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A B S T R A C T

The combined influence of multiple stress factors on natural ecosystems is a critical concern, as neglecting their 
effects could compromise essential biological functions. However, limited studies have explored the combined 
effects of antibiotics and global warming on aquatic ecosystems, leaving a gap in understanding their interaction. 
This study aimed to assess the toxicity of environmentally relevant concentrations of sulfamethoxazole (SMX: 
150 μg/L), trimethoprim (TRIM: 30 μg/L), and their mixture (MIX: 150 μg SMX/L + 30 μg TRIM/L) on Danio 
rerio at three temperature conditions: standard (26 ◦C), moderately high (28 ◦C), and high (32 ◦C) temperatures. 
A multi-biomarker approach was used to evaluate the organism's biological status (e.g., antioxidant/detoxifi-
cation defense enzymes, lipid peroxidation, cholinergic neurotransmission, energetic metabolism, DNA damage). 
Results indicated that rising temperatures influenced the toxicity level of each antibiotic differently to D. rerio. At 
26 ◦C, all the antibiotics were marginally toxic, and major alterations were observed (oxidative stress and 
neurotoxicity). Increasing temperature to 28 ◦C, the toxicity increased, with SMX and MIX exhibiting moderate 
toxicity, and severe alterations (neurotoxicity and DNA damage). In contrast, TRIM showed only slight toxicity 
and recorded negligible alterations (antioxidant defense alterations). At higher temperature (32 ◦C) individual 
antibiotics revealed slightly toxic with negligible alterations. However, MIX at 32 ◦C was more toxic, and severe 
damage was observed (e.g., higher DNA damage). These findings reveal a pressing and alarming threat: com-
bined contaminants impact and climate change could drive aquatic ecosystems toward collapse. Understanding 
how these stressors interact is critical to preventing potentially irreversible damage to aquatic life.

1. Introduction

In recent years, there has been a growing global concern about the 
impact of environmental contaminants on ecosystems and human health 
(Noyes et al., 2009). Intensifying this problem, the effects of climate 
change, including rising temperatures, further stress ecosystems, 
creating complex interactions that can amplify the toxicity of environ-
mental contaminants (Bethke et al., 2023; Noyes et al., 2009). In 
recognition of these challenges, the 2030 Agenda for Sustainable 
Development identifies climate change as “one of the greatest ecosystem 
challenges of this century” (United Nations, 2021). Within objective 13, 
which aims to “take urgent action to combat climate change and its 

impact,” member states acknowledge that rising global temperatures 
can have severe consequences for vulnerable regions, particularly those 
of poorer and underdeveloped nations (United Nations, 2023a). 
Furthermore, the availability of basic needs (freshwater, food security, 
and energy) is threatened, putting at risk the survival of “societies and 
biological support systems of the planet” (United Nations, 2023b). As 
reported by the IPCC's Sixth Assessment Report, the climate is warming 
rapidly, having recorded global surface temperatures reaching 1.1 ◦C 
above 1850–1900 in 2021–2020 (IPCC, 2023). According to the pro-
jections based on different greenhouse gas emission scenarios, the 
average global surface temperature is expected to rise by 1.0–1.8 ◦C up 
to 3.3–5.7 ◦C by 2081–2100 (IPCC, 2023). Considering the worst-case 
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projection scenario, an increase of 4 ◦C of the global surface temperature 
can represent a very high risk/impact on freshwater ecosystems, causing 
biodiversity loss and structural change (IPCC, 2023).

Temperature has a significant impact on the health and functioning 
of organisms, impacting all levels of biological organization, from 
cellular biochemical processes to population growth (Adamczuk, 2024; 
Noyes et al., 2009). This is one of the climate change-related factors that 
profoundly change freshwater ecosystems, increase organism vulnera-
bility, and reduce their ability to adapt to new conditions (Sanpradit 
et al., 2024). Several authors have already reported that the physiology 
and metabolic alterations of freshwater organisms (e.g., Daphnia magna 
and Danio rerio) are highly influenced by temperature (e.g., metabolic 
and immune alterations, oxidative stress) (Jannat et al., 2024; Kazmi 
et al., 2022; Sanpradit et al., 2024). However, natural ecosystems are 
exposed to multiple stressors, and the combination of these stresses 
should not be neglected as it may compromise existing biological sup-
port systems.

Beyond the issue of global warming, other critical environmental 
concerns have garnered global attention. Notably, one such challenge is 
the excessive use of pharmaceuticals, particularly antibiotics, which 
pose significant risks to ecosystems (Cars and Jasovsky, 2015). The 
number of antibiotics used for the treatment/prevention of multiple 
infections and their residues has increased exponentially worldwide (e. 
g., an increase of 16.4 to 20.0 defined daily doses per 1000 inhabitants 
per day in Europe between 2020 and 2023) (ECDE, 2024). This increase 
represents a potential risk for terrestrial and aquatic ecosystems [due to 
their biological activity (Grinten et al., 2010)] once they have been 
detected in low concentrations (ng/L or μg/L) in surface and ground-
waters (Carvalho and Santos, 2016; Chen et al., 2021; Diogo et al., 
2023b). Two of the most used antibiotics in the last 50 years are sulfa-
methoxazole (SMX) and trimethoprim (TRIM) which led to their inclu-
sion in the 3rd Watch List of substances to monitor under the Water 
Framework Directive to assess the ecological status of aquatic ecosys-
tems (Cortes et al., 2020; Cortes et al., 2022). These antibiotics, as well 
as their mixture (MIX), are applied in human and animal medicine, 
aquaculture, and agriculture (Carvalho and Santos, 2016; Ho and 
Juurlink, 2011), and are commonly detected in freshwater ecosystems 
(Chen et al., 2021).

Considering that the bioavailability and toxicity of antibiotics in-
crease in response to rising temperatures (Danner et al., 2021; Kazmi 
et al., 2022; Wiles et al., 2020), the study of the combined effects of these 
factors is essential. It has already been described that the temperature 
has a significant impact on the environmental fate, distribution, and 
toxicity of antibiotics (Hutton et al., 2024; Kazmi et al., 2022). By 
relating the antibiotics effects (such as SMX and TRIM) to climate 
change scenarios, it is possible to gain insights into the challenges and 
risks that freshwater organisms may face. It is not only public and 
environmental health issues (preserving the biodiversity of ecosystems), 
but it is also critical to global development progress. Recently, studies 
reported that SMX, TRIM, and their MIX affected individually and sub- 
individually different freshwater organisms (e.g., Scenedesmus obliquus, 
Lemna minor, Daphnia magna, and Danio rerio) (Diogo et al., 2024; Xiong 
et al., 2019); however, no studies have been found exploring the com-
bined effects of environmentally relevant concentrations of these anti-
biotics and global warming predictions. Thus, to understand 
environmental threats on freshwater ecosystems due to antibiotic 
contamination and global warming simultaneously, this study aims to 
assess the effects of environmentally relevant concentrations of SMX, 
TRIM, and MIX on fish D. rerio evaluating the biological health status 
across different ecologically relevant warming scenarios (26, 28, and 
32 ◦C), utilizing a multi-biomarker approach. This study provides novel 
insights into the underexplored interaction between antibiotics and 
climate warming by evaluating the temperature-dependent toxicolog-
ical effects of environmentally relevant concentrations of SMX, TRIM, 
and their mixture on Danio rerio. Through a multi-biomarker approach, 
the research provides an integrated assessment of potential synergistic 

impacts on aquatic health. By aligning potential environmental condi-
tions with climate projections, the study contributes to a more realistic 
understanding of ecological risks, supporting efforts to protect biodi-
versity, safeguard water quality, and inform global environmental 
management strategies.

2. Material and methods

2.1. Test organism: Danio rerio

Danio rerio (zebrafish) is a freshwater fish widely used as a standard 
organism for ecotoxicological studies (OECD, 2000). To conduct this 
study, the juveniles used in the experiment were born from a laboratory 
broodstock and reared under standard laboratory conditions in a 
zebrafish facility at CIIMAR - Interdisciplinary Centre of Marine and 
Environmental Research (Matosinhos, Portugal), until transferred to the 
experimental room for acclimation. The quarantine/acclimation period 
(three weeks) was conducted in 60 L tanks with continuous aerated and 
dechlorinated tap water, with controlled conditions of photoperiod (16 
hL:8 hD) and temperature (26 ± 1 ◦C). Every two days, during the 
quarantine period, water quality parameters (temperature, conductiv-
ity, pH, dissolved oxygen, ammonium, and nitrite levels) were moni-
tored, and the organisms were fed ad libitum with commercial zebrafish 
food (Zebrafeed 400–600 μm by Sparos). Organisms were considered 
proper/healthy for the assays since no disease signals or death were 
recorded, at least for 15 days. Trained researchers (following FELASA 
category C recommendations) directed the experiment, and all proced-
ures were conducted according to the recommendations of the European 
Union Directive (2010/63/EU) while operating under the Portuguese 
Law (DL 113/2013) on the protection of animals for scientific purposes 
(Ministério da Agricultura, 2013). The experimental protocol was 
approved by the Animal Welfare and Ethics Body committee of the 
Interdisciplinary Centre of Marine and Environmental Research 
(ORBEA-CIIMAR).

2.2. Chemicals and stock solutions

Sulfamethoxazole (SMX; molecular weight 253.28 g/mol; ≥ 98.0 % 
purity; CAS: 723–46-6) and trimethoprim (TRIM; molecular weight 
290.3 g/mol; ≥ 98.5 % purity; CAS: 738–70-5) were acquired from 
Sigma Aldrich. SMX and TRIM stock solutions (100 and 50 mg/L, 
respectively) were prepared by diluting each antibiotic in dechlorinated 
tap water. The nominal concentrations tested (150 μg SMX/L and 30 μg 
TRIM/L), were chosen based on the maximum concentrations detected 
in surface water reported by the literature (Kairigo et al., 2020; Khan 
et al., 2013). The effects of a mixture of SMX and TRIM (MIX = 150 μg 
SMX/L + 30 μg TRIM/L) were also evaluated to simulate real environ-
mental conditions (Carvalho and Santos, 2016; Kairigo et al., 2020; 
Khan et al., 2013).

2.3. Chronic assay

The chronic assay was carried out under laboratory-controlled con-
ditions similar to those adopted during the acclimation period, and ac-
cording to OECD test guideline n◦ 215 (OECD, 2000). Juvenile 
individuals of D. rerio (2 months old; 1.43 ± 0.01 cm; 0.041 ± 0.001 g) 
were exposed for 28 days to different antibiotics treatments: SMX (150 
μg/L), TRIM (30 μg/L), MIX (150 μg SMX/L + 30 μg TRIM/L), and a 
control group (CTL; without antibiotics). Each treatment was tested at 
three temperature scenarios: standard temperature (26 ◦C), moderately 
high temperature (28 ◦C), and high temperature (32 ◦C), selected by 
increasing the standard temperature for D. rerio (26 ◦C) by 2 ◦C and 6 ◦C, 
according to global warming projections from the Intergovernmental 
Panel on Climate Change and Climate Action Tracker (IPCC, 2023; 
Stockwell et al., 2021). Projections based on different greenhouse gas 
emission scenarios indicate that the average global surface temperature 
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is expected to rise by 1.0–1.8 ◦C (max ~2 ◦C; low emissions scenario) up 
to 3.3–5.7 ◦C (max ~6 ◦C; high emissions scenario) by 2081–2100 
(IPCC, 2023). For freshwater ecosystems, projections indicate that sur-
face water temperatures are likely to increase significantly. By 
2081–2099, the average surface temperatures in 46,557 European lakes 
are expected to rise by 2.9 ◦C, 4.5 ◦C and 6.5 ◦C, depending on the 
scenario, compared to the historical baseline of 1981–1999 (IPCC, 2023; 
Woolway et al., 2020).

Fish were distributed in thirty-six 2-L glass aquaria (randomly 
distributed in the exposure room), with three replicates per treatment (3 
aquaria per treatment, each one with 6 fish). Fish were fed, and ~ 80 % 
of the medium was renewed every 48 h. According to guideline OECD n◦

215 (OECD, 2000), physical and chemical water parameters (pH, tem-
perature, conductivity, and dissolved oxygen) were measured twice a 
week, using a multiparametric probe (Multi 3630 IDS SET F), to validate 
the water quality during the assay. A bench photometer (Spectroquant 
Multy Colimeter) was used to quantify ammonium and nitrites after 
collecting water aliquots from all aquaria (before medium renewal).

2.4. Antibiotic quantifications

For the quantification of SMX, TRIM, and MIX analytical concen-
trations (Table 1), a volume of 50 mL of water was randomly collected 
from a replicate of each treatment at the beginning of the assay (0 h). 
After collection, the samples were immediately stored in the dark at a 
frozen temperature of − 20 ◦C until further analysis. The analytical 
quantification of the antibiotics was performed according to described 
by Diogo et al. (2024). The limit of quantification (LOQs) was 1 μg/L for 
SMX and 0.8 μg/L for TRIM. The method's precision was assessed 
through the study's repeatability. The compounds studied were not 
identified in the control samples.

2.5. Fish sacrifice, collection of biological samples, and biochemical 
biomarkers quantification

After the 28-day exposure period, the organisms were immersed in a 
rapid ice-cold water bath (≤ 4 ◦C), and once they exhibited a cessation of 
opercular movements and swimming ability, they were euthanized by 
decapitation, following the protocols outlined by Diogo et al., 2023a and 
Wilson et al., 2009. According to Portuguese animal welfare legislation 
and the American Veterinary Medical Association's (AVMA) recom-
mendations for animal euthanasia, this process was considered effective, 
rapid, and not stressful for the fish, and without biochemical disruptions 
in the organisms (Ministério da Agricultura, 2013; Wilson et al., 2009). 

After euthanasia, the organisms were measured and weighed. Whole- 
body tissue was used to assess biomarkers, providing a comprehensive 
evaluation of the fish's overall physiological status and systemic re-
sponses to environmental stressors. For each replicate, two fish bodies 
(randomly selected) were used for evaluation of antioxidant defense 
[Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 
(GPx), glutathione reductase (GRed) activities, and glutathione (GSH) 
content], biotransformation [Glutathione S-transferases activity (GSTs)] 
and lipid peroxidation [Thiobarbituric acid reactive substances (TBARS) 
levels]. One fish body (randomly selected) was used for quantifications 
of lactate dehydrogenase (LDH) activity, and another fish body was 
selected for cellular energy allocation (CEA) assessment, by determining 
the available energy (Ea): carbohydrates, lipids, and protein total con-
tents and Energy consumed (Ec): electron transport (ETS) activity. One 
head (randomly selected) was used for the determination of cholinergic 
neurotransmission (acetylcholinesterase activity – AChE activity). All 
biological samples (bodies and heads) were immediately stored at 
− 80 ◦C until the biochemical determinations were quantified following 
the protocols described in Diogo et al. (2023a) (for SOD, CAT, GPx, 
GRed, GSTs, LDH, AChE activities, GSH content, and TBARS levels), and 
Diogo et al. (unpublised data) (for CEA).

2.6. DNA damage determination: comet assay

Gill tissue was selected for DNA damage assessment due to its direct 
exposure to waterborne contaminants and its higher sensitivity to gen-
otoxic effects, as it is the primary organ for gas exchange, making it 
particularly vulnerable to genetic damage (e.g., Rodrigues et al., 2016). 
Gills from one fish per replicate (randomly selected) were collected and 
immediately processed for genetic damage evaluation, performed ac-
cording to Rodrigues et al. (2016). A system of six gels per slide was 
adopted to increase the assay output, based on a model created by 
Shaposhnikov et al. (2010) and described by Rodrigues et al. (2016). Six 
microgels of 6 μL were placed on a glass microscope slide, precoated 
with 1 % normal melting point agarose (NMPA), as two rows of 3 (3 
groups of 2 replicates), without coverslips. At the end of the procedure, 
slides were stored in boxes with light protection, until observation. A 
Nikon Eclipse Ci fluorescence microscope at 600× magnification, 
equipped with an excitation filter (540–580 nm) and an emission filter 
(620–670 nm), was used to assess and quantify the DNA damage. An 
observation of 100 nucleoids per sample (i.e. replicate) was used to 
scored/classified into five categories (from 0 to 4), according to the tail 
and head intensity (Rodrigues et al., 2016). As positive controls, cells of 
control animals were treated with 50 μM of H2O2 for 5 min. The genetic 

Table 1 
Results of the analytical concentrations of control group (CTL), sulfamethoxazole (SMX), trimethoprim (TRIM), and mixture (MIX) in water samples collected at the 
beginning of the assay (0 h), and physical and chemical parameters measured during chronic exposure. Established quality criteria for water quality parameters under 
standard conditions were also presented (OECD, 2000, guideline n◦ 215).

Treatments Analytical concentrations (μg/L) pH Temp. (◦C) O2 (%) Nitrites (mg/L) Ammonium (mg/L)

(◦C) Nominal (μg/L)

Established quality criteria 6.5 to 8.5 ± 0.5 21 to 25 ± 2 ◦C > 60 %

26

CTL (SMX = 0.0 TRIM = 0.0) SMX = 0.0 7.84 ± 0.07 26 ± 0.3 89.6 ± 0.72 0.283 ± 0.17 0.39 ± 0.25
TRIM = 0.0

SMX (150.0) 150.0 8.01 ± 0.03 26 ± 0.3 94.5 ± 1.25 0.288 ± 0.11 0.31 ± 0.16
TRIM (30.0) 31.0 7.98 ± 0.04 26 ± 0.2 93.0 ± 1.86 0.274 ± 0.28 0.44 ± 0.32

MIX (SMX = 150.0 TRIM = 30.0) SMX = 160.0 TRIM = 32.0 8.01 ± 0.03 26 ± 0.2 92.1 ± 1.70 0.175 ± 0.12 0.20 ± 0.16

28

CTL (SMX = 0.0 TRIM = 0.0)
SMX = 0.0

7.91 ± 0.05 28 ± 0.2 95.0 ± 0.56 0.245 ± 0.13 0.25 ± 0.05
TRIM = 0.0

SMX (150.0) 150.0 8.03 ± 0.05 28 ± 0.4 94.4 ± 0.42 0.471 ± 0.34 0.28 ± 0.15
TRIM (30.0) 33.5 8.03 ± 0.06 28 ± 0.2 93.0 ± 0.66 0.489 ± 0.34 0.39 ± 0.24

MIX (SMX = 150.0 TRIM = 30.0) SMX = 180.0 TRIM = 30.5 8.02 ± 0.02 28 ± 0.4 92.8 ± 1.94 0.267 ± 0.13 0.23 ± 0.19

32

CTL (SMX = 0.0 TRIM = 0.0)
SMX = 0.0

8.02 ± 0.06 32 ± 0.2 93.1 ± 1.70 0.206 ± 0.16 0.40 ± 0.10TRIM = 0.0
SMX (150.0) 113.9 8.12 ± 0.07 32 ± 0.4 93.1 ± 1.23 0.459 ± 0.38 0.45 ± 0.25
TRIM (30.0) 43.0 8.08 ± 0.07 32 ± 0.4 92.8 ± 1.57 0.499 ± 0.67 0.26 ± 0.22

MIX (SMX = 150.0 TRIM = 30.0) SMX = 150.0 TRIM = 28.5 8.09 ± 0.06 32 ± 0.1 93.6 ± 1.42 0.286 ± 0.16 0.29 ± 0.22
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damage index (GDI) was calculated according to Azqueta and Collins 
(2011), and GDI results were expressed as arbitrary units on a scale of 
0–400 per 100 scored nucleoids.

2.7. Data analysis

All biomarkers' data were checked for normality (Shapiro-Wilk test) 
and homogeneity tests (Levene's test). Before statistical analysis, the 
CAT, GRed, and GPx activities data were transformed (log(x) + 1 or 
arcsine) to meet ANOVA assumptions. A two-way ANOVA was per-
formed to assess the combined effects of antibiotics (SMX, TRIM, and 
MIX) and temperatures (26, 28, and 32 ◦C). A Dunnett's test was per-
formed to discriminate differences between antibiotic concentrations 
and the respective control treatment for each temperature. A signifi-
cance level (α) of 0.05, and SPSS Statistics v29 was used for all the 
statistical analyses.

2.7.1. Danio rerio: ecotoxicological assessment
After biomarkers quantification, each biomarker's effect percentage 

was calculated for each antibiotic and temperature treatment relative to 
the respective control group. This calculation was based on the meth-
odology described by Rodrigues et al. (2022), with adaptations to 
determine the percentage effect. Ecotoxicity ranges (scores and classes) 
were established considering the percentage of effects - 10 %, 50 %, and 
90 % - according to the methodology of Rodrigues et al. (2022)
(Table S2). The results obtained were used to evaluate the toxic effects of 
each antibiotic treatment at each temperature scenario (Table S2).

2.7.2. Danio rerio: biological health status
A multi-biomarker approach, which combines the responses of 

different biomarkers, can provide a more precise visualization of con-
sequences caused by various environmental stressors (Piva et al., 2011). 
According to Li et al. (2019), the biological health status of an organism 
exposed to different stresses can be classified using the biomarker 
response index (BRI). This index is based on the degree of alterations in 
biomarker responses observed in stressed organisms, compared to the 
normal biological responses (without stress - control group) (Li et al., 
2019). For BRI calculation, the relevance factor (W) for each biomarker 
evaluated in the present study was considered according to their bio-
logical relevance and our mechanistic insights (Piva et al., 2011). Thus, 
the relevance factor 1.0 was used for exposure or effects biomarkers, 
such as antioxidant defenses (SOD, CAT, GRed, GPx, GSTs activities, and 
GSH content) and the activities of metabolic enzymes (LDH activity), 1.2 
for biomarkers that might preclude adverse effects (TBARS levels), and 
1.5 for responses more likely to be prognostic of impairment at higher 
levels of biological organization (e.g., AChE activity and DNA damage) 
(Piva et al., 2011). As proposed by Piva et al. (2011), this classification 
assigns relevance factors to biomarkers depending on their potential to 
indicate adverse effects, ranging from reversible responses (e.g., anti-
oxidant defenses) to those that predict more severe biological impair-
ment (e.g., DNA damage). After that, the percentage of alterations (AL) 
caused, compared to the respective control group, was calculated: 

AL (%) =
|BRantibiotic treatment − BRCTL|

BRCTL
×100 

where BRantibiotic treatmentand BRCTL refer to the biomarker (final result of 
each biomarker) and control group responses, respectively.

Then, all the biomarker responses were distributed into four scores 
(1 to 4) according to AL (%) obtained (Table S3). Finally, the Biomarker 
response index (BRI) formula was applied: 

BRI =
∑

Sn × Wn
∑

Wn 

where Sn and Wn represent the score and relevance factor of biomarker 
n, respectively. Furthermore, the D. rerio biological health status could 

be classified as negligible, moderate, major, or severe alterations based 
on the calculated BRI (Table S3; Hagger et al., 2008).

3. Results

3.1. Water quality

During the chronic exposure, water quality parameters (pH, tem-
perature, conductivity, dissolved oxygen, ammonium, and nitrites) 
remained within the established quality criteria (OECD, 2000), as shown 
in Table 1. The analytical concentrations for all treatments are also 
shown in Table 1. No mortality was observed in the bioassay, meeting 
the guideline requirements (mortality <10 % in the control group).

3.2. Biomarkers

3.2.1. Antioxidant defense mechanisms and lipid peroxidation
The results of antioxidant and detoxification enzyme activities in 

D. rerio following exposure to environmentally relevant concentrations 
of SMX, TRIM, and their mixture (MIX) under different temperature 
conditions (26, 28, and 32 ◦C) are shown in Fig. 1. Significant in-
teractions were observed between antibiotic concentrations and tem-
peratures for all evaluated parameters (Fig. 1; Table S1).

Taking into account the effects on biomarkers of antioxidant defense, 
a significant increase in SOD activity was detected following exposure to 
SMX at 26 and 28 ◦C, as well as MIX at 28 ◦C (Fig. 1; Table S1). 
Conversely, a decrease in SOD activity was observed after exposure to 
TRIM and MIX at 26 ◦C, and SMX and MIX at 32 ◦C (Fig. 1; Table S1). 
CAT activity showed a significant reduction following exposure to TRIM 
and MIX at 26 ◦C, and SMX and TRIM at 28 ◦C, while a significant in-
crease was noted for MIX at both 28 and 32 ◦C (Fig. 1; Table S1). 
Similarly, GRed activity significantly increased after exposure to SMX 
(at 26 and 28 ◦C) and MIX (at 28 and 32 ◦C), and a significant reduction 
was recorded after exposure to TRIM and MIX at 26 ◦C (Fig. 1; Table S1). 
GPx activity increased after SMX at 28 ◦C, and MIX (at 28 and 32 ◦C), 
and was reduced significantly after exposure to all the antibiotic treat-
ments at 26 ◦C (Fig. 1; Table S1). The activity of GSTs increased after 
exposure to SMX at 26 and 28 ◦C, and MIX at 26 and 32 ◦C, while a 
significant decrease was observed with TRIM at 26 ◦C and SMX at 32 ◦C 
(Fig. 1; Table S1). GSH content followed a pattern similar to GRed ac-
tivity, except for TRIM at 32 ◦C, which significantly increased GSH levels 
without affecting GRed activity. TBARS levels significantly increased 
after SMX exposure at 26 and 28 ◦C, and MIX at 28 and 32 ◦C (Fig. 1; 
Table S1).

3.2.2. Cholinergic neurotransmission
Significant interactions were observed between antibiotic concen-

trations and temperature conditions for AChE activity (Fig. 1; Table S1). 
AChE activity significantly decreased after chronic exposure to SMX, 
TRIM, and MIX across different temperature scenarios, except for TRIM 
at 32 ◦C, which caused a significant increase in AChE activity (Fig. 1 and 
Table S1).

3.2.3. Energetic metabolism
Significant interactions were observed between antibiotic concen-

trations and temperature conditions for all pathways of obtaining energy 
(LDH activity and energy reserve contents; Fig. 1). A significant decrease 
in LDH activity was observed following exposure to all antibiotic 
treatments at 26 ◦C and SMX at 28 ◦C. In contrast, a significant increase 
in LDH activity was noted for MIX at 28 ◦C and SMX at 32 ◦C. A similar 
response was also detected in carbohydrates content and Ea after 
exposure to SMX and MIX at 28 ◦C (significant increase), and SMX at 
32 ◦C, while a significant decrease occurred in SMX and TRIM at 26 ◦C, 
and MIX at 32 ◦C. A significant increase occurred in lipid content only 
after exposure to MIX at 32 ◦C. Regarding protein content, a significant 
decrease in all the antibiotic treatments at 26 ◦C and TRIM at 32 ◦C was 
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Fig. 1. Results of biochemical biomarkers of Danio rerio after chronic exposure (28 days) to sulfamethoxazole (150 μg SMX/L), trimethoprim (30 μg TRIM/L), and 
mixture (MIX = 150 μg SMX/L + 30 μg TRIM/L) in different temperature scenarios (26, 28, and 32 ◦C). Data are expressed as mean (n = 3) ± standard error bars. 
Significant effects (p level) of antibiotics for each temperature are shown. Asterisks (*) discriminate significant differences between the control group and antibiotic 
treatments in each temperature (Dunnett's test; p < 0.05).
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observed, while the opposite occurred after exposure to TRIM at 28 ◦C 
and SMX and MIX at 32 ◦C. Ec decreased significantly in almost treat-
ments, namely at 26 ◦C, SMX at 28 ◦C, and TRIM at 32 ◦C. Additionally, 
CEA levels significantly increased after exposure to SMX and MIX at 
28 ◦C, and SMX and TRIM at 32 ◦C. Only MIX at 32 ◦C caused a sig-
nificant decrease in CEA (Fig. 1 and Table S1).

3.2.4. DNA damage determination
Significant interactions were observed between antibiotic concen-

trations and temperatures for the genetic damage index (Fig. 2). Overall, 
for all temperature conditions, organisms exposed to SMX and TRIM 
exhibited a higher percentage of DNA damage in classes 1 and 2 (Fig. 2A 
and 2B). In contrast, organisms exposed to MIX showed a higher inci-
dence of damage in more severe classes 3 and 4 (Fig. 2B), regardless of 
the temperature. The GDI revealed a significant increase after exposure 
to all the antibiotic treatments across all temperature scenarios (Fig. 2C 
and Table S1).

3.3. Antibiotics ecotoxicological assessment and biological health status

Table 2 shows the percentage of effect (2A.1) of all biomarkers 
evaluated, and the final toxicity classification (2A.2) obtained in D. rerio 
after exposure to environmentally relevant concentrations of SMX, 
TRIM, and their MIX, under different temperature conditions (26, 28, 
and 32 ◦C; Table S2). The BRI values (2B) obtained (Table 2 and 
Table S2), and the respective biological health status were also 

presented. Regarding the final toxicity evaluation (Table 2A, 2B, and 
Table S2) at 26 ◦C, all antibiotic treatments (SMX, TRIM, and MIX) were 
classified as marginally toxic, and induced major alterations (e.g., 
oxidative stress and neurotoxicity) in D. rerio (2.51 ≤ BRI ≤ 2.75; 
Table S3). At 28 ◦C, TRIM was considered slightly toxic, and caused 
negligible alterations (e.g., alterations in antioxidant defense) to the 
biological health status of zebrafish (3.01 ≤ BRI ≤ 4.00; Table S3). On 
the other hand, SMX and MIX at this temperature were moderately toxic, 
and provoked severe alterations (e.g., DNA damage) in D. rerio health 
status (BRI ranging from 1.00 to 2.50; Table S3). At 32 ◦C, SMX and 
TRIM were the treatments with lower effects, classified as slightly toxic, 
and caused negligible alterations to zebrafish biological health (3.01 ≤
BRI ≤ 4.00; Table S3). In contrast, MIX at 32 ◦C exhibited moderate 
toxicity, and induced severe alterations in D. rerio health status (BRI 
ranging from 1.00 to 2.50; Table S3).

4. Discussion

Temperature is a known stressor that can modulate the toxicity of 
compounds (e.g., pharmaceuticals and pesticides) and alter the organ-
ism's sensitivity (Wiles et al., 2020), by affecting physiological pro-
cesses, enzymatic activity, membrane permeability, and the uptake, 
biotransformation, and elimination of contaminants (Kazmi et al., 2022; 
Macek et al., 1969; Zhou et al., 2014). The results of the present study 
suggest that temperature influences the physiological responses of 
D. rerio to the antibiotics SMX, TRIM, and MIX, affecting antioxidant 

Fig. 2. A) Representative photographs of comet assay damage classes observed in gills of Danio rerio after chronic exposure (28 days) to sulfamethoxazole (150 μg 
SMX/L), trimethoprim (30 μg TRIM/L), and mixture (MIX = 150 μg SMX/L + 30 μg TRIM/L) in different temperature scenarios (26, 28, and 32 ◦C); B) Results of 
percentage of damage classes; C) Genetic Damage Index (GDI, expressed as arbitrary units). Data are expressed as mean (n = 3) ± standard error bars. Significant 
effects (p level) of antibiotics for each temperature are shown. Asterisks (*) discriminate significant differences between the control group and antibiotic treatments in 
each temperature (Dunnett's test; p < 0.05).
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defense, cholinergic neurotransmission, and energy pathways (Fig. 1). 
These findings suggest that environmental temperature plays a critical 
role in modulating both the efficacy and toxicity of the antibiotics to 
aquatic organisms.

4.1. Antioxidant defense mechanisms and lipid peroxidation

Under IPCC-predicted warming scenarios (28 and 32 ◦C), distinct 
antioxidant and lipid peroxidation responses were observed in D. rerio 
exposed to antibiotics (Fig. 1). While individual antibiotics (SMX and 
TRIM) showed variable effects with temperature, their combination 
(MIX) consistently led to heightened toxicity, with increased oxidative 
stress and overwhelmed antioxidant defenses at higher temperatures. 
These findings suggest that rising temperatures may exacerbate the toxic 
effects of antibiotic mixtures, posing greater risks to non-target species, 
like D. rerio (Jesus et al., 2018; Mehta, 2017). On a broader scale, the 
combined stress of warming and pharmaceutical pollution could further 
destabilize aquatic ecosystems by impairing organism health, disrupting 
trophic interactions, and weakening overall ecosystem resilience 
(Mehta, 2017). SMX exposure induced oxidative stress in D. rerio, with 
varying degrees of intensity depending on temperature (Fig. 1). These 
findings suggest that SMX triggers the production of reactive oxygen 
species (ROS) and compromises the antioxidant capacity of D. rerio, as 
previously reported by other authors (e.g., Huo et al., 2023; Yan et al., 
2016). Yan et al. (2016) studied the effect of 200 μg SMX/L at 28 ◦C in 
zebrafish, observing severe oxidative stress (induction of metabolic 

enzyme activity) after long-term exposure (150 days). Similarly, Iftikhar 
and Hashmi (2021) found that 28 days of SMX exposure (25, 50, 100, 
and 200 μg/L), at temperatures between 26 and 28 ◦C, led to ROS pro-
duction in a dose and time-dependent manner in Cyprinus carpio. Li et al. 
(2012) also reported a significant increase in GSTs activity in Carassius 
auratus exposed to SMX (> 16 μg/L at 18 ◦C). Ramesh et al. (2018)
observed that 1000 μg/L of sulfamethazine (an antibiotic from the same 
group as SMX) at 27 ◦C disrupted the antioxidant defense system in 
Cirrhinus mrigala, altering the activities of SOD, CAT, and GPx.

TRIM exposure also revealed that temperature modulates the or-
ganism's physiological response, with the antibiotic causing more 
extensive suppression of antioxidant defenses at standard temperatures 
for D. rerio (26 ◦C) but having a reduced impact at higher temperatures 
(28 and 32 ◦C; Fig. 1). This temperature-dependent response could be 
attributed to differences in metabolic activity, enzyme kinetics, or 
compensatory stress responses across the temperature gradient. Sup-
porting these findings, Diogo et al. (2024) found that D. rerio exposed to 
TRIM at 28 ◦C (≤ 400 mg/L) showed decreased CAT activity without 
increased TBARS levels. Similarly, Fernandez et al. (2022) reported that 
21 days of exposure to 10 μg TRIM/L at 19 ◦C increased CAT and GRed 
activities in Sparus aurata, while TBARS levels remained unaffected, 
leading to oxidative stress.

Regarding MIX treatment, at 26 ◦C, antioxidant defenses were 
notably suppressed, while at 28 and 32 ◦C, D. rerio adopts a more active 
antioxidant response, likely as an adaptation to increased metabolic 
stress (Fig. 1). While research on SMX and TRIM mixture in D. rerio is 

Table 2 
Results of A1) Percentage of effects of each biomarker evaluated in D. rerio after chronic exposure to environmentally 
relevant concentrations of sulfamethoxazole (150 μg SMX/L), trimethoprim (30 μg TRIM/L), and mixture (MIX = 150 
μg SMX/L + 30 μg TRIM/L) in different temperature scenarios (26, 28 and 32 ◦C). A2) Ecotoxicity scores (1 to 5) and 
the final ecotoxicological classification [slightly toxic (ST - green), marginally toxic (MGT - yellow), and moderately 
toxic (MT - orange)] obtained for each antibiotic treatment (see Table S2). B) Biomarker response index (BRI) and the 
respective classification of biological health status were also presented. BRI values: 1.00 ≤ BRI ≤ 2.50 - severe al-
terations (red); 2.51 ≤ BRI ≤ 2.75 - major alterations (orange); 2.76 ≤ BRI ≤ 3.00 - moderate alterations (yellow); 
3.01 ≤ BRI ≤ 4.00 - negligible alterations (green) (see Table S3).

Biochemical 
biomarkers

A1) Effects (%)

26 ºC (standard) 28 ºC 32 ºC

SMX TRIM MIX SMX TRIM MIX SMX TRIM MIX

SOD activity 27.0 -63.8 -56.8 271.8 2.19 374.3 -35.5 4.30 -67.8

CAT activity -12.0 -81.2 -72.5 -46.0 -82.5 190.8 -16.5 -10.6 254.1

GRed activity 20.8 -26.8 -39.4 311.8 63.9 541.0 -5.15 22.3 56.3

GPx activity -63.9 -81.6 -85.6 233.6 -18.4 272.8 -7.64 6.16 258.3

GSH content 36.4 -45.7 -53.2 299.7 18.5 122.3 0.77 91.0 342.6

GSTs activity 22.3 -82.2 17.0 212.4 3.95 -10.8 -51.4 5.52 120.3

TBARS levels 249.5 12.6 -4.97 233.1 -2.73 68.3 -26.2 42.5 277.0

AChE activity -77.2 -80.1 -73.3 -81.3 -28.4 -47.8 -29.8 24.2 12.8

LDH activity -30.4 -23.5 -8.22 -10.0 -5.47 7.86 9.89 2.25 1.09

CEA 42.3 -17.4 16.4 115.2 17.2 74.8 30.3 32.3 -21.6

GDI 172 177 511 78.7 196 300 96.4 248 377

A2) Final 
toxicity

3
MGT

3
MGT

3
MGT

4
MT

2
ST

4
MT

2
ST

2
ST

4
MT

B) Biomarker Response Index

BRI 2.60 2.61 2.65 1.66 3.18 1.92 3.20 3.08 2.02

Biological 
Health Status Major Major Major Severe Negligible Severe Negligible Negligible Severe
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limited, several studies have shown that antibiotic mixtures can disrupt 
key physiological pathways in various aquatic species (e.g., Carlsson 
et al., 2013; Iftikhar et al., 2023; Oliveira et al., 2013; Tokanová et al., 
2021; Yildiz and Altunay, 2011). For example, Yang et al. (2019) studied 
the combined effect of three pharmaceuticals (ofloxacin, SMX, and 
ibuprofen) on Carassius auratus, and they found that the antioxidant 
response varies with the concentration of each compound in the 
mixture. Similarly, Yan et al. (2016) reported that the combination of 
SMX and norfloxacin in D. rerio activated antioxidant and metabolic 
enzyme activities to scavenge ROS at 28 ◦C. Moreover, Madureira et al. 
(2012) observed liver cytohistological changes in zebrafish exposed to 
TRIM and other pharmaceuticals (e.g., SMX, carbamazepine, fenofibric 
acid, and propranolol), highlighting the potential for broader ecological 
impacts in aquatic environments.

4.2. Cholinergic neurotransmission

The tested antibiotics showed temperature-dependent effects on 
AChE activity. Notably, basal AChE levels varied significantly across 
temperature controls (Fig. 1), indicating that temperature alone can 
influence neurocholinergic function. At 28 ◦C, all antibiotics signifi-
cantly inhibited AChE activity; however, at 32 ◦C, responses diverged 
(SMX still reduced AChE activity, TRIM induced a significant increase, 
and MIX had no significant effect). This suggests that, under elevated 
temperatures, the antibiotic mixture may stabilize AChE activity, 
potentially mitigating neurotoxic compared to individual antibiotics. 
Such stabilization may reflect a compensatory response to combined 
thermal and chemical stress. Nonetheless, the divergent responses at 
32 ◦C highlight the complexity of predicting neurotoxicity under 
warming scenarios. These findings underscore the risk of altered 
neurotransmission in aquatic species, potentially affecting vital behav-
iors like locomotion, feeding, escape, and reproduction, and ultimately 
threatening individual survival and ecosystem stability (Muñoz-Peñuela 
et al., 2022).

Multiple studies have shown that different antibiotics (e.g., nor-
floxacin, erythromycin, sulfadiazine, sulfisoxazole) affected AChE ac-
tivity in aquatic organisms, at standard temperatures, disrupting normal 
neurological functions and potentially leading to adverse effects (such as 
behavioral disturbances, development, and defense mechanisms) (Huo 
et al., 2023; Liu et al., 2014; Rodrigues et al., 2019; Yan et al., 2016). In 
the present study, AChE activity decreased significantly after exposure 
to all the antibiotics, regardless of temperature conditions (except TRIM 
and MIX at 32 ◦C), indicating a neurotoxic response (Fig. 1). According 
to US EPA (2000), a ≥ 20 % reduction in AChE activity is considered 
both biologically and statistically relevant, signaling physiological 
dysfunction. In this work, inhibition consistently exceeded that 
threshold, particularly at 26 and 28 ◦C (Table 2), confirming a marked 
biological effect. These results align with prior findings in D. rerio em-
bryos exposed to SMX at 28 ◦C (Liu et al., 2020) and with studies in 
C. auratus, where mixtures of SMX and norfloxacin caused 35 % AChE 
inhibition at 18 ◦C (Liu et al., 2014). Similarly, Li et al. (2012) observed 
an inhibition of AChE activity in C. auratus after 7 days of exposure to 
≥400 μg SMX/L at lower temperatures (16–18 ◦C). In line with this, 
Diogo et al. (2025) reported a similar temperature-mediated response in 
Daphnia magna exposed to TRIM (30 μg/L) at 20 ◦C, and after exposure 
to SMX (> 0.156 μg/L at 28 ◦C) in zebrafish embryos (Diogo et al., 
2024). Both SMX and TRIM are antifolates that disrupt folate biosyn-
thesis, impairing cell proliferation (Masters et al., 2003). Huo et al. 
(2023) reported that antibiotics with this mechanism of action (e.g., 
sulfonamides group) can affect neurotransmitters and cause endocrine 
disruptions by interfering with folate and carbonic anhydrase pathways. 
Since folate is essential for the methionine cycle and metabolically 
linked to choline (a precursor of acetylcholine), its inhibition may limit 
acetylcholine synthesis, indirectly altering AChE activity (Crivello et al., 
2010; Lee et al., 2012). This connection reinforces the hypothesis that 
antifolate antibiotics can disrupt neurocholinergic function through 

indirect metabolic interference.

4.3. Energy metabolism

Under the warming scenarios predicted by IPCC (28 and 32 ◦C), both 
individual and combined antibiotic exposure significantly disrupted the 
energy metabolism of D. rerio, potentially reducing organism fitness and 
altering ecological interactions. These metabolic disruptions, driven by 
increased energy demands and compromised energy balance, may 
impair critical functions such as growth, reproduction, and survival 
(Bethke et al., 2023; Jesus et al., 2018). At a broader scale, such com-
bined stressors threaten ecosystem stability by affecting higher levels of 
biological organization, posing risks to population dynamics and 
biodiversity (Smolders et al., 2009). Temperature is known to influence 
metabolic pathways related to energy production (Lemieux and Blier, 
2022; Sokolova and Lannig, 2008). In this study, antibiotic exposure at 
different temperatures altered energy reserves, particularly carbohy-
drates and proteins, with the most notable changes observed in these 
fractions (Fig. 1). Additionally, the results indicate that the organism 
needs more energy to cope with the elevated temperature when present 
to other stress factors, such as antibiotics (Fig. 1). Despite specific 
studies on the CEA of zebrafish juveniles exposed to antibiotics at 
varying temperatures being lacking, Diogo et al. (unpublished data)
reported significant stress in zebrafish embryos exposed to SMX (156, 
313, and 625 μg/L, at 26 ◦C). This stress (SMX at 26 ◦C) was evidenced 
by a marked decrease in Ea and CEA, demonstrating a reallocation of 
energy to detoxification processes (e.g., cellular repair and mainte-
nance). The same authors reported that TRIM (< 400 mg/L, at 26 ◦C) did 
not affect Ea and Ec, but also caused a significant decrease in CEA of 
zebrafish embryos (Diogo et al., unpublished data). Supporting these 
findings, Yildiz and Altunay (2011) showed that SMX–TRIM mixtures 
triggered metabolic stress in fish (Dicentrarchus labrax and Sparus aur-
ata), increasing glucose via glycogenolysis and gluconeogenesis. Simi-
larly, Verslycke and Janssen (2002) found that temperature significantly 
impacted energy reserves in Neomysis integer, more so than other envi-
ronmental factors (e.g, salinity or dissolved oxygen). These results 
reinforce the idea that temperature is a key modulator of energy meta-
bolism, especially under chemical stress.

Previous studies have shown that LDH activity, a key enzyme in 
anaerobic energy production (Dar et al., 2025), is influenced by tem-
perature (Farhana and Lappin, 2024; Zakhartsev et al., 2004). Exposure 
to antibiotics also influenced LDH activity, and to all antibiotics tested at 
26 ◦C, and to SMX at 28 ◦C, LDH activity significantly decreased. 
However, MIX and SMX at higher temperatures led to activation of 
anaerobic metabolism to meet elevated energy demands and maintain 
vital functions (Fig. 1). A similar pattern was reported by Schnurr et al. 
(2013), who observed increased LDH activity in zebrafish exposed solely 
to higher temperatures (32 ◦C), indicating temperature-driven meta-
bolic adjustments. Additionally, Matozzo et al. (2015) reported an in-
crease in LDH activity in clams Ruditapes philippinarum exposed to TRIM 
(0.3, 0.6, and 0.9 ng/L; at 17 ◦C), indicating possible immune suppres-
sion and cell damage. These results suggest that both antibiotics and 
elevated temperatures can disrupt energy metabolism, leading to 
increased reliance on anaerobic pathways.

4.4. DNA damage

GDI values corroborated a significant rise in genotoxicity across all 
thermal scenarios and antibiotics exposure (Fig. 2). These findings 
highlight that, under warming conditions, the combination of SMX and 
TRIM poses a greater genotoxic risk than the individual compounds, 
potentially impairing vital cellular functions, development, and immune 
competence in D. rerio. Such effects may compromise population sta-
bility and trigger broader ecological consequences, including altered 
ecosystem dynamics, food web disruptions, and biodiversity loss, 
underscoring the urgent need for stricter regulation of pharmaceutical 
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contaminants in a changing climate. The GDI results show that exposure 
to SMX, TRIM, and MIX caused DNA damage in the gills of D. rerio, with 
damage severity at higher temperatures (Fig. 2B, 2C; and Table S1). This 
DNA damage is likely linked to oxidative stress caused by the failure of 
antioxidant defenses under thermal stress (Fig. 1), leading to ROS 
overproduction and subsequent damage to cellular macromolecules, 
including DNA (Dar et al., 2024; Nunes et al., 2019). Supporting these 
findings, Hassan (2017) reported that both suboptimal cold (14 ◦C) and 
heat stress (36 ◦C) in Oreochromis niloticus altered the expression of 
genes linked to oxidative stress indicators (e.g., metallothioneins, 
glutathione transferases), immune function, and heat shock response 
(HSP70). Similarly, Buschini et al. (2003) found that temperature 
influenced DNA damage levels in Dreissena polymorpha, modulating 
cellular sensitivity to pollutants even under in vitro conditions. Other 
studies revealed that DNA modifications in fish from unpolluted waters 
were similar to those observed in fish from polluted environments, but 
under different temperature conditions, suggesting that natural factors, 
such as temperature, significantly contribute to DNA damage (Kurelec 
et al., 1989).

The potential for cumulative effects from natural (e.g., temperature, 
pH) and anthropogenic sources (e.g., antibiotics, pesticides) remains a 
concern for fish populations, as most studies isolate single factors rather 
than examining their combined impacts. Antibiotics have been shown to 
induce significant DNA damage (Papis et al., 2011; Ramesh et al., 2018; 
Sharma et al., 2021), raising concerns about their ecological conse-
quences, especially regarding organismal health, reproduction, and 
survival. The genotoxicity observed in the present study appears closely 
linked to the mechanism of action of SMX and TRIM, which function as 
folic acid antagonists by inhibiting dihydrofolate reductase (Masters 
et al., 2003). This inhibition disrupts the synthesis of tetrahydrofolic 
acid, a precursor essential for thymidine and, consequently, DNA syn-
thesis (Masters et al., 2003; Sangurdekar et al., 2011). Such interference 
in nucleotide production compromises DNA replication and repair, 
potentially leading to mutations, apoptosis, or carcinogenesis (Mason 
and Levesque, 1996). Although studies specifically addressing SMX- 
induced DNA damage in fish are limited, several authors have demon-
strated that SMX presence in aquatic environments can induce oxidative 
stress, a known driver of DNA damage (Papis et al., 2011; Polianciuc 
et al., 2020; Rocco et al., 2012). Similarly, TRIM has been shown to 
induce DNA strand breaks in rainbow trout cells, particularly at higher 
concentrations (100 mg/L) (Papis et al., 2011), and caused significant 
DNA damage in Mytilus edulis at 200 mg/L (Lacaze et al., 2015). 
Nevertheless, Liu et al. (2014) demonstrated that a mixture of nor-
floxacin and SMX (5 mg/L + 25 mg/L) also induced DNA damage in 
Carassius auratus after seven days of exposure at 19 ◦C, reinforcing the 
concern over mixture effects.

5. Ecotoxicity classes and biological health status

The ecotoxicity classification and biomarker response index provide 
a comprehensive view of biological responses, enabling a detailed 
evaluation of the potential risks associated with these co-exposures (Li 
et al., 2019). Our findings indicate that environmentally relevant con-
centrations of SMX, TRIM, and MIX significantly affect the health of 
juvenile D. rerio, regardless of temperature. At standard temperature, 
the antibiotics tested, individually and in the mixture, were marginally 
toxic and caused major alterations in the biological health status of this 
species (Table 2). Evaluating the individual effects of SMX and TRIM 
under higher temperature conditions, antibiotics displayed different 
toxic effects depending on the degree of warming. These findings sug-
gest that, in more extreme warming scenarios (e.g., a 6 ◦C increase above 
standard temperatures), neither SMX nor TRIM significantly intensifies 
their toxic effects, posing a relatively low impact on the species' overall 
health. In contrast, the MIX at 28 ◦C and 32 ◦C was moderately toxic and 
induced severe alterations in D. rerio juveniles (Table 2). These results 
demonstrate that, under increased temperatures, the combined exposure 

to SMX and TRIM was more harmful, significantly disrupting the 
physiological and biochemical functions of the fish. The increased 
toxicity of the MIX compromises homeostasis, causing irreversible 
cellular damage and further impairing the organism's health. This, in 
turn, affects its ability to adapt, grow, and survive.

This study offers a significant contribution by addressing the inter-
action between antibiotics and global warming, focusing on environ-
mentally relevant concentrations and their consequences for the health 
of D. rerio. These findings emphasized the critical issue of chemical 
mixtures and the escalating impact of rising temperatures on aquatic 
ecosystems. They underscore the urgent need to understand how the 
combined effects of contaminants and climate change influence the 
health and survival of aquatic organisms. By using a multiple-biomarker 
approach, the results provide new insights into how rising temperatures 
can amplify the toxic effects of contaminants, highlighting the urgent 
need to study the synergy between environmental stressors to protect 
aquatic ecosystems. The increased toxicity observed at elevated tem-
peratures underscores the amplified risks to aquatic organisms due to 
the combined impacts of global warming and contaminant exposure. As 
global temperatures continue to rise, the vulnerability of aquatic envi-
ronments to contaminant mixtures is likely to grow, emphasizing the 
need for in-depth studies to guide practical regulatory actions and 
conservation efforts. The inclusion of the BRI and ecotoxicity classifi-
cation enables a more integrated and ecologically relevant assessment of 
contaminant effects by translating complex biological responses into 
environmental risk levels. These approaches are essential for under-
standing the combined impacts of pollutants and environmental 
stressors, such as temperature, under realistic ecological scenarios. 
Moreover, these approaches facilitate comparison across different 
studies and species by providing standardized metrics, enhancing the 
consistency and applicability of ecotoxicological data under realistic 
environmental scenarios. The toxic synergy between rising temperatures 
and antibiotic pollution severely threatens aquatic life's resilience and 
the stability of ecosystem functions, urging immediate attention and 
action to mitigate these impacts.
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