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ABSTRACT
Aim: The urgency for remote, reliable and scalable biodiversity monitoring amidst mounting human pressures on ecosystems has 
sparked worldwide interest in Passive Acoustic Monitoring (PAM), which can track life underwater and on land. However, we lack 
a unified methodology to report this sampling effort and a comprehensive overview of PAM coverage to gauge its potential as a 
global research and monitoring tool. To address this gap, we created the Worldwide Soundscapes project, a collaborative network 
and growing database comprising metadata from 416 datasets across all realms (terrestrial, marine, freshwater and subterranean).
Location: Worldwide, 12,343 sites, all ecosystem types.
Time Period: 1991 to present.
Major Taxa Studied: All soniferous taxa.
Methods: We synthesise sampling coverage across spatial, temporal and ecological scales using metadata describing sampling 
locations, deployment schedules, focal taxa and audio recording parameters. We explore global trends in biological, anthropo-
genic and geophysical sounds based on 168 selected recordings from 12 ecosystems across all realms.
Results: Terrestrial sampling is spatially denser (46 sites per million square kilometre—Mkm2) than aquatic sampling (0.3 and 
1.8 sites/Mkm2 in oceans and fresh water) with only two subterranean datasets. Although diel and lunar cycles are well sampled 
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across realms, only marine datasets (55%) comprehensively sample all seasons. Across the 12 ecosystems selected for exploring 
global acoustic trends, biological sounds showed contrasting diel patterns across ecosystems, declined with distance from the 
Equator, and were negatively correlated with anthropogenic sounds.
Main Conclusions: PAM can inform macroecological studies as well as global conservation and phenology syntheses, but 
representation can be improved by expanding terrestrial taxonomic scope, sampling coverage in the high seas and subterranean 
ecosystems, and spatio- temporal replication in freshwater habitats. Overall, this worldwide PAM network holds promise to sup-
port cross- realm biodiversity research and monitoring efforts.

1   |   Introduction

Sounds permeate all realms on Earth—terrestrial, freshwater, 
marine and subterranean (Keith et al. 2022). Passive Acoustic 
Monitoring (PAM) captures soundscapes that document sonif-
erous (i.e., sound- producing) organisms and human activities, 
and some geophysical events (i.e., biophony, anthropophony and 
geophony, respectively). In ecoacoustics and soundscape ecol-
ogy (Pijanowski, Farina, et  al.  2011; Sueur and Farina  2015), 
PAM can measure the impacts of global change (e.g., climatic 
shifts, urbanisation, deep- sea mining) (Kang et al. 2023; Sueur 
et al. 2019; Williams et al. 2022); monitor ecosystem health, re-
covery and restoration (Müller et al. 2023; Ross et al. 2024; Sethi 
et al. 2020); assess human–environment interactions (e.g., pub-
lic health, cultural ecosystem services) (Alvarsson et  al.  2010; 
Chen et  al.  2022); and guide environmental management and 
conservation policies (e.g., protected areas, landscape planning) 
(Haver et al. 2019; Holgate et al. 2021).

Despite the wide- ranging and increasing soundscape sam-
pling effort (Havlik et  al.  2022; Sugai et  al.  2019), global re-
cording efforts across realms remain undescribed. Previous 
non- systematic qualitative reviews (Duarte et al. 2021; Lindseth 
and Lobel  2018) cannot describe data trends. Existing system-
atic reviews (Greenhalgh et al. 2020; Havlik et al. 2022; Scarpelli 
et al. 2020; Sugai et al. 2019) have not quantitatively addressed 
marine taxonomic coverage, terrestrial ecosystem coverage, nor 
spatio- temporal sampling distribution in fresh water, while the 
subterranean realm has yet to be reviewed. Notably, all reviews 
to date used only published data and involved only a small part 
of their respective communities. Indeed, practitioners of PAM are 
currently only networked within realms (e.g., terrestrial/marine), 
and often use distinct methods. Marine scientist networks using 
PAM exist (Boyd et al. 2015), but the freshwater community is na-
scent, and the terrestrial community is often fragmented by taxa. 
Methodological differences are also striking: acoustic calibration 
and sound propagation modelling are advanced in aquatic studies 
(Wang et al. 2014) but seldom considered in terrestrial ones (but 
see Haupert et al. (2022) and Sousa- Lima et al. (2013)); artificial 
intelligence can increasingly identify species on land (Nieto- Mora 
et al. 2023), whereas most aquatic sounds are still challenging to 
identify (Looby, Erbe et al. 2023; Parsons et al. 2023).

Overall, a global PAM network could increase knowledge trans-
fer, resulting in more efficient and consistent methods, analyses 
and cross- system syntheses (Sugai et al. 2019). Cross- realm PAM 
studies can advance theoretical (Ross et  al.  2023) and applied 
solutions. For instance, organisms' sound durations follow a com-
mon distribution across multiple realms (de Sousa et al. 2022). 
Also, soundscapes can track terrestrial and marine resilience 

to and recovery from disturbance (Gottesman et  al.  2021). 
Transnational sampling could form the basis for comprehensive 
soniferous biodiversity monitoring, just as community- initiated 
telemetry databases (Kays, Davidson, et al. 2022) and collabora-
tive camera trap surveys (Kays, Cove, et al. 2022) have advanced 
entire research fields. A global PAM network could complement 
existing biodiversity- monitoring networks, establish historical 
biodiversity baselines, support systematic long- term and large- 
scale monitoring and connect with the public through citizen 
science. Such information is critical to inform global biodiver-
sity policies such as the Kunming- Montreal Global Biodiversity 
Framework (Moersberger et al. 2024).

We present the ‘Worldwide Soundscapes’ project, the first global 
PAM meta- database and network (https:// ecoso und-  web. de/ 
ecoso und_ web/ colle ction/  index/  106). We use it to quantify the 
known state of PAM efforts, highlight apparent sampling gaps 
and biases, illustrate the potential of cross- realm PAM synthe-
ses for research and federate PAM users. The project currently 
comprises 357 contributors who collated metadata from 416 
passively recorded, stationary, replicated soundscape datasets. 
Metadata describe the exact spatio- temporal coverage, sam-
pled ecosystems (sensu International Union for Conservation of 
Nature Global Ecosystem Typology: IUCN GET), transmission 
medium (air, water, or soil), focal taxa (IUCN Red list), audio re-
cording settings, as well as data and publication availability. We 
inferred coverage within administrative (Global ADMinistrative 
Database: GADM; International Hydrographic Organisation: 
IHO) and protected areas (World Database on Protected Areas: 
WDPA) from geographic locations. We selected recordings refer-
enced in the meta- database to quantify soundscape components 
(biophony, anthropophony, and geophony) across 12 ecosystems 
from all realms. We showcase how the soundscape components 
can be used to answer exemplary macroecology, conservation bi-
ology and phenology research questions and we identify opportu-
nities to advance the global PAM network. The publicly accessible 
meta- database (Darras et al. 2025) continues to grow to enhance 
accessibility of data and remains open for metadata contributions, 
facilitating exchange among researchers and future syntheses.

2   |   Methods

2.1   |   Database Construction

The Worldwide Soundscapes project began in August 2021 
using collaborative, peer- driven metadata collation (Darras 
et al. 2025). It represents the current state of knowledge of PAM 
within our network. We additionally conducted focal publica-
tion searches to plug coverage gaps by inviting the respective 
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corresponding authors. We posted the call for contributors on 
specialised ecoacoustics platforms and social media, and kept 
the project open for any contributor owning suitable soundscape 
recordings. We communicated by emails in English, Spanish, 
French, Portuguese, German, Russian, and Chinese to feder-
ate users in our network. Of 581 contacted contributors poten-
tially involved in PAM, 61% provided metadata. We included 
metadata from larger, national or international groups such as 
the Silent Cities project (Challéat et al. 2024), Ocean Networks 
Canada (Heesemann et al. 2014), and the Australian Acoustic 
Observatory (Roe et  al.  2021). Primary contributors provided 
the metadata and bear the responsibility for their accuracy. 
Research assistants checked the coherence of the metadata 
input (beyond automated data format checks) and primary 
contributors cross- validated metadata displayed as maps and 
graphical timelines. The database information page and content 
are integrated as a project in our online collaborative ecoacous-
tics platform ecoSound- web (Darras et al. 2023) that also hosts 
the annotated soundscape recordings of the case study (https:// 
ecoso und-  web. de/ ecoso und_ web/ colle ction/  show/ 49).

Soundscape recording datasets needed to meet four criteria: (1) 
stationary—mobile recorders have variable spatial assignments, 
thus we excluded recordings from cars, transect walks or towed 
deployments; (2) passive—obtained from unattended recorders; 
(3) ambient—omni- directional, non- triggered recordings, under 
non- experimental conditions; (4) spatially or temporally rep-
licated (Figure 1)—to disentangle spatial and temporal effects 
from other soundscape determinants. Datasets were defined as 
spatially replicated when several sites were sampled simultane-
ously, and temporally replicated when a site was sampled over 
multiple days at the same time of day. Sampling sites and days 
were our elemental units for defining replication; however, in 
other contexts, spatial replicates may, for instance, be required 
to be in the same habitat, and temporal replicates may be de-
fined across multiple full moon nights. Taken together, our re-
quirements homogenise the dataset to enable general, unified 
statistical analyses across datasets.

2.2   |   Time and Space

Soundscapes result from geophysical phenomena as well as 
wildlife and human activities that are broadly determined by 
solar and lunar cycles and geographical positions on the planet 
relative to the poles or Equator or the land and water surface. 
We defined and calculated spatial coverage as the number of 
audio sampling sites (‘sites’ hereafter) and spatial density as the 
number of sites relative to each realm's areal extent (Figure 2). 
Spatial sampling extent could have been defined as the area 
bounded by sites, but calculating extents on the world sphere 
is conceptually challenging for large extents. Spatial coverage 
calculation is further hindered by the fact that the sampling 
area covered at each site is generally unknown: they are rarely 
measured in terrestrial sites but sometimes simulated in marine 
environments (Erbe and Thomas 2022). Detection spaces vary 
with sound source intensity, frequency, directivity, recording 
medium temperature, currents, pressure, atmospheric humidity 
(for air), habitat structure and ambient sound level (Darras et al. 
2016; van Parijs et  al. 2009). Underwater, at depths above the 
wavelength, detection spaces are greater than on land due to the 

higher density of the recording medium. Our measure of spa-
tial sampling density using points per area is thus provisional. 
Temporal extent was defined as the time range from the start of 
the first to the end of the last recording of a site, temporal cover-
age as the time sampled for that site and temporal density as the 
proportion of time sampled within the temporal extent.

We quantified latitudinal and topographical distribution by 
collecting coordinates, elevation and depth data for each site. 
Topography values on land were either provided by the contrib-
utors or filled in automatically using the General Bathymetric 
Chart of the Oceans surface elevation data (GEBCO 2025). For 
freshwater sites, depth values below the water surface were 
provided by the contributors, and for subterranean sites, depth 
below the land surface was recorded. We assigned sampling 
sites to administrative areas (GADM divisions for freshwater 
and land, IHO for sea areas) and extracted their WDPA cate-
gory. Sites' climates were geographically classified into tropi-
cal (between −23.5° and 23.5° latitude), polar (below −66.5° or 
above 66.5° latitude) and temperate (between polar and tropical 
regions).

Primary contributors coded their exact recording times for 
each site using deployment start and end dates and times and 
operation modes (or combinations thereof). Operation modes 
included continuous operation, which lasted from the deploy-
ment start to its end; scheduled operations that had daily start 
and end times; and periodical operations that used duty cycles. 
A temporal framework was devised to quantify sampling cov-
erage in three solar and lunar cycles using the timing of sound 
recordings relative to specific events (Figure 3). Seasonal cov-
erage was inferred only for temperate sites by splitting the year 
into four meteorological seasons (winter: December–February, 
spring: March–May, summer: June–August, fall: September–
November, reversed for Southern latitude sites). The daily cycle 
was split into four diel windows delimiting dawn (from astro-
nomical dawn start at −18° solar altitude until 18° solar alti-
tude), day, dusk (from 18° solar altitude to astronomical dusk 
end at −18° solar altitude) and night. The lunar illumination 
cycle was split into two time windows centred on the full and 
new moon phases. Thus, extrema and ecotones in the temporal 
cycles define time windows, and in temperate zones, equinoxes 
roughly correspond to thermal ecotones. Seasonal cycles in trop-
ical and polar regions arising from precipitation patterns were 
not considered in this analysis, but future frameworks should 
consider recent developments (Littleboy et al. 2024).

2.3   |   Ecological Characterisation

We assigned sites to ecosystem types following the IUCN GET 
(https:// globa l-  ecosy stems. org). Sites were assigned hierarchi-
cally to realms, biomes and functional groups. ‘Core’ realms 
are terrestrial, marine, freshwater and subterranean, while 
‘transitional’ realms represent the interface between these. For 
example, the transitional marine–freshwater–terrestrial realm 
comprises the brackish tidal biome, which contains coastal river 
deltas as a functional group. We calculated major occurrence 
areas of all functional groups based on ecosystem maps (Keith, 
Ferrer- Paris, Nicholson, Bishop, et al. 2020) to quantify spatio- 
temporal extent, coverage and sampling density within realms 
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FIGURE 1    |    Overview of Worldwide Soundscapes meta- database. (A) Framework used to define spatial and temporal replicates. (B) Number of 
datasets in each core realm for the different replication levels. (C) Spatial extent and coverage, based on sampling sites, split by core realm. Due to 
their higher representation and to avoid overlapping site clusters, terrestrial site densities were plotted on a 3° resolution raster (Interactive map: 
https:// ecoso und-  web. de/ ecoso und_ web/ colle ction/  index/  106). (D) Temporal extent and coverage, based on recorded days, split by core realm. An 
enlarged version of panel D without terrestrial sites can be found in Figure S3. For panels B–D, sites from transitional realms were assigned to their 
parent core realm.
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and biomes. For the spatial and temporal result sections, sites 
were assigned to their ‘parent’ realm (i.e., the first mentioned 
realm in the compound transitional realm names). The results 
section ‘Sampling in ecosystems’ separates results among core 
and transitional realms. Deployments were linked to IUCN Red 
List taxa (class, order, family or genus) when studies were de-
signed for monitoring these taxa; other deployments could be 
collected without taxonomic focus.

2.4   |   Acoustic Frequency Ranges

We needed to determine the spectral scope of soundscape record-
ings. Microphones (including hydrophones and geophones) have 
variable frequency responses, usually declining with frequencies 
above the human- audible range. Additionally, digital recorders 
restrict the spectral range of the recording with the sampling 
frequency. Contributors provided audio parameters for their de-
ployments: sampling frequency, high- pass filters, microphone 
and recorder models. More recent metadata contributions in-
clude the number of channels, audio amplification and bit depth.

2.5   |   Soundscape Case Studies

To illustrate how the database can be used for macroecology, 
conservation biology and phenology analyses, we selected 168 
recordings across a variety of topographical, latitudinal and an-
thropisation conditions—all fundamental gradients of assembly 
filters in both terrestrial and marine realms (Keith et al. 2022)—
belonging to 12 IUCN GET functional groups (i.e., ecosystem 
types): large lowland rivers, small permanent freshwater lakes, 
riverine estuaries, bathypelagic ocean waters, island slopes, 
photic coral reefs, tropical montane rainforests, tropical lowland 
rainforests, plantations, urban ecosystems, polar outcrops and 
aerobic caves. We aimed for four spatial replicates within the 
same functional group, with 10- min audible sound recordings 
(at least 44.1 kHz sampling frequency) starting at sunrise, solar 
noon, sunset, and solar midnight from the same date during the 
biologically active season. However, the available data some-
times yielded fewer replicates or a lower sampling frequency 
in one case (Table S3). We acknowledge that this targeted, non- 
systematic selection of recordings is not statistically represen-
tative of global patterns but rather illustrative of the database's 
potential for future studies.

In each soundscape recording, we identified the three funda-
mental soundscape components: biophony, anthropophony, and 
geophony. For example, biophony could comprise acoustic cues 
(vocalisations or sonant displays) from non- human vertebrates 
or invertebrates; anthropophony comprises human speech or 
noises from any human technologies (e.g., engines, explosions; 
sometimes termed ‘technophony’); geophony comprises geo-
physical sounds (e.g., from wind, rain or waves). Soundscape 
recordings were uploaded to ecoSound- web (Darras et al. 2023) 
for annotation (https:// ecoso und-  web. de/ ecoso und_ web/ colle 
ction/  show/ 49): KD listened to them while visually inspecting 
spectrograms (Fast Fourier Transform window size of 1024) at 
a density of 1116 pixels per 10 min. Visible and audible sounds 
were annotated using rectangular boxes on the spectrogram, 
with defined coordinates in the time and frequency dimensions, 

bounding the corresponding sound closely. Annotations were 
classified into different soundscape components and could over-
lap if they were simultaneously visible or audible. Soundscape 
components above 22.05 kHz and sounds caused by microphone 
or recorder self- noise were excluded from the analysis. All an-
notations were validated by the recordists using the peer- review 
mode on ecoSound- web, which allowed them to view and listen 
to the same recording to accept, revise or reject annotations, and 
to check whether annotations were missing. Revised or rejected 
annotations were corrected by KD before a second validation. 
Finally, acoustic space occupancy for each soundscape compo-
nent in each recording was calculated as the proportion of the 
sampled spectro- temporal space (Luypaert et al. 2022) (i.e., an-
notations area divided by total area of spectrogram; range: 0–1), 
and silence was the proportion of the acoustic space not covered 
by any soundscape component. We used the total coverage of 
annotations of the same soundscape component, excluding 
overlaps, to compute acoustic space occupancy. For instance, 
a windy episode covering half of the spectrogram's duration 
from 1 to 3000 Hz would cover ~7% of the acoustic space (300 s 
× 3000 Hz/(600 s × 22,050 Hz)).

We asked whether biophony occupancy increases with prox-
imity to the equator, whether biophony is negatively correlated 
with anthropophony and whether phenology patterns differ 
across functional groups. Statistical models predicting biophony 
occupancy were Bayesian beta regression models (four chains 
of 4000 sampling iterations with 2000- warmup iterations, thin-
ning rate of 1) fitted with the R package brms (Bürkner 2017). 
Models converged as determined by trace plots and R hat values 
smaller than 1.1. The number of data points equaled the num-
ber of recordings (N = 168). The models using latitude and an-
thropophony were mixed- effect models including the functional 
group as a random intercept. The phenology model used diel 
time windows, coded as a numeric variable with integers from 
1 to 4, and functional group, as well as their interaction, as pre-
dictors. This allowed for the comparison of effects of the func-
tional group on the phenology profile, approximated by a linear 
regression, by measuring statistically significant differences in 
the slopes of that regression depending on the functional group.

3   |   Results

3.1   |   Summary Dataset Statistics

To date, 416 validated soundscape meta- datasets (hereafter 
‘datasets’) have been registered in our database from across the 
globe, dating back to 1991 (Figure 1D). A dataset comprises the 
metadata of a study or project. Based on the IUCN GET defini-
tion of four core realms, our database includes 283 terrestrial, 
105 marine, 26 freshwater and 2 subterranean datasets. The 
transmission medium was air for terrestrial datasets (except 
for soil in one dataset), mostly water for aquatic datasets (eight 
above- water datasets, mostly fresh water). In the subterranean 
realm, one dataset used aerial recordings, while the other used 
underwater recordings. The majority of datasets (84%) included 
both spatial and temporal replicates (Figure 1B). Few datasets 
have openly accessible recordings (8%–12% excluding subter-
ranean realm, Figure  S1). Presently, few terrestrial and fresh-
water datasets (28% and 19%, respectively) are associated with 
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DOI- referenced publications in contrast to marine datasets 
(50%), excluding the subterranean realm with too few data-
sets (Figure S1). The decline in coverage in 2023 and onwards 
(Figure 1D) presumably reflects that ongoing or recent studies 
have not yet been reported. Overall, the recordings registered in 
our database would use a minimum of 5904 TB of storage space, 
assuming 50% losslessly compressed, single- channel recordings 
at the most common and lowest bit depth of 16.

3.2   |   Spatial Sampling Coverage and Density

The database contains 12,343 sampling sites, including 147 
polar, 9214 temperate and 2982 tropical sites (Figure  1C). On 
land, 11,368 sites are located within 86 (out of 263) GADM level 
0 areas (i.e., countries, Figure  2B), primarily in the Northern 
Hemisphere (Table  S1). Most terrestrial sites occur in Canada 
(26%), followed by the United States (18%), but a significant pro-
portion are elsewhere in the world (25% do not belong to the top 
10 GADM areas). Few terrestrial sites (8%) are located in WDPA 

category Ia, Ib or II areas, corresponding to the highest protec-
tion levels. Our database currently lacks data from vast areas in 
Russia, Greenland, Antarctica, North Africa and Central Asia. 
Site elevations range from sea level up to 4548 m (Figure 2A), but 
mountains above 4000 m in the Northern Hemisphere and above 
2000 m in the Southern Hemisphere (except for Kilimanjaro), as 
well as the Transantarctic Mountains, are currently not repre-
sented in the database. At sea, 637 sites are located within 35 
(out of 101) IHO sea areas. Administratively, most marine sites 
are widespread among IHO areas (24% do not belong to the 
top 10 IHO areas), but the North Pacific Ocean as well as the 
Southeast Alaskan and British Columbia Coastal Waters contain 
a large proportion of marine sites (16% and 13%, respectively). 
Many sites are situated in WDPA high- protection category Ia 
and II areas (12%). Our database currently lacks datasets from 
Arctic waters off Eurasia and Southeast Asian coastal areas. 
Sampling sites span ocean depths from sea water surface to 
depths of 10,090 m, but tropical bathypelagic and Southern ben-
thic areas are poorly represented (Table S2). Few GADM areas 
(11) are represented in the 324 freshwater sites. Spain holds most 

FIGURE 2    |    Spatial distribution of sampling sites. (A) Latitudinal and topographic distribution of sampling sites across core realms. Due to their 
higher representation and to avoid overlapping site clusters, terrestrial sites are shown with transparency. The minimum (deepest seafloor) and max-
imum (highest elevation of land or sea level) topographical limits (dark grey lines) are shown against latitude, based on General Bathymetric Chart 
of the Oceans data (GEBCO 2025). Minimum topography above sea level and maximum topography below sea level were set to zero as the sea level 
represents the minimum and maximum in these cases. (B) Number of sampling sites within different administrative regions (GADM level 0 and IHO 
sea areas), split by core realm, across WDPA categories (Ia: Strict nature reserve; Ib: Wilderness area, II: National park). The areas that do not belong 
to the top 10 in terms of datasets have been aggregated under ‘others’. The 13 subterranean sites are not shown. Sites from transitional realms were 
assigned to their parent core realm.
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freshwater sites (41%), followed by China (21%). Few freshwater 
sites (2%) are in WDPA category II or Ib areas. Freshwater bod-
ies are sampled at elevations up to 3770 m and were sampled up 
to 25 m depth. Mountain freshwater bodies and those in Africa, 
Asia, and Oceania are currently poorly represented in our data-
base (only one site at 3770 m). The database contains 14 subter-
ranean sites situated in Brazil and Mexico between 34 and 810 m 
elevation and a depth of up to 20 m.

3.3   |   Temporal Sampling Extent, Coverage 
and Density

We compare sampling coverage (in years sampled by record-
ings, summed over sites) across time windows of the diel cycle, 

the lunar phases and the seasons (Figure 3A). Dawn and dusk 
diel windows are shorter than day and night diel windows for 
most locations and correspondingly less intensively sampled. 
The lunar phase cycle is evenly covered across realms and com-
prehensively covered within datasets (Figure S2). In the terres-
trial realm, daytime coverage surpasses night- time coverage 
(1198 vs. 846 years), while 76% of datasets sampled all diel time 
windows. Terrestrial temperate datasets mostly sampled spring 
(867 years, 36%) and summer (726 years, 30%) while 22% sampled 
all seasons. In conjunction with the higher sampling intensity in 
the northern temperate zones, this causes the observed peaks 
in Figure 1D. Terrestrial temporal coverage per site is highest 
in Australia (1541 days -  Australian Acoustic Observatory). In 
the marine realm, diel coverage is even, as 87% of marine data-
sets sampled all diel time windows. Marine temperate datasets 

FIGURE 3    |    Temporal sampling distribution. (A) Temporal sampling coverage across solar and lunar cycles for all core realms. Cycles con-
sist of solar (daily and seasonal) and lunar time cycles (lunar phase), divided in time windows. Seasons were only analysed in temperate regions 
and subterranean sites were all in tropical regions. Sampling coverage is represented with sampling years in number labels. (B) Mean number of 
sampling days per site within administrative regions (GADM level 0, IHO areas), split by core realm. The 13 subterranean sites are not shown. 
Numbers to the right of bars indicate the number of sites the means were calculated from. Sites from transitional realms were assigned to their 
parent core realm.
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have high and similar coverage for winter and spring (120 and 
124 years, combined 59% of seasonal coverage) and 55% cover 
the full seasonal cycle. Marine temporal coverage per site is 
highest in the Balearic (2771 days). In the freshwater realm, 
temporal coverage among diel time windows is even, and 81% 
of freshwater temperate datasets sampled all diel time windows. 
By contrast, 36% of datasets sampled all seasons. Freshwater 
temporal coverage per site is highest in Portugal (3009 days). 
The subterranean tropical sites primarily covered the day-  and 
night- time.

3.4   |   Sampling in Ecosystems

Our database includes 82 of the 107 functional groups (as per 
IUCN GET version 2.1.1 for spatial data). All biomes are covered 
except anthropogenic shorelines, the subterranean tidal biome, 
anthropogenic subterranean voids, and anthropogenic subter-
ranean freshwaters (Table  S2). The terrestrial realm has the 
second- largest extent and the highest spatial sampling density 
among realms (45.8 sites per million square kilometres (Mkm2) 
over entire temporal extent), but temporal coverage is compara-
tively low (30% sampled out of 203 days of mean extent per site). 
The most commonly sampled terrestrial biome is the temperate- 
boreal forests and woodlands biome (56% of sites). The marine 
realm is the most extensive, but spatial sampling density is the 
lowest (0.3 sites per Mkm2), while temporal sampling coverage 
is the highest among all realms (66% out of 377 days sampled). 
The most commonly sampled marine biomes are the marine 
shelf and pelagic ocean waters (55% and 35% of sites respec-
tively). The freshwater realm has low spatial sampling densities 
(1.8 sites per Mkm2) and high temporal sampling densities (68% 
out of 238 days sampled). Lakes are the most commonly sam-
pled freshwater biome (48% of sites). The terrestrial–freshwater 
realm, representing 81% of the area of transitional realms, has 
the third- highest spatial sampling density (7.9 sites per Mkm2) 
and moderate temporal sampling density (18% out of 2363 days 
sampled). The marine–freshwater–terrestrial realm (including 
26 sites in coastal river deltas, saltmarshes and intertidal for-
ests) has the second largest temporal extent (465 days per site). 
The subterranean realm, when excluding endolithic systems, is 
the smallest core realm and it includes seven tropical sites (all 
in tropical aerobic caves) sampled with a low temporal cover-
age (1% out of 129 days sampled). The subterranean–freshwater 
realm includes five sites in underground streams and pools, 
sampled with a low temporal coverage over the largest temporal 
extent (6% out of 1109 days sampled).

3.5   |   Target Taxa and Frequency Ranges

Most marine datasets do not target specific taxa (66%) and re-
cord wide frequency ranges from 0.009 to 31 kHz (mean bounds 
of frequency ranges across datasets, Figure 4B). Marine datasets 
that focus on single taxa comprise fish (12%, 0.002–20 kHz) and 
cetaceans (6%, 0.006–7 kHz). Similarly, most freshwater datasets 
are taxonomically unspecific (56%) and cover frequencies from 
1 to 29 kHz. Some datasets (14%) focus on ray- finned fish, cov-
ering frequencies from 0.001 to 23 kHz. By contrast, terrestrial 
datasets mostly target single taxa and record narrow frequency 
ranges. Bird- focused datasets are most common (44%), spanning 

frequencies from 0.056 to 21 kHz, while bat- focused datasets 
are next (12%) and range from 5 to 139 kHz. Taxonomically un-
specific datasets account for 24% of terrestrial datasets, covering 
a broad range from 0.2 to 23 kHz. Generally, datasets targeting 
multiple taxa use wider frequency ranges than those targeting 
single taxa.

3.6   |   Soundscape Case Studies

The selected soundscape recordings spanned latitudes from 69° 
South to 67° North (Table S3 and Figure 5A). Biophony domi-
nated, with an average soundscape occupancy of 27% across all 
ecosystems. Notable examples include the photic coral reefs in 
Okinawa, Japan, with snapping shrimps and grunting fish cho-
ruses, and the tropical lowland rainforests in Jambi, Indonesia, 
with buzzing insects and echoing bird and primate songs, 
showing soundscape occupancy of 75% and 61%, respectively 
(Lin et al. 2023). Only marine island slopes (off Sanriku, Japan) 
and polar outcrops (Antarctica) contained minimal biophony 
(0% and 2%, respectively). Geophony was absent in most of our 
soundscape samples, with the exception of high wind noise in 
polar outcrops (14%) and some wind in montane tropical for-
ests and urban ecosystems (both 5%). On average, anthropoph-
ony occupied 9% of the soundscapes. Cities (Jambi, Indonesia; 
Montreal, Canada) exhibited the highest anthropophony (43%) 
with prevalent engine noise and human voices, while deep- sea 
mining and vessel communication signals caused high anthro-
pophony in marine island slopes (32%) (Chen et al. 2021). Silence 
was most prevalent in bathypelagic ocean waters (96%) and 
polar outcrops (82%).

The selected soundscapes revealed greater biological activity 
closer to the Equator, a negative relationship between biophony 
and anthropophony, and variable phenology patterns of sonif-
erous organisms over the diel cycle (Figure  5). We detected a 
negative correlation of biophony occupancy with increasing dis-
tance from the Equator (pnegative = 1) and with anthropophony 
occupancy (pnegative = 0.98). The phenology model predicted a 
negative slope for the effect of the diel time windows in tropical 
montane forests, different from the positive slope in bathype-
lagic ocean waters (pdifferent = 1), and a negative slope in small 
permanent freshwater lakes, likely different from the one in bat-
hypelagic ocean waters (pdifferent = 0.94). More complex relation-
ships than linear regressions can be expected, which might lead 
to further detectable differences between functional groups, so 
this simple analysis on our limited dataset constitutes a mini-
mal proof that the phenological profiles differ among functional 
groups. We displayed loess smooths for the biophony occupancy 
values for each diel time window and realm (Figure 5B), reveal-
ing their widely differing phenology patterns.

4   |   Discussion

The ‘Worldwide Soundscapes’ project has—to our knowledge—
assembled the first global meta- database of PAM datasets across 
realms. We analysed its current content to quantify sampling ex-
tent, coverage and density across spatiotemporal and ecological 
scales. We analysed soundscapes from 12 ecosystems to inves-
tigate macroecological, conservation biology and phenological 
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trends. The database remains open for contributions, can be 
openly accessed to source datasets and helps initiate collabora-
tive studies (Darras et al. 2025). Next, we discuss the state and 
potential of PAM globally (Table  1). While we aim for large- 
scale research questions here, the database can also be used to 
address more specific questions, for instance using the finely 
resolved taxonomic information that we recorded, or for within- 
realm syntheses.

Our results likely represent global PAM trends, even though 
they may be biased by the project contributors' background. Our 
terrestrial spatial coverage is similar to an existing systematic 
review (Sugai et al. 2019). Our database gaps in North Africa and 
Northeastern Europe correspond with the paucity of bioacoustic 
datasets for these regions in the Xeno- Canto bioacoustic repos-
itory (Xeno- canto Foundation  2012). Our database comprises 
637 marine sampling locations, while a recent systematic review 
compiled 991 (Havlik et al. 2022) from published data. Although 

the latter review's locations are represented at the dataset level 
(which can comprise several sites), most overlap with our finer 
site- level locations (Figure  S4). Marine tropical waters that 
are under- represented in our database reflect gaps found in 
the International Quiet Ocean Experiment network coverage 
(IQOE n.d.). Our marine and terrestrial database's spatial cov-
erage is thus broadly comparable with published data, but it is 
more detailed as the exact sampling locations are known. Our 
database's temporal coverage is also more finely resolved with 
exact sampling times, and thus not directly comparable with pre-
vious work. To our knowledge, no other spatially explicit review 
of freshwater sampling or synthesis of subterranean PAM cov-
erage exists for comparison. Finally, as our database originates 
from an active network of researchers, it represents the current 
availability of mostly as- yet- unpublished data (Figure S1).

Geographic coverage differs strikingly among realms: ma-
rine coverage is sparse but widespread; terrestrial coverage is 

FIGURE 4    |    Sampling distribution across ecological scales. (A) Sampling intensity, split between core and transitional realms: Spatial extent of 
realms, based on major occurrence areas according to IUCN GET (coloured disk area proportional to area); spatial sampling density (in sites per 
Mkm2) and coverage (in number of sites); temporal extent (mean range between first and last recording day), coverage (days sampled per site) and 
density (proportion of days sampled per extent). (B) Frequency ranges of datasets across realms (using Nyquist frequency i.e., actual recorded fre-
quencies) for the main studied taxa. The dots at the ends of coloured lines represent means of the lowest and highest recorded frequencies, and the 
ranges between the minimum and maximum of these values are indicated with black error bars. The limits of human hearing are indicated with 
dashed lines. Number of datasets indicated above lines—datasets can be counted several times if they contain deployments targeting different taxa. 
Data from transitional realms were assigned to their parent core realm in panel B.
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FIGURE 5    |    Soundscape components analysis. (A) Mean acoustic space occupancy of soundscape components (biophony, geophony, anthropoph-
ony) shown with bar plots, as calculated from spectrogram annotations for 12 selected ecosystems, measured in proportion of spectro- temporal space 
used, over 168 recordings covering the time windows of the diel cycle. Annotated recordings are accessible at https:// ecoso und-  web. de/ ecoso und_ 
web/ colle ction/  show/ 49. Sample spectrograms are shown in the background. (B) Soundscape component occupancy data illustrate three research 
questions linked to macroecological patterns (i.e., biophony with distance from Equator relationship), conservation biology trade- offs (i.e., biophony 
with anthropophony relationship); and phenological trends (i.e., biophony loess smooths along diel time windows for each functional group). Grey 
ribbons indicate 95% credible intervals and numbers indicate probabilities of positive or negative relationships.
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comparatively intensive in the Americas, Australia and Western 
Europe; freshwater coverage is scattered. This partly reflects the 
gap between high- income countries, which have the resources 
to carry out conservation and active ecosystem management 
actions, and developing countries, which are home to the ma-
jority of biodiversity hotspots (and are some of the most densely 
populated areas). Accessibility and technical limits in extreme 
environments also drive geographic patterns: high latitudes 
and elevations entail low temperatures that present challenges 
for operation and maintenance, some of which can be solved 
with robust power setups (solar panels, freeze- resistant batter-
ies). Marine deployments are generally even more constrained 
due to costly and demanding underwater work, but some de-
ployments reach the polar regions as water temperatures are 
buffered below the freezing point. Affordable underwater re-
corders (Lamont et al. 2022) may help to intensify sampling of 
marine coastal areas and close gaps in freshwater coverage. By 
contrast, terrestrial monitoring is relatively straightforward. 
Northern temperate areas outside of Northeastern Europe are 
comparatively better covered, while the tropics outside of Africa 
are better represented. Gaps in North Africa, Central Asia and 
Northeastern Europe may arise from unequal research means 
and differing priorities between countries. Addressing these 
gaps will help correct spatial biases (Beck et al. 2014) and iden-
tify high- priority, unique research areas that should be included 
in global assessments.

Currently, only marine studies achieve relatively even coverage 
of temporal cycles. Indeed, offshore deployments—especially in 
the deep sea—are expensive and limited- duration deployments 
are not cost- effective (Rountree, Aguzzi et  al.  2020). Marine 
soundscapes fluctuate stochastically (Siddagangaiah et al. 2022), 
but the ocean buffers water temperatures so that animals are 
active year- round. Although lunar phases affect marine life 
(Hernández- León et  al.  2001; Mougeot and Bretagnolle  2000; 
Simonis et  al.  2017) and shape tidal ecosystems, we did not 

consider lunar tides. In the terrestrial and freshwater realms, 
most deployments cover the entire diel cycle, but monitoring 
on land often focuses either on diurnal birds or on nocturnal 
bats (Sugai et al. 2019). By contrast, although seasons also drive 
acoustic activity cycles on land (Grinfeder et  al.  2022; Krause 
et al. 2011), spring-  and summertime monitoring is dispropor-
tionately common, and we lack a complete understanding of 
seasonal dynamics (Figures  1D and S3). Terrestrial deploy-
ments, in particular, may be short for logistical reasons: in the 
cold, batteries drain faster or fail and road access is harder; in 
arid regions, fire hazards complicate long- term deployments; 
in general, recorders are at risk of theft, and limited equipment 
may be cycled between sites (Sugai et al. 2020). Lunar phases 
also influence land animals (Kronfeld- Schor et  al.  2013) and 
should be explicitly considered in future study designs. Overall, 
we encourage longer duration setups with regularly spread sam-
pling inside temporal cycles to alleviate the higher expenses for 
energy and storage, as well as trade- offs with spatial coverage 
(Van Wilgenburg et  al.  2024). Global changes impact sound-
scapes in largely unpredictable ways through changing species 
distributions and phenology, necessitating higher and unbiased 
coverage across multiple time scales—including inter- annual 
ones—to successfully monitor ongoing changes (Desjonquères 
et al. 2022).

Re- use of soundscape datasets is restricted by their taxonomic 
focus. Many soundscape recordings sample particular frequen-
cies, often in the human- audible range (Luypaert et  al.  2022), 
although biophony ranges from infrasound to ultrasound. For 
instance, studies of toothed whales or bats often use triggers 
and high- pass filters to cope with high data storage demands 
by recording purely ultrasonic recordings only when signals are 
detected, resulting in spectrally restricted and temporally biased 
soundscape recordings. Less studied taxa, such as anurans and 
insects, could effectively be co- sampled by adjusting ongoing 
terrestrial deployments. We encourage terrestrial researchers to 

TABLE 1    |    An agenda towards a global PAM coverage and network.

Aims Opportunities

Increasing spatial and ecosystemic coverage • Affordable shallow underwater recorders
• Autonomous setups for extreme environments on land
• Explore subterranean realm, dynamic freshwater bodies
• Deploy at high latitude and elevation on land

Increasing temporal and taxonomic coverage • Longer deployments with duty cycles on land
• Cover all seasons in fresh water and on land
• Scale up to inter- annual cycles
• Higher sampling frequencies
• Disabling high- pass filters and triggers

Increasing collaboration • Work interdisciplinarily with speleologists, urban ecologists, soil and 
deep- sea benthic scientists

• Foster international missions to work at large scales
• Collaborate, invest, and fund work with under- represented countries
• Disseminate results in multiple languages

Interoperability • Calibrate equipment and measure detection ranges
• Build accessible and sustainable data repositories
• Design and adopt standards for deployment, reporting, and analysis
• Integrate PAM into biodiversity and remote sensing databases
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maximise frequency ranges (and to broaden diel coverage—see 
above) to enhance interdisciplinary collaboration. In oceans, 
taxonomically untargeted, long, and regular deployments, cou-
pled to large detection ranges, concurrently sample many taxa 
(Lillis and Boebel 2018). Mutual sampling campaigns can share 
resources to mitigate potentially prohibitive equipment, power, 
storage, transportation and post- processing costs (Sousa- Lima 
et al. 2013). Emerging embedded- AI audio detectors may offer 
an alternative to continuous and broadband recording (Höchst 
et al. 2022), but whole soundscape recordings will remain essen-
tial for broader application.

In every realm, ecosystems await acoustic discovery. Except for 
two datasets from aerobic caves and underground streams, we 
currently lack data from subterranean realms (e.g., anthropo-
genic voids, sea caves), while endolithic systems may be the only 
ecosystem for which PAM is probably irrelevant. Access is usually 
challenging or restricted for non- specialists, but subterranean 
biodiversity shows high spatial turnover (Zagmajster et al. 2018). 
Freshwater data were less rare, but several datasets with unrep-
licated sampling could not be included. Temporary, dynamic 
water bodies (seasonal, episodic, and ephemeral ecosystems), al-
though prevalent (Messager et al. 2021), are not yet well studied 
(Table S2), though accessible from land. Notably, aquatic realms 
feature important peculiarities: extraneous sounds from the air 
can be captured in so- called holo- soundscapes in freshwater and 
shallow coastal areas (Rountree, Juanes et al. 2020), and parti-
cle motion (that accompanies sound) impacts aquatic organisms 
(Popper and Hawkins  2018). Advances in soundscape research 
are imminent as the freshwater acoustic research community is 
growing rapidly (Linke et al. 2018). In the oceans, sound propa-
gates comparatively far and multiple biomes can be sampled at 
once (e.g., recorders on the seafloor sample pelagic waters too) so 
that all ecosystems (i.e., functional groups) are covered by at least 
one site. On land, sampling is biased towards biodiverse forests, 
while rocky habitats (young rocky pavements, lava flows and 
screes) and some vegetated temperate ecosystems (cool temper-
ate heathlands, temperate subhumid grasslands) appear poorly 
sampled. Within the IUCN GET framework, soil soundscapes 
also belong to the terrestrial realm, and to date only one spatio- 
temporally replicated dataset is in our database, despite recent 
efforts to record soil soundscapes (Maeder et  al.  2022; Metcalf 
et al. 2024). Soil and benthic habitats may also be sampled with 
geophones to record infrasonic vibrations used to sense the envi-
ronment (e.g., by insects, frogs, elephants, interstitial fauna and 
benthic fish) (Šturm et al. 2022).

Our database highlights well- known global sampling biases 
(Hughes et  al.  2021) which could be resolved with collabora-
tion and communication to remove cultural and socioeconomic 
barriers (Amano et  al.  2016). Technological progress for more 
affordable equipment renders PAM more accessible in lower in-
come countries (Hill et al. 2019; Lamont et al. 2022). However, 
high-  and deep- sea work remains considerably more expensive, 
and tropical developing countries in particular often lack fund-
ing for marine programmes requiring large vessels, underwater 
vehicles or cabled stations on the seafloor (Rountree, Aguzzi 
et al. 2020). Our network currently consists of active members 
from 58 countries. Collaborative projects, such as data compi-
lations, shared sea missions and equipment loans, should pro-
mote the establishment of soundscape research communities 

(Reboredo Segovia et  al.  2020). However, equitable, collabo-
rative efforts will also require capacity- building so that local 
researchers can independently process, analyse, and interpret 
PAM- derived data. Increased international collaboration with 
scientists and local stakeholders supporting citizen science 
(Newson et al. 2015) in heavily underrepresented regions would 
improve not only data coverage but also representation and dia-
logue within the field.

Collaborative soundscape research relies on interoperable data. 
We harmonised metadata with a bottom- up approach leading to 
our global inventory. Comprehensive standards for PAM equip-
ment, deployment, reporting and data analysis are needed for en-
abling comparative, global analyses. However, such standards do 
not currently exist, even though initiatives for the marine realm 
are ongoing (Roch et al. 2016; Wall et al. 2021). Few affordable 
solutions exist for sharing large audio data volumes, underlin-
ing the need for distributed soundscape recording repositories 
(Sugai and Llusia  2019). Marine oil and gas industry projects 
routinely upload data as part of their efforts to mitigate noise im-
pacts on marine animals (Southall et al. 2008), but these record-
ings often focus on frequencies relevant to seismic prospecting 
and access may be restricted (Haver et  al.  2018). Furthermore, 
recording equipment requires calibration (Jarrett et  al. 2024), 
sound detection spaces need to be measured (Darras et al. 2016; 
Haupert et al. 2022), and data privacy must be ensured on land 
(Cretois et al. 2022). In parallel, species sound libraries (Görföl 
et  al.  2022; Looby, Vela et  al.  2023; Parsons et  al.  2022; Xeno- 
canto Foundation 2012) grow and continue to provide invaluable 
acoustic and taxonomic references, without which automated 
soundscape analyses for soniferous organisms would not be pos-
sible. International organisations such as the Global Biodiversity 
Information Facility (GBIF) will be key to roll out standards 
(e.g., Darwin Core) in a top- down manner. For the moment, we 
encourage early planning for archiving data. In the future, the 
Worldwide Soundscapes will interoperate with other databases to 
close remaining coverage gaps and enhance standardisation.

A unified approach to macroecology with PAM is now possible. 
More comprehensive coverage is needed to decisively answer 
research, conservation and management questions that PAM 
can address, so we encourage prospective contributors to cu-
rate their metadata and join our inclusive project. The project 
co- leads assist prospective members, and the project website 
(https:// ecoso und-  web. de/ ecoso und_ web/ colle ction/  index/  
106) provides information about metadata requirements. While 
metadata were previously added to the database after vetting by 
project managers, new features enable contributors to manage 
their meta- datasets (i.e., collections, sites, meta- recordings) di-
rectly online. A large portion of the PAM community is willing 
to collaborate across realms and form global networks. We advo-
cate for a bolder PAM effort to inform the agenda of soundscape 
ecology (Pijanowski, Villanueva- Rivera, et  al.  2011), reaching 
out to places where no sound has been recorded before. The 
research community may open new avenues to study environ-
mental effects on acoustic activity (Desjonquères et  al.  2022), 
social species interactions (Briefer et al. 2024), human- wildlife 
relationships (Lin et  al.  2023), function and phylogeny (Gasc 
et  al.  2013), soundscape effects on human health (Buxton 
et al. 2021), acoustic adaptation and niche hypotheses (Ey and 
Fischer 2009; Hart et al. 2021), macroecological patterns across 

 14668238, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.70021 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [01/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://ecosound-web.de/ecosound_web/collection/index/106
https://ecosound-web.de/ecosound_web/collection/index/106


14 of 20 Global Ecology and Biogeography, 2025

ecosystems (Keith et  al.  2022) and initiate an integrated ap-
proach to noise impacts on wildlife.

PAM is an established method that can be applied over large 
spatial and temporal scales. However, consistent, large- scale 
monitoring of the Earth's soundscapes is direly needed and 
essential to establish baselines for historical trends (Pilotto 
et al. 2020) and quantify rapid changes in biodiversity and natu-
ral systems. Funding schemes should encourage the use of PAM 
in large- scale biodiversity monitoring projects and require the 
submission of expert- vetted soniferous animal detections to plat-
forms such as GBIF (GBIF: The Global Biodiversity Information 
Facility 2024). The initiation of PAM projects linked to the GEO 
BON (Gonzalez et al. 2023; Towards a Transnational Acoustic 
Biodiversity Monitoring Network (TABMON) n.d.) should fur-
ther expand the use and acceptance of PAM. Integrated PAM 
workflows similar to the ‘BON in a box’ framework, which 
already include some marine acoustic projects, would help to 
generate distribution maps and to infer Essential Biodiversity 
Variables for soniferous wildlife, which could underpin the 
evaluation of progress towards threat reduction and ecosystem 
service provision of the Kunming- Montreal Global Biodiversity 
Framework (Batist and Campos- Cerqueira 2023). Soundscapes 
are just beginning to be recognised in legislation as an ecosys-
tem feature to be preserved (Leiper 2020). By building collabo-
rations around the knowledge frontiers identified here, we can 
aim to comprehensively describe and understand the acoustic 
make- up of the planet.

Author Note

The present study has involved people who carried out PAM- based 
studies as primary contributors. Their willingness to be informed 
through a mailing list, responsibility for their metadata, approval for 
sharing the meta- data publicly and willingness to participate in this 
study as co- authors were explicitly stated in an online form- based col-
laboration agreement. Primary contributors who became co- authors all 
fulfilled either data curation (e.g., as providers of structured metadata) 
or project administration (e.g., as principal investigators designing the 
corresponding study) roles and additionally a manuscript revision role. 
They could be corresponding authors for published studies, referred 
contacts for unpublished studies or principal investigators, and were 
asked to identify further primary and secondary contributors of their 
study. Primary contributors could become co- authors, and secondary 
contributors are acknowledged here. Some primary contributors were 
invited as co- leads to expand the network for particular realms or bi-
omes and are listed in the first- tier authors list. Primary contributors 
who provided soundscape recordings in addition to metadata are also 
listed in the first- tier authors list. All primary contributors were asked 
to identify further contacts to reach a comprehensive coverage for the 
database.

Disclaimer

The use of trade or firm names in this publication is for reader infor-
mation and does not imply endorsement by the US Government of any 
product or service. The findings and conclusions in this publication are 
those of the authors and should not be construed to represent any offi-
cial US Government determination or policy.
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