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ABSTRACT
Biotic interactions are expected to influence species' responses to global changes, but they are rarely considered across broad 
spatial extents. Abiotic factors are thought to operate at larger spatial scales, while biotic factors, such as species interactions, 
are considered more important at local scales within communities, in part because of the knowledge gap on species interactions 
at large spatial scales (i.e., the Eltonian shortfall). We assessed, at a continental scale, (i) the importance of biotic interactions, 
through food webs, on species distributions, and (ii) how biotic interactions under scenarios of climate and land- use change may 
affect the distribution of the brown bear (Ursus arctos). We built a highly detailed, spatially dynamic, and empirically sampled 
food web based on the energy contribution of 276 brown bear food species from different taxa (plants, vertebrates, and inverte-
brates) and their ensemble habitat models at high resolution across Europe. Then, combining energy contribution and predicted 
habitat of food species, we modelled energy contribution across space and included these layers within Bayesian- based models of 
the brown bear distribution in Europe. The inclusion of biotic interactions considerably improved our understanding of brown 
bear distribution at large (continental) scales compared with Bayesian models including only abiotic factors (climate and land 
use). Predicted future range shifts, which included changes in the distribution of food species, varied greatly when considering 
various scenarios of change in biotic factors, providing a warning that future indirect climate and land- use change are likely to 
have strong but highly uncertain impacts on species biogeography. Our study confirmed that advancing our understanding of 
ecological networks of species interactions will improve future projections of biodiversity change, especially for modelling spe-
cies distributions and their functional role under climate and land- use change scenarios, which is key for effective conservation 
of biodiversity and ecosystem services.

1   |   Introduction

In the current biodiversity crisis (Pereira et  al.  2024), under-
standing how the distribution of species will be impacted by 
global changes, such as climate and land- use changes (Chen 
et  al.  2011; IPCC  2014), is critical for conserving biodiversity 
and securing associated ecosystem services (Urban et al. 2016) 
including human food systems (O'Neill et al. 2017). One of the 
major outstanding challenges is to capture the complexity of bi-
ological responses when making predictions about how species 
will respond to global changes, as their distributions are shaped 
by a complex set of abiotic (fundamental niche) and biotic factors 
(realized niche) (Hutchinson  1957; Nogues- Bravo  2009; Payne 
et al. 2024).

Species distribution shifts in response to global changes are 
highly variable (Lucas, González–Suárez, et al. 2016; Pacifici 
et  al.  2020; Le Luherne et  al.  2024), and species' ecological 
traits such as the climate niche, habitat specificity, and mobil-
ity determine the redistribution of species (Pacifici et al. 2017; 
Pacifici et al. 2020; Carroll et al. 2024). Furthermore, species 
within an ecological community can shift their habitat at dif-
ferent rates and directions, altering the original overlap of 
species, with congruous, convergent, divergent, or contracted 
shifts (Durant et  al.  2007; Carroll et  al.  2024). These differ-
ences in the redistribution of species within the same commu-
nity can lead to a change in the spatial overlap between prey 
and predator, strengthening or weakening their interactions 
(Durant et al. 2007; Carroll et al. 2024). Predators will respond 
differently to prey redistribution depending on their ecologi-
cal traits (e.g., trophic position and diet breadth) and environ-
mental factors (e.g., availability of alternative prey) (Carroll 
et  al.  2024). They can respond by prey- switching (diet gen-
eralist species), or the predator's fitness might be affected—
change of predator realized niche—causing bottom- up effects 

on the predator's population and, in the worst scenario, its 
local extinction (diet specialist species or absence of alterna-
tive preys) (Ferreras et  al.  2011; Carroll et  al.  2024). At the 
community level, this can lead to changes in interaction 
strengths and food web topologies. In summary, communities 
and biotic interactions are dynamic over time and are influ-
enced by global changes (Blois et al. 2013; Bartley et al. 2019). 
However, most existing biogeographical studies that aim to 
predict species responses to global changes rely primarily on 
abiotic factors, especially climate. This is, in part, a result of 
the perceived differences in scale, with abiotic factors thought 
to operate at larger spatial scales (Willis and Whittaker 2002), 
and biotic factors, such as species interactions, being con-
sidered more important at local scales within communities 
(Willis and Whittaker 2002). Such reliance on abiotic factors 
when explaining large- scale species distributions has also 
resulted from extremely sparse data on species interactions. 
This knowledge gap on species interactions, also termed the 
Eltonian shortfall (understood as the lack of knowledge on in-
tra-  and interspecific interactions, but also as the physiological 
tolerances of species, and the effects of species on ecosystems), 
severely limits our understanding of large- scale biodiversity 
patterns (Hortal et al. 2015).

Despite these limitations, studies are beginning to incorpo-
rate species interactions for understanding species distribu-
tion shifts due to global changes (Guisan and Thuiller 2005; 
Penteriani et al. 2019; Bas et al. 2025; Hao et al. 2025). These 
studies have demonstrated that adding information on other 
species significantly improves the understanding of distribu-
tion changes (Wisz et al. 2013; Pollock et al. 2014) and allows 
assessing changes in the ecosystem structure and function-
ing (Bas et al. 2025; Hao et al. 2025), suggesting that species 
interactions are a valuable component in understanding the 
effects of global changes on biodiversity (Carroll et al. 2024; 
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Hao et  al.  2025). However, the approaches used to include 
species interactions usually face three important limitations: 
(1) They typically only include spatial co- occurrence as a sur-
rogate for species interactions (Meier et  al.  2010; Belmaker 
et al. 2015), (2) they usually use a binary measure for interac-
tion, for example, presence/absence of an interaction between 
SpeciesA and SpeciesB, and (3) it is assumed there is no spatial 
variation in the interaction, for example, interaction between 
SpeciesA and SpeciesB is considered constant in all ecosys-
tems (Banašek- Richter et al. 2009). These assumptions could 
be improved with: (1) real data on ecological interactions, for 
example studying the trophic interactions among species; (2) 
describing the interactions among species with quantitative 
measures, for example, measuring the relative energy ob-
tained from food/consumed species; and (3) incorporating the 
spatial variability of those interactions among different eco-
systems (Dormann et  al.  2018; Galiana et  al.  2018; Blanchet 
et al. 2020), for example, measuring different values of the rel-
ative energy from food/consumed species across geographic 
space. Therefore, to advance our understanding of species 
distributions, it is necessary to adopt a cross- scale approach 
merging community ecology represented by local- scale bi-
otic interactions over broader scales (Wisz et  al.  2013) with 
abiotic factors (Lavergne et  al.  2010; Boulangeat et  al.  2012) 
based on detailed community ecology knowledge (Figure  1) 
(Dudenhöffer et al. 2022; Carroll et al. 2024).

Here, we assess whether considering detailed diet data at large 
spatial scales helps to understand future consequences of global 
change for the redistribution of species and their role in the eco-
system structure and functioning. Specifically, we tested (i) how 
biotic interactions, based on diet, change over space, (ii) whether 
species' geographic distributions are better estimated by quanti-
tative (continuous) or binary proxies of biotic interactions, (iii) 
whether species' geographic distributions are better explained 
when combining biotic (e.g., prey availability) and abiotic factors 
(e.g., climate and land use), and (iv) whether or not future range 
shifts differ when considering biotic interactions in addition to 
abiotic factors. Trophic interactions are among the most import-
ant biotic factors determining species distributions and are fun-
damental to ecosystems (Braga et al. 2019). We used as a model 
system a top predator and generalist omnivore species with a 
strong impact on ecosystems (Penteriani and Melletti 2020) and 
with several of its subpopulations at extinction risk (McLellan 
et al. 2017), the brown bear Ursus arctos in Europe and Türkiye 
(formerly known as Turkey). This model system has a broader 
applicability to understanding ecosystems in general, higher- 
level predators in particular, and could be extended to other 
species.

2   |   Material and Methods

2.1   |   Biotic Interactions

To obtain knowledge of biotic interactions, we reviewed stud-
ies of brown bear diet in Europe and Türkiye, constructed a 
unique, highly detailed, spatially explicit database of trophic 
interactions (Trophic Database; Figures 1a and 2; Tables S1–S4 
and Figures S1; see Figure S2 for a detailed diagram of methods), 

and calculated the relative energy contribution of each food item 
(Figure 1c).

2.2   |   Review of Brown Bear Diet Studies

We reviewed 47 studies of brown bear diet by searching in SCI 
Journals, master's and PhD theses, and gray literature (research 
that is either unpublished or has been published in noncom-
mercial form, for example, technical reports, conference pro-
ceedings; Tables S1 and S2 and Figure S1). For each study, we 
recorded three types of information: study area location; the 
type of samples, for example, brown bear scat or the stomachs 
of dead individuals; and the number of samples. Additionally, 
within each study and for each food item we recorded two pa-
rameters: (1) the relative frequency of occurrence (rF), calcu-
lated as the number of occurrences of food item i divided by the 
total number of occurrences of all food items, that is, rFi = fi/
Σfi; and (2) the relative volume (rV), calculated as the volume of 
food item i divided by the total volume of all food items, that is, 
rVi = vi/Σvi.

2.3   |   Calculating Energy Available From 
Food Items

Because not all studies reported estimates of rV, we used the 
strong relationship between rF and rV (r = 0.86, 0.81–0.90 95% 
CI from bootstrapped correlation coefficients; Figures S3–S5) to 
impute rV for those studies with missing data. Then, we used 
rV to calculate. The relative estimated dietary energy content 
(rEDEC) (Hewitt and Robbins 1996) of each food item i in each 
study: rEDECi = CFEi × rEDCi/Σ(CFEi × rEDCi) (Appendix  S1, 
Tables S2–S4).

2.4   |   Calculating Associations Between Diet 
and Environmental Variables

To address question (i), namely whether biotic interactions change 
over space and if they are explained by environmental factors, we 
used averaged linear models predicting the relative energy con-
tribution of different food categories (i.e., reproductive plants, 
vegetative plants, unknown plants, invertebrates, and vertebrates; 
Table S5) and the diet diversity using these food categories as a 
function of climate (Karger et  al.  2017) and land use (Schipper 
et al. 2020) variables. For consistency with climate and land- use 
data, we selected 31 studies conducted between 1989 and 2018 
which had sufficient taxonomic resolution (genus and/or species; 
Table S1) to calculate the association between latitude, land cover, 
and climate variables and the rEDEC in each diet category. We 
first calculated the value of climate (Karger et al. 2017) and land 
use (Schipper et al. 2020) variables (the 19 bioclimatic variables 
and 8 variables describing the percentage of land use by cell; for a 
full description see of variables see Tables S6 and S7) within a buf-
fer area of 18 km (an area of 1018 km2) around the site locations of 
the selected studies calculated using ArcMap 10.5 (Esri Inc. 2016). 
We eliminated highly correlated variables using the variance 
inflation function (VIF) (Dormann et  al.  2013) in the R pack-
age usdm (Naimi  2017). Then, we calculated all possible linear 
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FIGURE 1    |    Diagram showing our model system to assess the importance of biotic interactions for understanding the consequences of global 
change for biodiversity. (a) Construction of a database with detailed explicit knowledge of biotic interactions (in our model system, brown bear food 
species in Europe) based on a literature review which accounts for the spatial variability of interactions. (b) Fitting ensemble species distribution 
models (SDMs) for wild food species and calculation of habitat suitability for the current and three future (2040) shared socioeconomic pathways, 
which were included using predictions for climate (Karger et al. 2017) and land- use changes (Schipper et al. 2020). (c) Calculation of the relative ener-
gy contribution of each food species in different subpopulations/space. (d) Calculation of quantitative and binary proxies of biotic interactions across 
the space and predictions of the spatial biotic interactions for each scenario. (e) Fit of a species distribution model for the brown bear combining his-
torical and current data and incorporating abiotic factors, which refer to the effects of global changes that directly impact the brown bear, including 
temperature changes (i.e., affecting hibernation and reproduction) and land- use changes (i.e., decreasing suitable habitat), and biotic factors, which 
refer to the effects of global changes through biotic interactions such as changes in the availability of other species as food sources. (f, g) Current and 
future predictions for brown bear distribution considering both abiotic and biotic factors.
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FIGURE 2    |     Legend on next page.
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models explaining the percentage of each diet category using all 
possible combinations of the remaining uncorrelated variables as 
predictors, using the package MuMIn (Barton 2009) in R. Using 
the subset of best models (delta Akaike information criterion, 
corrected, AICc < 3) we calculated an average model using the 
subset option. We also calculated models explaining diet diversity 
(among the diet categories) as a function of land use and climate 
variables in the buffer areas. We first calculated three indexes of 
diversity for the diet categories (Simpson, Shannon, and Inverse 
Simpson) (Fisher et al. 1943; Hurlbert 1971) using the R package 
vegan (Oksanen et al. 2013). We fitted linear models explaining 
each diversity index as a function of the uncorrelated variables 
previously calculated. We calculated, for each index, all possible 
models using all possible combinations from the uncorrelated 
variables, and using the subset of best models (delta AICc < 3) we 
calculated an average model using the subset option.

2.5   |   Calculation of a Representative Diet for Each 
Subpopulation

We used the selected 31 studies of brown bear diet (Table  S1) 
to calculate the representative diet for each subpopulation 
(Appendix S1).

Similarly to Banašek- Richter et al. (2004), where consumed bio-
mass was used as a quantitative descriptor for the flow of energy 
in the food system, we used the rEDEC previously calculated, 
which provides a more realistic version of the flow of energy in 
the brown bear food web system. From the diet studies within 
each subpopulation, Subp, we calculated for each food spe-
cies (S), the rEDECSubpS, and assumed it to be a representative 
rEDEC in that subpopulation:

where rEDECSubpS is the representative rEDEC in the subpop-
ulation Subp for food species S, i is each diet study within the 
subpopulation Subp (Figure S1 and Table S1), n is the number of 
diet studies in the subpopulation Subp (Table S1), Z is the num-
ber of sampling units (n scats, or n of stomachs analysed) in each 
study (we use this term to give more importance to studies with 
more data; Table S1), and rEDECSi is the rEDEC of food species 
S in diet study i (Table S4).

2.6   |   Calculation of Habitat Suitability for Each 
Wild Food Species

We fitted ensemble species distribution models (SDMs) at 1 km2 
resolution for each wild food species in the Trophic Database 

(Tables S5 and S8), using Global Biodiversity Information Facility 
(GBIF) occurrences (GBIF 2018, 2023). GBIF data are spatially 
biased, and this may produce wrong modelling of species dis-
tribution if it is not addressed correctly (Rondinini et al. 2006; 
Beck et  al.  2014; Kittle et  al.  2018). To reduce the spatial bias, 
we first reduced the number of occurrences in oversampled re-
gions using spatial filtering by aggregating points of occurrence 
into presences into equal- area grid cells (Dormann et al. 2007; 
Phillips et al. 2009; Kramer- Schadt et al. 2013; Aiello- Lammens 
et al. 2015; Cimatti et al. 2021) of 1 × 1 km using a Conic Equal 
Area projection (Europe Albers Equal Area Conic). Each grid 
cell that contained at least one occurrence point was assigned a 
“1” (considering only once a pixel with one or more occurrences) 
(Cimatti et al. 2021). Furthermore, we excluded species with < 50 
“presence” grid cells from the analyses. In addition, we applied a 
second technique/recommendation to reduce the spatial bias in 
GBIF data which consists in selecting the pseudo- absences fol-
lowing the same spatial bias as presence data (Phillips et al. 2009; 
Wisz and Guisan 2009; Iturbide et al. 2015). To that end, following 
previous studies (Chefaoui and Lobo 2008; Iturbide et al. 2018), 
for each species we selected pseudo- absences randomly among 
the 1 × 1 km grid cells within a 10 km buffer and outside a 3 km 
buffer around each pixel with presence calculated using Idrisi 
(Clark Labs 2012). Pseudo- absences were assigned a “0,” and we 
selected the same number of pseudo- absences as presences. We 
used climate and land- use variables (Karger et al. 2017; Schipper 
et al. 2020) as predictors selected the variables to calculate the 
habitat suitability of food species following a three- step pro-
cedure: (1) preselection of variables, (2) filtering of correlated 
variables, and (3) selection of best variables for each species (for 
a detailed description of the calculation of habitat suitability of 
food species see Appendix S1). Using these six selected variables, 
we modelled the habitat of each food species applying ensem-
ble modelling, a statistical technique that improves the robust-
ness of predictions (Araujo and New 2007), using the R package 
Biomod2 (Thuiller et al. 2016) (Appendix S1).

Using the fitted ensemble models, we predicted the habitat suit-
ability of each food species for the current and three future cou-
pled scenarios of climate and land use. Future scenarios coupled 
the climate data from the Institut Pierre Simon Laplace Model 
CM5A- MR (IPSL- CM5A- MR) (Mignot and Bony 2013) from the 
CHELSA (Karger et  al.  2017) database and land- use forecasts 
from the GLOBIO 4 (Schipper et al. 2020) database for the year 
2050 (Appendix S1).

From the IPSL- CM5A- MR from CHELSA, we selected the 
RCP2.6 scenario, RCP6.0 scenario, and the RCP8.5 scenario. 
Thus, combining the future scenarios from the GLOBIO 4 da-
tabase and from CHELSA, we obtained three future socioeco-
nomic shared pathways (SSPs); namely SSP1- 2.6, SSP3- 6.0, and 
SSP5- 8.5.

rEDECSubpS =
�n

i=1

�

Zi × rEDECSi
�

∑n

i=1 Zi

FIGURE 2    |    Brown bear diet in Europe. (a) Map showing the 14 brown bear subpopulations considered: Pindos (PI), Türkiye (TR), East Balkan 
(EB), Apennine (AP), Pyrenees (PR), Cantabrian (CT), Caucasian (CC), Dinaric (DI), Alpine (AL), Western Carpathian (WC), Eastern Carpathian 
(EC), Baltic (BL), Scandinavian (SC), and Karelian (KR). We also mark the location of all the studies of brown bear diet reviewed, indicating if they 
were ultimately included (n = 31) or not (n = 16) for the calculation of biotic interactions at species level and for the associations between diet and en-
vironmental variables; note that not all studies are visible due to the overlapping of locations. (b) Relative estimated dietary energy content (rEDEC, a 
proxy for the relative importance of each item in the diet) identified at the species level for each food category, for each of the 14 brown bear subpop-
ulations in Europe. (c) Proportion of the rEDEC for wild species and those of human origin.
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2.7   |   Brown Bear Presence Databases

We constructed two databases of brown bear presence: (1) a da-
tabase of brown bear at the scale of its geographic range using 
historical distribution data, the Range Database, and (2) a data-
base of brown bear using current data, the Occurrence Database.

The Range Database contains data, at a low spatial resolution 
(50 × 50 km), on the Eurasian historical distribution of brown 
bears, areas of current presence, and areas which were occupied 
in the past but where the species has been extirpated. We dis-
carded the North American brown bear distribution due to large 
differences in life- history traits between Eurasian and North 
American subspecies (Zedrosser et  al.  2011; Penteriani and 
Melletti 2020) (Appendix S1 and Figure S6). Across the pixels 
of presences and absences, we applied a random environmen-
tally stratified sampling procedure following section  7.4.3 in 
Guisan et al. (2017). Environmentally stratified sampling design 
consists in designing a method to sample the environmental 
space (e.g., temperature, precipitation). First, it is necessary to 
create stratums, a subset of the environmental space where the 
sampling will be applied. We used climate variables (Clim_3, 
Clim_4, Clim_8, and Clim_9) to create stratums, subsets of 
the environmental space with similar climate conditions, and 
then we selected an equal number of presences and absences by 
stratum (equal number variant). This last selection was used to 
model the distribution of brown bears at the range scale. The 
environmental stratified sampling design, although it represents 
a more complex approximation, has the advantage over the spa-
tially random approach of being more likely to include rare stra-
tums (Guisan et al. 2017).

The Occurrence Database contains > 3.2 million brown bear 
occurrences with an uncertainty of < 1 km2 in Europe and 
Türkiye, comprising data from 23 countries and 14 subpop-
ulations (all European and Turkish subpopulations), and for 
the period 1989–2018 (Tables  S9–S11 and Figures  S2 and S6). 
Based on identified individuals and on estimations from each 
research group reporting the data, the Occurrence Database con-
tains data from more than 3350 brown bear individuals (> 900 
linked to GPS and VHF collared individuals, > 1200 linked to 
genetic analysis, and 1295 estimated based in expert knowledge; 
Appendix S1, Tables S9 and S10 show more information/detail 
of datasets including the number of individuals, original occur-
rences and sampling methods used). Most of these occurrences 
(98%) were obtained from telemetry, VHF, and GPS collars. The 
use of telemetry data within SDMs provides more objective in-
formation about species distribution compared to other methods 
(Dambach and Rödder 2011) but these data are highly spatially 
autocorrelated (SAC) and may produce pseudoreplication if this 
is not considered (Holloway and Miller 2017). Among the meth-
ods applied to reduce SAC and avoid pseudoreplication from 
telemetry data in SDMs, spatial filtering is probably the most 
widely used (Holloway and Miller  2017), and it allows avoid-
ing this problem in other sources of data, for example, tracks or 
sightings (Lucas, Herrero, et al. 2016; Grilo et al. 2019), and the 
combination of different data sources (Bogdanović et al. 2023). 
Thus, we applied spatial filtering and aggregated the occur-
rences into presences in equal- area grid cells of 1 × 1 km using a 
Conic Equal Area projection (Europe Albers Equal Area Conic), 
considering only once a grid with one or more occurrences. 

Each grid cell that contained at least one occurrence was as-
signed as “presence” (“1”). We obtained more than 100,000 grid 
cells with the presence of brown bears showing a spatial bias 
between the different subpopulations, with a minimum of 471 
presences for the Türkiye subpopulation and a maximum of 
45,119 presences for the Scandinavian subpopulation (Table S11 
and Figure S2). Then, we excluded presences occurring in non-
terrestrial systems (i.e., presences in lakes or seas). We applied a 
second filter to the grid cells with presences to reduce their SAC, 
to avoid overrepresentation of some subpopulations due to a 
larger number of individuals or greater sampling effort, and also 
because of computing limitations. Our second filter consisted in 
subsampling the presence data by selecting a maximum of 2000 
presences for each subpopulation, and for subpopulations with 
less than 2000 presences available, we selected all presences 
available (Table S11). Pseudo- absences were extracted randomly 
within a 5 km buffer around pixels with brown bear presences, 
and we selected the same number of pseudo- absences as pres-
ences for each subpopulation. In total, we used 24,908 pres-
ences, which were split into two sets, one set to train the model 
(19,926 presences, 80%) and the other to validate the model (4982 
presences, 20%). Proportionally, we reduced to a 0.77% our ini-
tial data, from 3.2 million occurrences to 24,908 grid presences. 
This reduction in filtering the data is between 1 and 3 orders of 
magnitude bigger than previous studies using GPS collar data 
to fit SDMs (Maiorano et  al.  2015; Coxen et  al.  2017; Chibeya 
et al. 2021; Bogdanović et al. 2023), and it supposes an average of 
approximately 7.4 grid presences per bear individual. The train-
ing data were used in all models using the Occurrence Database 
(for the comparison of biotic proxies explaining brown bear dis-
tribution and for modelling brown bear distribution at a fine 
scale with the Bayesian models, BMs).

2.8   |   Modelling the Potential Energy Available to 
the Brown Bear Across Space

To assess (ii) whether species' geographic distributions are 
better explained by quantitative or binary proxies of biotic 
interactions, we calculated two proxies to calculate spatial 
variables describing the biotic interactions between the brown 
bear and food species in its diet. The first was a quantitative 
measure of biotic interactions (Biotic variables) obtained by 
multiplying the rEDECSubpS, the relative energy contribution 
described at the species level in each subpopulation (defined 
as parts of the distribution of the species that are isolated from 
others and/or present different environmental characteristics 
and/or conservation status; Figure  2a; See Appendix  S1 and 
Figure S7) by the habitat suitability of each species, and then 
combining the values for each food category (Figure 2b). The 
second was a binary measure of biotic interactions (Biotic_bi-
nary variables) calculated by multiplying the current habitat 
suitability by 1 or 0 depending on, respectively, whether or 
not an interaction with a given food species was observed in 
each subpopulation, and then combining the values for each 
food category. For each food category, we fitted and evaluated 
(Akaike information criterion, AIC, based) two univariable 
SDMs explaining brown bear distribution using the brown 
bear Occurrence Database: (a) a model using Biotic variables 
as predictors and (b) a model using Biotic_binary variables as 
predictors.
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2.9   |   Bayesian Brown Bear Species 
Distribution Model

To assess (iii), whether species' geographic distributions are 
better explained when combining biotic and abiotic factors, 
we fitted and evaluated (widely applicable information crite-
rion, WAIC, based) three Bayesian models (BMs) to explain 
brown bear distribution using data from the brown bear 
Occurrence Database as a response variable: (1) a model with 
abiotic (climate and land- use variables) and biotic predictors 
(using the best overall proxies, Biotic variables or Biotic_bi-
nary, from the previous univariable SDMs), (2) a model with 
abiotic predictors only, and (3) a model with biotic predictors 
only (Figure  1e). To minimize bias or the truncation of the 
environmental space when using only current data (Thuiller 
et al. 2004; Talluto et al. 2016), two of these BMs utilized his-
torical range data (Range Database): the abiotic and biotic BM, 
and the abiotic BM. Historical range data was included using a 
Bayesian hierarchical model (BHM) which combined models 
with historical geographic range as a response variable and 
historical climate variables as predictors (see Section  2.10) 
and models with current data (see Section 2.11). For the SDMs 
explaining brown bear distribution, we used as climate vari-
ables bioclimatic variables, which are variables derived from 
monthly temperature and precipitation values with a biological 
meaning. We included isothermality, which is the mean diur-
nal range divided by the temperature annual range (Clim_3), 
temperature seasonality (Clim_4), mean temperature of the 
wettest quarter (Clim_8), and mean temperature of the driest 
quarter (Clim_9; Karger et al. 2017 for a detailed description). 
For land use, we included the rate of urban areas (Urban), the 
rate of broadleaved forested areas (Broadleaved Forest), the 
rate of coniferous areas (Coniferous Forest), and a measure 
of the rate of natural areas at landscape scale (a 11 × 11 km 
window; Natural Landscape). To address (iv), whether future 
range shifts differ when considering biotic factors or not, we 
used the best BMs and assessed changes in the potential dis-
tribution of the brown bear combining the three previous SSPs 
with three scenarios of change: (1) change in abiotic and biotic 
variables, (2) change in abiotic variables, and (3) change in bi-
otic variables (Figure 1d).

2.10   |   Species Distribution Model 
of the Historical Range

We used a model of the historical distribution of the brown bear 
(based on historical range data and climate data) to inform 
models of the current distribution (Appendix S1). Specifically, 
we fitted a species distribution model with presences/absences 
from the Range Database (50 × 50 km resolution) as a function 
of historical bioclimatic variables (Appendix  S1). We selected 
bioclimatic variables by first dropping those with a VIF over a 
threshold of 10 using the R package usdm (Guisan et al. 2017; 
Naimi 2017). We further refined the variables by selecting the 
four best historical climate variables (Table S12) on the basis of 
the AIC of univariate binomial GLMs (logit link) with linear 
and quadratic effects. We then fitted a final “historical” istri-
bution model with a Bayesian binomial GLM using these four 
variables (Clim_3, Clim_4, Clim_8 and Clim_9) and a stratified 
sampling of presences/absences from the brown bear Range 

Database. We extracted the mean and standard deviation of the 
parameter estimates for use as an informed prior for the models 
described below (Tables S13–S17 and Figures S8–S10).

2.11   |   Modelling and Predicting Brown Bear 
Distribution at a Fine Scale

We modelled the distribution of the brown bear at a high spa-
tial resolution (1 × 1 km; Table S18) using the training selection 
of presences/pseudo- absences from the brown bear Occurrence 
Database as the response variable (N presences = 19,926; N 
pseudo- absences = 19,926; Tables  S9–S11) and three types of 
predictor variables: climate, land- use, and biotic. We selected 
four variables to include within each type. For climate vari-
ables, we selected the same four variables used in the model of 
the historical brown bear distribution (but with values for the 
current climate, obtained from the CHELSA database (Karger 
et al. 2017)). For land- use and biotic variables, we selected the 
four best (AIC- based) uncorrelated variables determined by a 
univariable GLMM (Tables S19–S21).

We fitted three Bayesian models (BMs) explaining brown bear 
distribution using different combinations of factors (abiotic, bi-
otic, or both): (1) a model with abiotic (climate and land- use vari-
ables) and biotic predictors (using biotic variables), (2) a model 
with abiotic predictors only, and (3) a model with biotic predic-
tors only (Table S18). Note that only models including climate 
variables can use the historical priors, and thus the model based 
solely on biotic variables can only use current data. We also 
fitted a null model with only the intercept using only current 
presences/pseudo- absences.

The two Bayesian hierarchical models (BHMs) which used his-
torical range data (the model with abiotic and biotic predictors 
and the model with biotic predictors only) used noninformative 
priors for land use and biotic variables and informative priors 
based on the historical distribution model as defined above. 
We assumed equal confidence for the historical and current 
data, and thus the mean and SD of the parameter estimates 
from the historical distribution model were not modified and 
used directly as priors. The biotic model used noninformative 
priors for all variables. All models were Bayesian binomial 
GLMMs calculated with a logit link, using the Hamiltonian 
Monte Carlo algorithm in Stan (Stan Development Team 2023, 
mc-  stan. org). We used Stan with the rstan, rstanarm, and loo 
packages in R to fit and assess the diagnostics of the models 
(Stan Development Team 2020; Goodrich et al. 2022; Vehtari 
et al. 2022). Models were diagnosed by calculating the model 
coefficients (best estimates and their SE), Monte Carlo stan-
dard error (MCSE), confidence intervals (10%, 50% and 90%), 
number of effective sample size (Neff), and the potential scale 
reduction factor on split chains (Rhat; at convergence Rhat = 1). 
In addition, we plotted the Markov chain from each model pa-
rameter to check whether chains were stationary, whether the 
path stayed within the posterior distribution (the mean value 
of the chain is stable from the beginning to the end) and had 
a good mixing, whether each successive sample within each 
parameter is not highly correlated with the previous sample 
(there is a zig- zag motion of each path) (McElreath  2020). 
We evaluated and compared the models using the widely 
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applicable information criterion (WAIC) (Vehtari et al. 2017). 
The best model (based on the WAIC) was evaluated using the 
validation subset of the brown bear Occurrence Database (N 
presences = 4982; N pseudo- absences = 4982; Table  S11). As 
we used pseudo- absences, we established a cutoff for the po-
tential distribution based on the 90th percentile training pres-
ence (Liu et al. 2005; Bean et al. 2012), that is, leaving out 10% 
of the observed presences of the training dataset.

In addition to those models, and in order to evaluate whether 
there was an effect of combining different data, we fitted two 
simple Bayesian models (not hierarchical) for the two BHMs 
without considering the information of the historical range; we 
used noninformative priors for all predictors (Table S18).

We used the best model to predict the distribution of brown bear 
in all subpopulations for the current and nine future climate/land 
use change scenarios which considered combinations of three 
SSPs (SSP1- 2.6, SSP3- 6.0, and SSP5- 8.5) with changes in (1) abiotic 
and biotic variables, (2) abiotic variables, and (3) biotic variables. 
For the biotic variables, the climate and land- use scenarios were 
used indirectly to predict the influence of climate and land use 
on the habitat of species in the brown bear diet, which was then 
summarized as energy available in the space as described above 
(Table S22). For the current and each of the nine future climate/
land- use change scenarios for the distribution of brown bear, we 
calculated different descriptors related to the conservation status 
of species (Lucas et al. 2019; Ramírez- Delgado et al. 2022), such 
as area of the distribution, percentage of the distribution occu-
pied, and distribution included in protected areas using the World 
Database of Protected Areas (UNEP and IUCN 2017).

To assess error propagation in the Bayesian hierarchical 
model using abiotic and biotic factors, we applied a sensitiv-
ity analysis over the biotic variables, a technique widely used 
in fields of ecology and climate change (Rogelj et  al.  2012; 
Barabás et  al.  2014). This technique allowed us to quantify 
how the uncertainty from the biotic variables affects the mod-
el's overall uncertainty. For this, we first find the extremes 
of the biotic variable input (i.e., Figure  1d), with a 95% con-
fidence interval on the strength of the inputs. Then we rerun 
the Bayesian model with the two extremes to get an upper and 
lower bound for how much the biotic layer affects uncertainty 
in the outputs and calculated the current prediction for these 
new models. We found that estimates and predictions changed 
slightly (Tables S23–S26 and Figures S11 and S12); predictions 
showed a high correlation with the original prediction (cor-
relation = 0.9999991 for the model using the lower bound and 
correlation = 0.9999994 for models using the upper bound). 
All statistical analyses were performed in the R program, 
versions 3.1.2 (R Development Core Team 2017) and 4.02 (R 
Development Core Team 2020) for Bayesian analysis.

3   |   Results

3.1   |   Spatial Variation of Biotic Interactions

From the literature search, we identified trophic interactions 
between the brown bear and 276 food species (Figure  1a; 
Table  S5). In total, 76.8% of species were plants and 23.2% 

were animals (13.0% vertebrates, 10.1% invertebrates). When 
focusing only on trophic interactions described at the species 
level, we found that the relative energy contribution of each 
food category varied among subpopulations; for example, in 
the Scandinavian subpopulation, 51% of the energy was of ver-
tebrate origin compared to just 4% for the East Balkan subpop-
ulation (Tables S27–S29). Also, the proportion of energy from 
human- derived sources (n = 36 species) strongly varied among 
subpopulations; for example, in the Karelian subpopulation, 
only 2% of the energy was from human- derived sources com-
pared to 93% for the East Balkan subpopulation (Figure 2b,c; 
Table S30).

Using all food items in each study site (n > 1300; not only those 
described at the species level), we found that the relative energy 
contribution to the diet of the brown bear for all food categories 
(apart from the vegetative plant category), as well as the diver-
sity of food categories, was driven by climate and land use (cli-
mate and land- use variables showed p values < 0.05; see Figure 3 
and Tables S31–S50 for detailed model fits including parameter 
estimates and uncertainties and Appendix S2 for supplementary 
results). For example, bears consumed (based on the rEDEC) 
proportionally more reproductive plant parts (e.g., fleshy fruits 
and nuts) and fewer invertebrates in areas with more broad-
leaved forest cover (Figure 3a,b, respectively), and proportion-
ally more vertebrates in areas with climates exhibiting lower 
annual mean temperatures (Figure 3c) or a smaller diurnal tem-
perature range (Figure 3d). Similarly, bears tend to have more 
diverse diets when they occur in areas with lower annual mean 
temperature (Figure  3e,f) or in areas with lower broadleaved 
forest cover (Figure 3g,h).

3.2   |   Quantitative Versus Binary Proxies of Biotic 
Interactions to Explain Geographic Distributions

Among all wild food species (n = 240; Table S5), we were able 
to build robust SDMs and predict the current/future habi-
tat suitability for 205 species (SDMFood: average sensitivity of 
78.4%, specificity of 69.2% and TSS of 0.48; see Tables  S8 and 
S51–S56 for detailed model fits). We then contrasted, based on 
AIC, whether brown bear distribution was better explained by 
quantitative (Biotic variables) or binary proxies of biotic interac-
tions (Biotic_binary). For the vegetative plant food category, we 
found that the binary proxy for the interaction was sufficient to 
best explain brown bear distribution. Conversely, for all other 
food categories (i.e., reproductive plants, unknown plants, in-
vertebrates, and vertebrates), including a quantitative measure 
of the interactions with species better explained the distribu-
tion of brown bears (see Table S21 for model comparison based 
on AIC).

3.3   |   The Role of Abiotic and Biotic Factors in 
Explaining Species' Geographic Distributions

When we compared the three Bayesian models (BMs), we found 
that the model combining abiotic and biotic factors was the 
best (WAICAbioticBiotic = 52,675.0 ± 93.1; Figure  4) and signifi-
cantly improved the understanding of brown bear distribution 
compared to models using either abiotic or biotic factors (delta 
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WAICAbiotic = 340.0 ± 95.5; delta WAICBiotic = 1679.9 ± 59.1; 
see Tables  S18 and S57–S67 and Figures  S11–S18 for detailed 
model fits including parameter estimates and uncertainties). 
The model combining abiotic and biotic factors showed a good 
performance compared with a Null model using only the in-
tercept (delta WAICNull = 2539.7 ± 0.0) and yielded a high rate 
to correctly classify the presences of brown bear (true positive 
rate = 0.90; Table S68), with a low rate to correctly classify the 
pseudo- absences of brown bear (true negative rate = 0.21), but 
see Leroy et al. (2018). The model threshold for classifying pres-
ence/absence was intentionally selected to have a true- positive 
rate = 0.90 to overestimate the current distribution of the species 
as it has locally been eliminated from potentially suitable areas 
(Faurby and Araújo 2018) (see Methods), and similarly to other 
studies of large carnivores which have suffered important range 
contraction (Grilo et  al.  2019). The predictions showed a cur-
rent potential distribution for the brown bear of 2,794,314 km2 
(Figure 5a; Table S69), with large areas that could host brown 
bears but currently do not.

In terms of species response to the selected abiotic and biotic 
variables, brown bear presence showed a bell- shaped response 
to most climate variables, but as expected, a negative response 
to the percentage of urban areas, and a positive association with 
forests and natural landscapes (Figure 4). While the response 
of brown bear presence to most biotic variables/food categories 
was positive (i.e., reproductive plants, unknown plants, and 
vertebrates), it showed a surprising negative association with 
the invertebrate food category (see Section 4 and Table S58).

3.4   |   The Effect of Biotic Factors in Future 
Range Shifts

The predictions of biotic interactions, based on the best mea-
sures of interaction (Biotic variables), for future SSPs showed 
important differences. The potential available energy for the 
brown bear from all food species (BioAll_species) was predicted 
to be reduced by 53% under SSP3- 6.0. Importantly, when fo-
cusing on the different food categories, future predictions 
for biotic variables showed differences by food category and 
spatially varied by subpopulation (Figure 1d; Figure S19 and 
Table S22).

Those predicted future changes in biotic interactions affected the 
projected distribution of brown bears in the future. Our model 
showed a drastic range reduction that was more marked when 
considering both abiotic and biotic variables, with an overall re-
duction in 36%, as compared to either biotic (reduction in 13%) 
or abiotic (reduction in 20%) variables only. Range reduction was 
most pronounced in the south- eastern subpopulations, for ex-
ample, 93% reduction in the East Balkan subpopulation and 86% 
reduction in the Türkiye subpopulation (Figure 5; Tables S69–
S72). Importantly, the spatial variability of future changes in bi-
otic interactions and by food category described above translated 
into different effects across the brown bear range, as abiotic and 
biotic factors acted differently among the different subpopula-
tions. For example, according to the SSP3- 6.0 scenario, in the 
Alpine subpopulation, biotic variables were associated with a 
habitat reduction in 44% compared to 32% for abiotic variables, 

FIGURE 3    |    Linear models associating brown bear diet with environmental variables. (a) Association of relative estimated dietary energy content 
(rEDEC) from reproductive plant with percentage of broadleaved forest. (b) Association of rEDEC from invertebrates with percentage of broadleaved 
forest. (c) Association of rEDEC from vertebrates with annual mean temperature. (d) Association of rEDEC from vertebrates with diurnal tempera-
ture range. (e) Association of Simpson index of diversity (rEDEC- based) with annual mean temperature. (f) Association of inverse Simpson diversity 
index (rEDEC- based) with annual mean temperature 0. (g) Association of Simpson diversity index (rEDEC- based) with percentage of broadleaved 
forest. (h) Association of Shannon diversity index (rEDEC- based) with percentage of broadleaved forest. All predictors of these models showed sig-
nificant associations (p values < 0.05).
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whereas in Türkiye, biotic variables explained a comparatively 
smaller habitat reduction in 6% (Tables S69–S72).

4   |   Discussion

We demonstrate the importance of trophic interactions in 
explaining species distributions at large (continental) scales. 
Specifically, we found that (1) trophic interactions are highly 
variable across geographic space and are determined by cli-
mate and land- use variables, (2) reliably estimating these 
biotic factors requires accounting for quantitative measures 
of biotic interactions, (3) including biotic interactions signifi-
cantly improves our understanding of species distributions, 
and (4) the consideration of biotic interactions in future projec-
tions has important effects on predicting future consequences 
of climate and land- use changes for species distributions and 
for ecosystem functioning. Our findings are based on a species 

with a wide abiotic niche, and which is a top- predator diet 
generalist (Penteriani and Melletti  2020). Species with other 
ecological traits, such as different abiotic niche breadth, tro-
phic position, diet breadth, or with a limited mobility capacity, 
might show different responses to land use and climate change 
(Carroll et al. 2024). Climate and human land use showed an 
association with biotic interactions through different ecosys-
tems, suggesting that future scenarios of climate and land use 
may indirectly affect the brown bear diet. Climate and land 
use were used as proxies as they explain species richness and 
community (Coelho et al. 2023) which is the real/direct fac-
tor explaining biotic interactions. Future changes in brown 
bear food webs (our predator- energy system) are caused by/
based on overlap dynamics of predator abiotic niche and prey 
distributions (Durant et al. 2007; Carroll et al. 2024). At the 
continental level, two patterns prevail, divergent shifts, and 
contracted shifts, both causing a decrease in the available en-
ergy, but in some areas, we can observe congruous shifts, with 

FIGURE 4    |    Partial response plots of brown bear distribution to both abiotic and biotic variables. The distribution model for brown bear including 
both abiotic and biotic factors was fitted combining both historical (Range Database) and current data (Occurrence Database). The continuous line 
represents the mean response value, and the grey area shows the model uncertainty (95% confidence interval). The blue area indicates the range of 
values of the current data. Isothermality (Clim_3), temperature seasonality (Clim_4), mean temperature of the wettest quarter (Clim_8), and mean 
temperature of the driest quarter (Clim_9).
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FIGURE 5    |     Legend on next page.
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bears and energy redistributing in similar directions (e.g., 
Scandinavian subpopulation) and convergent shifts, with 
bear available energy increasing the overlap with bear abi-
otic niche (e.g., Karelian subpopulation) (Durant et al. 2007; 
Carroll et al. 2024). This spatial variability, among the differ-
ent subpopulations, in the overlap dynamic shows the com-
plexity of the indirect effects of biotic interactions over species 
distributions and may be caused by several factors: (1) differ-
ent magnitudes and directions of global changes in the dif-
ferent communities, for example, subpopulations around the 
Mediterranean will face higher increases in temperature and 
a reduction in precipitation (Karger et al. 2017); (2) there are 
different prey species, with different ecological traits, among 
the different subpopulations, for example, Southern subpopu-
lations depend more on plant species with a narrower niche, 
whereas northern subpopulations have a higher proportion of 
ungulates in their diet. We did not account for species mobil-
ity, which may increase the contracted shifts for prey species 
of lower mobility. Overall, we would expect increasing ho-
mogenization in the diet among the different subpopulations, 
with more importance of those species with certain ecological 
traits such as a wide abiotic niche or higher mobility and a 
reduction in the available energy to bears in general (Carroll 
et  al.  2024). However, reorganization of food webs implies 
different responses for top- predators (Hoeks et al. 2020; Hao 
et al. 2025). As a diet generalist, the brown bear may switch to 
more available prey in response to a decline in overlap with im-
portant species in their diet (Ferreras et al. 2011) which could 
imply changes in the trophic position of the brown bear. In 
certain areas, energy reductions may lead to a decrease in bear 
abundance, as it has been observed in black bears (Laufenberg 
et  al.  2018), and in some cases can contribute to a local ex-
tinction, joining other factors, for example, in subpopulations 
currently at high extinction risk or subpopulations facing an 
intense contraction of the abiotic niche (e.g., Türkiye subpop-
ulation) (Sıkdokur et al. 2025). Importantly, changes in brown 
bear food webs can result in an increase in human–wildlife 
conflict if wild prey species availability decreases and bears 
switch to a diet based on anthropogenic sources (Chynoweth 
et al. 2016; Laufenberg et al. 2018; Abrahms et al. 2023; Kurth 
et al. 2024; Sıkdokur et al. 2024), which is a problem for the 
conservation of species (Pooley et al. 2017).

Ecosystem structure and functioning will be importantly 
affected by the reorganization of food webs driven by global 
changes (Sinclair  2003; Preisser et  al.  2007). As large carni-
vores play a key role in ecosystems, a change in their abundance 
or trophic position determine important cascade effects, such 
as changes in abundance of herbivores and mesopredators and 
a decrease in the autotroph biomass (Hoeks et  al.  2020). In 
the case of European and Türkiye ecosystems, the important 
range contraction of the historical distribution of brown bear 
(see historical range in Figure 1e and Figure S6) and its low 
abundance in some areas (several European subpopulations at 

extinction risk due to small population size) may have already 
caused an important change in ecosystem functionality and 
structure which should be considered for rewilding (Araújo 
and Alagador 2024).

The distribution of brown bears in Europe depends on cli-
mate variables, influencing the physiological functioning of 
the species (Bozinovic et  al.  2011; Rogers et  al.  2021; Kurth 
et al. 2024), as well as land use, such as forested areas and con-
tinuous natural areas which could be used as shelters (Grilo 
et al. 2019; Penteriani et al. 2019; Penteriani and Melletti 2020; 
Sıkdokur et  al.  2025). This is in line with previous studies 
showing the importance for brown bear distribution of mini-
mum temperature of the coldest month and annual mean tem-
perature (Luna- Aranguré et  al.  2020; Sıkdokur et  al.  2025) 
and with the importance of forest cover (Penteriani et al. 2019; 
Sıkdokur et al. 2025). However, here we show that even biotic 
factors shape brown bear distribution, represented here as the 
relative energy derived from food resources available to the 
species. According to our results, brown bears select areas 
that maximize this available energy (i.e., positive response of 
brown bear to most biotic variables), which may be explained 
by the high energy requirements of the species (White and 
Seymour 2003)44 and the absence of strong interspecific com-
petition for food resources (Braz et  al.  2020). The negative 
association with the availability of energy from invertebrates 
may be related to their negative correlation with isothermality 
(Clim_3; Correlation = −0.47), which has great importance for 
brown bear distribution and exhibits a bell- shaped response 
(Figure 4a). This could indicate that areas with high available 
energy from invertebrate species are located in less suitable 
environments. In addition, the low relative energy repre-
sented by invertebrates in the brown bear diet—an average of 
2% among all subpopulations (Figure 2b and Table S29)—may 
suggest that they represent opportunistic consumption rather 
than intentional/preferred prey, which may not influence the 
distribution of brown bears. Our results showed that brown 
bears currently have a large amount of suitable habitat that 
could be occupied. While the potential adaptability of brown 
bears to diverse food resources and the challenges of predict-
ing future energy availability are promising research avenues, 
it is paramount to underscore the significant impact of humans 
on brown bear distribution and their conservation (Morales- 
González et al. 2020; Ashrafzadeh et al. 2022). Furthermore, 
climate and land- use changes have the potential to greatly re-
duce suitable bear habitats. Hence, safeguarding forests, min-
imizing landscape fragmentation, and preserving the species 
communities that interact with brown bears play vital roles in 
mitigating the effects of these drivers (Li et al. 2020).

The use of SDMs is one of the most advanced and widely used 
tools to understand the factors delimiting species distribu-
tions and to predict the effects of global change on biodiversity 
(Guisan and Thuiller 2005). Our results show the importance 

FIGURE 5    |    Brown bear habitat predictions. Prediction of brown bear habitat for current conditions (a). Future predictions of habitat for climate 
change scenarios SSP1- 2.6, SSP3- 6.0, and SSP5- 8.5 considering changes in both abiotic and biotic factors (b, e, h), changes in abiotic factors only (c, f, 
i), and changes in biotic factors only (d, g, j). The predicted area only includes a buffer area of 200 km around the current distribution to avoid extrap-
olating biotic variables into an environmental space where there is no information about the trophic interactions of brown bears.
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of additionally considering biotic factors and taking an eco-
system approach to properly understand species distribu-
tions (Romero et  al.  2018; Antão et  al.  2022), especially for 
modelling species distributions under climate and land- use 
change scenarios (Thuiller et al. 2018; O'Gorman et al. 2023). 
However, as biotic interactions are highly complex, their inclu-
sion needs to be accounted for on the basis of ecological stud-
ies that consider the spatial heterogeneity of these interactions 
and provide quantitative estimates for them (Banašek- Richter 
et al. 2004; Banašek- Richter et al. 2009). Our approximation 
was a simplification of the true biotic interaction networks, 
and other aspects such as competition, parasitism, the poten-
tial plasticity of different subpopulations to alter their diet in 
future scenarios, and/or other dimensions including tempo-
ral variation at seasonal, interannual, and other spatial scales 
may be relevant and could be considered in future studies. For 
example, the important diet adaptability of the brown bear 
and food preferences were not considered. It is expected that 
future communities where brown bears will be present will 
be different in species composition but also in their abun-
dance, and this will have an important role in the potential 
interactions; for example, we would expect that brown bears 
would select species with higher energy such as big ungulates 
(Hayward and Kerley 2008; Niedziałkowska et al. 2019). It is 
also possible that novel habitats suitable for brown bears in 
both abiotic and biotic conditions could emerge under differ-
ent climate change scenarios in areas currently outside brown 
bear distribution. In general, implementation of projections 
including biotic interactions in other species currently faces 
two big challenges: (1) detailed and extended information 
about ecological interaction networks, and (2) high- quality 
data about species presences/occurrences. To overcome these 
challenges, global- scale monitoring initiatives with open- 
source principles, open- source databases on species ecology, 
and the reduction of spatial and taxonomic biases will be of 
primary importance (Meyer et  al.  2015; Delgado- Baquerizo 
et  al.  2016). This new generation of projections has a wider 
applicability over all species, allows decoupling abiotic and 
biotic factors, will better identify the drivers responsible for 
species distributions, and will enhance the predictions regard-
ing the effects of global change on species, including agricul-
ture or livestock species; overall they will generate important 
knowledge to conserve biodiversity, ecosystem services, and 
to secure the human food system.
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