Journal of Hydrology 661 (2025) 133631

Contents lists available at ScienceDirect

Journal of Hydrology

ELSEVIER journal homepage: www.elsevier.com/locate/jhydrol

Evaluation of multimodel averaging approaches for ensembling
evapotranspiration and yield simulations from maize models

Viveka Nand °®, Zhiming Qi ©®, Liwang Ma ", Matthew J. Helmers©,

Chandra A. Madramootoo °, Ward N. Smith ¢, Tiequan Zhang “®, Tobias K.D. Weber '@,
Elizabeth Pattey ¢, Ziwei Li®, Jiaxin Wang®, Virginia L. Jin ¢, Qianjing Jiang ", Mario Tenuta ',
Thomas J. Trout’®, Haomiao Cheng K R. Daren Harmel ', Bruce A. Kimball " ®,

Kelly R. Thorp " ®, Kenneth J. Boote ", Claudio Stockle °, Andrew E. Suyker?”,

Steven R. Evett ‘@, David K. Brauer °, Gwen G. Coyle 9, Karen S. Copeland “, Gary W. Marek ‘@,
Paul D. Colaizzi 9, Marco Acutis’, Seyyed Majid Alimagham °, Sotirios Archontoulis ",

Faye Babacar ", Zoltan Barcza """, Bruno Basso *,

Patrick Bertuzzi”, Julie Constantin “, Massimiliano De Antoni Migliorati **,

Benjamin Dumont °", Jean-Louis Durand °°, Nandor Fodor *“
Pasquale Garofalo®, Sebastian Gayler “*®, Luisa Giglio *

Gerrit Hoogenboom "®, Soo-Hyung Kim ¥/, Isaya Kisekka *“®, Jon Lizaso ', Sara Masia ",
Huimin Meng *", Valentina Mereu “°, Ahmed Mukhtar “*I, Alessia Perego’, Bin Peng*,
Eckart Priesack **, Vakhtang Shelia " @, Richard Snyder **@®, Afshin Soltani ®, Donatella Spano **,
Amit Srivastava “°®, Aimee Thomson *", Dennis Timlin *", Antonio Trabucco *°®,

Heidi Webber **, Magali Willaume“, Karina Williams *"'®, Michael van der Laan ",

Domenico Ventrella‘, Michelle Viswanathan *, Xu Xu*"®, Wang Zhou ™

, Thomas Gaiser ““®,
, Robert Grant*", Kaiyu Guan *,
ak

@ Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada

b USDA-ARS Rangeland Resources and Systems Research Unit, Fort Collins, CO 80526, USA

¢ Department of Agricultural & Biosystems Engineering, Iowa State University, Ames, IA 50011-1098, USA

4 Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada

€ Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON NOR 1G0, Canada

f Faculty of Organic Agricultural Sciences, University of Kassel, Germany

8 USDA-ARS Agroecosystem Management Research Unit, Lincoln, NE 68583-0937, USA

" Department of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
* Corresponding author.

E-mail addresses: viveka.nand@mail.mcgill.ca (V. Nand), zhiming.qi@mecgill.ca (Z. Qi), liwang.ma@usda.gov (L. Ma), mhelmers@iastate.edu (M.J. Helmers),
chandra.madramootoo@mcgill.ca (C.A. Madramootoo), ward.smith@agr.gc.ca (W.N. Smith), Tiequan.Zhang@agr.gc.ca (T. Zhang), tobias.weber@uni-kassel.de
(T.K.D. Weber), elizabeth.pattey@agr.gc.ca (E. Pattey), leo.li@mail.mcgill.ca (Z. Li), jiaxin.wang3@mail.mcgill.ca (J. Wang), virginia.jin@usda.gov (V.L. Jin),
jqi713@zju.edu.cn (Q. Jiang), mario.tenuta@umanitoba.ca (M. Tenuta), thomas.trout@ars.usda.gov (T.J. Trout), yzchhm@yzu.edu.cn (H. Cheng), daren.
harmel@usda.gov (R.D. Harmel), bruce.kimball@usda.gov (B.A. Kimball), kelly.thorp@usda.gov (K.R. Thorp), kjboote@ufl.edu (K.J. Boote), stockle@wsu.edu
(C. Stockle), asuykerl@unl.edu (A.E. Suyker), Steve.Evett@usda.gov (S.R. Evett), david.brauer@usda.gov (D.K. Brauer), gwen.coyle@usda.gov (G.G. Coyle),
karen.copeland@usda.gov (K.S. Copeland), gary.marek@usda.gov (G.W. Marek), paul.colaizzi@usda.gov (P.D. Colaizzi), marco.acutis@unimi.it (M. Acutis), m.
alimagham@gmail.com (S.M. Alimagham), sarchont@iastate.edu (S. Archontoulis), babacar.faye@ird.fr (F. Babacar), zoltan.barcza@ttk.elte.hu (Z. Barcza),
basso@msu.edu (B. Basso), patrick.bertuzzi@inra.fr (P. Bertuzzi), julie.constantin@toulouse.inra.fr (J. Constantin), Max.DeAntoni@des.qld.gov.au (M. De Antoni
Migliorati), Benjamin.Dumont@uliege.be (B. Dumont), jean-louis.durand@inra.fr (J.-L. Durand), fodor.nandor@atk.hu (N. Fodor), tgaiser@uni-bonn.de
(T. Gaiser), pasquale.garofalo@crea.gov.it (P. Garofalo), sebastian.gayler@uni-hohenheim.de (S. Gayler), luisa.giglio@crea.gov.it (L. Giglio), rgrant@ualberta.ca
(R. Grant), kaiyug@illinois.edu (K. Guan), gerrit@ufl.edu (G. Hoogenboom), soohkim@uw.edu (S.-H. Kim), ikisekka@ucdavis.edu (I. Kisekka), jon.lizaso@upm.
es (J. Lizaso), sara.masia@cmecc.it (S. Masia), $20193091624@cau.edu.cn (H. Meng), valentina.mereu@cmecc.it (V. Mereu), mukhtar.ahmed@slu.se (A. Mukhtar),
alessia.perego@unimi.it (A. Perego), binpeng@illinois.edu (B. Peng), priesack@helmholtz-muenchen.de (E. Priesack), vakhtang.shelia@ufl.edu (V. Shelia),
rlsnyder@ucdavis.edu (R. Snyder), spano@uniss.it (D. Spano), amit.srivastava@uni-bonn.de (A. Srivastava), rgrant@ualberta.ca (A. Thomson), Dennis.Timlin@
ars.usda.gov (D. Timlin), antonio.trabucco@cmcc.it (A. Trabucco), webber@zalf.de (H. Webber), magali.willaume@ensat.fr (M. Willaume), karina.williams@
metoffice.gov.uk (K. Williams), ah.michael.vanderlaan@up.ac.za (M. van der Laan), domenico.ventrella@crea.gov.it (D. Ventrella), ul16015925@tuks.co.za
(M. Viswanathan), xushengwu@cau.edu.cn (X. Xu), wangzhou@illinois.edu (W. Zhou).

https://doi.org/10.1016/j.jhydrol.2025.133631
Received 5 September 2024; Received in revised form 8 April 2025; Accepted 30 May 2025

Available online 3 June 2025
0022-1694/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0009-0006-6374-9520
https://orcid.org/0009-0006-6374-9520
https://orcid.org/0000-0002-8233-165X
https://orcid.org/0000-0002-8233-165X
https://orcid.org/0000-0002-4778-9163
https://orcid.org/0000-0002-4778-9163
https://orcid.org/0000-0002-3448-5208
https://orcid.org/0000-0002-3448-5208
https://orcid.org/0000-0003-1896-9170
https://orcid.org/0000-0003-1896-9170
https://orcid.org/0000-0003-3009-061X
https://orcid.org/0000-0003-3009-061X
https://orcid.org/0000-0001-9168-875X
https://orcid.org/0000-0001-9168-875X
https://orcid.org/0000-0003-3418-5771
https://orcid.org/0000-0003-3418-5771
https://orcid.org/0000-0001-8682-2539
https://orcid.org/0000-0001-8682-2539
https://orcid.org/0000-0002-6460-1767
https://orcid.org/0000-0002-6460-1767
https://orcid.org/0000-0002-5820-2364
https://orcid.org/0000-0002-5820-2364
https://orcid.org/0000-0002-8577-6486
https://orcid.org/0000-0002-8577-6486
https://orcid.org/0000-0002-6830-3740
https://orcid.org/0000-0002-6830-3740
https://orcid.org/0000-0002-1555-0537
https://orcid.org/0000-0002-1555-0537
https://orcid.org/0000-0002-2460-7777
https://orcid.org/0000-0002-2460-7777
https://orcid.org/0000-0002-9768-7958
https://orcid.org/0000-0002-9768-7958
https://orcid.org/0000-0001-9050-746X
https://orcid.org/0000-0001-9050-746X
https://orcid.org/0000-0001-8219-4854
https://orcid.org/0000-0001-8219-4854
https://orcid.org/0000-0002-0743-3680
https://orcid.org/0000-0002-0743-3680
https://orcid.org/0000-0002-1185-535X
https://orcid.org/0000-0002-1185-535X
https://orcid.org/0000-0002-5450-1287
https://orcid.org/0000-0002-5450-1287
mailto:viveka.nand@mail.mcgill.ca
mailto:zhiming.qi@mcgill.ca
mailto:liwang.ma@usda.gov
mailto:mhelmers@iastate.edu
mailto:chandra.madramootoo@mcgill.ca
mailto:ward.smith@agr.gc.ca
mailto:Tiequan.Zhang@agr.gc.ca
mailto:tobias.weber@uni-kassel.de
mailto:elizabeth.pattey@agr.gc.ca
mailto:leo.li@mail.mcgill.ca
mailto:jiaxin.wang3@mail.mcgill.ca
mailto:virginia.jin@usda.gov
mailto:jqj713@zju.edu.cn
mailto:mario.tenuta@umanitoba.ca
mailto:thomas.trout@ars.usda.gov
mailto:yzchhm@yzu.edu.cn
mailto:daren.harmel@usda.gov
mailto:daren.harmel@usda.gov
mailto:bruce.kimball@usda.gov
mailto:kelly.thorp@usda.gov
mailto:kjboote@ufl.edu
mailto:stockle@wsu.edu
mailto:asuyker1@unl.edu
mailto:Steve.Evett@usda.gov
mailto:david.brauer@usda.gov
mailto:gwen.coyle@usda.gov
mailto:karen.copeland@usda.gov
mailto:gary.marek@usda.gov
mailto:paul.colaizzi@usda.gov
mailto:marco.acutis@unimi.it
mailto:m.alimagham@gmail.com
mailto:m.alimagham@gmail.com
mailto:sarchont@iastate.edu
mailto:babacar.faye@ird.fr
mailto:zoltan.barcza@ttk.elte.hu
mailto:basso@msu.edu
mailto:patrick.bertuzzi@inra.fr
mailto:julie.constantin@toulouse.inra.fr
mailto:Max.DeAntoni@des.qld.gov.au
mailto:Benjamin.Dumont@uliege.be
mailto:jean-louis.durand@inra.fr
mailto:fodor.nandor@atk.hu
mailto:tgaiser@uni-bonn.de
mailto:pasquale.garofalo@crea.gov.it
mailto:sebastian.gayler@uni-hohenheim.de
mailto:luisa.giglio@crea.gov.it
mailto:rgrant@ualberta.ca
mailto:kaiyug@illinois.edu
mailto:gerrit@ufl.edu
mailto:soohkim@uw.edu
mailto:ikisekka@ucdavis.edu
mailto:jon.lizaso@upm.es
mailto:jon.lizaso@upm.es
mailto:sara.masia@cmcc.it
mailto:S20193091624@cau.edu.cn
mailto:valentina.mereu@cmcc.it
mailto:mukhtar.ahmed@slu.se
mailto:alessia.perego@unimi.it
mailto:binpeng@illinois.edu
mailto:priesack@helmholtz-muenchen.de
mailto:vakhtang.shelia@ufl.edu
mailto:rlsnyder@ucdavis.edu
mailto:spano@uniss.it
mailto:amit.srivastava@uni-bonn.de
mailto:rgrant@ualberta.ca
mailto:Dennis.Timlin@ars.usda.gov
mailto:Dennis.Timlin@ars.usda.gov
mailto:antonio.trabucco@cmcc.it
mailto:webber@zalf.de
mailto:magali.willaume@ensat.fr
mailto:karina.williams@metoffice.gov.uk
mailto:karina.williams@metoffice.gov.uk
mailto:ah.michael.vanderlaan@up.ac.za
mailto:domenico.ventrella@crea.gov.it
mailto:u16015925@tuks.co.za
mailto:xushengwu@cau.edu.cn
mailto:wangzhou@illinois.edu
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2025.133631
https://doi.org/10.1016/j.jhydrol.2025.133631
http://creativecommons.org/licenses/by/4.0/

V. Nand et al. Journal of Hydrology 661 (2025) 133631

! Faculty of Agricultural and Food Sciences, University of Manitoba, Canada

J USDA-ARS, Water Management Unit, Fort Collins, CO 80526, USA

X School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China

! USDA-ARS, Center for Agricultural Resources Research, Fort Collins, CO 80526, USA

™ U.S. Arid-Land Agricultural Research Center, USDA-ARS, Maricopa, AZ 85138, USA

™ University of Florida, Agricultural and Biological Engineering, Frazier Rogers Hall, Gainesville, FL. 32611-0570, USA

© Biological Systems Engineering, Washington State University, 1935 E. Grimes Way, PO Box 646120, Pullman, WA 99164-6120, USA

P School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA

9 Conservation and Production Research Laboratory, USDA-ARS, Bushland, TX, USA

" Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy

* Agronomy Group, Gorgan University of Agricultural Science and Natural Resources, Gorgan 49138-15739, Iran

® Jowa State University, Department of Agronomy, Ames, IA 50010, USA

" Institut de recherche pour le développement (IRD) ESPACE-DEV, F-34093 Montpellier Cedex, France

VY ELTE Eotvos Lorand University, Department of Meteorology, H-1192 Budapest, Hungary

" Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, 165 21 Prague, Czech Republic

* Michigan State University, Department of Geological Sciences, W.K. Kellogg Biological Station, 288 Farm Ln, 307 Natural Science Bldg., East Lansing, MI 48824, USA
Y US1116 AgroClim, INRAE centre de recherche Provence-Alpes-Cote d’Azur, 228, route de I’Aérodrome, CS 40 509, Domaine Saint Paul, Site Agroparc, 84914 Avignon
Cedex 9, France

* AGIR, Université de Toulouse, INRAE, INPT, INP-EI PURPAN, 24 Chemin de Borde Rouge — Auzeville CS, 52627 CastanetTolosan, France

4 Queensland Department of Environment and Science, Queensland, Australia

> ULiege-GxABT, University of Liege — Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Plant Science Axis/Crop Science Lab, B-5030 Gembloux,
Belgium

4 Unité de Recherches Pluridisciplinaire Prairies et Plantes Fourrageres, INRAE, 86 600 Lusignan, France

ad Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvasar, Brunszvik u. 2., Hungary

€ Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg, 5D-53115 Bonn, Germany

af Council for Agricultural Research and Economics, Agriculture and Environment Research Center, CREA-AA, Via Celso Ulpiani 5, 70125 Bari, BA, Italy

& Universitat Hohenheim, Institute of Soil Science and Land Evaluation, Biogeophysics, Emil-Wolff-Str. 27, D-70593 Stuttgart, Germany

ah Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada

al College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

4 School of Environmental and Forest Sciences, University of Washington, Center for Urban Horticulture, Seattle, WA 98195, USA

& Agricultural Water Management and Irrigation Engineering, University of California Davis; Agricultural Water Management and Irrigation Engineering, University of
California Davis; Departments of Land, Air, and Water Resources and of Biological and Agricultural Engineering, One Shields Avenue, PES 1110, Davis, CA 95616-5270,
USA

al Technical University of Madrid (UPM), Dept. Produccion Agraria-CEIGRAM, Ciudad Universitaria, 28040 Madrid, Spain

M Land and Water Management Department, IHE Delft Institute for Water Education, Delft, the Netherlands

A China Agricultural University, Beijing, China

3 CMCC Foundation-Euro-Mediterranean Centre on Climate Change, Lecce, Italy

P Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Pakistan

24 Swedish University of Agricultural Sciences, Umea, Sweden

" Helmholtz Center Munich, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr, 185764 Neuherberg, Germany

3 University of California Davis, USA

a University of Pretoria, Pretoria, South Africa

a4 Crop Systems and Global Change Research Unit, USDA-ARS, Beltsville, MD, USA

&V Leibniz Centre for Agricultural Landscape Research (ZALF), Mucheberg 15374, Germany

W Met Office Hadley Centre, FitzRoy, Road, Exeter, Devon EX1 3PB, United Kingdom

ARTICLE INFO ABSTRACT
This manuscript was handled by Yuefei Huang, Combining multi-model simulations can reduce the uncertainty in model structure and increase the accuracy of
Editor-in-Chief, with the assistance of Zailin agricultural systems modeling results. This improvement is essential for supporting better decision making in

Huo, Associate Editor irrigation planning and climate change adaptation strategies. Besides the commonly used arithmetic mean and

median, many multi-model averaging approaches (MAA), widely examined in groundwater and hydrological

Key_w ords: modeling, but these additional MAA have not been examined in agricultural system modeling to improve the
Maize . . - . .

Multiple crop models simulation accuracy. Therefore, the objective of this study is to evaluate the performance of seven MAA: two
Evapotranspiration equal weighted approaches (Simple Model Averaging (SMA) and Median) and five weighted approaches (Inverse
Yield Ranking (IR), Bates and Granger Averaging (BGA), and Granger Ramanathan A, B, and C (GRA, GRB, and GRC))
Multi-model averaging approaches in combining results of multiple agricultural system models. The Granger Ramanathan methods differ in their

constraints: GRA employs conventional least squares, GRB requires non-negative weights that total to one, and
GRC reduces absolute errors for robustness against outliers. The evaluation was conducted using maize yield and
daily ETa simulations for both blind (uncalibrated) and calibrated phases of data from two groups of maize sites
(Group A and Group B) across North America. The modeling results from the blind and calibrated phases were
combined for all maize models and group maize models. Overall, all MAA performed better than individual crop
models for blind and calibration phases. Specifically, the GRB model averaging method provided the closest
match to measured values for daily ETa, while GRA was the most accurate for maize yield in most cases across all
sites and phases. GRB improved daily ETa estimation over the median by an average of 4 % and 8.5 % in terms of
RRMSE, while GRA enhanced maize yield estimation over the median by 7.5 % and 10.9 % for Group A and
Group B sites, respectively. Notably, the improvement was greater in the blind phase for both groups of maize
sites. An ensemble of group maize models with varied structures performed nearly as well as an ensemble of all
maize models in simulating daily ETa and yield for Group A and Group B sites. Based on the results, we
recommend GRA for crop yield and GRB for ETa simulations for maize, but both methods require observed yield
and ETa data for their application; however, in the absence of observed data, we recommend the SMA method as
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it performs better than the median. However, the performance of these MAA methods may differ for other crops
(e.g., soybean, wheat, canola, potato, alfalfa) or regions, and it should be evaluated in future studies.

1. Introduction

Accurate prediction of crop yield and actual crop evapotranspiration
(ETa) is essential for managing water resources and optimizing crop
production in agriculturally dominated regions. These predictions are
crucial for farmers, policymakers, and researchers to develop sustain-
able crop management strategies to mitigate the impacts of natural di-
sasters and climate change. Agricultural system models are used to
simulate the crop yield and ETa under different climate conditions, soil
type, and management practices (Motha, 2011; Deb et al., 2022). These
models play a pivotal role in understanding how crops respond to
different climatic conditions and crop management practices. Over the
years, numerous crop models, ranging from simple to complex, have
been developed to simulate crop yield and ETa for different crops
(Kimball et al., 2023). However, multi-crop models inter comparison
studies show that no single crop model consistently outperforms others
across different climate conditions due to potential issues with model
structure, parameters, input data, and calibration data (Bassu et al.,
2014; Fang et al., 2019). For example, the study by Bassu et al. (2014)
revealed that simulated maize yields ranged from 10 to 12.5 Mg/ha in
Lusignan (France), 8.5 to 12 Mg/ha in Ames (USA), 6 to 8 Mg/ha in Rio
Verde (Brazil), and 4.5 to 6 Mg/ha in Morogoro (Tanzania) across 17
calibrated maize models. In another study, Kothari et al. (2022) used ten
soybean models to simulate soybean yield at Azul, Argentina (ARGN);
Brasilia, Brazil (BRZL); Auzeville, France (FRNC); and Ames, IA (IOWA)
and Fayetteville, Arkansas (AKNS), USA, and found that the perfor-
mance of DSSAT was superior at Fayetteville, DNDC at Azul and Brasilia,
MONICA at Auzeville, SSM at Ames. Similar variability in simulated
maize yield and daily and seasonal ETa simulations were noted by
Kimball et al. (2019), indicating the challenges of precisely simulating
the yield and ETa. These variations in ETa and yield predictions can raise
the question which model should be used for precisely simulating crop
yield and ETa across diverse climatic conditions (Martre et al., 2015;
Kothari et al., 2022; Kimball et al., 2023).

These challenges are notably crucial in regions where precise pre-
dictions of ETa are critical for irrigation scheduling and water resource
management. Therefore, there is a need for reliable methods that can
improve the simulation precision of crop model predictions across
various climatic regions. Studies on crop modeling have shown that an
ensemble of output of multiple crop models is more reliable and efficient
than individual models (Bassu et al., 2014; Kothari et al., 2022; Kimball
et al., 2023). Multiple crop model ensembles reduce errors by achieving
an optimal balance between bias and variance. In Agricultural Model
Intercomparison and Improvement Project (AgMIP), studies, the esti-
mated mean and median of multiple crop models outputs (yield and
ETa), demonstrated better simulation accuracy than single crop models.
Both approaches give equal weightage to all models without considering
the performance of the models. Weighted MAA is an alternative
approach which combine outputs from multiple models, by assigning
weights based on each model’s performance, increasing the accuracy of
ensemble predictions than mean and median. While weighted ensemble
predictors have been widely used in hydrological, groundwater and
weather forecasting modeling, and found better results than simple
mean and median methods (Ajami et al., 2006; Arsenault et al., 2015;
Kumar et al., 2015; Jafarzadeh et al., 2022; Wan et al., 2021; Wallach
et al.,, 2016). Arsenault et al. (2015) compared nine MAA across 429
catchments and found that the Granger Ramanathan C (GRC) method
was best to combine the stream flow than others. Similarly, Kumar et al.
(2015) evaluated ten different MAA methods and concluded that
Granger Ramanathan B (GRB) was the most suitable MAA method to
ensemble the river discharge.

The application of weighted MAA in crop modeling has not received
much attention. A few studies demonstrated better results than the mean
and median when they ensemble simulations using Bayesian model
averaging (BMA) (Neuman, 2003; Huang et al., 2017; Gao et al., 2021).
Numerous other weighted MAA, such as inverse rank, multiple linear
regression (Kumar et al, 2015), machine learning algorithms
(Zaherpour et al., 2019), and Information Criterion Averaging (Akaike,
1974; Schwarz, 1978), are also discussed in the literature and widely
used in hydrological and groundwater modeling studies. But they are
rarely applied in crop modeling. Therefore, there is an opportunity to
explore other weighted MAA methods for increasing the simulation
accuracy of crop yield and ETa across diverse climate, soil and man-
agement conditions.

Crop yield and ETa simulation accuracy can be increased by cali-
brating crop model parameters using various observed data sources.
These include field experimental data, such as initial water content,
phenological events, soil water content, leaf area index (LAI), daily ET,,
biomass, and yield. However, these measured data sets are often not
available at many sites, and the limited availability of measured data can
remarkably impact the predictive capabilities of individual crop models
in predicting crop yields and ET,. In past AgMIP maize modeling studies,
the mean or median of yield and daily ETa simulations were satisfactory
under blind phase (uncalibrated) and calibrated phase. However, there
is a need to examine whether weighted MAA can further improve the
simulation accuracy for different climatic conditions.

The purpose of this study is to address the aforementioned research
gaps. The effectiveness of seven MAA techniques to ensemble daily ETa
and maize yield simulations during both blind and calibrated phases was
assessed. The study also determined the best MAA technique for varied
soil, climate and management conditions in the United States and
Canada. There were elven maize field experiments sites selected across
the USA and Canada. We divided all sites into Group A and Group B. Five
models were used to simulate maize yield and ETa at Group A sites (nine
sites) which falls in USA and Canada. For Group B sites (Mead, N and
Bushland, Tx), ETa and yield simulations of 41 maize models were used
from a previous AgMIP study (Kimball et al., 2023).

2. Materials and methods
2.1. Description of field experiment sites and experiment data

Nine maize (Zea mays L.) field experiment sites (Group A) were
selected for analysis: Ames (Iowa, USA), Gilmore (Iowa, USA), Greeley
(Colorado, USA), Ithaca (Nebraska, USA), Glenlea (Manitoba, Canada),
Harrow (Ontario, Canada), Ottawa (Ontario, Canada), Sainte-Anne-de-
Bellevue (Quebec, Canada), and Saint Emmanuel (Quebec, Canada)
(Table 1 and Fig. 1). In addition, two maize field sites (Group B) pre-
viously used for AgMIP maize project ETa and yield simulations studies
(Mead and Bushland) were selected, focusing on four treatments (i.e.,
Mead rainfed, Mead irrigated, Bushland 75 % Mid Elevation Sprinkler
Application (MESA) irrigation, Bushland 100 % MESA irrigation). The
Bushland, Mead, Ithaca, and Greeley sites were irrigated while the
remaining sites were rainfed. The average growing season air temper-
ature, rainfall, and soil types of each site are given in Table 1. The
average growing season temperature varied between 10.40 °C in Ithaca,
USA, and 22.80 °C in Bushland, USA, while seasonal precipitation
ranged from 191 mm in Greeley, USA, to 592.36 mm in Ithaca, USA
across the maize experiment sites. Data availability period of each site is
given in Table 1. A detailed description of available measurements of
each site is given in Supplementary information Table S1. In-situ
measured daily weather data, including maximum and minimum air
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temperature, rainfall, wind speed, relative humidity, and solar radia-
tion, were utilized for all sites except Sainte-Anne-de-Bellevue, where
specific site weather data were not measured. Weather data for Sainte-
Anne-de-Bellevue was obtained from the nearest weather station of
Environment Canada. For soil-related information, measured soil profile
data were used across all sites. Comprehensive crop management de-
tails, including tillage practices, cultivar details, seeding rate, seeding
date, plant density, fertilizer application rate, harvesting date, biomass,
and grain yield were obtained for all sites. The quantity and timing of
irrigation was obtained for the irrigated sites. Phenological dates, de-
tailing the various stages of plant development, were meticulously
recorded for Ames, Bushland, Greeley, Mead, Ottawa, and Saint Ema-
nuel. Additionally, time-series measurements of Leaf Area Index (LAI)
and actual crop evapotranspiration (ETa) were obtained for Ames,
Bushland, Greeley, Mead, and Ottawa. Measured layer-wise soil water
content data were available for all sites except Harrow and Sainte-Anne-
De-Bellevue.

2.2. Crop model setup and calibration

As mentioned in Section 2.1, we used crop yield and ETa simulations
from several field experiment sites. These field experiment sites were
divided into two groups i.e. Group A and Group B. Group A sites was
comprised of simulated crop yield and ETa data from the uncalibrated
(Blind Phase) and fully calibrated phases of the five maize models in this
study (Table 1 and Table S2). Group B sites included simulated daily ETa
and yield data from uncalibrated and fully calibrated phases of 41 maize
models for the Bushland and Mead sites. This data was sourced from
AgMIP maize study (Kimball et al., 2023). The description of 41 Maize
Models is given in Supplementary information Table S3. A detailed
explanation of the model set-up and calibration process is presented in
Kimball et al. (2023).

In the present study, for Group A sites, five Maize models were
selected from the top seven fully calibrated maize models identified in
the AgMIP Maize study (Kimball et al., 2019). These maize models
include DSSAT-CERES maize with Priestly-Taylor Ritchie ET equation
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(DCPR), DSSAT-CERES maize with FAO56 Ritchie ET equation (DCFR),
APSIM-maize with SOILWAT Archontoulis subroutine (AMW), APSIM-
maize with SWIM Archontoulis subroutine (AMSA), and RZWQM2
(Table S2).The selection of five maize models was based on their per-
formance to simulate growing season daily ETa, maximum LAI, biomass
and grain yield over the eight years growing season. All these maize
models were ranked among the top seven maize models to simulate the
same over the study period. The RZWQM2 model which uses the
Shuttleworth-Wallace approach to estimate potential transpiration (PT)
and potential evaporation (PE) (Shuttleworth and Wallace, 1985) did
not perform well in simulating ETa among the top seven maize models,
however, it was in the top seven maize models’ performer in simulating
maximum LAI, biomass and crop yield and therefore it was included in
this study.

All these five maize models were used to simulate crop yield and ETa
for Group A’s sites (Table S2). Maize models were calibrated and vali-
dated using measured field data (Kimball et al., 2019). Models were set
up utilizing site-specific measured data, encompassing layered soil
texture along with corresponding physical and hydraulic properties,
tillage dates, cultivar details, seeding dates, plant density, irrigation
amounts, and fertilizer rates.

In the blind phase (uncalibrated phase), for Group A sites, all five
maize models were set up using site-specific measured input data,
including soil, weather, and crop management details (such as seeding
date, plant density, and fertilizer rate). The models’ phenology param-
eters were then adjusted to align with the crop maturity dates across all
sites. Subsequently, the models were run to simulate ETa and yield.
During this phase, models were not calibrated with available LAI, soil
moisture, ETa, and yield data.

In the calibrated phase, all maize models were fine-tuned against the
measured data to improve their ETa and crop yield simulation accuracy.
We followed the step-by-step calibration procedure given in AgMIP
maize study (Kimball et al., 2019). Cultivar parameters in each model
were initially adjusted to align anthesis, silking, and maturity dates with
observed ones depending on sites and available phenological measure-
ment dates. Then, maize models were calibrated for LAI. Subsequently,

Table 1
Details of selected crop field sites and corresponding soil type, average rainfall, and average temperature during the growing season (April-October).
Name Country  Province Lat Long Soil type Growing season Modeled Data availability Sources
State climatic parameters component period
Rainfa Mean
1 temp
(mm) [§9)
Group A sites
Ames USA Iowa 42.02 —-93.75 Loam 536.37 18.62 Yield and ETa 2006-2013 Kimbal et al.,
2019
Gilmore USA Iowa 42.73 —94.45 Clay Loam 559.35 17.47 Yield 2005-2009 Qi et al.,2011
Glenlea Canada Manitoba 49.64 —-97.16 Clay 399.00 14.10 Yield 2006-2012 Uzoma et. al.,
2015
Greeley USA Colorado 40.44  —-104.00 Loamy 191.00 16.50 Yield and ETa 2008-2013 Qi et al.,2016
Sand
Harrow Canada Ontario 4222  —82.73 Clay Loam 505.93 18.21 Yield 2008-2011 Jiang et al.,2020
Ithaca USA Nebraska 41.16 —96.41 Silty 592.36 10.40 Yield 2001-2015 Cheng et al.,
Loam 2021
Ottawa Canada Ontario 45.38 —75.72 Loam 530.80 16.19 Yield and ETa 2002-2018 Crépeau
et al.,2021
St. Emmanuel Canada Québec 45.32 —-74.17 Clay Loam 578.87 16.35 Yield 2005-2013 Singh, 2013
Ste.-Anne-de- Canada Québec 4543  -73.93 Loamy 580.52 16.27 Yield 2008-2009 Jiang et al., 2022
Bellevue Sand
Group B Sites
Bushland USA Texas 35.18 -102.09 Silty Clay 350 22.80 Yield and ETa 2013,2016 Kimbal et al.,
2023
Mead Rainfed USA Nebraska 4117  —96.43 Silty 592 19.90 Yield and ETa 2003-2013 Kimbal et al.,
Loam 2023
Mead Irrigated USA Nebraska 41.16  —96.47 Silty 592 19.90 Yield and ETa 2003-2013 Kimbal et al.,
Loam 2023
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the models calibrated against soil water content data by adjusting
saturated and lateral hydraulic conductivity depending on maize models
for all sites except Harrow and Sainte-Anne-de-Bellevue. Following this,
the models were fine-tuned for ETa by adjusting parameters related to
albedo, soil resistance, and leaf stomatal resistance depending on spe-
cific maize model at sites (Ames, Ottawa and Greeley) those had ETa
measurements. Lastly, the models were calibrated for crop yield by
adjusting cultivar parameters influential on crop yield. Among the field
experiment sites, maize models were comprehensively calibrated for
growth stage dates, LAI, soil water content, ETa and yield for Greeley,
Ames, and Ottawa sites. For the remaining sites, calibration was limited
to growth stage dates, LAI, soil water content, and yield. We did not
calibrate the maize models for daily ETa for remaining sites as daily ETa
measurements were not available.

The calibration procedure for Group B sites is described in Kimball
et al. (2023). In the present study, ETa and yield simulations from blind
phase and full calibrated phase of 41 maize models were used. In the
blind phase, cultivar parameters were fine tuned to match with
measured anthesis, silking and maturity dates at all sites. Next, models
were calibrated for LAI and biomass data using measured LAI and
biomass data. Then, soil water content and ETa were calibrated by
adjusting albedo, soil resistance, and stomatal resistance depending on
the specific maize model. At the end, maize models were tuned to match
the observed yield.

2.3. Model averaging approaches (MAA)

The simulated yield and daily ETa from all sites were ensembled
using seven MAA: Simple Model Averaging (SMA), Median, Inverse
Rank (IR), Bates and Granger Averaging (BGA), and three variants of
Granger Ramanathan (GRA, GRB, and GRC) (Supplementary informa-
tion Table S4). We selected simple mean and median MMA because they
are widely used in agricultural system modeling and do not require
measured data to estimate the weight of each model. Both methods can
be applied in data-scarce regions. Weighted-based MMA, such as Bates
and Granger Averaging (BGA) and Inverse Rank (IR), were selected
because their ensemble performed better than calibrated models in
previous studies (Aiolfi and Timmermann, 2006; Arsenault et al., 2015;

Journal of Hydrology 661 (2025) 133631

Wan et al., 2021). Granger Ramanathan A, B, and C (GRA, GRB, and
GRC) selected based on previous studies as their performance was
similar or better than advanced MAA such as Bayesian Model Averaging
(BMA) and Mallows Model Averaging (MAAS) (Diks and Vrugt, 2010;
Arsenault et al., 2015; Wan et al., 2021). GRA, GRB, and GRC are less
computationally expensive than BMA and MAAS.

The weight of each crop model for yield and ETa was estimated using
seven MAA, which are built into the Geometric Forecast Combination
(GeomComb) R package (https://github.com/cran/GeomComb). GRA,
GRB and GRC MAA are represented as Ordinary Least Squares Forecast
Combination (comb_OLS), Constrained Least Squares Forecast Combi-
nation (comb_CLS) and Least Absolute Deviation Forecast Combination
(comb_LAD), respectively, in the GeomComb R package.

The ensemble yield and daily ETa were determined by multiplying
the weight of each maize model by its corresponding simulated yield and
daily ETa for each site. First, the simulated yield and daily ETa from all
selected maize models were combined. Those were five for Group A
sites, and 41 for Group B sites. We referred to as “all maize models.”
Next, the simulated yield and daily ETa of one representative model
from each model family were selected and ensembled. It was referred to
as “group maize models”. The selection was based on the over all per-
formance of models to simulate yield and daily ETa within each family
for calibrated and un-calibrated phase. If a model family had no vari-
ants, it was selected by default.

For Group A sites, three group maize models were selected, while for
Group B sites, twenty-two group maize models were chosen. Selected
Group maize models are given in the Supplementary Tables S2 and S3.

The simulated yield was ensemble across all sites, while the simu-
lated daily ETa was ensemble for three sites in Group A (Ames, Greeley,
and Ottawa) and all sites in Group B. The resulting yields and daily ETa
obtained through the MAA methods were subsequently compared with
the observed yield and daily ETa datasets. Details of the multiple MAA
are given below:

a. Simple Model Averaging (SMA): In this approach, the weight of
each model is assigned equally. Mathematically, it can be estimated
as:
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Fig. 1. Locations of crop field sites in the USA and Canada (Group A sites, and Group B sites).

Source: http://drought.memphis.edu/naspa/CompReconRange.aspx
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wol )
n

where n is the number of ensemble models, and W is the estimated

weight of each ensemble model.

b. Median: The median of simulated values of all ensemble models is
taken to combine the forecast.

c. Inverse rank: The inverse rank approach, rank each ensemble model
based on their simulation performance. The first rank is assigned to
model with lowest root mean squared error, the model with the
second lowest mean squared error is assigned the rank 2. Then
weightage of each model is calculated as follows:

Rank; !
TN poog -1 @
Zileanki
where W is the estimated weight of each ensemble model. Rank; is the
rank of the iy, ensemble model.

d. Bates and Granger Averaging (BGA): The BGA method combined
the forecast of ensemble models by minimizing the root mean
squared error between simulated and observed values. It can be
estimated as:

1
RMSE; 3

w=_"Wh
N 1

i RMSEZ

where W is the estimated weight of each ensemble model. RMSE; is the

root mean square error of the i ensemble model.

e. Granger Ramanathan A (GRA): The GRA approach, developed by
Granger and Ramanathan in 1984, employs the ordinary least
squares (OLS) method to estimate weight of each model, effectively
lowering the sum of squared error (SSE) but lacking bias correction.
Weight of each ensemble model are estimated by following equation:

W = (ETsim"ETsim) ' ET" gnETmeas @

where ETg;, is the matrix of the maize models’ simulations, ETpeqs is the
matrix of measured values, and ETsim” is the transpose matrix of the
maize models’ simulations.

f. Granger Ramanathan B (GRB): GRB uses constrained least squares
(CLS) method, ensuring that the weights of all models sum to one. In
GRB, weights are estimated by:

W = (ETsim"ETsim) ' ET" guETymeqs — 45 (ETsim"ETsim) "'1 )

(I (ETsim"ETsim) ' ET" gnET neqs—1)

AB = . " 1
(I"(ETsimTETsim) 'I)

(6)

where Ap is a Lagrangian multiplier, 1 is the unit vector of same
dimension as that vector of W.

g. Granger Ramanathan C (GRC): The GRC approach is similar to
GRA but includes a bias correction term. In GRC, weights are esti-
mated by:

W = (ETsim"ETsim) "' ET" 4nETpeas — S(ETsim"ETsim) ' ET" gl %)

§ is a bias correction term which is estimated by following
relationship:

lTCA

"m0 ®

where e, is the vector of errors (ETmeas-ETsim*W) estimated by GRA
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method and 6 is estimated by following equation:
0 = "ETsim (ETsim"ETsim) ' ET" i, ©

Detailed information on GRA, GRB and GRC model averaging ap-
proaches can be found in Granger and Ramanathan (1984).

2.4. Performance evaluation of the models

The evaluation of the crop models and model averaging methods
performance was assessed by statistical indicators such as relative root
mean squared error (RRMSE). Jamieson et al. (1991) concluded that
RRMSE values below 10 % are “excellent”, values from 10 to 20 % are
“good”, values from 20 to 30 % are “satisfactory”, and values exceeding
30 % are “poor”.

Y (0; — ;) ©

i=1

s - 100, 1
o n

where n is the number of observed and simulated data points, o; is the
observed value, s; is the model simulated value, 0 is the mean of
observed values.

3. Results
3.1. Group A sites simulations

In this section, the simulated daily ETa and seasonal yield were
examined using five maize crop models (DSPR, DSFR, AMW, AMSA, and
RZWQM2) across nine sites in the USA and Canada, under both the blind
and calibrated phases. Additionally, the MAA estimated daily ETa and
seasonal yield results were assessed. The analysis focused on daily ETa
simulations at Ames, Greeley, and Ottawa, where daily ETa measure-
ments were available. Seasonal yield was analysed at all nine sites. For
Ames, Greeley, and Ottawa, the analysis focused on the growing seasons
of 2006-2008, 2010 for the Ames and Greeley and 2002, 2006 and 2010
for daily ETa simulations in Ottawa, respectively.

3.1.1. Blind phase

3.1.1.1. Crop evapotranspiration. A wide range of daily ETa simulations
was observed in the five maize models at all sites, especially in the early
and end-growth stages during the blind phase (Fig. 2). The RRMSE be-
tween measured and simulated daily ETa ranged from 49.8 to 72.1 % at
Ames of the growing seasons of 2006-2008, from 36.5 to 104.2 % at
Greeley for the 2010 growing season, and from 40.6.5 to 83.8 % at
Ottawa for the growing seasons 2002, 2006 and 2010 (Fig. 3a). In 2006
at Ames, the measured average daily ETa during the growing season was
2.5 mm, while the simulated average daily ETa ranged from 2.3 to 2.7
mm/day. Similarly, at Greeley in 2010, the measured average daily ETa
was 4.4 mm, and simulated average daily ETa values ranged from 3.6 to
6.9 mm/day. In Ottawa in 2006, the measured average daily ETa was
2.3 mm, while simulated values varied between 2.2 and 3.3 mm/day.

However, ensembling the daily ETa simulations from all five maize
models using seven model averaging methods improved the accuracy of
daily ETa simulations based on the RRMSE (Fig. 3a and Table 2). The
performance of GRA model averaging method to combine daily ETa
simulations was best at the Ames and Ottawa sites, whereas GRB per-
formed slightly better at the Greeley site. Fig. 2 indicates a closer
agreement between measured and GRB ensembled daily ETa over the
growing season at all sites.

When daily ETa simulations of group maize models were ensembled,
the performance of model averaging methods decreased compared to
the ensembling of all maize models (Table 2). Though GRA and GRC
model averaging methods showed almost similar performance in
combining daily ETa, GRA ensemble daily was best at the Ames and
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Fig. 2. Box plots of daily simulated evapotranspiration (ETa) across the five maize models of the maize season 2006, 2010, and 2006 at Group A sites (Ames, Greeley,
and Ottawa), respectively, for the uncalibrated phase. Observed daily ETa values, and the GRB and SMA multi-model averaging approaches derived daily ETa values
from the five maize models are also presented. The simulated outputs of the uncalibrated phase where all maize model were set up using in-situ data and no

calibration was done.

Ottawa sites, whereas GRC performed best at the Greeley site. Overall,
by taking the average of RRMSE of Ames, Greeley and Ottawa sites, the
results indicate that there was slight variation noted in GRA, GRB and
GRC for ensemble daily ETa. However, GRC was identified as the best
model ensemble approach (Table 5).

3.1.1.2. Crop yield. Uncalibrated maize models showed unsatisfactory
performance across all sites, as indicated by high RRMSE values
(Fig. 4a). However, combining simulated yields from all maize models
using model averaging methods remarkably improved yield simulation
performance, achieving acceptable RRMSE criteria. Generally, the per-
formance of GRA and GRC was similar across all sites, followed by GRB,
IR, BGA, SMA, and the Median (Fig. 4). Additionally, when yield sim-
ulations from group maize models were ensembled, no improvements
were found as compared to an ensemble of all maize models (Table 3).
There was a slight decrease in the performance of the model averaging
method in the ensemble of group maize models.

3.1.2. Calibrated phase

3.1.2.1. Crop evapotranspiration. Moderate variability in the daily
simulated ETa persisted at each site, despite calibrating all crop models
(Fig. 5). The RRMSE values ranged from 41.4 to 50.8 % at Ames of the
growing seasons of 2006-2008, 36.5-48.8 % at Greeley for the 2010
growing season, and 34.4-59.1 % at Ottawa for the growing seasons
2002, 2006 and 2010 (Fig. 3b), indicating that the RRMSE remained in
the unacceptable range across all maize models and sites. At the Ames
site, the average measured growing season daily ETa was 2.5 mm, while
the average simulated daily ETa ranged from 2.6 to 2.9 mm/day across
all maize models. Similarly, in Greeley, the average growing season
measured daily ETa was 4.4 mm, with simulated values between 4.0 and
4.8 mm/day. Similar results were observed at the Ottawa site. However,
when an ensemble of all maize models was taken using model averaging
methods, this variability was reduced across all sites as shown by
RRMSE values in Fig. 3b. A slightly improvement in ensembled daily
ETa simulations was noted across all model averaging methods
compared to the blind phase (Table 2). The RRMSE for the ensemble
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Fig. 3. RRMSE between the measured and simulated daily ETa across five maize models and seven multi-model averaging approaches (MAA) under uncalibrated (a)

and calibrated (b) phases at Group A sites.

Table 2

A comparison of RRMSE between the measured daily ETa and ensembled daily ETa of all maize models and group maize models using seven multi-model averaging

approaches (MAA) at Group A sites under the Blind and Calibrated Phase.

Averaging approaches Blind Calibrated

All models Group models All models Group models

Ames Greeley Ottawa Ames Greeley Ottawa Ames Greeley Ottawa Ames Greeley Ottawa
SMA 41.4 36.2 41.0 40.8 45.8 35.5 38.0 31.5 29.6 39.5 31.8 29.1
Median 45.5 32.8 43.2 44.5 45.8 35.8 38.6 32.0 31.2 39.8 33.6 30.5
IR 42.8 32.6 34.2 42.0 37.2 33.5 38.4 31.4 28.6 39.1 31.5 30.0
BGA 41.4 30.4 33.9 40.8 35.5 33.4 38.0 31.1 28.0 39.2 31.6 29.2
GRA 35.4 49.5 30.6 34.0 39.2 31.5 34.0 37.0 27.1 34.7 37.8 28.3
GRB 41.2 29.8 31.7 40.8 35.0 33.0 37.3 30.6 27.6 38.8 31.4 29.0
GRC 36.0 34.8 30.7 34.6 34.9 31.7 34.6 38.1 27.3 35.1 36.9 28.5

varied from 34.0 to 38.6 % at Ames, 30.6 to 38.1 % at Greeley, and 27.1
to 31.2 % at Ottawa across all MAAs over the respective goring season
years. The GRA ensemble of daily ETa showed closer agreement with the
measured daily ETa than other MAAs at all sites except Greeley.
Furthermore, the accuracy of daily ETa improved when averaging group
maize models compared to averaging all maize models (Table 2). GRA
performed the best for combining daily ETa at Ames and Ottawa, while
GRB was the best at the Ottawa site. The performance of MAA to
ensemble daily ETa simulations was very close for all maize models and
group maize models. In general, the results suggest that there was slight
variation noted across all MAA for ensemble daily ETa. However, GRB
was identified as the best model ensemble approach.

3.1.2.2. Crop yield. When all maize models were fully calibrated, their
performance improved across all sites. Comparing the simulated yields
of individual maize models with the measured yields, the RRMSE was
found to be less than 30 % (Fig. 4b), indicating that the performance of

each crop model varied depending on the site, and no single model
consistently outperformed others for simulating maize yield across all
locations. The RRMSE between measured and simulated yield ranged
from 0.44 % to 28.90 % across all maize models and sites.

Yield simulations improved further when an ensemble of all maize
models was taken using model averaging methods, as indicated by
RRMSE values in Fig. 4b. The GRA produced ensembled yield values
were very close to the observed yields at all sites. The performance of
GRC was comparable to GRA at most sites with slight variation. In the
calibrated phase, the performance of model averaging methods was
slightly better than in the blind phase.

However, a minor decrease in the accuracy of yield simulations was
noted when using an ensemble of group maize models with model
averaging methods, indicating that the ensemble of simulated yield from
group maize models did not improve the yield simulations (Table 3).
Among the model averaging methods, the ensemble yields from GRA
and GRB matched the measured yields at most sites.
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Fig. 4. RRMSE between the measured and simulated maize yield across five maize models and seven multi-model averaging approaches (MAA) under uncalibrated

(a) and calibrated (b) phases at Group A sites.

3.2. Group B sites simulations
3.2.1. Blind phase

3.2.1.1. Crop evapotranspiration. The 41 maize models from the AgMIP
maize ET study simulated daily ETa were in a wide range at all sites
(Kimball et al., 2023). The RRMSE between the daily simulated ETa and
the in-situ measured daily ETa ranged from 33 % to 110 % at Mead
irrigated for the growing seasons of 2003, 2005, 2007 and 2009; 32 % to
131 % at Mead rainfed for the same seasons; from 29 % to 87 % at
Bushland 100 % MESA for the growing seasons of 2013 and 2016; and
from 31.20 % to 79 % at Bushland 75 % MESA for the growing seasons of
2013 and 2016 across all maize models (Fig. 6a). The previous analysis
by Kimball et al. (2023) revealed that the median of all maize models
closely matched the measured daily ETa throughout the growing season.
In the present study, variability in daily ETa simulations decreased when
the ensemble of all maize models was used. Even though roughly similar
performance was noted for the GRA, GRB, and GRC at all sites except
Bushland 75 % MESA, overall, GRB-ensembled daily ETa performed
better in matching the daily measured ETa over the growing season at
most sites, followed by GRA, GRC, IR, BGA, SMA, and the Median
(Table 4). The RRMSE between the ensembled daily ETa and the
measured daily ETa ranged from 18.4 % to 28 % at Mead irrigated, 18.5
% to 38.1 % at Mead rainfed, 19 % to 26.4 % at Bushland 100 % MESA,
and 25.8 % to 30 % at Bushland 75 % MESA sites in among MAA over the
respective growing seasons (Table 4 and Fig. 6a).

The ensembled daily ETa by SMA and GRB was also compared with

the measured daily ETa during the 2003 growing season at Mead’s
irrigated and rainfed sites. Fig. 7 illustrates a close match between the
measured daily ETa and the GRB ensembled daily ETa, particularly to-
wards the end of the growing season at the Mead Irrigated site. The GRB
ensembled daily ETa followed the pattern of the measured daily ETa
more closely than the SMA ensembled daily ETa. However, none of the
MAAs could reproduce the peak daily measured ETa. Similarly, at the
Mead rainfed site, the GRB ensembled daily ETa closely followed the
daily measured ETa for the 2003 growing season (Fig. 7), whereas the
SMA ensembled daily ETa showed poor agreement with the measured
daily ETa, especially during the mid-and late-growing seasons. GRB
ensembled daily ETa also closely followed the pattern of daily measured
ETa during the 2013 crop period at Bushland 100 % MESA and 75 %
MESA sites. However, the GRB and other MAA underestimated ETa
during the early and mid-crop periods. This discrepancy is attributed to
the inadequacy of many crop models in accounting for varying wind
speed and humidity. All maize models estimated daily ETa accurately
during periods of lower ETa but considerably underestimated ETa dur-
ing periods of higher ETa, characterized by high wind speeds and low
relative humidity (Kimball et al., 2023).

Additionally, the results of group maize models were analyzed,
where one model from each crop model family was selected. This
approach marginally improved the daily ETa simulations at all sites
compared to considering an ensemble of all maize models (Table 4). For
instance, the RRMSE between the daily measured ETa and the ensem-
bled daily ETa of all maize models ranged from 18.4 % to 28 % across all
models averaging methods at the Mead irrigated site. In contrast, the
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Table 3

A comparison of RRMSE between the measured maize yield and ensembled maize yield of all maize models and group maize models using seven multi-model averaging approaches (MAA) at Group A sites under the Blind

and Calibrated Phase.

Blind

Averaging

Group models

All models

approaches

Ste Anne

Ames Gilmore Glenlea Greeley Harrow Ithaca Ottawa St
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RRMSE between the daily measured ETa and the ensembled ETa of
group maize models ranged from 18.6 % to 24.4 % across all model
averaging methods. Similar findings were observed at the Mead rainfed,
Bushland 100 % MESA, and Bushland 75 % MESA sites. In general, GRB
ensemble approach was found best for ensemble daily ETa simulations
for all maize models and group models (Table 6).

3.2.1.2. Crop yield. Large variability in simulated maize yields was
noted across 41 maize models during the blind phase (Fig. 8a). An
ensemble of simulated yields of all maize models reduced the deviation
between measured yield and simulated maize yield at all sites. Among
the seven MAA, GRA performed the best followed by GRC, GRB, IR,
BGA, SMA, and median at most sites. Moreover, the performance of
group maize models was examined. Overall, this approach improved the
yield simulations for a few cases (Table 4). The performance of all MAAs
in combining the simulated yield of group maize models was roughly
similar to ensembling the maize yield of all maize models.

3.2.2. Calibrated phase

3.2.2.1. Crop evapotranspiration. After fully calibrating all maize
models, a slight improvement in daily ETa simulations was noted in all
maize models. There was still wide variability in daily ETa simulations
across the 41 maize models. The RRMSE ranged from 28.5 % to 75.0 %,
30.3 % to 90.0 %, 30.0 % to 68.5 %, and 28.0 % to 67.0 % at Mead
irrigated, Mead rainfed, Bushland 100 % irrigation, and Bushland 75 %
irrigation sites, respectively over the corresponding growing seasons
(Fig. 6b). Model averaging methods reduced the variability in daily ETa
simulation by combinig daily ETa simulations of all maize models. In the
calibrated phase, improvement in ensembled daily ETa simulation
across MAA was slightly higher than the blind phase at all sites (Table 4).
Though GRA, GRB, and GRC MAA showed almost similar performance
to ensemble daily ETa of all maize models, GRA outperformed others at
Mead rainfed and irrigated sites and GRB outperformed others at
Bushland 75 and 100 % MESA sites. For instance, the RRMSE between
the GRA ensembled daily ETa and measured daily ETa was 19.0 and
19.4 % at Mead irrigated and rainfed sites, respectively (Fig. 6b).
Similarly, RRMSE between the GRB ensembled daily ETa and measured
daily ETa was noted for 19.30 % and 19.40 % at Bushland 100 % MESA
and 75 % MESA sites, respectively. The model averaging methods
ensembled daily ETa were also compared with measured daily ETa over
the growing season at Mead and Bushland sites. Fig. 9 shows a close
match between in-situ measured daily ETa and GRB ensembled daily
ETa, particularly during the 2003 growing season at Mead rainfed,
where GRB closely followed the measured pattern.

Moreover, the ensemble of daily ETa of group maize models was
compared using different model averaging methods. A slight improve-
ment in ensembled daily ETa simulations was noted when considering
group maize models (Table 4), however, the pattern of performance of
MAA to ensemble daily ETa simulations of group maize models was
similar to all maize models. For example, GRA model averaging method
ensembled daily ETa was found best at Mead irrigated and rainfed sites,
whereas GRB ensembled daily ETa outperformed to others at Bushland
100 and 75 % MESA sites in both cases (Table 4). By synthesizing results
of all maize models and group maize models, GRA ensemble approach
was found best for ensemble daily ETa simulations for all maize models
whereas GRB ensemble approach was identified best for group maize
models (Table 6).

3.2.2.2. Crop yield Simulated yield showed remarkable improvement
in most maize models after full calibration compared to the blind phase
(Fig. 8b). The greatest improvement in yield simulations was observed at
the Mead irrigated site; however, moderate variability in yield simula-
tions was found across all maize models at the Mead rainfed, Bushland
100 % MESA, and Bushland 75 % MESA sites. This variability decreased
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Fig. 5. Box plots of daily simulated evapotranspiration (ETa) of the maize season 2006, 2010, and 2006 across five maize models at Group A sites (Ames, Greeley,
and Ottawa) respectively. Observed daily ETa values, and the GRB and SMA multi-model averaging approach derived daily ETa values from the five maize models are
also presented. The simulated outputs of the calibrated phase where all maize models were fully calibrated using crop phenology dates, LAI, soil moisture, ETa and

yield data.

substantially when simulated yields were averaged using model-
averaging methods at all sites. The GRA performed the best at all
sites, followed by GRC, GRB, IR, BGA, SMA, and the median. The RRMSE
between ensemble and measured yields ranged from 0.03 to 4.0 % at
Mead irrigated, 5.6 to 12.8 % at Mead rainfed, 4.2 to 15 % at Bushland
100 % MESA, and 2.8 to 19 % at Bushland 75 % MESA sites across all
model-averaging methods (Table 4). Additionally, the ensembling of
simulated yield from group maize models showed mixed results
compared to combining simulated yields from all maize models across
all model-averaging methods. There was a marginal improvement in
yield simulation at Mead rainfed and Bushland 75 % MESA sites
compared to all maize models, while there was a slight decrease noted at
Mead irrigated and Bushland 100 % MESA sites (Table 4).

11

4. Discussion
4.1. Blind vs calibrated

Combining simulations from multiple models through various
model-averaging approaches often provides more accurate simulation
performance (Sandor et al., 2023). In this study, as anticipated, MAAs
performed slightly better during the calibrated phase than for the blind
phase for combining daily ETa and yield simulations of all and group
maize models (Tables 5 and 6). In crop modeling, calibration is a crucial
process aimed at estimating unknown parameters using field observa-
tions, thereby reducing uncertainty in model simulations and making
predictions more reliable (He et al., 2017). MAAs tend to perform better
in the calibrated phase because the models are fine-tuned to specific
datasets, which minimizes errors and variance, resulting in more accu-
rate and stable predictions (Fletcher, 2018).
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Fig. 6. RRMSE between the measured and simulated daily crop evapotranspiration (ETa) across 41 maize models and seven multi-model averaging approaches

(MMA) at Group B sites under uncalibrated (a) and calibration phase (b).

Interestingly, MAAs also performed well in the blind phase. The
outcomes of the present study are comparable to those of Bassu et al.
(2014) and Kimball et al. (2019), where the maize yield and ETa sim-
ulations from uncalibrated maize models in different climatic conditions
sites were combined using the mean and median. However, in this study,
an additional five MAAs were tested, which will be discussed in the next
section. Similarly, Ajami et al. (2006) found that averaging streamflow
simulations of uncalibrated multiple hydrological models using four
model combination methods performed better than a calibrated single
hydrological model. These studies found that multi-model combinations
could enhance prediction accuracy by compensating for individual
model errors to reduce variance (Bassu et al., 2014; Kimball et al., 2019;
Kimball et al., 2023; Sandor et al., 2023; Couédel et al., 2024). The
multi-model combination improves the simulation accuracy by reducing
the variance associated with the predictions (Bassu et al., 2014; Fletcher,
2018). The individual model might exhibit high variance due to their
sensitivity to model structures and parameters. By averaging the outputs
of multiple models, these variances are reduced, leading to more stable
and reliable predictions. In addition, different models may make

different errors when predicting. When these models are averaged, the
errors can cancel each other out to some extent, resulting in a more
accurate overall prediction. Nonetheless, while multi-model ensembles
offer a way to learn from the errors across various studies and improve
the models, some individual models might still outperform the mean and
median (Kothari et al., 2022).

4.2. Best model averaging method for ETa and yield

The study assesses how well different MAA can reduce variability
and improve the accuracy of daily ETa and yield simulations at Group A
and Group B sites. Remarkably, SMA and the median approach per-
formed better than individual calibrated maize models in 98 % of the
cases during the blind phase at Group A sites, with SMA usually out-
performing the median. Similar results were observed in Group B sites
for ETa and yield. This could be due to a trade-off in prediction errors
among different models, leading to more accurate overall predictions.
These findings are comparable to those of Ajami et al. (2006), Bassu
et al. (2014), Arsenault et al. (2015), Sandor et al. (2023), and Couédel
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Fig. 7. A comparison of measured daily ETa and an ensemble of daily ETa simulations of all maize models using SMA and GRB multi-model averaging approaches

(MMA) at Group B sites under uncalibrated phase.

averaging techniques. The success of these methods can be attributed to
their ability to integrate multiple model outputs, leveraging the
strengths and compensating for the weaknesses of individual models.

Moreover, ensemble group maize models improved the simulation
accuracy of crop yield and ETa in a few cases compared to ensemble all
maize models. However, the accuracy of the ensembled ETa and yield
simulation of group maize models was similar to that of the ensembled
ETa and yield simulation of all maize models. This finding suggests that
the diversity of models in the ensemble plays a crucial role in enhancing
prediction accuracy. Therefore, it is advisable to select ensemble mem-
bers from different crop family models to achieve the best results,
although its also true that the quality of modelers regarding the as-
sumptions they make in parameterizing models is also of importance
(Albanito et al., 2022).

4.3. Model averaging methods when “no observations data” is available

Most MAA, such as IR, BGA, GRA, GRB, and GRGC, typically rely on
ground measurement data to determine the weights for each model in
the ensemble. This data is crucial for selecting the best models and
assigning appropriate weights. However, in real-world scenarios,
experimental data not be available, posing substantial challenges for
model selection and weighting.

In such situations, SMA and the median method have shown prom-
ising results. SMA and the median method are straightforward ap-
proaches that average predictions from multiple models by assigning
equal weights to each. This simplicity is particularly advantageous when
there is no prior information about the performance of the individual
models. By averaging the outputs, SMA reduces the impact of biases or
errors from any single model, leading to more robust overall predictions.
Both methods were effective in the current study, where they combined
multiple crop model outputs to improve predictions of daily ETa and
yield, even in the blind phase. This finding is consistent with previous
crop modeling studies by Bassu et al. (2014), Martre et al. (2015),
Kothari et al. (2022), Kimball et al. (2019, 2023), who reported that the
mean and median of ETa and yield simulations from multiple crop
models often outperform individual crop models.

However, the main drawback of SMA and the median method is that
they do not fully leverage the strengths of the better-performing models.
Because all models are weighted equally, these methods may
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underutilize the models that have superior predictive capabilities.
Despite this limitation, SMA and the median method remain valuable
tools in scenarios where observational data are lacking, providing a
practical means of improving predictive accuracy by mitigating indi-
vidual model weaknesses.

5. Conclusions

Averaging the results from multiple agricultural systems models has
shown high accuracy in predicting crop yield and ETa. However, among
those available Model Averaging Approaches (MAA), it is not known
which one performed the best. Therefore, this study aimed to evaluate
the performance of seven MAA (SMA, Median, IR, BGA, GRA, GRB, and
GRC) across eleven sites in North America to predict maize yield and
daily ETa using two ensemble-size maize crop models (all maize models
and group maize models) and two calibration approaches (Blind and
Calibrated phases). The data come from two sources: simulations for
Group A sites were done in this study, while simulations for Group B
sites were carried out by the Maize AgMIP project team.

The following conclusions were drawn from the study:

e Model Averaging Approaches: All MAA (Model Averaging Ap-
proaches) generally performed well, often surpassing individual crop
models during both the blind and calibration phases. Among the
MAA, the GRB method typically provided the closest match to
measured daily ETa values, while the GRA method was most accu-
rate for maize yield across all sites and phases. The simple mean
consistently outperformed the median at all sites. Therefore, GRA
and GRB are recommended for averaging simulations of yield and
ETa, respectively, when measured data is available. However, in the
absence of observed ETa and yield data, the SMA method can be used
to ensemble the yield and ETa simulations.

Individual maize model performance: No single maize model
consistently performed best at all sites for simulating yield and daily
ETa. Results indicate that fully calibrating the crop model, slightly to
significantly improved the daily ETa and yields simulations
compared to the blind phase, depending on maize models and sites.
Phase comparison for modeling averaging: The performance of
all MAA improved slightly to moderately for daily ETa and yield from
the blind phase to the calibrated phase across all sites.
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Fig. 8. RRMSE between the measured and simulated maize yield across maize models and multi-model averaging approaches (MMA) at Group B sites under un-

calibrated (a) and calibration phase (b).

e Ensemble member models: Using an ensemble of group maize
models with different model structures slightly enhanced the accu-
racy of daily ETa and yield simulations at Group B in comparison to
using an ensemble of all maize models.

These findings highlight the potential of MAA to improve the pre-
cision of maize yield and daily ETa estimates, emphasizing the impor-
tance of using diverse model ensembles to achieve accurate agricultural
predictions. However, these findings may be limited to maize crop in
North America. The applicability of these MAA methods to other crops
(e.g., soybean, wheat, canola, potato, alfalfa) or regions still need to be
examined, as their performance may differ.
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Table 5
Average RRMSE between measured daily ETa and maize yield, and ensembled daily ETa and maize yield, respectively, for all maize models and group maize models
using multi-model averaging approaches (MAA) at Group A sites for both the blind and calibration phases.

Daily ETa Seasonal Yield

Blind Calibrated Overall Blind Calibrated Overall

All models Group models All models Group models All models Group models All models Group models
SMA 39.5 37.6 33.0 335 35.9 17.3 18.3 8.8 9.2 13.4
Median 42.6 41.1 33.9 34.6 38.1 17.8 19.6 8.4 10.0 14.0
R 37.0 37.2 32.8 33.5 35.1 13.1 14.1 6.9 8.5 10.7
BGA 36.6 36.8 32.4 33.3 34.8 12.3 12.6 6.7 8.0 9.9
GRA 34.5 34.7 32.7 33.6 33.9 3.4 4.9 3.2 4.0 3.9
GRB 35.4 36.6 31.9 33.1 34.2 10.8 12.0 5.5 7.8 9.0
GRC 33.3 33.9 33.3 335 335 4.0 5.6 4.6 5.5 4.9
Mean 37.0 36.9 32.9 33.6 35.1 11.2 12.5 6.3 7.6 9.4

Table 6
Average RRMSE between measured daily ETa and yield, and ensembled daily ETa and yield, respectively, for all maize models and group maize models using multi-
model averaging approaches (MAA) at Group B sites for both the blind and calibration phases.

Averaging approaches Daily ETa Yield
Blind Calibrated Overall Blind Calibrated Overall
All models Group models All models Group models All models Group models All models Group models
SMA 28.6 27.0 28.3 27.0 27.7 14.6 14.8 11.8 11.6 13.2
Median 30.0 27.9 29.0 27.5 28.6 15.4 16.1 11.6 10.2 13.3
IR 23.9 22.6 22.9 22.0 22.8 5.6 9.3 4.5 4.8 6.0
BGA 26.2 24.4 26.1 24.9 25.4 5.5 8.8 4.5 4.7 5.9
GRA 22.2 21.6 19.9 20.0 20.9 4.5 5.2 3.2 2.7 3.9
GRB 20.6 19.1 20.6 19.5 19.9 4.9 8.0 4.1 4.2 5.3
GRC 22.2 21.7 20.4 20.6 21.2 4.9 6.3 4.1 4.0 4.8
Mean 24.8 23.5 23.9 23.1 23.8 7.9 9.8 6.2 6.0 7.5
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