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A B S T R A C T

Combining multi-model simulations can reduce the uncertainty in model structure and increase the accuracy of 
agricultural systems modeling results. This improvement is essential for supporting better decision making in 
irrigation planning and climate change adaptation strategies. Besides the commonly used arithmetic mean and 
median, many multi-model averaging approaches (MAA), widely examined in groundwater and hydrological 
modeling, but these additional MAA have not been examined in agricultural system modeling to improve the 
simulation accuracy. Therefore, the objective of this study is to evaluate the performance of seven MAA: two 
equal weighted approaches (Simple Model Averaging (SMA) and Median) and five weighted approaches (Inverse 
Ranking (IR), Bates and Granger Averaging (BGA), and Granger Ramanathan A, B, and C (GRA, GRB, and GRC)) 
in combining results of multiple agricultural system models. The Granger Ramanathan methods differ in their 
constraints: GRA employs conventional least squares, GRB requires non-negative weights that total to one, and 
GRC reduces absolute errors for robustness against outliers. The evaluation was conducted using maize yield and 
daily ETa simulations for both blind (uncalibrated) and calibrated phases of data from two groups of maize sites 
(Group A and Group B) across North America. The modeling results from the blind and calibrated phases were 
combined for all maize models and group maize models. Overall, all MAA performed better than individual crop 
models for blind and calibration phases. Specifically, the GRB model averaging method provided the closest 
match to measured values for daily ETa, while GRA was the most accurate for maize yield in most cases across all 
sites and phases. GRB improved daily ETa estimation over the median by an average of 4 % and 8.5 % in terms of 
RRMSE, while GRA enhanced maize yield estimation over the median by 7.5 % and 10.9 % for Group A and 
Group B sites, respectively. Notably, the improvement was greater in the blind phase for both groups of maize 
sites. An ensemble of group maize models with varied structures performed nearly as well as an ensemble of all 
maize models in simulating daily ETa and yield for Group A and Group B sites. Based on the results, we 
recommend GRA for crop yield and GRB for ETa simulations for maize, but both methods require observed yield 
and ETa data for their application; however, in the absence of observed data, we recommend the SMA method as 
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it performs better than the median. However, the performance of these MAA methods may differ for other crops 
(e.g., soybean, wheat, canola, potato, alfalfa) or regions, and it should be evaluated in future studies.

1. Introduction

Accurate prediction of crop yield and actual crop evapotranspiration 
(ETa) is essential for managing water resources and optimizing crop 
production in agriculturally dominated regions. These predictions are 
crucial for farmers, policymakers, and researchers to develop sustain-
able crop management strategies to mitigate the impacts of natural di-
sasters and climate change. Agricultural system models are used to 
simulate the crop yield and ETa under different climate conditions, soil 
type, and management practices (Motha, 2011; Deb et al., 2022). These 
models play a pivotal role in understanding how crops respond to 
different climatic conditions and crop management practices. Over the 
years, numerous crop models, ranging from simple to complex, have 
been developed to simulate crop yield and ETa for different crops 
(Kimball et al., 2023). However, multi-crop models inter comparison 
studies show that no single crop model consistently outperforms others 
across different climate conditions due to potential issues with model 
structure, parameters, input data, and calibration data (Bassu et al., 
2014; Fang et al., 2019). For example, the study by Bassu et al. (2014)
revealed that simulated maize yields ranged from 10 to 12.5 Mg/ha in 
Lusignan (France), 8.5 to 12 Mg/ha in Ames (USA), 6 to 8 Mg/ha in Rio 
Verde (Brazil), and 4.5 to 6 Mg/ha in Morogoro (Tanzania) across 17 
calibrated maize models. In another study, Kothari et al. (2022) used ten 
soybean models to simulate soybean yield at Azul, Argentina (ARGN); 
Brasilia, Brazil (BRZL); Auzeville, France (FRNC); and Ames, IA (IOWA) 
and Fayetteville, Arkansas (AKNS), USA, and found that the perfor-
mance of DSSAT was superior at Fayetteville, DNDC at Azul and Brasilia, 
MONICA at Auzeville, SSM at Ames. Similar variability in simulated 
maize yield and daily and seasonal ETa simulations were noted by 
Kimball et al. (2019), indicating the challenges of precisely simulating 
the yield and ETa. These variations in ETa and yield predictions can raise 
the question which model should be used for precisely simulating crop 
yield and ETa across diverse climatic conditions (Martre et al., 2015; 
Kothari et al., 2022; Kimball et al., 2023).

These challenges are notably crucial in regions where precise pre-
dictions of ETa are critical for irrigation scheduling and water resource 
management. Therefore, there is a need for reliable methods that can 
improve the simulation precision of crop model predictions across 
various climatic regions. Studies on crop modeling have shown that an 
ensemble of output of multiple crop models is more reliable and efficient 
than individual models (Bassu et al., 2014; Kothari et al., 2022; Kimball 
et al., 2023). Multiple crop model ensembles reduce errors by achieving 
an optimal balance between bias and variance. In Agricultural Model 
Intercomparison and Improvement Project (AgMIP), studies, the esti-
mated mean and median of multiple crop models outputs (yield and 
ETa), demonstrated better simulation accuracy than single crop models. 
Both approaches give equal weightage to all models without considering 
the performance of the models. Weighted MAA is an alternative 
approach which combine outputs from multiple models, by assigning 
weights based on each model’s performance, increasing the accuracy of 
ensemble predictions than mean and median. While weighted ensemble 
predictors have been widely used in hydrological, groundwater and 
weather forecasting modeling, and found better results than simple 
mean and median methods (Ajami et al., 2006; Arsenault et al., 2015; 
Kumar et al., 2015; Jafarzadeh et al., 2022; Wan et al., 2021; Wallach 
et al., 2016). Arsenault et al. (2015) compared nine MAA across 429 
catchments and found that the Granger Ramanathan C (GRC) method 
was best to combine the stream flow than others. Similarly, Kumar et al. 
(2015) evaluated ten different MAA methods and concluded that 
Granger Ramanathan B (GRB) was the most suitable MAA method to 
ensemble the river discharge.

The application of weighted MAA in crop modeling has not received 
much attention. A few studies demonstrated better results than the mean 
and median when they ensemble simulations using Bayesian model 
averaging (BMA) (Neuman, 2003; Huang et al., 2017; Gao et al., 2021). 
Numerous other weighted MAA, such as inverse rank, multiple linear 
regression (Kumar et al., 2015), machine learning algorithms 
(Zaherpour et al., 2019), and Information Criterion Averaging (Akaike, 
1974; Schwarz, 1978), are also discussed in the literature and widely 
used in hydrological and groundwater modeling studies. But they are 
rarely applied in crop modeling. Therefore, there is an opportunity to 
explore other weighted MAA methods for increasing the simulation 
accuracy of crop yield and ETa across diverse climate, soil and man-
agement conditions.

Crop yield and ETa simulation accuracy can be increased by cali-
brating crop model parameters using various observed data sources. 
These include field experimental data, such as initial water content, 
phenological events, soil water content, leaf area index (LAI), daily ETa, 
biomass, and yield. However, these measured data sets are often not 
available at many sites, and the limited availability of measured data can 
remarkably impact the predictive capabilities of individual crop models 
in predicting crop yields and ETa. In past AgMIP maize modeling studies, 
the mean or median of yield and daily ETa simulations were satisfactory 
under blind phase (uncalibrated) and calibrated phase. However, there 
is a need to examine whether weighted MAA can further improve the 
simulation accuracy for different climatic conditions.

The purpose of this study is to address the aforementioned research 
gaps. The effectiveness of seven MAA techniques to ensemble daily ETa 
and maize yield simulations during both blind and calibrated phases was 
assessed. The study also determined the best MAA technique for varied 
soil, climate and management conditions in the United States and 
Canada. There were elven maize field experiments sites selected across 
the USA and Canada. We divided all sites into Group A and Group B. Five 
models were used to simulate maize yield and ETa at Group A sites (nine 
sites) which falls in USA and Canada. For Group B sites (Mead, N and 
Bushland, Tx), ETa and yield simulations of 41 maize models were used 
from a previous AgMIP study (Kimball et al., 2023).

2. Materials and methods

2.1. Description of field experiment sites and experiment data

Nine maize (Zea mays L.) field experiment sites (Group A) were 
selected for analysis: Ames (Iowa, USA), Gilmore (Iowa, USA), Greeley 
(Colorado, USA), Ithaca (Nebraska, USA), Glenlea (Manitoba, Canada), 
Harrow (Ontario, Canada), Ottawa (Ontario, Canada), Sainte-Anne-de- 
Bellevue (Quebec, Canada), and Saint Emmanuel (Quebec, Canada) 
(Table 1 and Fig. 1). In addition, two maize field sites (Group B) pre-
viously used for AgMIP maize project ETa and yield simulations studies 
(Mead and Bushland) were selected, focusing on four treatments (i.e., 
Mead rainfed, Mead irrigated, Bushland 75 % Mid Elevation Sprinkler 
Application (MESA) irrigation, Bushland 100 % MESA irrigation). The 
Bushland, Mead, Ithaca, and Greeley sites were irrigated while the 
remaining sites were rainfed. The average growing season air temper-
ature, rainfall, and soil types of each site are given in Table 1. The 
average growing season temperature varied between 10.40 ◦C in Ithaca, 
USA, and 22.80 ◦C in Bushland, USA, while seasonal precipitation 
ranged from 191 mm in Greeley, USA, to 592.36 mm in Ithaca, USA 
across the maize experiment sites. Data availability period of each site is 
given in Table 1. A detailed description of available measurements of 
each site is given in Supplementary information Table S1. In-situ 
measured daily weather data, including maximum and minimum air 
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temperature, rainfall, wind speed, relative humidity, and solar radia-
tion, were utilized for all sites except Sainte-Anne-de-Bellevue, where 
specific site weather data were not measured. Weather data for Sainte- 
Anne-de-Bellevue was obtained from the nearest weather station of 
Environment Canada. For soil-related information, measured soil profile 
data were used across all sites. Comprehensive crop management de-
tails, including tillage practices, cultivar details, seeding rate, seeding 
date, plant density, fertilizer application rate, harvesting date, biomass, 
and grain yield were obtained for all sites. The quantity and timing of 
irrigation was obtained for the irrigated sites. Phenological dates, de-
tailing the various stages of plant development, were meticulously 
recorded for Ames, Bushland, Greeley, Mead, Ottawa, and Saint Ema-
nuel. Additionally, time-series measurements of Leaf Area Index (LAI) 
and actual crop evapotranspiration (ETa) were obtained for Ames, 
Bushland, Greeley, Mead, and Ottawa. Measured layer-wise soil water 
content data were available for all sites except Harrow and Sainte-Anne- 
De-Bellevue.

2.2. Crop model setup and calibration

As mentioned in Section 2.1, we used crop yield and ETa simulations 
from several field experiment sites. These field experiment sites were 
divided into two groups i.e. Group A and Group B. Group A sites was 
comprised of simulated crop yield and ETa data from the uncalibrated 
(Blind Phase) and fully calibrated phases of the five maize models in this 
study (Table 1 and Table S2). Group B sites included simulated daily ETa 
and yield data from uncalibrated and fully calibrated phases of 41 maize 
models for the Bushland and Mead sites. This data was sourced from 
AgMIP maize study (Kimball et al., 2023). The description of 41 Maize 
Models is given in Supplementary information Table S3. A detailed 
explanation of the model set-up and calibration process is presented in 
Kimball et al. (2023).

In the present study, for Group A sites, five Maize models were 
selected from the top seven fully calibrated maize models identified in 
the AgMIP Maize study (Kimball et al., 2019). These maize models 
include DSSAT-CERES maize with Priestly-Taylor Ritchie ET equation 

(DCPR), DSSAT-CERES maize with FAO56 Ritchie ET equation (DCFR), 
APSIM-maize with SOILWAT Archontoulis subroutine (AMW), APSIM- 
maize with SWIM Archontoulis subroutine (AMSA), and RZWQM2 
(Table S2).The selection of five maize models was based on their per-
formance to simulate growing season daily ETa, maximum LAI, biomass 
and grain yield over the eight years growing season. All these maize 
models were ranked among the top seven maize models to simulate the 
same over the study period. The RZWQM2 model which uses the 
Shuttleworth-Wallace approach to estimate potential transpiration (PT) 
and potential evaporation (PE) (Shuttleworth and Wallace, 1985) did 
not perform well in simulating ETa among the top seven maize models, 
however, it was in the top seven maize models’ performer in simulating 
maximum LAI, biomass and crop yield and therefore it was included in 
this study.

All these five maize models were used to simulate crop yield and ETa 
for Group A’s sites (Table S2). Maize models were calibrated and vali-
dated using measured field data (Kimball et al., 2019). Models were set 
up utilizing site-specific measured data, encompassing layered soil 
texture along with corresponding physical and hydraulic properties, 
tillage dates, cultivar details, seeding dates, plant density, irrigation 
amounts, and fertilizer rates.

In the blind phase (uncalibrated phase), for Group A sites, all five 
maize models were set up using site-specific measured input data, 
including soil, weather, and crop management details (such as seeding 
date, plant density, and fertilizer rate). The models’ phenology param-
eters were then adjusted to align with the crop maturity dates across all 
sites. Subsequently, the models were run to simulate ETa and yield. 
During this phase, models were not calibrated with available LAI, soil 
moisture, ETa, and yield data.

In the calibrated phase, all maize models were fine-tuned against the 
measured data to improve their ETa and crop yield simulation accuracy. 
We followed the step-by-step calibration procedure given in AgMIP 
maize study (Kimball et al., 2019). Cultivar parameters in each model 
were initially adjusted to align anthesis, silking, and maturity dates with 
observed ones depending on sites and available phenological measure-
ment dates. Then, maize models were calibrated for LAI. Subsequently, 

Table 1 
Details of selected crop field sites and corresponding soil type, average rainfall, and average temperature during the growing season (April–October).

Name Country Province 
State

Lat Long Soil type Growing season 
climatic parameters

Modeled 
component

Data availability 
period

Sources

Rainfa 
ll 
(mm)

Mean 
temp 
(◦C)

​ Group A sites
Ames USA Iowa 42.02 − 93.75 Loam 536.37 18.62 Yield and ETa 2006–2013 Kimbal et al., 

2019
Gilmore USA Iowa 42.73 − 94.45 Clay Loam 559.35 17.47 Yield 2005–2009 Qi et al.,2011
Glenlea Canada Manitoba 49.64 − 97.16 Clay 399.00 14.10 Yield 2006–2012 Uzoma et. al., 

2015
Greeley USA Colorado 40.44 − 104.00 Loamy 

Sand
191.00 16.50 Yield and ETa 2008–2013 Qi et al.,2016

Harrow Canada Ontario 42.22 − 82.73 Clay Loam 505.93 18.21 Yield 2008–2011 Jiang et al.,2020
Ithaca USA Nebraska 41.16 − 96.41 Silty 

Loam
592.36 10.40 Yield 2001–2015 Cheng et al., 

2021
Ottawa Canada Ontario 45.38 − 75.72 Loam 530.80 16.19 Yield and ETa 2002–2018 Crépeau 

et al.,2021
St. Emmanuel Canada Québec 45.32 − 74.17 Clay Loam 578.87 16.35 Yield 2005–2013 Singh, 2013
Ste.-Anne-de- 

Bellevue
Canada Québec 45.43 − 73.93 Loamy 

Sand
580.52 16.27 Yield 2008–2009 Jiang et al., 2022

​ Group B Sites
Bushland USA Texas 35.18 − 102.09 Silty Clay 350 22.80 Yield and ETa 2013,2016 Kimbal et al., 

2023
Mead Rainfed USA Nebraska 41.17 − 96.43 Silty 

Loam
592 19.90 Yield and ETa 2003–2013 Kimbal et al., 

2023
Mead Irrigated USA Nebraska 41.16 − 96.47 Silty 

Loam
592 19.90 Yield and ETa 2003–2013 Kimbal et al., 

2023
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the models calibrated against soil water content data by adjusting 
saturated and lateral hydraulic conductivity depending on maize models 
for all sites except Harrow and Sainte-Anne-de-Bellevue. Following this, 
the models were fine-tuned for ETa by adjusting parameters related to 
albedo, soil resistance, and leaf stomatal resistance depending on spe-
cific maize model at sites (Ames, Ottawa and Greeley) those had ETa 
measurements. Lastly, the models were calibrated for crop yield by 
adjusting cultivar parameters influential on crop yield. Among the field 
experiment sites, maize models were comprehensively calibrated for 
growth stage dates, LAI, soil water content, ETa and yield for Greeley, 
Ames, and Ottawa sites. For the remaining sites, calibration was limited 
to growth stage dates, LAI, soil water content, and yield. We did not 
calibrate the maize models for daily ETa for remaining sites as daily ETa 
measurements were not available.

The calibration procedure for Group B sites is described in Kimball 
et al. (2023). In the present study, ETa and yield simulations from blind 
phase and full calibrated phase of 41 maize models were used. In the 
blind phase, cultivar parameters were fine tuned to match with 
measured anthesis, silking and maturity dates at all sites. Next, models 
were calibrated for LAI and biomass data using measured LAI and 
biomass data. Then, soil water content and ETa were calibrated by 
adjusting albedo, soil resistance, and stomatal resistance depending on 
the specific maize model. At the end, maize models were tuned to match 
the observed yield.

2.3. Model averaging approaches (MAA)

The simulated yield and daily ETa from all sites were ensembled 
using seven MAA: Simple Model Averaging (SMA), Median, Inverse 
Rank (IR), Bates and Granger Averaging (BGA), and three variants of 
Granger Ramanathan (GRA, GRB, and GRC) (Supplementary informa-
tion Table S4). We selected simple mean and median MMA because they 
are widely used in agricultural system modeling and do not require 
measured data to estimate the weight of each model. Both methods can 
be applied in data-scarce regions. Weighted-based MMA, such as Bates 
and Granger Averaging (BGA) and Inverse Rank (IR), were selected 
because their ensemble performed better than calibrated models in 
previous studies (Aiolfi and Timmermann, 2006; Arsenault et al., 2015; 

Wan et al., 2021). Granger Ramanathan A, B, and C (GRA, GRB, and 
GRC) selected based on previous studies as their performance was 
similar or better than advanced MAA such as Bayesian Model Averaging 
(BMA) and Mallows Model Averaging (MAAS) (Diks and Vrugt, 2010; 
Arsenault et al., 2015; Wan et al., 2021). GRA, GRB, and GRC are less 
computationally expensive than BMA and MAAS.

The weight of each crop model for yield and ETa was estimated using 
seven MAA, which are built into the Geometric Forecast Combination 
(GeomComb) R package (https://github.com/cran/GeomComb). GRA, 
GRB and GRC MAA are represented as Ordinary Least Squares Forecast 
Combination (comb_OLS), Constrained Least Squares Forecast Combi-
nation (comb_CLS) and Least Absolute Deviation Forecast Combination 
(comb_LAD), respectively, in the GeomComb R package.

The ensemble yield and daily ETa were determined by multiplying 
the weight of each maize model by its corresponding simulated yield and 
daily ETa for each site. First, the simulated yield and daily ETa from all 
selected maize models were combined. Those were five for Group A 
sites, and 41 for Group B sites. We referred to as “all maize models.” 
Next, the simulated yield and daily ETa of one representative model 
from each model family were selected and ensembled. It was referred to 
as “group maize models”. The selection was based on the over all per-
formance of models to simulate yield and daily ETa within each family 
for calibrated and un-calibrated phase. If a model family had no vari-
ants, it was selected by default.

For Group A sites, three group maize models were selected, while for 
Group B sites, twenty-two group maize models were chosen. Selected 
Group maize models are given in the Supplementary Tables S2 and S3.

The simulated yield was ensemble across all sites, while the simu-
lated daily ETa was ensemble for three sites in Group A (Ames, Greeley, 
and Ottawa) and all sites in Group B. The resulting yields and daily ETa 
obtained through the MAA methods were subsequently compared with 
the observed yield and daily ETa datasets. Details of the multiple MAA 
are given below: 

a. Simple Model Averaging (SMA): In this approach, the weight of 
each model is assigned equally. Mathematically, it can be estimated 
as:

Fig. 1. Locations of crop field sites in the USA and Canada (Group A sites, and Group B sites).
Source: http://drought.memphis.edu/naspa/CompReconRange.aspx
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W =
1
n

(1) 

where n is the number of ensemble models, and W is the estimated 
weight of each ensemble model. 

b. Median: The median of simulated values of all ensemble models is 
taken to combine the forecast.

c. Inverse rank: The inverse rank approach, rank each ensemble model 
based on their simulation performance. The first rank is assigned to 
model with lowest root mean squared error, the model with the 
second lowest mean squared error is assigned the rank 2. Then 
weightage of each model is calculated as follows:

W =
Ranki

− 1

∑N
i=1Ranki

− 1 (2) 

where W is the estimated weight of each ensemble model. Ranki is the 
rank of the ith ensemble model. 

d. Bates and Granger Averaging (BGA): The BGA method combined 
the forecast of ensemble models by minimizing the root mean 
squared error between simulated and observed values. It can be 
estimated as:

W =

1
RMSEi

2

∑N
i=1

1
RMSEi

2

(3) 

where W is the estimated weight of each ensemble model. RMSEi is the 
root mean square error of the ith ensemble model. 

e. Granger Ramanathan A (GRA): The GRA approach, developed by 
Granger and Ramanathan in 1984, employs the ordinary least 
squares (OLS) method to estimate weight of each model, effectively 
lowering the sum of squared error (SSE) but lacking bias correction. 
Weight of each ensemble model are estimated by following equation:

W =
(
ETsimTETsim

)− 1ETT
simETmeas (4) 

where ETsim is the matrix of the maize models’ simulations, ETmeas is the 
matrix of measured values, and ETsimT is the transpose matrix of the 
maize models’ simulations.

f. Granger Ramanathan B (GRB): GRB uses constrained least squares 
(CLS) method, ensuring that the weights of all models sum to one. In 
GRB, weights are estimated by:

W =
(
ETsimTETsim

)− 1ETT
simETmeas − λB

(
ETsimTETsim

)− 1l (5) 

λB =

(
lT(ETsimTETsim

)− 1
ETT

simETmeas− 1)
(lT(ETsimTETsim)

− 1l)
(6) 

where λB is a Lagrangian multiplier, l is the unit vector of same 
dimension as that vector of W. 

g. Granger Ramanathan C (GRC): The GRC approach is similar to 
GRA but includes a bias correction term. In GRC, weights are esti-
mated by:

W =
(
ETsimTETsim

)− 1ETT
simETmeas − δ

(
ETsimTETsim

)− 1ETT
siml (7) 

δ is a bias correction term which is estimated by following 
relationship: 

δ =
lTeA

(n − θ)
(8) 

where eA is the vector of errors (ETmeas-ETsim*W) estimated by GRA 

method and θ is estimated by following equation: 

θ = lTETsim
(
ETsimTETsim

)− 1ETT
siml (9) 

Detailed information on GRA, GRB and GRC model averaging ap-
proaches can be found in Granger and Ramanathan (1984).

2.4. Performance evaluation of the models

The evaluation of the crop models and model averaging methods 
performance was assessed by statistical indicators such as relative root 
mean squared error (RRMSE). Jamieson et al. (1991) concluded that 
RRMSE values below 10 % are “excellent”, values from 10 to 20 % are 
“good”, values from 20 to 30 % are “satisfactory”, and values exceeding 
30 % are “poor”. 

RRMSE =
100

o

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(oi − si)

2

√

(9) 

where n is the number of observed and simulated data points, oi is the 
observed value, si is the model simulated value, o is the mean of 
observed values.

3. Results

3.1. Group A sites simulations

In this section, the simulated daily ETa and seasonal yield were 
examined using five maize crop models (DSPR, DSFR, AMW, AMSA, and 
RZWQM2) across nine sites in the USA and Canada, under both the blind 
and calibrated phases. Additionally, the MAA estimated daily ETa and 
seasonal yield results were assessed. The analysis focused on daily ETa 
simulations at Ames, Greeley, and Ottawa, where daily ETa measure-
ments were available. Seasonal yield was analysed at all nine sites. For 
Ames, Greeley, and Ottawa, the analysis focused on the growing seasons 
of 2006–2008, 2010 for the Ames and Greeley and 2002, 2006 and 2010 
for daily ETa simulations in Ottawa, respectively.

3.1.1. Blind phase

3.1.1.1. Crop evapotranspiration. A wide range of daily ETa simulations 
was observed in the five maize models at all sites, especially in the early 
and end-growth stages during the blind phase (Fig. 2). The RRMSE be-
tween measured and simulated daily ETa ranged from 49.8 to 72.1 % at 
Ames of the growing seasons of 2006–2008, from 36.5 to 104.2 % at 
Greeley for the 2010 growing season, and from 40.6.5 to 83.8 % at 
Ottawa for the growing seasons 2002, 2006 and 2010 (Fig. 3a). In 2006 
at Ames, the measured average daily ETa during the growing season was 
2.5 mm, while the simulated average daily ETa ranged from 2.3 to 2.7 
mm/day. Similarly, at Greeley in 2010, the measured average daily ETa 
was 4.4 mm, and simulated average daily ETa values ranged from 3.6 to 
6.9 mm/day. In Ottawa in 2006, the measured average daily ETa was 
2.3 mm, while simulated values varied between 2.2 and 3.3 mm/day.

However, ensembling the daily ETa simulations from all five maize 
models using seven model averaging methods improved the accuracy of 
daily ETa simulations based on the RRMSE (Fig. 3a and Table 2). The 
performance of GRA model averaging method to combine daily ETa 
simulations was best at the Ames and Ottawa sites, whereas GRB per-
formed slightly better at the Greeley site. Fig. 2 indicates a closer 
agreement between measured and GRB ensembled daily ETa over the 
growing season at all sites.

When daily ETa simulations of group maize models were ensembled, 
the performance of model averaging methods decreased compared to 
the ensembling of all maize models (Table 2). Though GRA and GRC 
model averaging methods showed almost similar performance in 
combining daily ETa, GRA ensemble daily was best at the Ames and 
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Ottawa sites, whereas GRC performed best at the Greeley site. Overall, 
by taking the average of RRMSE of Ames, Greeley and Ottawa sites, the 
results indicate that there was slight variation noted in GRA, GRB and 
GRC for ensemble daily ETa. However, GRC was identified as the best 
model ensemble approach (Table 5).

3.1.1.2. Crop yield. Uncalibrated maize models showed unsatisfactory 
performance across all sites, as indicated by high RRMSE values 
(Fig. 4a). However, combining simulated yields from all maize models 
using model averaging methods remarkably improved yield simulation 
performance, achieving acceptable RRMSE criteria. Generally, the per-
formance of GRA and GRC was similar across all sites, followed by GRB, 
IR, BGA, SMA, and the Median (Fig. 4). Additionally, when yield sim-
ulations from group maize models were ensembled, no improvements 
were found as compared to an ensemble of all maize models (Table 3). 
There was a slight decrease in the performance of the model averaging 
method in the ensemble of group maize models.

3.1.2. Calibrated phase

3.1.2.1. Crop evapotranspiration. Moderate variability in the daily 
simulated ETa persisted at each site, despite calibrating all crop models 
(Fig. 5). The RRMSE values ranged from 41.4 to 50.8 % at Ames of the 
growing seasons of 2006–2008, 36.5–48.8 % at Greeley for the 2010 
growing season, and 34.4–59.1 % at Ottawa for the growing seasons 
2002, 2006 and 2010 (Fig. 3b), indicating that the RRMSE remained in 
the unacceptable range across all maize models and sites. At the Ames 
site, the average measured growing season daily ETa was 2.5 mm, while 
the average simulated daily ETa ranged from 2.6 to 2.9 mm/day across 
all maize models. Similarly, in Greeley, the average growing season 
measured daily ETa was 4.4 mm, with simulated values between 4.0 and 
4.8 mm/day. Similar results were observed at the Ottawa site. However, 
when an ensemble of all maize models was taken using model averaging 
methods, this variability was reduced across all sites as shown by 
RRMSE values in Fig. 3b. A slightly improvement in ensembled daily 
ETa simulations was noted across all model averaging methods 
compared to the blind phase (Table 2). The RRMSE for the ensemble 

Fig. 2. Box plots of daily simulated evapotranspiration (ETa) across the five maize models of the maize season 2006, 2010, and 2006 at Group A sites (Ames, Greeley, 
and Ottawa), respectively, for the uncalibrated phase. Observed daily ETa values, and the GRB and SMA multi-model averaging approaches derived daily ETa values 
from the five maize models are also presented. The simulated outputs of the uncalibrated phase where all maize model were set up using in-situ data and no 
calibration was done.

V. Nand et al.                                                                                                                                                                                                                                   Journal of Hydrology 661 (2025) 133631 

7 



varied from 34.0 to 38.6 % at Ames, 30.6 to 38.1 % at Greeley, and 27.1 
to 31.2 % at Ottawa across all MAAs over the respective goring season 
years. The GRA ensemble of daily ETa showed closer agreement with the 
measured daily ETa than other MAAs at all sites except Greeley. 
Furthermore, the accuracy of daily ETa improved when averaging group 
maize models compared to averaging all maize models (Table 2). GRA 
performed the best for combining daily ETa at Ames and Ottawa, while 
GRB was the best at the Ottawa site. The performance of MAA to 
ensemble daily ETa simulations was very close for all maize models and 
group maize models. In general, the results suggest that there was slight 
variation noted across all MAA for ensemble daily ETa. However, GRB 
was identified as the best model ensemble approach.

3.1.2.2. Crop yield. When all maize models were fully calibrated, their 
performance improved across all sites. Comparing the simulated yields 
of individual maize models with the measured yields, the RRMSE was 
found to be less than 30 % (Fig. 4b), indicating that the performance of 

each crop model varied depending on the site, and no single model 
consistently outperformed others for simulating maize yield across all 
locations. The RRMSE between measured and simulated yield ranged 
from 0.44 % to 28.90 % across all maize models and sites.

Yield simulations improved further when an ensemble of all maize 
models was taken using model averaging methods, as indicated by 
RRMSE values in Fig. 4b. The GRA produced ensembled yield values 
were very close to the observed yields at all sites. The performance of 
GRC was comparable to GRA at most sites with slight variation. In the 
calibrated phase, the performance of model averaging methods was 
slightly better than in the blind phase.

However, a minor decrease in the accuracy of yield simulations was 
noted when using an ensemble of group maize models with model 
averaging methods, indicating that the ensemble of simulated yield from 
group maize models did not improve the yield simulations (Table 3). 
Among the model averaging methods, the ensemble yields from GRA 
and GRB matched the measured yields at most sites.

Fig. 3. RRMSE between the measured and simulated daily ETa across five maize models and seven multi-model averaging approaches (MAA) under uncalibrated (a) 
and calibrated (b) phases at Group A sites.

Table 2 
A comparison of RRMSE between the measured daily ETa and ensembled daily ETa of all maize models and group maize models using seven multi-model averaging 
approaches (MAA) at Group A sites under the Blind and Calibrated Phase.

Averaging approaches Blind Calibrated

All models Group models All models Group models

Ames Greeley Ottawa Ames Greeley Ottawa Ames Greeley Ottawa Ames Greeley Ottawa

SMA 41.4 36.2 41.0 40.8 45.8 35.5 38.0 31.5 29.6 39.5 31.8 29.1
Median 45.5 32.8 43.2 44.5 45.8 35.8 38.6 32.0 31.2 39.8 33.6 30.5
IR 42.8 32.6 34.2 42.0 37.2 33.5 38.4 31.4 28.6 39.1 31.5 30.0
BGA 41.4 30.4 33.9 40.8 35.5 33.4 38.0 31.1 28.0 39.2 31.6 29.2
GRA 35.4 49.5 30.6 34.0 39.2 31.5 34.0 37.0 27.1 34.7 37.8 28.3
GRB 41.2 29.8 31.7 40.8 35.0 33.0 37.3 30.6 27.6 38.8 31.4 29.0
GRC 36.0 34.8 30.7 34.6 34.9 31.7 34.6 38.1 27.3 35.1 36.9 28.5
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3.2. Group B sites simulations

3.2.1. Blind phase

3.2.1.1. Crop evapotranspiration. The 41 maize models from the AgMIP 
maize ET study simulated daily ETa were in a wide range at all sites 
(Kimball et al., 2023). The RRMSE between the daily simulated ETa and 
the in-situ measured daily ETa ranged from 33 % to 110 % at Mead 
irrigated for the growing seasons of 2003, 2005, 2007 and 2009; 32 % to 
131 % at Mead rainfed for the same seasons; from 29 % to 87 % at 
Bushland 100 % MESA for the growing seasons of 2013 and 2016; and 
from 31.20 % to 79 % at Bushland 75 % MESA for the growing seasons of 
2013 and 2016 across all maize models (Fig. 6a). The previous analysis 
by Kimball et al. (2023) revealed that the median of all maize models 
closely matched the measured daily ETa throughout the growing season. 
In the present study, variability in daily ETa simulations decreased when 
the ensemble of all maize models was used. Even though roughly similar 
performance was noted for the GRA, GRB, and GRC at all sites except 
Bushland 75 % MESA, overall, GRB-ensembled daily ETa performed 
better in matching the daily measured ETa over the growing season at 
most sites, followed by GRA, GRC, IR, BGA, SMA, and the Median 
(Table 4). The RRMSE between the ensembled daily ETa and the 
measured daily ETa ranged from 18.4 % to 28 % at Mead irrigated, 18.5 
% to 38.1 % at Mead rainfed, 19 % to 26.4 % at Bushland 100 % MESA, 
and 25.8 % to 30 % at Bushland 75 % MESA sites in among MAA over the 
respective growing seasons (Table 4 and Fig. 6a).

The ensembled daily ETa by SMA and GRB was also compared with 

the measured daily ETa during the 2003 growing season at Mead’s 
irrigated and rainfed sites. Fig. 7 illustrates a close match between the 
measured daily ETa and the GRB ensembled daily ETa, particularly to-
wards the end of the growing season at the Mead Irrigated site. The GRB 
ensembled daily ETa followed the pattern of the measured daily ETa 
more closely than the SMA ensembled daily ETa. However, none of the 
MAAs could reproduce the peak daily measured ETa. Similarly, at the 
Mead rainfed site, the GRB ensembled daily ETa closely followed the 
daily measured ETa for the 2003 growing season (Fig. 7), whereas the 
SMA ensembled daily ETa showed poor agreement with the measured 
daily ETa, especially during the mid-and late-growing seasons. GRB 
ensembled daily ETa also closely followed the pattern of daily measured 
ETa during the 2013 crop period at Bushland 100 % MESA and 75 % 
MESA sites. However, the GRB and other MAA underestimated ETa 
during the early and mid-crop periods. This discrepancy is attributed to 
the inadequacy of many crop models in accounting for varying wind 
speed and humidity. All maize models estimated daily ETa accurately 
during periods of lower ETa but considerably underestimated ETa dur-
ing periods of higher ETa, characterized by high wind speeds and low 
relative humidity (Kimball et al., 2023).

Additionally, the results of group maize models were analyzed, 
where one model from each crop model family was selected. This 
approach marginally improved the daily ETa simulations at all sites 
compared to considering an ensemble of all maize models (Table 4). For 
instance, the RRMSE between the daily measured ETa and the ensem-
bled daily ETa of all maize models ranged from 18.4 % to 28 % across all 
models averaging methods at the Mead irrigated site. In contrast, the 

Fig. 4. RRMSE between the measured and simulated maize yield across five maize models and seven multi-model averaging approaches (MAA) under uncalibrated 
(a) and calibrated (b) phases at Group A sites.
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RRMSE between the daily measured ETa and the ensembled ETa of 
group maize models ranged from 18.6 % to 24.4 % across all model 
averaging methods. Similar findings were observed at the Mead rainfed, 
Bushland 100 % MESA, and Bushland 75 % MESA sites. In general, GRB 
ensemble approach was found best for ensemble daily ETa simulations 
for all maize models and group models (Table 6).

3.2.1.2. Crop yield. Large variability in simulated maize yields was 
noted across 41 maize models during the blind phase (Fig. 8a). An 
ensemble of simulated yields of all maize models reduced the deviation 
between measured yield and simulated maize yield at all sites. Among 
the seven MAA, GRA performed the best followed by GRC, GRB, IR, 
BGA, SMA, and median at most sites. Moreover, the performance of 
group maize models was examined. Overall, this approach improved the 
yield simulations for a few cases (Table 4). The performance of all MAAs 
in combining the simulated yield of group maize models was roughly 
similar to ensembling the maize yield of all maize models.

3.2.2. Calibrated phase

3.2.2.1. Crop evapotranspiration. After fully calibrating all maize 
models, a slight improvement in daily ETa simulations was noted in all 
maize models. There was still wide variability in daily ETa simulations 
across the 41 maize models. The RRMSE ranged from 28.5 % to 75.0 %, 
30.3 % to 90.0 %, 30.0 % to 68.5 %, and 28.0 % to 67.0 % at Mead 
irrigated, Mead rainfed, Bushland 100 % irrigation, and Bushland 75 % 
irrigation sites, respectively over the corresponding growing seasons 
(Fig. 6b). Model averaging methods reduced the variability in daily ETa 
simulation by combinig daily ETa simulations of all maize models. In the 
calibrated phase, improvement in ensembled daily ETa simulation 
across MAA was slightly higher than the blind phase at all sites (Table 4). 
Though GRA, GRB, and GRC MAA showed almost similar performance 
to ensemble daily ETa of all maize models, GRA outperformed others at 
Mead rainfed and irrigated sites and GRB outperformed others at 
Bushland 75 and 100 % MESA sites. For instance, the RRMSE between 
the GRA ensembled daily ETa and measured daily ETa was 19.0 and 
19.4 % at Mead irrigated and rainfed sites, respectively (Fig. 6b). 
Similarly, RRMSE between the GRB ensembled daily ETa and measured 
daily ETa was noted for 19.30 % and 19.40 % at Bushland 100 % MESA 
and 75 % MESA sites, respectively. The model averaging methods 
ensembled daily ETa were also compared with measured daily ETa over 
the growing season at Mead and Bushland sites. Fig. 9 shows a close 
match between in-situ measured daily ETa and GRB ensembled daily 
ETa, particularly during the 2003 growing season at Mead rainfed, 
where GRB closely followed the measured pattern.

Moreover, the ensemble of daily ETa of group maize models was 
compared using different model averaging methods. A slight improve-
ment in ensembled daily ETa simulations was noted when considering 
group maize models (Table 4), however, the pattern of performance of 
MAA to ensemble daily ETa simulations of group maize models was 
similar to all maize models. For example, GRA model averaging method 
ensembled daily ETa was found best at Mead irrigated and rainfed sites, 
whereas GRB ensembled daily ETa outperformed to others at Bushland 
100 and 75 % MESA sites in both cases (Table 4). By synthesizing results 
of all maize models and group maize models, GRA ensemble approach 
was found best for ensemble daily ETa simulations for all maize models 
whereas GRB ensemble approach was identified best for group maize 
models (Table 6).

3.2.2.2. Crop yield. Simulated yield showed remarkable improvement 
in most maize models after full calibration compared to the blind phase 
(Fig. 8b). The greatest improvement in yield simulations was observed at 
the Mead irrigated site; however, moderate variability in yield simula-
tions was found across all maize models at the Mead rainfed, Bushland 
100 % MESA, and Bushland 75 % MESA sites. This variability decreased 
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substantially when simulated yields were averaged using model- 
averaging methods at all sites. The GRA performed the best at all 
sites, followed by GRC, GRB, IR, BGA, SMA, and the median. The RRMSE 
between ensemble and measured yields ranged from 0.03 to 4.0 % at 
Mead irrigated, 5.6 to 12.8 % at Mead rainfed, 4.2 to 15 % at Bushland 
100 % MESA, and 2.8 to 19 % at Bushland 75 % MESA sites across all 
model-averaging methods (Table 4). Additionally, the ensembling of 
simulated yield from group maize models showed mixed results 
compared to combining simulated yields from all maize models across 
all model-averaging methods. There was a marginal improvement in 
yield simulation at Mead rainfed and Bushland 75 % MESA sites 
compared to all maize models, while there was a slight decrease noted at 
Mead irrigated and Bushland 100 % MESA sites (Table 4).

4. Discussion

4.1. Blind vs calibrated

Combining simulations from multiple models through various 
model-averaging approaches often provides more accurate simulation 
performance (Sándor et al., 2023). In this study, as anticipated, MAAs 
performed slightly better during the calibrated phase than for the blind 
phase for combining daily ETa and yield simulations of all and group 
maize models (Tables 5 and 6). In crop modeling, calibration is a crucial 
process aimed at estimating unknown parameters using field observa-
tions, thereby reducing uncertainty in model simulations and making 
predictions more reliable (He et al., 2017). MAAs tend to perform better 
in the calibrated phase because the models are fine-tuned to specific 
datasets, which minimizes errors and variance, resulting in more accu-
rate and stable predictions (Fletcher, 2018).

Fig. 5. Box plots of daily simulated evapotranspiration (ETa) of the maize season 2006, 2010, and 2006 across five maize models at Group A sites (Ames, Greeley, 
and Ottawa) respectively. Observed daily ETa values, and the GRB and SMA multi-model averaging approach derived daily ETa values from the five maize models are 
also presented. The simulated outputs of the calibrated phase where all maize models were fully calibrated using crop phenology dates, LAI, soil moisture, ETa and 
yield data.
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Interestingly, MAAs also performed well in the blind phase. The 
outcomes of the present study are comparable to those of Bassu et al. 
(2014) and Kimball et al. (2019), where the maize yield and ETa sim-
ulations from uncalibrated maize models in different climatic conditions 
sites were combined using the mean and median. However, in this study, 
an additional five MAAs were tested, which will be discussed in the next 
section. Similarly, Ajami et al. (2006) found that averaging streamflow 
simulations of uncalibrated multiple hydrological models using four 
model combination methods performed better than a calibrated single 
hydrological model. These studies found that multi-model combinations 
could enhance prediction accuracy by compensating for individual 
model errors to reduce variance (Bassu et al., 2014; Kimball et al., 2019; 
Kimball et al., 2023; Sándor et al., 2023; Couëdel et al., 2024). The 
multi-model combination improves the simulation accuracy by reducing 
the variance associated with the predictions (Bassu et al., 2014; Fletcher, 
2018). The individual model might exhibit high variance due to their 
sensitivity to model structures and parameters. By averaging the outputs 
of multiple models, these variances are reduced, leading to more stable 
and reliable predictions. In addition, different models may make 

different errors when predicting. When these models are averaged, the 
errors can cancel each other out to some extent, resulting in a more 
accurate overall prediction. Nonetheless, while multi-model ensembles 
offer a way to learn from the errors across various studies and improve 
the models, some individual models might still outperform the mean and 
median (Kothari et al., 2022).

4.2. Best model averaging method for ETa and yield

The study assesses how well different MAA can reduce variability 
and improve the accuracy of daily ETa and yield simulations at Group A 
and Group B sites. Remarkably, SMA and the median approach per-
formed better than individual calibrated maize models in 98 % of the 
cases during the blind phase at Group A sites, with SMA usually out-
performing the median. Similar results were observed in Group B sites 
for ETa and yield. This could be due to a trade-off in prediction errors 
among different models, leading to more accurate overall predictions. 
These findings are comparable to those of Ajami et al. (2006), Bassu 
et al. (2014), Arsenault et al. (2015), Sándor et al. (2023), and Couëdel 

Fig. 6. RRMSE between the measured and simulated daily crop evapotranspiration (ETa) across 41 maize models and seven multi-model averaging approaches 
(MMA) at Group B sites under uncalibrated (a) and calibration phase (b).
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et al. (2024), which showed that the mean of simulated streamflow and 
yield from hydrological and crop models, respectively, was better than 
individual calibrated models.

Further enhancement in daily ETa and maize yield simulations was 
noted when other model averaging methods, such as IR, BGA, GRA, 
GRB, and GRC, were used. Overall, the improvements ranged between 
3.5 and 6.5 % for daily ETa and 3.3–9.7 % in terms of RRMSE for yield 
simulations at Group A sites across the five MAAs compared to the 
median (Table 5). Similarly, improvements in daily ETa and yield sim-
ulations ranged between 3.2 % and 8.7 %, and 7.3 % and 9.5 %, 
respectively, at Group B sites (Table 6).). The improvement in daily ETa 
and yield estimations by the additional five MAAs over the median was 
slightly greater for daily ETa and moderately greater for yield in the 
blind phase compared to the calibrated phase (Table 5 and Table 6). 
BGA often performed better in combining daily ETa simulations than 
SMA and the median, though it was usually outperformed by its variant 
IR (Tables 5 and 6). This can be explained by the IR method’s disregard 
for outliers (Aiolfi and Timmermann, 2006). For yield simulations, BGA 
and IR showed almost similar performance. According to Diks and Vrugt 
(2010), BGA did not outperform other methods (AICA, BICA, BMA, and 
MLR A) except SMA.

When comparing the performance of GRA, GRB, and GRC, there were 
only marginal differences in their ability to combine daily ETa and yield 
simulations in 75 % of cases, aligning with the study by Arsenault et al. 
(2015) (Tables 2 and 4). GRA, GRB, and GRC performed considerably 
better than SMA and the median and slightly to moderately better than 
IR and BGA, depending on the site. Overall, averaging the RRMSE of all 
sites for all maize models and group maize models for blind and cali-
brated phases revealed that GRB was best for ensemble of daily ETa 
simulations, while GRA was best for yield simulations (Tables 5 and 6). 
GRB slightly outperformed GRA by 0.5–1.5 % in terms of RRMSE to 
ensemble daily ETa, depending on the site and model group. GRA clearly 
outperformed GRB by a 2–3 % in terms of RRMSE, which is notable 
given the lower error ranges typically associated with yield. GRB 
improved daily ETa estimation by an average of 4 % and 8.5 % in terms 
of RRMSE than the median, while GRA enhanced maize yield estimation 
by 7.5 % and 10.9 % for Group A and Group B sites, respectively. The 
consistent performance of GRA and GRB in ensembling yield and daily 
ETa across different soil types, climatic conditions, crop management 
practices and model ensembles supports the strength of our findings 
within the context of maize crop, however these findings may not 
generalize to other crops (e.g., soybean, wheat, canola, potato, alfalfa) 
or regions, and it need to be examined in future studies.

This is likely because of higher bias in daily ETa simulations across 
maize models compared to yield simulations. GRA was better at 
reducing variance in yield simulations due to incorporating variance 
reduction. In contrast, GRB reduces variance by giving positive higher 
weights to well-performing models while minimum weight to the worst- 
performing models even in some cases zero. Therefore, it combined the 
daily ETa simulations slightly better than other MAA. For ETa, the re-
sults were contradicted by Ajami et al. (2006), Arsenault et al. (2015), 
and Wan et al. (2021) and were comparable to Kumar et al. (2015).

Kumar et al. (2015) found that GRB was the best method for 
combining simulated river discharge from eight hydrological models. 
For crop yield, findings were in line with (Diks and Vrugt, 2010), who 
reported that GRA’s results were similar to advanced MAA such as 
Bayesian Model Averaging (BMA) and Mallows Model Averaging 
(MAAS). The advantage of using GRA over BMA or MAAS can be notable 
since GRA has straightforward solutions for determining weights. In 
contrast, finding the best weights for BMA and MAAS requires more 
complex and time-consuming methods, such as the Differential Evolu-
tion Adaptive Metropolis (DREAM) and adaptive Markov chain Monte 
Carlo (MCMC) algorithm.

Overall, the GRA and GRB methods were found to outperform others 
for ensemble yield and ETa simulations of maize models, respectively, in 
both data sets. This emphasizes the importance of selecting appropriate Ta
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averaging techniques. The success of these methods can be attributed to 
their ability to integrate multiple model outputs, leveraging the 
strengths and compensating for the weaknesses of individual models.

Moreover, ensemble group maize models improved the simulation 
accuracy of crop yield and ETa in a few cases compared to ensemble all 
maize models. However, the accuracy of the ensembled ETa and yield 
simulation of group maize models was similar to that of the ensembled 
ETa and yield simulation of all maize models. This finding suggests that 
the diversity of models in the ensemble plays a crucial role in enhancing 
prediction accuracy. Therefore, it is advisable to select ensemble mem-
bers from different crop family models to achieve the best results, 
although its also true that the quality of modelers regarding the as-
sumptions they make in parameterizing models is also of importance 
(Albanito et al., 2022).

4.3. Model averaging methods when “no observations data” is available

Most MAA, such as IR, BGA, GRA, GRB, and GRC, typically rely on 
ground measurement data to determine the weights for each model in 
the ensemble. This data is crucial for selecting the best models and 
assigning appropriate weights. However, in real-world scenarios, 
experimental data not be available, posing substantial challenges for 
model selection and weighting.

In such situations, SMA and the median method have shown prom-
ising results. SMA and the median method are straightforward ap-
proaches that average predictions from multiple models by assigning 
equal weights to each. This simplicity is particularly advantageous when 
there is no prior information about the performance of the individual 
models. By averaging the outputs, SMA reduces the impact of biases or 
errors from any single model, leading to more robust overall predictions. 
Both methods were effective in the current study, where they combined 
multiple crop model outputs to improve predictions of daily ETa and 
yield, even in the blind phase. This finding is consistent with previous 
crop modeling studies by Bassu et al. (2014), Martre et al. (2015), 
Kothari et al. (2022), Kimball et al. (2019, 2023), who reported that the 
mean and median of ETa and yield simulations from multiple crop 
models often outperform individual crop models.

However, the main drawback of SMA and the median method is that 
they do not fully leverage the strengths of the better-performing models. 
Because all models are weighted equally, these methods may 

underutilize the models that have superior predictive capabilities. 
Despite this limitation, SMA and the median method remain valuable 
tools in scenarios where observational data are lacking, providing a 
practical means of improving predictive accuracy by mitigating indi-
vidual model weaknesses.

5. Conclusions

Averaging the results from multiple agricultural systems models has 
shown high accuracy in predicting crop yield and ETa. However, among 
those available Model Averaging Approaches (MAA), it is not known 
which one performed the best. Therefore, this study aimed to evaluate 
the performance of seven MAA (SMA, Median, IR, BGA, GRA, GRB, and 
GRC) across eleven sites in North America to predict maize yield and 
daily ETa using two ensemble-size maize crop models (all maize models 
and group maize models) and two calibration approaches (Blind and 
Calibrated phases). The data come from two sources: simulations for 
Group A sites were done in this study, while simulations for Group B 
sites were carried out by the Maize AgMIP project team.

The following conclusions were drawn from the study: 

• Model Averaging Approaches: All MAA (Model Averaging Ap-
proaches) generally performed well, often surpassing individual crop 
models during both the blind and calibration phases. Among the 
MAA, the GRB method typically provided the closest match to 
measured daily ETa values, while the GRA method was most accu-
rate for maize yield across all sites and phases. The simple mean 
consistently outperformed the median at all sites. Therefore, GRA 
and GRB are recommended for averaging simulations of yield and 
ETa, respectively, when measured data is available. However, in the 
absence of observed ETa and yield data, the SMA method can be used 
to ensemble the yield and ETa simulations.

• Individual maize model performance: No single maize model 
consistently performed best at all sites for simulating yield and daily 
ETa. Results indicate that fully calibrating the crop model, slightly to 
significantly improved the daily ETa and yields simulations 
compared to the blind phase, depending on maize models and sites.

• Phase comparison for modeling averaging: The performance of 
all MAA improved slightly to moderately for daily ETa and yield from 
the blind phase to the calibrated phase across all sites.

Fig. 7. A comparison of measured daily ETa and an ensemble of daily ETa simulations of all maize models using SMA and GRB multi-model averaging approaches 
(MMA) at Group B sites under uncalibrated phase.
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• Ensemble member models: Using an ensemble of group maize 
models with different model structures slightly enhanced the accu-
racy of daily ETa and yield simulations at Group B in comparison to 
using an ensemble of all maize models.

These findings highlight the potential of MAA to improve the pre-
cision of maize yield and daily ETa estimates, emphasizing the impor-
tance of using diverse model ensembles to achieve accurate agricultural 
predictions. However, these findings may be limited to maize crop in 
North America. The applicability of these MAA methods to other crops 
(e.g., soybean, wheat, canola, potato, alfalfa) or regions still need to be 
examined, as their performance may differ.
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Table 5 
Average RRMSE between measured daily ETa and maize yield, and ensembled daily ETa and maize yield, respectively, for all maize models and group maize models 
using multi-model averaging approaches (MAA) at Group A sites for both the blind and calibration phases.

Daily ETa Seasonal Yield

Blind Calibrated Overall Blind Calibrated Overall

All models Group models All models Group models All models Group models All models Group models

SMA 39.5 37.6 33.0 33.5 35.9 17.3 18.3 8.8 9.2 13.4
Median 42.6 41.1 33.9 34.6 38.1 17.8 19.6 8.4 10.0 14.0
IR 37.0 37.2 32.8 33.5 35.1 13.1 14.1 6.9 8.5 10.7
BGA 36.6 36.8 32.4 33.3 34.8 12.3 12.6 6.7 8.0 9.9
GRA 34.5 34.7 32.7 33.6 33.9 3.4 4.9 3.2 4.0 3.9
GRB 35.4 36.6 31.9 33.1 34.2 10.8 12.0 5.5 7.8 9.0
GRC 33.3 33.9 33.3 33.5 33.5 4.0 5.6 4.6 5.5 4.9
Mean 37.0 36.9 32.9 33.6 35.1 11.2 12.5 6.3 7.6 9.4

Table 6 
Average RRMSE between measured daily ETa and yield, and ensembled daily ETa and yield, respectively, for all maize models and group maize models using multi- 
model averaging approaches (MAA) at Group B sites for both the blind and calibration phases.

Averaging approaches Daily ETa Yield

Blind Calibrated Overall Blind Calibrated Overall

All models Group models All models Group models All models Group models All models Group models

SMA 28.6 27.0 28.3 27.0 27.7 14.6 14.8 11.8 11.6 13.2
Median 30.0 27.9 29.0 27.5 28.6 15.4 16.1 11.6 10.2 13.3
IR 23.9 22.6 22.9 22.0 22.8 5.6 9.3 4.5 4.8 6.0
BGA 26.2 24.4 26.1 24.9 25.4 5.5 8.8 4.5 4.7 5.9
GRA 22.2 21.6 19.9 20.0 20.9 4.5 5.2 3.2 2.7 3.9
GRB 20.6 19.1 20.6 19.5 19.9 4.9 8.0 4.1 4.2 5.3
GRC 22.2 21.7 20.4 20.6 21.2 4.9 6.3 4.1 4.0 4.8
Mean 24.8 23.5 23.9 23.1 23.8 7.9 9.8 6.2 6.0 7.5
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