverall 95% CI: 0.96–1.49, n = 14, nsites = 7, Lithuania 
excluded). However, this overall effect was influenced by 
the positive effect of vegetation stripes on SOC (RR 95% CI: 
1.28–2.09, n = 4, nsites = 2), which contributed to 33% to the 
overall effect size. Again, cover crops and ley farming did not 
alter SOC (psubgroup = 0.008), according to the meta- analysis. It 
has to be noted that effect sizes tended to be higher in Slovenia 
than Spain, with significant differences between Slovenia and 
Spain for CGrowth and Cmic. Thus, the strong positive effects of 
crop diversification observed in the subgroup of vegetation 
stripes were likely driven by the Slovenian site. Nevertheless, 
both sites showed positive effects.

According to the linear- mixed effect model including all 
treatments at Lusignan (i.e., cropland, ley farming, perma-
nent grassland), CUE (p = 0.0173), CGrowth (p = 0.0121), Cmic 
(p = 0.0080), and SOC (p = 0.0358) increased significantly with 
ley farming as compared to the conventional crop rotation, but 
not CRespiration. The given p- values indicate significant differ-
ences for the tested contrast ley farming versus crop rotation. 

Furthermore, a post hoc test revealed that CUE in ley farmed 
soils (emmean 0.34 ± SE 0.02, group: a) was more similar to 
grassland (emmean 0.39 ± SE 0.02, group: a) than cropland soils 
(emmean 0.28 ± SE 0.02, group: b).

3.2   |   The Influence of Sampling Time on 
Microbial CUE

In accordance with the meta- analysis approach, we did not find 
any treatment effect on CUE, in the site- wise ANOVA, with ex-
ception of the ley farming that showed significantly higher CUE 
than the arable crop rotation (p < 0.001). The effect of treatment 
on CUE did not vary between the samplings, that is, there was no 
interaction between sampling and treatment. Most interestingly, 
we found that CUE differed significantly between samplings at 
all sites (Sweden: p = 0.027, the Netherlands, France, Slovenia: 
p < 0.001) except for Spain (p = 0.124) (Figure  4). Differences 
in CUE between samplings exceeded the mean differences be-
tween sites (Figure 4).

3.3   |   Driver Analysis

Weather predictors explained 36% (R2
marginal = 0.36; 

R2
conditional = NA) of the variation in CUE data according to 

the linear mixed- effects model (Table  S4). Site as a random 
factor, however, did not explain much of the residual varia-
tion, with a random effect estimate of 0.00 versus 0.64 residual 
effects (Table  S4). Most interestingly, CUE was significantly 
lower in the warm season, that is, with higher Δ temperature 
(p < 0.001) (Figure 5). In line, rising temperatures prior to sam-
pling had a negative effect on CUE (p = 0.014). Water content 
at sampling was not an important predictor of seasonal differ-
ences in CUE. However, when soil was sampled during a time 
of high precipitation (relative to MAP), associated CUE was 
higher (p = 0.011). High photosynthetically active radiation 
over 3 months prior sampling was associated with higher CUE 
as well (p = 0.020).

FIGURE 3    |    Overall and measure specific effect sizes of crop diversification on microbial carbon use efficiency (CUE), growth (CGrowth), respira-
tion (CRespiration), biomass C (Cmic), and soil organic C (SOC). Effects of crop diversification are given as response ratio (RR), that is, relative change 
diversified versus control treatment. Coloured circles mark single observations, where the size represents its weighted contribution to the estimated 
overall effect. Asterisks indicate significant diversification effects (***p < 0.001, **p < 0.01, *p < 0.05).
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4   |   Discussion

4.1   |   Crop Diversification Has No General Effect 
on Microbial CUE and SOC Storage

Across the pedoclimatic European gradient, there was no gen-
eral effect of crop diversification measures on microbial CUE, 
microbial activity or biomass. The effect of crop diversification 
on microbial C transformation differed, however, between dif-
ferent measures.

The introduction of vegetation stripes did not alter micro-
bial physiology but increased its overall biomass and activity 
(Figure 3). In line with that, no change in CUE was observed 
in a study with diversification of grassland species in the Jena 
experiment (Germany) (Prommer et  al.  2020), which com-
prises more than 80 plots (20 m × 20 m) with artificial grass-
land communities of 1, 2, 4, 8, 16, and 60 species. At the Jena 
experiment, species- rich plant communities promoted micro-
bial growth and microbial biomass most likely through greater 
plant organic matter inputs (i.e., root biomass), according to 
a path analysis. The authors concluded that this effect accu-
mulated over time (established in 2002) supporting SOC accu-
mulation in this extensive hay meadow. Similarly, our results 
indicate that vegetation stripes support C accrual by either in-
creasing C inputs as compared to bare fallow stripes between 
permanent crops, or preventing SOC losses through erosion. 
We observed that the introduction of a permanent vegetation 
stripe in Spain (13 years) and Slovenia (25 years) increased 
microbial biomass, activity and SOC (Figure 3). Given the ab-
sence of changes in CUE (Figure  3), increases in SOC with 
vegetation stripes may not be linked to changes in microbial 
physiology but rather to higher inputs and improved erosion 
protection.

Also, cover cropping did not affect CUE (Figure 3). In line with 
our results, no effect of winter cover crops (i.e., oil radish fol-
lowing rye, ryegrass following potato) was observed on CUE 
for a German arable soil in two subsequent years, although 
aboveground diversification resulted in a more diverse micro-
bial community (Liu et al. 2023). A higher Chao1 diversity was 
also reported in the diverse species mixtures of rhizosphere soils 
at the Austrian site (personal communication). There is little 

FIGURE 4    |    Microbial carbon use efficiency (CUE) differs between sampling time points. Colours indicate the respective diversification measure 
of the established experiment. Asterisks mark significant differences between samplings (***p < 0.001, **p < 0.01, *p < 0.05).

FIGURE 5    |    Fixed effects of seasonal predictors on CUE in the lin-
ear mixed- effects model. Scaled estimates indicate how much of the 
variance in CUE is explained by a change of one standard deviation 
in the predictor variable (Σ PAR: 3- month cumulative photosyntheti-
cally active radiation; Σ precipitation: 3- month cumulative precipita-
tion; slope temperature: Slope extracted from regression of mean dai-
ly temperature over day for 3 months prior sampling; Δ temperature: 
Difference between mean 3- month temperature and mean annual tem-
perature). Asterisks mark significant fixed effects of predictor on CUE 
(***p < 0.001, **p < 0.01, *p < 0.05).
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indication that a more diverse microbial community through 
crop diversification supports higher CUE. The introduction 
of an additional species into a crop rotation, as practiced with 
cover crops, is limited to a short- period and effects could thus 
only occur during the time of established cover crops. However, 
we observed no significant difference between the effects of 
cover crops on CUE in the Swedish and Dutch sites, neither for 
the season when cover crops were grown nor when the main 
crops were present. This suggests that bulk soil CUE was not 
affected by cover crops. Despite their relatively short growing 
period, cover crops are generally considered a useful measure to 
promote SOC formation with reported change rates of +0.30 Mg 
C ha−1 year−1 (Poeplau and Don 2015; Seitz et al. 2023). However, 
in this study, we did not observe a significant overall effect of 
cover crops on SOC content (Figure 3). This may be related to the 
young age of the field experiments in Lithuania, Czech Republic 
and Austria (i.e., 1, 2, and 3 years, respectively). Applying the re-
ported accrual rates for cover crops (Poeplau and Don 2015; Seitz 
et al. 2023) and assuming a bulk density of 1.4 g kg−1, SOC con-
tent would only increase by 0.007 g kg −1 soil year −1. Changes in 
SOC would thus only be detectable after more than a decade. In 
our study, ryegrass cover tended to increase SOC after 39 years 
in the Swedish site, but the increase was not significant com-
pared to control plots. However, the same ryegrass cover was 
previously reported to significantly increase SOC stocks at this 
experimental site when applied together with 90 kg ha−1 N fer-
tilisation (Poeplau et al. 2015). Similar to the vegetation stripes, 
there was no evidence that cover crops altered microbial C trans-
formation through changes in physiology. According to a meta- 
analysis on the effect of cover crops on SOC pools, cover crops 
increased mostly the particulate organic C (+ 23.2%) and mi-
crobial biomass C (+ 20.2%), while mineral- associated organic 
C showed a modest increase (+4.8%) (Fohrafellner et al. 2024). 
The latter C pool is generally assumed to increase by the in vivo 
pathway of C stabilisation under high CUE (Liang et al. 2017). 
The findings of Fohrafellner et al. (2024) indicate, similarly to 
our results, that effects of cover crops on bulk SOC are unlikely 
related to altered microbial physiology.

For the ley farming system at Lusignan (France), we found that 
crop diversification increased CUE by a factor of 1.21 (95% CI: 
1.00–1.47) (Figure  S2). Here, microbial biomass, CGrowth, and 
SOC, but not CRespiration increased with ley farming as compared 
to the conventional crop rotation. This suggests that the intro-
duction of a 3- year grassland into crop rotation has altered mi-
crobial physiology or community composition to more efficient 
C use. Furthermore, we found that the CUE of ley farming was 
more similar to that of permanent grassland than that of crop-
land. Although the ley farming CUE tended to be lower, it was 
not significantly different from that of grassland soils, while the 
CUE of cropland was significantly lower than both ley farming 
and grassland CUE. CUE can differ strongly with land use type 
(e.g., Bölscher et al. 2016; He et al. 2023; Schroeder et al. 2024), 
with grassland microbial communities tending to have higher 
CUE values than cropland (He et  al.  2023). There are few 
studies on microbial CUE with a focus on ley farming and the 
comparison to cropland. For a Swedish field experiment, no sig-
nificant differences in substrate- specific CUE (i.e., Glycogen, 
Glucose, Alanine) were found between cropland, ley farming 
and grassland at incubation temperatures of ≤ 12.5°C using a 
thermodynamic efficiency approach to calculate CUE (Bölscher 

et  al.  2016; Bölscher et  al.  2020). However, at temperatures 
> 12.5°C the CUE of ley farming and grassland soils decreased, 
while that of cropland soils remained constant. Difference in the 
temperature- sensitivity of CUE between ley farming and grass-
land soils on one side, and cropland soils on the other side, may 
indicate that microbial C transformation in ley farming is more 
similar to grassland than to cropland (Bölscher et  al.  2020). 
Indeed, the ley farming soil microbial community during the 
time of green fallow resembled the grassland community more 
than the cropland community (Bölscher et al. 2016). The intro-
duction of temporal grassland into a crop rotation may therefore 
be considered rather a temporal land use change to grassland 
than just a crop diversification measure. In our study, samples 
were taken in the years of crop rotation subsequent 3 years of ley 
farming. The observed ley farming effect on CUE could there-
fore be considered as legacy of the grassland period. This leg-
acy effect on CUE could possibly be linked to legacy effects on 
the microbial community (Jangid et al. 2011) or remaining dead 
roots from the ley farming period serving as substrate. However, 
we are limited in extrapolating our findings to other ley farming 
systems and more research is needed to investigate the effects of 
ley farming on microbial physiology and C transformation, and 
the question, why the introduction of permanent grassy vegeta-
tion stripes in permanent crop systems did not induce similar 
changes. Differences could potentially result from varying man-
agement strategies or climatic factors.

In summary, our results demonstrate that CUE and underly-
ing parameters are not affected by aboveground plant diversi-
fication in agricultural soils per se. It is worth noting that we 
assessed potential CUE on disturbed bulk samples, while the 
effect of crop diversification likely induces most of the changes 
in the rhizosphere. Indeed, Domeignoz- Horta et  al.  (2024) re-
port increased rhizosphere CUE with higher cover crop species 
richness (one to eight underseeded species) in a barley intercrop-
ping system, where rhizosphere soil is the soil attached to the 
roots of barley after excavating the plants and shaking them. It 
remains unknown whether the investigated crop diversification 
measures, which did not include intercropping, had effects on 
rhizosphere CUE. Such potential effects on rhizosphere CUE 
could have been diluted to undetectable levels in bulk samples. 
Despite this limitation, it can be concluded that crop diversifi-
cation had little effect on SOC stocks, which was not mediated 
by the mechanism of altered microbial physiology at the bulk 
soil level.

4.2   |   CUE Varies With Season

Most interestingly, CUE shifted significantly between the sam-
pling events at four out of five sites (Figure  4). There is some 
indication that this observed variation with sampling could be 
related to seasonal dynamics in CUE. Previously, distinct sea-
sonal patterns were reported for an arable and forest topsoil 
(0–5 cm): while overall activity was lowest during winter, CUE 
and microbial biomass C were highest (Schnecker et al. 2023). 
Likewise, significantly higher CUE values of approximately 0.45 
were reported for a winter sampling (cold, wet) as compared to 
a summer sampling with CUE- values of approximately 0.20 
(warm, dry) for a grassland topsoil (0–10 cm) (Ullah et al. 2021). 
To investigate seasonal effects on CUE, we did not assign 
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seasonal categories, which was not meaningful given the pedo-
climatic gradient studied, but used a set of weather indicators as 
seasonal predictors. The aim of the driver analysis was to inves-
tigate whether there is a common seasonal pattern across sites. 
We observed warm and cold season, indicated by Δ temperature, 
to be the strongest predictor of seasonal variation (Figure 5). The 
CUE was lower for soils sampled during a period of higher tem-
peratures. This is in line with Ullah et al. (2021), who also ob-
served CUE to be lower during the warm and dry season, using 
the 18O- labelling method at an incubation temperature of 20°C. 
Although Schnecker et al. (2023) also found a higher CUE (18O- 
labelling method) in the cold season, it remains unknown to 
which extent the variation in incubation temperature may have 
affected their results given that CUE was determined at the re-
spective field temperature at sampling. While the first approach 
allows assessing the potential CUE, the latter is more represen-
tative of the actual in situ conditions.

The fact that seasonal variation depended strongly on warm vs. 
cold season (i.e., Δ temperature) may also explain why we did 
not find significant differences between sampling occasions 
in Spain. At this site, both sampling events were conducted 
during the warm season according to the Δ temperature indica-
tor. Furthermore, rising temperatures over the 3- month period 
before sampling, indicated by slope temperature, were associ-
ated with lower CUE (Figure 5). The influence of temperature 
on microbial CUE has gained a lot of attention and in labora-
tory studies, warming has yielded contrasting effects on the 
potential CUE during soil organic matter decomposition (i.e., 
18O- labelling method): some found the CUE to decrease (Li 
et al. 2021; Liu et al. 2021), being unaltered (Walker et al. 2018; 
Poeplau et al. 2019), or increased (Zheng et al. 2019; Schroeder 
et al. 2022). However, these studies altered incubation tempera-
tures, while here, we assessed the CUE at 15°C and found it to de-
pend on the environmental conditions during the 3 months prior 
sampling. The observed effect must thus be considered a legacy 
effect of the season, shaping for example the nutrients availabil-
ity and the active microbial community. Results of Schnecker 
et al. (2023) suggest that CUE increases during the cold season 
may be related to an increase in microbial biomass C per unit of 
DNA, that is, fDNA. The authors hypothesised that microbes 
had produced storage compounds or cryoprotectants and by that 
increased their biomass. Indeed, the incorporation of storage 
compounds into microbial biomass has hardly been considered 
as a microbial growth pathway so far (Mason- Jones et al. 2023). 
The fact that the 3- month cumulative photosynthetically active 
radiation positively influenced CUE, suggests that seasonal dy-
namics of CUE also depend on plant activity, for example, root 
exudation. Given that substrate- induced CUE changes with 
the substrates (e.g., Bölscher et al. 2016), and roots exude var-
ious easily available substrate it is likely that microbial CUE 
responds to seasonal variations in root exudation. The current 
stage of plant development could therefore also induce variation 
in CUE. The 3- month cumulative precipitation also positively 
influenced CUE, even though water content at sampling had 
a minor importance for the seasonal variation in CUE. This is 
logical, since water content at sampling reflects only conditions 
within a very brief period prior to sampling, and is therefore not 
reflective of the period which may indirectly affect CUE via its 
effects on organic matter availability and the microbial commu-
nity. The 3- month cumulative precipitation and water content 

at sampling did not take into account short- term fluctuations in 
rainfall patterns. Such variability in rainfall patterns can affect 
microbial community composition (Cregger et al. 2012), which 
can remain present in soil as a legacy (Meisner et al. 2021). The 
model was limited in explaining the variation in CUE between 
the sampling events (R2 = 0.36), suggesting missing explanatory 
variables related for example to plant growth stage and man-
agement, for example, fertilisation or tillage. We have tried to 
identify general causes of CUE changes between samplings at 
the five sites, that is, if changes in CUE were rather related to 
changes in CGrowth, fDNA, or CRespiration. However, there were 
no clear patterns and the mechanisms seemed to differ between 
sites. Our dataset did not inform on the underlying mechanisms 
behind the seasonal CUE variation. Further research is needed 
to study why microbial CUE may follow seasonal patterns as ob-
served in this study.

The variation between sampling events blurred any potential 
differences between sites, raising the question of when to sample 
if site differences should be the focus of a study. It remains un-
clear how large- scale studies, investigating CUE of soil samples 
collected at different times (e.g., meta- analyses investigating 
global drivers of CUE) can be harmonised to account for large 
seasonal variation in CUE. Advantageously, according to the 
ANOVA the effect of treatment did not vary with sampling, sug-
gesting that the time of sampling does not matter for the assess-
ment of crop diversification effects on CUE. This was further 
supported by the low to moderate heterogeneity in effect size of 
crop diversification on CUE in the meta- analysis approach, that 
is, no differences in effect sizes between samplings.

In summary, our study pointed to temperature as an important 
predictor of seasonal variation in CUE. Seasonal patterns in the 
potential CUE may reflect the environmental conditions shap-
ing the active microbial community and nutrient availability. 
Thus, climate predictors could be indirect indicators of the ac-
tual drivers of the variation in CUE with season. It remains un-
clear how informative a single measurement of CUE can be on 
microbial physiology affecting SOC dynamics, given that it will 
always reflect just a snapshot of a long- term process. However, 
driver analysis and treatment comparison are useful methods to 
gain understanding of these microbial processes.

5   |   Conclusion

Our results imply that there is no general effect of crop diversi-
fication on potential CUE or other physiological parameters in 
bulk soil. We found no implication that crop diversification pos-
itively impacts C storage through altered microbial physiology. 
However, the potential of temporal grassland establishment to 
support SOC accrual through a legacy effect on microbial physi-
ology needs further investigation. Additional C inputs from veg-
etation stripes can increase overall microbial biomass, activity 
and SOC likely due to higher C inputs. Thus, establishing veg-
etation stripes between permanent crops in the Mediterranean 
appears beneficial for C accrual. Moreover, CUE varied more 
with season than with treatment or site, highlighting the need to 
cover seasonal patterns of microbial activity and community dy-
namics to understand microbial C transformation and its link to 
soil C storage. In general, linking potential CUE (which reflects 
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short- term dynamics) to SOC changes (which occur over long- 
term) remains challenging.
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