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A B S T R A C T

Peatlands play a crucial role in global carbon storage and methane emissions. Microtopographic features 
(hummocks, hollows, and lawns) are one of their main characteristics. These features strongly influence hy-
drological and biogeochemical processes, affecting vegetation patterns and greenhouse gas exchanges. Tradi-
tional methods for mapping peatland microtopography often rely on complex algorithms or require extensive 
field data, typically producing only a binary hummock-hollow classification. These shortcomings limit their 
applicability for large-scale studies. To address these challenges, we developed and validated HuHoLa (Hum-
mock-Hollow-Lawn), an easy applicable and scalable model that classifies peatland microtopography using only 
a digital elevation model (DEM). HuHoLa applies a sink-filling approach to generate classifications, with a key 
feature being a threshold value to better capture the subtle variations in the non-flat lawn features. In addition to 
the microtopographic classification, the model provides a secondary output that acts as a proxy for water table 
depth (WTD) and soil temperature (Ts), thus offering a useful tool for understanding spatial variations in WTD 
and Ts across peatland landscapes. HuHoLa delivers a more nuanced and realistic depiction of peatland surface 
structure compared to traditional binary methods, with field-based validation demonstrating robust performance 
(Kappa coefficients of 0.62 and 0.81 for DEM resolutions of 30 cm and 50 cm, respectively) that outperforms 
traditional binary classification approaches (Kappa < 0.5 for DEM resolutions between 10 and 25 cm). The model 
is particularly suited for large-scale research applications. Its simplicity, requiring only a DEM, combined with its 
multi-purpose use, makes it an effective tool for advancing peatland studies and integrating with land surface 
models.

1. Introduction

Boreal peatlands play a pivotal role in the global carbon (C) cycles, 
acting as a long-term C sink and a source of atmospheric methane 
(Frolking et al., 2011). The biogeochemical mechanisms behind the 
peatland C dynamics are complex, and the fate of the stored C is un-
certain under the ongoing climate change, as different scenarios suggest 
a shift from sink to source in the coming decades (Wu and Blodau, 2013; 
Zhao and Zhuang, 2023). Among the several factors that influence 
biogeochemical processes in peatlands, microtopography emerges as an 
important factor with a strong influence on peatland C fluxes (Moore 
and Knowles, 1989). Despite the known importance of microtopography 

in peatland processes, land surface models used for simulating and 
prognosing carbon dynamics have long overlooked this importance of 
microtopography in their processes, though some recent studies sug-
gested improvements in model accuracy when accounting for micro-
topography (Graham et al., 2022).

Microtopography consists of small scale variations of the uppermost 
peat layer typically spanning from several centimetres to a few meters, 
created and sustained by environmental gradients (particularly water 
table depth, WTD), differential plant growth and peat accumulation 
(Nilsson, 2002). These features are often broadly classified into hum-
mocks, hollows, and lawns depending on their position relative to the 
average WTD (Belyea and Baird, 2006; Nungesser, 2003). While 
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hummocks are locally elevated and drier areas with elevations of 20 - 50 
cm over the mean water table, hollows are often described as lower 
flatter areas or shallow depressions with close proximity to the water 
table and are frequently fully inundated (Belyea and Baird, 2006; 
Nungesser, 2003; Pouliot et al., 2011). Intermediary between hummocks 
and hollows are lawns, often the most represented microform, forming 
larger and relatively flat surfaces with elevations of 5 - 20 cm over the 
average water table (Rydin and Jeglum, 2006). In northern aapa mire 
fens, boreal mixed mires and raised bogs, special elongated mosaic 
patterns can occur when gentle slopes prevail along with the cold 
climate (Laitinen et al., 2005). Elongated hummocky structures are 
called strings, functioning as damming ridges, and are usually alternated 
with deeper wetter areas called flarks. Those mosaic features are often 5- 
20 m long and can be some meters wide (Joosten and Clarke, 2002; 
Rydin and Jeglum, 2013).

Several approaches have been suggested over time for mapping 
peatland surface microtopography. Early modelling attempts to model 
peatland microtopography were mostly processbased models that relied 
on the conceptual understanding of the genesis and maintenance of 
microforms (Nungesser, 2003). The complexity of such process-based 
models, and their requirement of multiple inputs limited their applica-
bility over entire mires. With the recent advances in remote sensing 
technologies, different models emerged, allowing to model micro-
topography at finer spatial resolutions (down to 1 cm). These models 
make use of data from different remote sensing techniques such as 
terrestrial laser scanning (Graham et al., 2020, 2022; Stovall et al., 
2019), airborne laser scanning (Brubaker et al., 2013; Kalacska et al., 
2021; Korpela et al., 2020), or Structure from motion (SfM) based on 
unmanned aerial vehicle (UAV) images (Kalacska et al., 2021; Korpela 
et al., 2020; Lovitt et al., 2017; Moore et al., 2019). These techniques can 
broadly be grouped into machine learning algorithms (Kalacska et al., 
2021; Korpela et al., 2020), hydrological and catchment delineation 
algorithms (Brubaker et al., 2013; Stovall et al., 2019) or elevation 
distribution and threshold approaches (Graham et al., 2020, 2022; 
Lovitt et al., 2017; Moore et al., 2019). While machine learning based 
methods require intensive field data as training features, several of the 
other methods were tested at a plot scale, and their large-scale appli-
cability is not guaranteed. Furthermore, except Korpela et al. (2020)
who used a machine learning approach to classify microtopography into 
multiple classes, all other approaches produce a binary 
hummock-hollow output, thus not isolating the intermediate most rep-
resented lawn class in most peatlands. Thus, there is a need for simple 
models based on easily available input data that are robust at the 
landscape scale and able to distinguish multiple microtopography 
classes.

WTD and soil temperature (Ts) are critical factors influencing peat-
land biogeochemistry, as they jointly regulate microbial activity, plant 
growth, and nutrient cycling (Moore and Knowles, 1989; Page and 
Baird, 2016). Fluctuations in WTD can create varying anaerobic condi-
tions, significantly affecting carbon storage and greenhouse gas emis-
sions, while Ts influences microbial metabolism and decomposition 
rates (Page and Baird, 2016; Sirin, 2023). Traditional methods for 
measuring these parameters often rely on point measurements, which 
may not capture the full spatial variability across peatland landscapes. 
This highlights the need for innovative approaches capable of spatially 
distributed mapping of both WTD and Ts. Given that microtopography is 
closely linked to WTD and influences spatial variations in Ts, these 
models can also provide valuable insights for modelling spatially WTD 
and Ts in peatlands.

To fill these gaps, this study proposes a novel hydrological method 
(HuHoLa for Hummock-Hollow-Lawn) for classifying peatland micro-
topography over entire mires, based on a digital elevation model (DEM), 
with a secondary Ts and WTD proxy output. The main objectives of this 
study were to: (1) present the algorithm of the HuHoLa model as well as 
its inputs and outputs, (2) assess its performance and applicability at 
different spatial resolutions of DEM and (3) test the potential of using the 

depth and height of hollows and hummocks as a proxy for Ts and WTD.

2. Materials and methods

2.1. Study site and data acquisition

The development and testing of the HuHoLa model used data from 
the Kulbäcksliden research infrastructure (KRI), located near the mu-
nicipality of Vindeln in Northern Sweden (Fig. 1). The KRI includes a 
mire complex with four sites (Degerö Stormyr, Stortjärn, Hålmyran and 
Hälsingfors Stormyran), with intensive peatland research ongoing since 
1995. The vegetation of the study area is dominated by Sphagnum 
mosses and sedges, with scattered dwarf shrubs (e.g., Andromeda poli-
folia, Calluna vulgaris, …) occurring on some hummocks (Noumonvi 
et al., 2023).

The digital elevation models (DEMs) used to develop the HuHoLa 
model were produced from LiDAR data collected in September 2019 
with a Riegl VQ-1560i- DW (dual wave 532 nm and 1064 nm) airborne 
laser scanner with a density of 20 points.m-2 per channel (Noumonvi 
et al., 2023). The LiDAR data was used to produce 30 × 30 cm and 50 ×
50 cm resolution DEMs. Additionally, we made use of SfM to produce 
finer scale resolution DEMs (3 × 3 cm), based on UAV images collected 
in September 2023 (between 10 am and 2 pm) by a DJI Phantom 4 UAV 
equipped with a five band multispectral camera (Blue: 450 nm ± 16 nm, 
Green: 560 nm ± 16 nm, Red: 650 nm ± 16 nm, Red Edge: 730 nm ± 16 
nm, and Near-InfraRed: 840 nm ± 26 nm). Furthermore, the UAV-based 
DEM was resampled down to 6, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 
cm resolution for a sensitivity analysis.

Validation field data for the microtopography classification were 
collected at the Degerö Stormyr site, selected for its large size (271 ha) 
and its representation of all mire microforms. The site also features an 
extensive network of boardwalks, making it ideal for data collection. A 
total of 260 reference points were collected to validate the HuHoLa 
microtopography classes, with each point positioned 2 m from the 
boardwalk using high-precision RTK-GNSS (Fig. 1c).

Time-series data for Ts, measured with HOBO MX2303 loggers, and 
manual WTD measurements were gathered from four distinct micro-
topographic locations at each of three other sites (Stortjärn, Hälsingfors 
Stormyran, and Hålmyran) along with Degerö Stormyr. The average Ts 
and WTD data were then correlated with the secondary “depth and 
height of hollows and hummocks” output from the HuHoLa model.

2.2. HuHoLa model

The inputs, workflow and outputs of the HuHoLa algorithm are 
presented in Fig. 2, and its Python implementation is available at 
https://github.com/bravemaster3/huhola.

2.2.1. Model input
The HuHoLa model requires two inputs: a DEM, and a classification 

threshold to be applied on one of the intermediary outputs. Given that 
microforms vary in size, the resolution of the DEM would play an 
important role in the size of microforms that can be detected by the 
model. This does not necessarily mean however that the finer resolution, 
the better, due to the underlying functioning of the model which is 
mainly based on filling sinks. The classification threshold depends 
highly on the DEM, since the DEM will be more contrasted, i.e. with 
more surface roughness, in higher resolution DEMs. This means that 
without considering a threshold (i.e. threshold = 0), the model will 
result in a more fragmented microtopography, with any small change in 
elevation leading potentially to a hummock and hollow, although lawns 
are not completely flat in reality. Through systematic sensitivity analysis 
across different DEM resolutions (more details in Section 2.4), we 
empirically determined optimal threshold values.
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2.2.2. Model outputs
There are two intermediary outputs of the HuHoLa algorithm: the 

filled DEM (FillDEM) and the filled inverted DEM (FillInvDEM), which 
can also to some extent be considered as the hollow fill depth and the 
hummock fill depth, respectively. There is another output that is inter-
mediary when HuHoLa is used to classify microtopography, but is also 
the final output when HuHoLa is used to create a WTD proxy: the 
hollow-hummock-depth-height (HHDH). The microtopography outputs 
consist of a three-class or a five-class microtopography raster layer.

2.2.3. Algorithm description
The key workflow steps of the HuHoLa model can be summarized as 

follows (Fig. 2):
Step 1: Filling depressions in the DEM
While depression filling algorithms are commonly used in hydro-

logical applications such as catchment delineation to eliminate de-
pressions and create hydrologically consistent surfaces for flow 
modelling (Jenson and Domingue, 1988), HuHoLa uses depression 
filling to identify microtopographic features by analysing the filled 
depths in the DEM. The DEM is filled using the “Fill Depressions” al-
gorithm developed by Wang and Liu (2006). This algorithm is the 
default “Fill Depressions” method in HuHoLa, chosen for its efficiency 
for high resolution DEMs, although two other alternatives, the “Fill 
Depressions” algorithm by Planchon and Darboux (2002) and the classic 
“Fill Depressions” algorithm implemented in whitebox tools (Lindsay, 
2016) can be used in HuHoLa. This step fills all depressions in the DEM, 
considered here as hollows. When HuHoLa is used to produce a WTD 
proxy, the “Fill Depressions” in this step (only in step 1) should apply a 
“fix flats”, an optional flag in the “Fill Depressions” tool (Lindsay, 2016) 
which allows to apply a small gradient effectively letting the fill to spill 
over and let the water flow through the peatland surface. On the other 
hand, no “fix flats” should be applied when classifying 
microtopography.

Step 2: Filling depressions in the inverted DEM
In this step, the DEM is inverted by subtracting the DEM from the 

maximum value of the DEM (or any other elevation value higher than 
the highest point of the area of interest (Eq. (1)). This operation effec-
tively turns upside down the terrain, and hollows become hummocks 
and vice versa. All arithmetic operations in HuHoLa are pixel-wise raster 
arithmetics. 

Inverted DEM = DEM Max Value – DEM                                         (1)

After the DEM inversion, the same “Fill Depressions” algorithm is 
applied as in step 1. No “fix flats” is applied here, neither for micro-
topography classification nor for WTD proxy generation.

Step 3: Subtracting the filled depth in the inverted DEM from the 
filled depth in the DEM

This step consists of subtracting the filled depth in the inverted DEM 
(FillInvDEM – InvDEM) from the filled depth in the DEM (FillDEM – 
DEM), producing a raster layer representing the filled depths of hollows 
and hummocks in the DEM and inverted DEM, respectively, in other 
words the hollow-hummock-depth-height (HHDH) layer (Eq. (2)). When 
a “fix flats” is applied in step 1, HHDH is the final output, and represents 
a WTD proxy that can be correlated to measured WTD at different 
location of the peatland to possibly produce a spatial WTD map. When 
instead HHDH is produced without applying a “fix flats” in step 1, it can 
be used as a proxy for Ts. 

HHDH or WTD Proxy = (FillDEM – DEM) – (FillInvDEM - InvDEM)    (2)

Step 4: Classification of the different microforms
For classifying HHDH (from step 3) into the three microforms (lawns, 

hollows and hummocks), a threshold dependent on the DEM resolution 
and provided as input to the model is used along with the following 
classification rules in a five classes output layer: 

• HHDH ¼ 0, class 0 or lawns: occurring when both of the filled 
depth in FillDEM and the filled depth in FillInvDEM are 0. Theo-
retically, this could also occur when they are different from 0 but 

Fig. 1. Data collection sites. (a) Location in northern Sweden shown by the red triangle. (b) Google satellite background with the extents of the peatland complex 
where the data was collected, and red triangles represent the four sites (Degerö Stormyr, Stortjärn, Hålmyran, and Hälsingfors Stormyran) where manual water table 
measurement and Ts data were collected. (c) digital elevation model showing elevations above sea level across a part of the Degerö Stormyr site, with the dots 
representing the 260 validation points collected along a boardwalk, two meters away, the circles and cross horizontal/vertical lines representing selected cases and 
profiles for showing a close view of the mapped topography with elevations.
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have the same value. However, this does normally not occur for the 
same pixel.

• HHDH > threshold, class 1 or hollows: occurring when the filled 
depth in FillDEM is larger than the filled depth in FillInvDEM, and 
the difference is too large to be considered a lawn (i.e. (FillDEM – 
DEM) – (FillInvDEM – InvDEM) exceeds the positive threshold 
value).

• HHDH < -threshold, class 2 or hummocks: occurring when the 
filled depth in FillDEM is smaller than the filled depth in FillInvDEM, 

and the difference too large to be considered a lawn (i.e. (FillDEM – 
DEM) – (FillInvDEM – InvDEM) exceeds the negative threshold 
value).

• 0 < HHDH ≤ threshold, class 3 or lower level lawns: occurring 
when the filled depth in FillDEM is larger than the filled depth in 
FillInvDEM, and the difference is not large enough to be considered a 
hollow (i.e. when (FillDEM – DEM) – (FillInvDEM – InvDEM) is 
positive but does not exceed the threshold value).

Fig. 2. Workflow of the HuHoLa model. Green rectangles represent the inputs of the model, blue rectangles represent intermediary outputs not used directly, red 
rectangles represent exported outputs, yellow diamonds represent operations performed in the model, and ellipses represent classification rules. Numbers represent 
the four sub-sections of the HuHoLa model: 1- filling the DEM, 2- filling the inverted DEM, 3- Subtracting the filled depth in the inverted DEM (FillInvDEM – InvDEM) 
from the filled depth in the DEM (FillDEM – DEM) to produce the hollow-hummock-depth-height or HHDH a.k.a. WTD proxy when “fix flats” is applied during 
subSection 1, 4- Classification into the different microforms. Classes 0, 1, 2, 3, and 4 in step 4 are respectively lawns, hollows, hummocks, lower level lawns, and 
upper level lawns.
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• -threshold ≤ HHDH < 0, class 4 or upper level lawns: occurring 
when the filled depth in FillDEM is smaller than the filled depth in 
FillInvDEM, and the difference is not large enough to be considered a 
hummock (i.e. when (FillDEM – DEM) – (FillInvDEM – InvDEM) is 
negative but does not exceed the negative threshold value).

The last two classes (3 and 4, i.e. lower and upper level lawns) are 
just conceptual, and were merged with class 0 (lawns), hence producing 
also a three classes output layer, which was the only field-validated 
microtopography output, since classes 3 and 4 were not differentiated 
from class 0 in the field.

In few cases where a “hummock” occurs in a depression (Fig. 3A) or a 
“depression” occurs on a hummock (Fig. 3B), corresponding pixels will 
be filled both in FillDEM and FillInvDEM. In such cases, if the height or 
depth of the ambiguous feature is greater than the depth or height of its 
surrounding microform, the ambiguous feature is classified as a different 
one (e.g. a hummock inside of a hollow, or a hollow inside a hummock). 
Otherwise, it is merged with its surrounding microform.

2.3. Validation

To assess the agreement between the model output and field obser-
vation, different accuracy metrics were computed such as the accuracy, 
precision, recall, F1-score and Kappa coefficient, all based on a confu-
sion matrix.

Precision for a given class is the proportion of positive predictions for 
that class that were actually correct, i.e. the proportion of true positives 
(TP) by all positive, i.e. both true and false positives (TP and FP) iden-
tifications by the model for that class (Eq. (3)). A higher precision is 
synonymous to a lower commission error, indicating that the model is 
good at avoiding false positives. 

Precision =
TP

TP + FP
(3) 

Recall for a given class is the ratio of correctly predicted positive 
observations to the total actual positive observations, i.e. both true 
positives and false negatives (FN) (Eq. (4)). A higher recall is synony-
mous to a lower omission error, indicating that the model is good at 
avoiding false negatives. 

Recall =
TP

TP + FN
(4) 

There is a trade-off between precision and recall, i.e. improving one 
metric comes at the cost of the other (Hanczar and Nadif, 2019).

The F1 score combines precision and recall using their harmonic 
mean for a given class (Eq. (5)). It is particularly useful in situations 
where there is an uneven class distribution (class imbalance) and 

provides a balance between precision and recall. 

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5) 

The previous three metrics are computed for individual classes, and 
can be the basis for several other metrics that provide a basis to evaluate 
the entire model instead of individual classes. While accuracy is a 
commonly used performance measure, representing the proportion of 
correct predictions made by the model (Eq. (6)), Cohen’s Kappa statistic 
(Eq. (7)) can appear sometimes as a more robust alternative accounting 
for imbalanced occurrence of the different classes, and by comparing the 
model to a random classifier (Cohen, 1960; Sim and Wright, 2005). 

Accuracy =
TP + TN

TP + TN + FP + FN
(6) 

Kappa =
Po − Pe
1 − Pe

(7) 

Where:
Po: is the observed proportion of agreement between the model’s 

predictions and the true classes,
Pe: is the proportion of agreement expected by chance.

2.4. Sensitivity analysis of DEM resolution effects on the fill threshold

In order to identify the adequate threshold to be used as input of the 
HuHoLa model, areas considered to contain only one of the three classes 
(hummock, hollow, and lawn) were drawn visually, and the “Fill De-
pressions” algorithm was applied for the 30 cm and 50 cm resolution 
DEMs. The goal of this analysis is to understand the frequency distri-
bution of fill depths for the different classes. Furthermore, the precision 
and recalls for each class were calculated, considering different fill 
thresholds for the HuHoLa classification (Fig. 2), and plotted together to 
determine the threshold that yields an equal error rate, i.e. where the 
precision and recall curves are both optimized.

Apart from the LiDARbased DEM, the UAV-based resampled DEMs 
were used to identify the threshold at which the highest Kappa coeffi-
cient occurs. For each DEM resolution (ranging from 3 cm to 1 m), we 
tested fill thresholds from 0 to 10 cm in 1 cm increments and calculated 
the Kappa coefficient for each combination. The threshold yielding the 
highest Kappa coefficient at each DEM resolution would be considered 
optimal for that resolution. All the previous analyses will provide in-
sights regarding the choice of the threshold to be used in the HuHoLa 
model.

Fig. 3. Relative height difference and HuHoLa classification of (A) minor hummocky structures in hollows and (B) minor depressions on hummocks.
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3. Results

3.1. Optimum DEM resolution and fill threshold

Our results show that lawns are never fully flat nor without elevation 
fluctuation, with some lawns having small positive (DEM) and negative 
(inverted DEM) fill values (up to ±4 or ±6 cm for 50 cm or 30 cm DEM 
respectively) (Fig. 4). The 99% percentiles of fill depth suggest a fill 
threshold of 5 to 6 cm for the 30 cm DEM, and 3 to 4 cm fill threshold for 
the 50 cm DEM. This suggests that pixels filled at less than this threshold 
are likely lawns, even though some edges of hummocks and hollows will 
also have these small fill depths. The fill depths for hollows are mostly 
positive while that of hummocks are mostly negative, i.e. hollows are 
not filled in the inverted DEM, whereas hummocks are not filled in the 
DEM.

The application of various thresholds in HuHoLa for classifying 
microtopography revealed a trade-off between precision and recall for 
different microtopography classes (hummocks, hollows, lawns) with 
increasing fill threshold (Fig. 5). Higher fill thresholds led to increased 
precision for lawns but decreased precision for hummocks and hollows. 
This trend can be explained by the fact that increasing the threshold 
eventually classifies all pixels as lawns, resulting in high lawn precision 
but sacrificing precision for other classes. The analysis also identified an 
optimal fill threshold of 5 cm and 4 cm for 30 cm and 50 cm DEMs, 
respectively that optimizes the equal error rate (intersection of precision 
and recall curves). The precision and recall at the equal error rate of 
hollows for the 30 cm DEM is also low (~0.5) compared to other classes 
for the same DEM resolution (> 0.75), and for all classes of the 50 cm 
DEM (> 0.8).

The use of different UAV-based DEM resolutions (3 cm to 1 m) and 
varying fill thresholds revealed a decreasing optimal fill threshold with 
increasing DEM resolution (Fig. 6). The highest Kappa of all occurs at a 
fill threshold of 2 cm and a DEM resolution of 0.7 m. when the overall 

accuracy is used instead of Kappa (Figure A.1), the highest accuracy 
occurs at a DEM resolution of 40 cm.

3.2. Model performance and validation

3.2.1. Microforms
The robust performance of the HuHoLa microtopography classifica-

tion is illustrated by the overall good F1-scores, accuracy and Kappa 
both for the 50 cm resolution DEM with a 4 cm threshold (Table 1), but 
also for the 30 cm resolution DEM (Table A.1). Overall, the 50 cm DEM 
appears to provide a better performance than the 30 cm DEM, with 
higher and more comparable precision and recall for each class in the 50 
cm DEM classification (0.96 vs. 0.97 for lawns, 0.87 vs. 0.8 for hollows 
and 0.82 vs. 0.86 for hummocks), hence resulting in higher Kappa sta-
tistic than in the 30 cm DEM-based microtopography classification. A 
low recall was observed for hollows (Table A.1), resulting also in a lower 
hollows’ F1-score with the 30 cm DEM.

3.2.2. Depth and height of hollows and hummocks as a proxy for WTD and 
Ts

The filled depth and height of hollows and hummocks with fix flats 
(HHDH with “fix flats”, i.e. WTD proxy, Fig. 2 and Eq. (2)), were plotted 
against average field WTD measurements taken in 2022 at four locations 
at each of the four sites, representing different microtopographic fea-
tures. The results suggest a linear relationship between measurements 
(non-significant at one of the sites) and this intermediary result of 
HuHoLa, making it a potential proxy for WTD (Fig. 7). The range of 
values of the WTD proxy depended on the microtopography of the area, 
but also on surrounding areas of the mire, as higher values were noted at 
Degerö Stormyr compared to the other sites. This proxy can therefore 
only be used after calibration using field measurements of actual WTD 
from each site separately. Moreover, the precision of the WTD proxy 
depended on the DEM resolution, and in this test, the 30 cm resolution 

Fig. 4. Histogram of fill depth per class, for small polygons considered purely as lawns (left panels), hollows (middle panels), and hummocks (right panels). Negative 
and positive fill depths are fill depths in the DEM and inverted DEM, respectively. Top panels represent frequency distribution with a 30 cm DEM resolution and 
bottom panels represent frequency distribution with a 50 cm DEM resolution. The vertical dashed lines represent the 99% percentiles of the fill depth per class.
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DEM resulted in significant linear relationship WTD ~ WTD proxy 
(Fig. 7), while the 50 cm DEM resulted in only one site showing a sig-
nificant linear relationship WTD ~ WTD proxy (Figure A.2).

Similarly, the HHDH derived from the 30 cm resolution DEM was 

plotted against average Ts at 10 cm depth, revealing a significant posi-
tive correlation (Fig. 8). Since HHDH is independent of the surrounding 
area (unlike the WTD proxy), data from all sites were combined in this 
linear regression. A similar significant relationship was observed when 

Fig. 5. Precision and recall of the different microtopography classes, from 30 cm DEM (top panels) and 50 cm DEM (bottom panels), at different fill thresholds from 
0 to 10 cm. The vertical red lines represent the equal error rate, i.e. the intersection of precision and recall.

Fig. 6. Fill threshold yielding best Kappa coefficient at different DEM resolutions (3 cm, 6 cm, and 10 to 100 cm every 10 cm). The colours of the dots represent the 
strength of the Kappa coefficient, and the blue line is a quadratic fitted regression line.
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using the 50 cm resolution DEM-derived HHDH in relation to the 
measured Ts (Figure A.3).

3.3. HuHoLa microtopography classes map

The microtopography of Degerö Stormyr mapped using HuHoLa with 
a 50 cm DEM and a fill threshold of 4 cm is presented in Fig. 9. At the 
strings and flarks (microtopographic features in Fig. 9, circle A), lawns 
appear also at the transition between hummocks and hollows. Five cir-
cular plots of 50 m diameter were chosen to illustrate the different 
microtopographic features and the classification output from HuHoLa 
(Fig. 10). Additionally, two 500 m transects showing microtopography 
along and perpendicular to elevation gradients in a string-flark 
patterned area are presented in Figure A.8. Overall similar results 
were obtained using the 30 cm DEM for the classification (Figures A.4, 
A.5 and A.7). The five-class microtopography map is also presented in 
Figure A.6.

4. Discussion

4.1. HuHoLa – an advanced model for classification of peatland 
microtopography

Accurate classification of peatland microtopography is essential for 
improving our understanding of these ecosystems, particularly 
regarding their hydrological and biogeochemical functions. Traditional 
models have employed various methodologies, often based on sophis-
ticated algorithms (e.g., Graham et al., 2020) or requiring extensive field 
data (e.g., Korpela et al., 2020), but also difficult to scale over entire 
mires or regional scales. The HuHoLa model presents a novel simplified 
approach by relying solely on a digital elevation model (DEM) to classify 
peatland microtopography into multiple classes. This model thus ad-
vances from the binary classification (hummock-hollow) limitation of 
most previous methods (Brubaker et al., 2013; Graham et al., 2020; 
Kalacska et al., 2021; Lovitt et al., 2017; Moore et al., 2019; Stovall 
et al., 2019). Furthermore, its simplicity as well as its hydrological al-
gorithm represent an advantage over the few other attempts to classify 
microtopography into multiple classes, which are rooted in machine 
learning (e.g., Korpela et al., 2020), hence requiring extensive and 
site-specific training features to apply at larger scales.

Peatland surface microtopography should not be confined to the 
traditional binary classification of hummocks and hollows, as it repre-
sents a continuous surface elevation change. The definitions of different 
microtopography structures are typically based on their relative posi-
tions to the average WTD, with hummocks (20 to 50 cm above the 
average WTD), lawns (5 to 20 cm above the average WTD) and hollows 
(generally below the WTD) (Rydin and Jeglum, 2013). Some transitions 

Table 1 
Performance measures for the 50 cm resolution and 4 cm fill threshold.

Class Precision Recall F1-score Support

Lawn 0.96 0.97 0.97 214
Hollow 0.87 0.80 0.83 25
Hummock 0.82 0.86 0.84 21
Accuracy ​ ​ 0.94 260
Kappa ​ ​ 0.81 260
Weighted avg. 0.88 0.87 0.88 260
Macro avg. 0.94 0.94 0.94 260

Fig. 7. Correlation between measured average water table depth (WTD) and WTD proxy from the HuHoLa model using a 30 cm resolution DEM. Each panel 
represents a different mire site in the mire complex. Shaded light-blue areas represent 95% confidence intervals for the linear regressions, indicating the uncertainty 
in the fitted relationships. The WTD proxy is the filled hollow-hummock-depth-height (Eq. (2)) in HuHoLa when a “fix flats” is applied. The * (p-value < 0.05) and ** 
(p-value < 0.01) represent the p-value significance of the linear relationships, while ‘ns’ means no significant linear relationship.
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between the microtopography structures are therefore difficult to cate-
gorize, especially in a binary hummock-hollow classification. The hol-
low index proposed in a plot-scale study by Graham et al. (2020) is 
somewhat similar to the “hollow-hummock-depth-height” in HuHoLa, 
and is a good way to represent this microtopography continuum. When 
categorizing microtopography into classes, the introduction of inter-
mediate classes (e.g. low lawns or high lawns, Korpela et al., 2020) gives 
a more realistic classification, with a smoother transition between the 
main classes. HuHoLa offers the possibility for a five-class classification, 
including upper level and lower level lawns intermediary classes in 
addition to the hummock-hollow-lawn classes. Although the five classes 

microtopography was not empirically validated in this study, this option 
to extend the model from three to five classes provides a framework for 
microtopographic transitions that can be useful in some other model 
applications.

One potential limitation of our model is that the DEM quality and 
precision can be influenced by different factors such as the acquisition 
method (e.g., LiDAR vs. SfM-derived) (Kalacska et al., 2021), peat sur-
face oscillation, i.e. shrinking and swelling (Hrysiewicz et al., 2024; Nijp 
et al., 2019), vegetation height (Zhao et al., 2018), etc. While this dy-
namic could influence DEM-based classifications, our approach using 
relative elevation differences rather than absolute heights would miti-
gate these issues. Nonetheless, a special attention must be given to DEM 
acquisition (time of acquisition, atmospheric conditions, etc.) to ensure 
the best quality elevation data as input to the model.

While validation of the microtopography classification was limited 
to a single site (Degerö Stormyr) due to the availability of boardwalk 
infrastructure for more accessible observation, this site showcases 
diverse microtopography features (hummocks, lawns, hollows, strings, 
and flarks), demonstrating the representativeness and broader applica-
bility of the HuHoLa method. Furthermore, the additional proxies for 
WTD and Ts provided by HuHoLa offer a significant advantage over 
other methods which are limited to microtopography classification 
alone.

4.2. Threshold sensitivity and DEM resolution effects on HuHoLa 
performance

The classification process is based on a threshold, acknowledging 
that lawns are not entirely flat but exhibit minor variations in elevation. 
Introducing this threshold allows for a more accurate representation of 
the three microtopography classes (hummocks, hollows and lawns), 
which is a significant improvement over models that overlook such 
nuances.

The selection of the threshold in HuHoLa is crucial, as it determines 
the classification outcome, but the model’s sensitivity to this parameter 
has been rigorously evaluated using DEMs of different resolutions. This 
analysis does not prescribe the optimal DEM resolution for classifying 

Fig. 8. Correlation between measured average soil temperature (Ts) at 10 cm 
depth and Ts proxy (i.e. the filled depth and height of hollows and hummocks 
or HHDH, Eq. (2) of the HuHoLa model) using a 30 cm resolution DEM. The 
shaded light-blue area represents the 95% confidence interval for the linear 
regression, indicating the uncertainty in the fitted relationship. No distinction 
was made between sites as HHDH is independent of site surroundings when no 
“fix flats” is applied. The ** indicates statistical significance (p-value < 0.01) 
for the linear relationship.

Fig. 9. Microtopography map showing the mapped microtopography using HuHoLa model with a 50 cm resolution DEM and a 4 cm threshold. The circles and 
vertical/horizontal cross lines represent selected cases for showing a closer view of the mapped microtopography and elevations.
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microtopography using HuHoLa, but it suggests what threshold should 
be chosen according to the DEM resolution. While different thresholds 
for hummocks and hollows could be explored, this would add significant 
complexity to the model’s parameterization and validation process, 
potentially compromising its current advantage of simplicity. The model 
classification performance (Kappa = 0.62 and overall accuracy = 0.88 
with the 30 cm DEM, Kappa = 0.81 and overall accuracy = 0.94 with the 
50 cm DEM) outperformed previous models (Kappa < 0.5 and overall 
accuracy < 0.8 with 10 to 25 cm DEMs; Graham et al., 2020; Stovall 
et al., 2019) and was comparable to a previous study where machine 
learning methods were applied to classify peatland microtopography 
(Kappa = 0.64 with a 20 cm DEM; Korpela et al., 2020). Thus, HuHoLa 
provides a robust classification approach that depends only on DEM 
characteristics, avoiding potential variability that can arise from the 
need for extensive site-specific training data and observer-based vali-
dation as often the case in machine learning approaches (Korpela et al., 
2020).

The performance of HuHoLa is significantly influenced by the reso-
lution of the DEM used. Our analysis demonstrated that finer DEM res-
olutions capture more surface rugosity, leading to a more fragmented 
depiction of microtopography. This increased detail can complicate the 
classification process, as evidenced by the lower equal error rate of 

hollows observed with the 30 cm resolution DEM, compared to that 
observed with the 50 cm resolution DEM. Additionally, artificial struc-
tures such as boardwalks can act as dams, potentially skewing the 
representativeness of the WTD proxy. Despite these challenges, HuHoLa 
exhibited robustness across various DEM resolutions, though applica-
tions to higher resolutions (< 30 cm) require further attention or vali-
dation when possible, to ensure that the resulting fragmentation is as 
expected in the field.

4.3. Potential applications in peatland research

The potential applications of the HuHoLa model are extensive, 
particularly in peatland research. By providing a fast, reliable and 
straightforward method for classifying microtopography, HuHoLa fa-
cilitates the scaling of plot-scale flux data to mire-ecosystem scales. 
Microtopographic variations strongly influence peatland greenhouse gas 
dynamics through their effects on hydrology, vegetation patterns, and Ts 
gradients, which in turn control key biogeochemical processes. The 
model can thus be integrated into land surface models that require 
microtopography parameters to simulate peatland carbon and green-
house gas flux dynamics (Graham et al., 2022).

The secondary Ts and WTD proxy products generated by HuHoLa 

Fig. 10. Elevation profiles of a few locations in the microtopography map. The fill threshold is 4 cm, for a DEM resolution of 50 cm. The locations were chosen to 
represent different microforms: (A) Strings and flarks; (B) hummocks and lawns; (C) Lawns; (D) and (E) hummocks, hollows and lawns. At each location, a horizontal 
(left to right) and a vertical (top to bottom) arrow indicate the orientation of the elevation profiles. The Y axis graduation is variable, and a spaced Y axis as in panel C 
indicates little amplitude in the elevation fluctuation at the lawn.
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offer a valuable tool for spatializing the WTD and Ts in mires. Our 
findings indicated that WTD proxy derived from the 30 cm resolution 
DEM was significantly correlated with average annual field WTD ob-
servations at three out of four sites, whereas the 50 cm resolution DEM 
showed significant relationships at only one site. This suggests that 
further validation with more spatially dispersed WTD measurements 
and different DEM resolutions would enhance the reliability and broader 
applicability of the WTD proxy. On the other hand, Ts was significantly 
correlated with the height and depth of hollows and hummocks when no 
“fix flats” was applied, both with the 30 cm and the 50 cm resolution 
DEMs. Unlike for WTD which needed to be calibrated for each site 
separately, Ts can be calibrated across large mire complexes with a 
single linear regression. The ability to predict these key variables across 
peatland landscapes is particularly valuable for understanding 
ecosystem processes, as WTD regulates methane production and 
oxidation dynamics while Ts controls microbial activity and decompo-
sition rates that drive greenhouse gas production.

While HuHoLa effectively captures peatland microtopography pat-
terns, we acknowledge limitations and opportunities for future devel-
opment. First, although the depression-filling algorithms inherently 
consider hydrological connectivity, our approach does not yet explicitly 
analyse spatial relationships between different microtopographic fea-
tures in the context of water flow paths. Future studies could explore the 
possibility of identifying more complex patterns, such as string-flark 
arrangements, and how different microtopographic configurations 
function as ecological networks (Rinaldo et al., 2018). Such analyses 
could potentially derive information about hydrological connectivity, 
nutrient cycling, and vegetation distribution that would be valuable for 
integration into broader peatland ecosystem models. Second, our 
sensitivity analysis focused on DEM resolution effects, but more 
comprehensive uncertainty quantification could be conducted using 
global sensitivity analysis approaches (Pianosi et al., 2016) to better 
understand how multiple interacting factors affect classification out-
comes. Furthermore, temporal dynamics of microtopography could be 
investigated by applying HuHoLa to time-series DEMs, potentially 
revealing how peatland surface patterns respond to seasonal hydrolog-
ical fluctuations and longer-term environmental changes, which could 
contribute to understanding potential state transitions in these 
ecosystems.

In summary, the HuHoLa model represents a significant advance-
ment in peatland microtopography classification. Its simplicity, 
robustness, and practical applications make it a valuable tool for 
improving our understanding of peatland processes. The additional in-
termediate lawn class presents a major advantage over traditional 
methods, in that the microtopography classification output from 
HuHoLa represents more realistically the peatland surface micro-
topography. While high-resolution DEM data (≤ 1 m) is required for 
accurate microtopography classification, this limitation is inherent to 
capturing fine-scale peatland surface variations rather than specific to 
HuHoLa. Such datasets are becoming increasingly available through 
LiDAR and UAV surveys of peatland systems (Porter et al., 2018; 
Räsänen and Virtanen, 2019). Due to the model’s reliance on funda-
mental hydrological principles of surface flow and relative elevation 
differences, rather than site-specific characteristics or training data, it is 
generalizable across different peatland systems. This was demonstrated 
at our study site which contained diverse microform types including 
hummocks, hollows, lawns, strings and flarks features characteristic of 
many northern peatlands. The successful application across this range of 
microforms positions HuHoLa as a reliable tool for microtopography 
classification in large-scale peatland studies.

5. Conclusion

This study developed and validated the HuHoLa model, a simple and 
scalable DEM-based approach for classifying peatland microtopography. 
The model performed well at both 50 cm and 30 cm resolutions, with a 

threshold analysis that revealed key insights into the properties of mire 
microtopography, such as lawns not being entirely flat and having some 
small elevation fluctuations. HuHoLa’s classification of micro-
topography into three or five classes offers a more nuanced and realistic 
depiction of peatland surface structure compared to traditional binary 
hummock-hollow approaches. Additionally, the secondary Ts and WTD 
proxy outputs of HuHoLa provide a valuable tool for spatializing WTD in 
mires. Overall, HuHoLa represents a promising tool for large-scale 
peatland research, with potential applications in land surface models.
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and the site Degerö Stormyr is part of the Swedish Integrated Carbon 
Observation System (ICOS-Sweden) Research Infrastructure. Financial 
support from the Swedish Research Council and contributing research 
institutes to both SITES and ICOS-Sweden are acknowledged. Support 
from the European Union via Erasmus mobility funding to N.H.H. is 
acknowledged. The authors thank the engineers of the SLU Unit for 
Field-based Forest research for their valuable assistance with data 
collection at the KRI.

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.ecolmodel.2025.111212.

Data availability

A sample of the data used to develop the model is available along 
with the python script at https://github.com/bravemaster3/huhola for 
testing. The full datasets including the UAV images can be provided 
upon request.

References

Belyea, L.R., Baird, A.J., 2006. Beyond “the limits to peat bog growth”: cross-scale 
feedback in peatland development. Ecol. Monogr. 76, 299–322. https://doi.org/ 
10.1890/0012-9615(2006)076 [0299:BTLTPB]2.0.CO;2. 

Brubaker, K.M., Myers, W.L., Drohan, P.J., Miller, D.A., Boyer, E.W., 2013. The use of 
LiDAR terrain data in characterizing surface roughness and microtopography. Appl. 
Environ. Soil Sci. 2013, 1–13. https://doi.org/10.1155/2013/891534.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 
37–46. https://doi.org/10.1177/001316446002000104.

Frolking, S., Talbot, J., Jones, M.C., Treat, C.C., Kauffman, J.B., Tuittila, E.-S., Roulet, N., 
2011. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 
371–396. https://doi.org/10.1139/a11-014.

K.D. Noumonvi et al.                                                                                                                                                                                                                           Ecological Modelling 508 (2025) 111212 

11 

https://doi.org/10.1016/j.ecolmodel.2025.111212
https://github.com/bravemaster3/huhola
https://doi.org/10.1890/0012-9615(2006)076
https://doi.org/10.1890/0012-9615(2006)076
https://doi.org/10.1155/2013/891534
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1139/a11-014


Graham, J.D., Glenn, N.F., Spaete, L.P., Hanson, P.J., 2020. Characterizing peatland 
microtopography using gradient and microform-based approaches. Ecosystems 23, 
1464–1480. https://doi.org/10.1007/s10021-020-00481-z.

Graham, J.D., Ricciuto, D.M., Glenn, N.F., Hanson, P.J., 2022. Incorporating 
microtopography in a land surface model and quantifying the effect on the carbon 
cycle. J. Adv. Model. Earth Syst. 14. https://doi.org/10.1029/2021MS002721 
e2021MS002721. 

Hanczar, B., Nadif, M., 2019. Controlling and visualizing the precision-recall tradeoff for 
external performance indices. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., 
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