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Abstract Peatlands are significant carbon reservoirs vulnerable to climate change and land use change such
as drainage for cultivation or forestry. We modified the ORCHIDEE‐PEAT global land surface model, which
has a detailed description of peat processes, by incorporating three new peatland‐specific plant functional types
(PFTs), namely deciduous broadleaf shrub, moss and lichen, as well as evergreen needleleaf tree in addition to
previously peatland graminoid PFT to simulate peatland vegetation dynamic and soil CO2 fluxes. Model
parameters controlling photosynthesis, autotrophic respiration, and carbon decomposition have been optimized
using eddy‐covariance observations from 14 European peatlands and a Bayesian optimization approach.
Optimization was conducted for each individual site (single‐site calibration) or all sites simultaneously (multi‐
site calibration). Single‐site calibration performed better, particularly for gross primary production (GPP), with
root mean square deviation (RMSD) reduced by 53%. While multi‐site calibration showed limited improvement
(e.g., RMSD of GPP reduced by 22%) due to the model's inability to account for spatial parameter variations
under different climatic contexts (trait‐climate correlations). Site‐optimized parameters, such as Q10, the
temperature sensitivity of heterotrophic respiration, revealed strong empirical relationships with environmental
factors, such as air temperature. For instance, Q10 decreased significantly at warmer sites, consistent with
independent field data. To improve the model by using the lessons from single‐site optimization, we
incorporated two key trait‐climate relationships for Q10 and Vcmax (maximum carboxylation rate) into a new
version of the ORCHIDEE‐PEAT models. Using this description of spatial variability of parameters holds
significant promise for improving the accuracy of carbon cycle simulations in peatlands.

Plain Language Summary Peatlands store substantial amounts of carbon and are vulnerable to
climate change. To better simulate how peatlands behave, we developed a new version of a computer model
called ORCHIDEE‐PEAT, in which three new types of plants that are specific to peatlands: deciduous broadleaf
shrubs, mosses and lichens, as well as evergreen needle leaf trees were added in addition to previously peatland
graminoids. The model has been used to simulate the CO2 fluxes (gross primary production and net ecosystem
CO2 exchange) of 14 European peatlands. Several important parameters of the model were calibrated for each
individual site (single‐site calibration) and all sites together (multi‐site calibration). The model using single‐site
calibrated parameters exhibited good performance, especially for plant photosynthesis. Furthermore, we found
that the values of calibrated parameters, or traits, varied along with different climate conditions (i.e., air
temperature). Without accounting for this variation of model parameters, modeled photosynthesis and net
ecosystem exchange of CO2 using a single set of parameters for all sites (multi‐site calibration) only slightly
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improved the model performance compared with default simulations. Incorporating the effect of climate on
model parameters, that is trait‐climate correlations, in future model development is necessary to improve model
performance.

1. Introduction
The northern peatlands, spanning an area of 3.5–4.0 million km2 (Gorham, 1991; Turunen et al., 2002; Yu
et al., 2010), occupy 2%–3% of the terrestrial land area and represent a large mass of soil organic carbon (SOC)
ranging from 270 to 540 Pg C (1 Pg= 1015g) (Frolking & Roulet, 2007; Parish et al., 2008; Yu, 2012). The carbon
mass of northern peatland accounts for about one‐sixth of the global total SOC, while there is large uncertainty in
the global total SOC with estimates ranging from 504 to 3,000 Pg C (Scharlemann et al., 2014). Peatlands
represent a long‐term sink of carbon dioxide (CO2) and a source of methane (CH4) (Frolking et al., 2011; Treat
et al., 2019), hence playing an important role in regulating the global climate and global greenhouse gas (GHG)
balance (MacDonald et al., 2006; Mikaloff Fletcher et al., 2004; Smith et al., 2004). Under natural conditions,
peatlands are carbon sinks with an estimated accumulation rate between 0.5 and 1 mm per year since their
formation (Minasny et al., 2019). However, human disturbance and climate change are switching some peatlands
from net sink to the net source of carbon (Leifeld et al., 2019; Leifeld & Menichetti, 2018; Turetsky et al., 2002).
Leifeld et al. (2019) estimated that global peatlands turned from a net sink to a net source of GHGs around the
1960s, due to extensive drainage and land use conversion, particularly in Europe. Moreover, the combined effects
of anthropogenic activities and climate change‐driven changes, such as temperature and precipitation, make the
fate of the large global peatland C stock highly uncertain (Artz et al., 2022; Loisel et al., 2021; Qiu et al., 2021).

Few land surface models (LSMs) for example, LPJ‐GUESS (Chaudhary et al., 2017), PTEM (Zhao et al., 2022)
and HPM (Frolking et al., 2010), incorporated representations of the biogeochemical and physical processes of
peatlands, encompassing the exchange of energy and various substances such as water, carbon, and nitrogen
(Mozafari et al., 2023). Some of these LSMs introduced peatland‐specific plant functional types (PFTs). For those
who employ a unique peatland PFT in the model, the peatland vegetation is treated as C3 graminoids (Chadburn
et al., 2022; Qiu et al., 2018, 2019). While for those who employ multiple peatland PFTs to account for complex
vegetation composition found in peatlands, typically they include graminoids (i.e., grasses, sedges and herba-
ceous plants) and mosses/lichens (Spahni et al., 2013; Wania et al., 2009a, 2009b), and very few consider (dwarf)
shrubs (Zhao et al., 2022; Chaudhary et al., 2017; Frolking et al., 2010) and trees (Bona et al., 2020; St‐Hilaire
et al., 2010; Zhang et al., 2002). The number of PFTs considered in models plays an important role in explaining
carbon and energy fluxes because variations in functional traits across different PFTs lead to distinct responses to
environmental conditions (Dorrepaal, 2007; Kuiper et al., 2014; Laine et al., 2022). It is increasingly recognized
that alterations in vegetation composition significantly impact peatland carbon cycling, and their feedbacks on
future climate change (Robroek et al., 2015, 2016; Walker et al., 2015). Consequently, it is important to improve
the representation of peatland vegetation diversity using the PFT composition in LSMs.

The peatland‐specific version of the Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE)
LSM, known as ORCHIDEE‐PEAT (Qiu et al., 2018, 2019), has been developed to simulate the hydrology,
energy, and carbon cycles of sphagnum dominated peatlands. It has been applied to investigate the responses of
northern peatlands to future climate change (Qiu et al., 2020) and conversion to cropland after drainage (Qiu
et al., 2021). Nevertheless, the previous versions of ORCHIDEE‐PEAT only employed a graminoid PFT based on
C3 grass (Krinner et al., 2005), in which the productivity and rooting depth were reduced, to represent peatland
vegetation (Qiu et al., 2018). Recognizing the need for a more nuanced representation of peatland vegetation, this
study introduces a novel iteration, labeled as ORCHIDEE‐PEAT v.3.0. This updated version incorporates three
additional peatland‐specific PFTs, they are shrub, moss and lichen, as well as tree, providing a more dynamic
representation of peatland vegetation composition. It will enhance the quantification of peatland feedback to
climate change and the accuracy of the global projections concerning the effects of peatland vegetation changes
on the carbon cycle.
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2. Methods
2.1. Model Description

ORCHIDEE‐PEAT (Qiu et al., 2018, 2019) is a specifically developed version of ORCHIDEE‐MICT to simulate
northern peatland dynamics. As a branch of the ORCHIDEE LSM, ORCHIDEE‐MICT features an improved
representation of high‐latitude processes (Guimberteau et al., 2018). An independent hydrological soil tile
(different from tiles with upland grasses and trees) was introduced in the ORCHIDEE‐PEAT model to represent
peatland, incorporating peat‐specific soil hydrology. This tile receives surface runoff from other non‐peatland soil
tiles while maintaining zero bottom drainage flux, and has an additional above‐surface water reservoir that can fill
up with rainfall and added runoff (Booth et al., 2005; Largeron et al., 2017). Moreover, a set of peat‐specific
hydraulic parameters, such as large porosity (0.9 m3 m− 3) and high saturated water conductivity
(2,120 mm d− 1), are used based on field measurements of peat hydraulics (Dawson, 2006; Letts et al., 2000;
Wania et al., 2009a; Wu et al., 2016), which enhance water percolation, storage, and retention in peat soil (Qiu
et al., 2018, 2019). Peatland vegetation is represented by a C3 graminoid PFT, which integrates sedges, grasses
and herbaceous plants. Peat‐carbon decomposition is controlled by soil temperature and moisture conditions. The
model has been tested at both site (v.1.0, Qiu et al., 2018) and regional (v.2.0, Qiu et al., 2019) scales.

Druel et al. (2017) added non‐vascular plants (mosses and lichens), arctic shrubs and arctic C3 grasses into the
ORCHIDEE model (ORC‐HL‐VEG v1.0) to enable a more detailed representation of high‐latitude vegetation,
and analyzed the impact of including these new PFTs on the net and gross carbon fluxes and the surface energy
budgets over the boreal and arctic zone. In this study, to improve the representation of peatland vegetation, the
mosses and lichens, and shrubs parameterizations developed by Druel et al. (2017) are adapted and incorporated
into the ORCHIDEE‐PEATmodel. In addition, one of the sites is dominated by trees (FI‐Let, Section 2.3), and for
parameterizing the peat tree PFT at this site, the same equations as the boreal needleleaf evergreen tree PFT
(Krinner et al., 2005) are used, though the parameters of this new tree PFT of peatland are not optimized in this
study. In summary, the latest version (v.3.0) of ORCHIDEE‐PEAT developed in this study includes four
peatland‐specific PFTs: they are graminoid, deciduous broadleaf shrub, moss and lichen, as well as evergreen
needleleaf tree.

Shrubs share similar biogeochemical and biophysical processes to trees, but grow faster and therefore colonize
landscapes before trees. For the northern high latitudes, a new peatland shrub PFT is parameterized using the same
equations as the boreal deciduous broadleaf tree PFT (Krinner et al., 2005), but with a lower residence time of C in
living tissues and a higher fraction of gross primary production (GPP) lost as growth respiration (Druel
et al., 2017).

As described in Druel et al. (2017), Mosses and lichens have no wood and root, with the biomass of mosses and
lichens being represented by a leaf pool (95%) and a fruit pool (5%). Vascular plants have stomata that regulate
gas fluxes (Ruszala et al., 2011). For non‐vascular plants like mosses, the situation is more complex and diverse
(Chater et al., 2013; Williams & Flanagan, 1996): some species, such as Oedipodium, have “non‐active” stomata
(Ruszala et al., 2011); others, like Sphagnum, have only “pseudo‐stomata”; and some, such as Andreaeobryum,
lack stomata entirely (Haig, 2013). For simplicity and due to the lack of a well‐established photosynthesis model
for non‐vascular plants, mosses and lichens were assumed to have “pseudo‐stomata” (Yin & Struik, 2009). In
addition, most species of non‐vascular plants have been reported to be C3 plants (Aro & Gerbaud, 1984; Bruhl &
Wilson, 2007; Teeri, 1981; Toet et al., 2006). Therefore, the equation used to calculate the stomatal conductance
of C3 plants, based on Farquhar et al. (1980), has been adopted. However, the values of parameters were adjusted
to reduce the dependence of stomatal conductance on vapor pressure deficit (VPD) (Text S1 in Supporting In-
formation S1). Mosses and lichens also have good resistance in cold conditions (Turetsky et al., 2012), which is
considered in the model by prolonging their leaf senescence (Druel et al., 2017). Specifically, the leaf senescence
parameter is 470 days for mosses and lichens (in contrast to 120 days for C3 grass). However, this adaptation
comes with a biomass cost which is modeled through an additional carbon loss based on the cumulative number of
days when Net Primary Productivity is negative or zero (Equation 3 in Druel et al., 2017). During the growing
season, the leaf turnover rate is increased if the leaf area index (LAI) reaches a certain threshold value, because a
thicker moss layer with a higher LAI reduces light penetration to underlying layers (Equation 4 in Druel
et al., 2017). To keep an internal coherence between PFTs and treat the competition for water between PFTs in the
model, mosses and lichens are assumed to only have access to water in the topsoil (about 0.98 mm) through their
leaf‐like structures (phyllids). However, the water content decreases significantly during and after the water stress
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period, thus the photosynthetic capacity will be reduced (Dimitrov et al., 2011; Wania et al., 2009b; Williams &
Flanagan, 1996). To consider this mechanism, a desiccation factor was employed to scale the maximum rate of
carboxylation (Vcmax) as well as the maintenance respiration (Druel et al., 2017).

The moss and lichen PFT and shrub PFT added by Druel et al. (2017) were not specifically parameterized for
peatlands, and significant modifications have been implemented in the model since the publication of
ORCHIDEE‐PEAT version (Guimberteau et al., 2018; Qiu et al., 2018, 2019). Therefore, it is crucial to optimize
and evaluate the model using in situ observations from peatlands to ensure an accurate representation of peatland
vegetation and C dynamics.

2.2. Site Description and Simulation Setup

We assessed the performance of ORCHIDEE‐PEAT v.3.0 in simulating CO2 fluxes at 14 European peatland sites,
including 13 fens and 1 bog (Figure 1 and Table 1). These sites spread from temperate to arctic regions, with their
latitudes ranging from 47.32° to 68.00°N. The long‐term (1981–2020) mean annual temperature (MAT) andmean
annual precipitation, range from − 1.3°C to 12.1°C and 504.6–1346.5 mm, respectively (Table 1). Of these sites,
10 are pristine, two are rewetted (DK‐Skj, DE‐Zrk), and two are drained peatlands (FI‐Let, FR‐LGt). The
vegetation composition varies across sites. For instance, one site (FI‐Let) is covered by trees. Among the seven
sites dominated by graminoids, two sites are entirely covered by graminoids (DE‐Zrk and DK‐Skj), two sites are
covered by a mixture of graminoids and shrubs (CZ‐Wet and DE‐Akm), and the vegetation at the other three sites
consist of mixtures of graminoids, mosses and lichens and/or shrubs. Six sites are primarily covered by mosses
and lichens, followed by graminoids. Shrubs have relatively low coverage except at the DE‐Akm site. The relative
area fraction of each site was estimated based on field measurements or literature and fixed constant in the model.
More details about the vegetation cover at each site can be found in Text S2 in Supporting Information S1.

Quality‐controlled half‐hourly or hourly CO2 fluxes observations including GPP and net ecosystem CO2 ex-
change (NEE), with GPP partitioned by using the nighttime approach (NT, Reichstein et al., 2005), and mete-
orological forcing data including air temperature, wind speed, wind direction, longwave incoming radiation,
shortwave incoming radiation, specific humidity, atmospheric pressure, and precipitation were provided by site

Figure 1. The distribution of 14 sites used in this study. Circles and triangles represent fen and bog, respectively. The dark,
red, and blue marks indicate pristine, drained, and rewetted peatlands, respectively.
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investigators or obtained from ICOS (https://www.icos‐cp.eu/) or FLUXNET (https://fluxnet.org/) networks. For
the data from both ICOS and FLUXNET, the mean GPP and NEE from the nighttime partition method were used,
and the quality flags were used to filter data. For sites where there are gaps in climate forcing variables, 6‐hourly
climate forcing data from the CRU‐JRA 0.5° × 0.5° global data set (Harris, 2023) were linearly interpolated and
corrected to match observations and fill the gaps (Qiu et al., 2018). For precipitation, no correction was applied.
At the sites SE‐Hal, SE‐Ham and SE‐Sto, the longwave incoming radiation is unavailable from 2020 to 2022, thus
the data from the nearby site SE‐Deg, which is less than 3 km from each site, were used. Water table depth (WTD)
was measured at 9 sites (Table 1), and gaps in WTD data were filled using two approaches. For sites where data
gaps occurred due to freezing during the cold season, but observations were continuous during the growing
season, and the water table was close to or above the ground surface during the shoulder season (beginning or end
of the growing season), the missing WTD values were set to 0. For the FI‐Sii site with small data gaps (total gap
<3% of the observed period and these gaps were spread over several periods), gaps were filled by the mean values
of the same period from other measurement years.

We split the observed CO2 fluxes into two parts for model calibration (Section 2.3) and evaluation (Section 2.5),
respectively (Table S1 in Supporting Information S1). For the DK‐Skj (2020–2021) and UK‐Bal (2018–2020)
sites with very large data gaps (Figure S1 in Supporting Information S1), where both calibration and evaluation
require at least one complete year, all available data were used for both calibration and evaluation. For sites with
2–3, 4 to 6, and 7–9 years of observations, the last 1, 2, and 3 years of the observation period, respectively, were
used for evaluation. For the FI‐Lom site with 13 years of observations, the last 4 years of observations were used.
Daily‐averaged observations were used for model calibration and evaluation rather than half‐hourly or hourly
measurements because we focused model optimization on the time scales of seasonal and interannual variability
and avoided the complexity complicated treatment of the error correlations between half‐hourly or hourly data
(Lasslop et al., 2008). Additionally, days with less than 80% half‐hourly or hourly data were excluded.

Table 1
Site Characteristics of the 14 Peatlands Across Europe

Sites Lat Lon Climatic zone Type Period WTD MAT (°C) MAP (mm)

PFT fractions

ReferenceGa S M T

CZ‐Wet 49.02 14.77 Temperate fen, pristine 2020–2021 Y 8.6 599.1 0.8 0.2 0.0 0.0 Mejdová et al. (2021)

DE‐Akm 53.87 13.68 Temperate fen, pristine 2010–2014 N 9.1 578.8 0.5 0.5 0.0 0.0 Bernhofer et al. (2016)

DE‐Zrk 53.88 12.89 Temperate fen, rewetted 2014–2017 Y 9.3 606.8 1 0.0 0.0 0.0 Kalhori et al. (2024)

DK‐Skj 55.91 8.40 Temperate fen, rewetted 2020–2021 N 9.0 837.5 1 0.0 0.0 0.0 Herbst et al. (2011)

FI‐Let 60.64 23.96 Temperate fen, drained 2010–2015 Y 4.9 649.7 0.2 0.05 0.25 0.5 Leppä et al. (2020)

FI‐Lom 68.00 24.21 Boreal fen, pristine 2007–2019 Y − 0.8 504.6 0.33 0.1 0.57 0.0 Aurela et al. (2015)

FI‐Sii 61.83 24.19 Boreal fen, pristine 2018–2021 Y 4.1 612.4 0.26 0.1 0.64 0.0 Aurela et al. (2007)

FR‐LGt 47.32 2.28 Temperate fen, drained 2017–2021 N 12.1 676.1 0.3 0.3 0.4 0.0 D'Angelo et al. (2021)

GL‐NuF 64.13 − 51.39 Boreal fen, pristine 2008–2016 N − 1.3 1088.6 0.5 0.2 0.3 0.0 López‐Blanco et al. (2017)

SE‐Deg 64.18 19.56 Boreal fen, pristine 2014–2022 Y 2.1 640.3 0.44 0.11 0.45 0.0 Noumonvi et al. (2023)

SE‐Hal 64.16 19.55 Boreal fen, pristine 2020–2022 Y 2.1 640.3 0.5 0.07 0.43 0.0 Noumonvi et al. (2023)

SE‐Ham 64.16 19.57 Boreal fen, pristine 2020–2022 Y 2.1 640.3 0.36 0.21 0.43 0.0 Noumonvi et al. (2023)

SE‐Sto 64.17 19.56 Boreal fen, pristine 2020–2022 Y 2.1 640.3 0.37 0.15 0.48 0.0 Noumonvi et al. (2023)

UK‐Balb 56.92 − 3.16 Temperate bog, pristine 2018–2020 N 6.4 1346.5 0.5 0.2 0.3 0.0 Artz et al. (2022)

Note. The columnWTD denotes whether the additional site‐specific calibration, with the water table prescribed to equal observed values, has been performed for the site
(Section 2.4): Y‐Yes, N‐No. The mean annual air temperature (MAT) and mean annual precipitation (MAP) are calculated based on CRUJRA climate forcing data with
0.5° spatial resolution during the period from 1980 to 2020. The PFT fraction indicates the relative area fraction of peat‐specific PFTs for each site. G, S, M and T
represent graminoids, shrubs, mosses and lichens, and trees, respectively. Trees growing in the FI‐Let site is the boreal needleleaf evergreen PFT as described in Krinner
et al. (2005). More details about vegetation cover for each site can be found in Text S2 in Supporting Information S1. aSedges, grasses, and herbaceous plants were
grouped into graminoids in the table. bUK‐Bal is an eroded site, but it is categorized as pristine in the analysis.
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2.3. Model Calibration

We optimized 10 parameters (Table 2) controlling the fluxes of photosynthesis, autotrophic respiration and SOC
decomposition at 14 European peatland sites where we collected eddy covariance observations of CO2 and energy
fluxes (Table 1 and Figure 1). While the ORCHIDEE model incorporates numerous parameters, and many of
these have been optimized at site scales in recent studies (Bacour et al., 2023; Bastrikov et al., 2018; Kuppel
et al., 2014; Mahmud et al., 2021; Santaren et al., 2014), we aimed to maximize model accuracy for GPP and NEE
with fewer parameters that have more direct impact on key equations of photosynthesis and respiration in the
model (Text S1 in Supporting Information S1). This approach reduces computational costs and improves cali-
bration efficiency. Hence, 10 key parameters were selected, comprising nine PFT‐specific parameters and one
PFT‐independent parameter, the Q10 temperature dependence of heterotrophic respiration. The prior values and
ranges of each parameter (Table S2 in Supporting Information S1) were derived from literature data (Druel
et al., 2017; Peaucelle et al., 2019; Santaren et al., 2014) and expert knowledge. It is noteworthy that out of the
nine PFT‐dependent parameters, three parameters (g0, a1 and b1) are specific to mosses and lichens. This is
because mosses and lichens have “pseudo‐stomata” and it is necessary to calibrate the effect of VPD on the
pseudo‐stomatal conductance of mosses and lichens separately from other plant types.

The optimization of parameters to fit observed CO2 fluxes was conducted using the ORCHIDEE data assimilation
system (ORCHIDAS, Peylin et al., 2016). ORCHIDAS is specifically designed to optimize variables associated
with water, energy, and carbon cycles within the ORCHIDEE LSM (Bacour et al., 2023; Kwon et al., 2022;
Salmon et al., 2022). ORCHIDAS relies on the minimization of a cost function employing a Bayesian statistical
formalism (Tarantola, 2005) that expresses the discrepancy between observations and simulations as well as the
difference between the optimized parameter values and the prior information on them, weighted by uncertainties
assigned to both observations and parameters. To minimize the cost function, a stochastic random‐search method,
specifically the genetic algorithm (GA), was employed. The GA, situated within the broader spectrum of

Table 2
Parameters for Model Calibration (All Corresponding Equations Are Given in Text S1 in Supporting Information S1)

Parameter Description PFT

Photosynthesis

Vcmax Maximum rate of carboxylation (Equations S5 and S7 in Supporting Information S1) G, S, M

g0 Stomatal conductance of mosses and lichens at no irradiance (Equation S8 in Supporting
Information S1)

M

a1 Empirical linear slope of the stomatal response to VPD (Equation S9 in Supporting
Information S1)

M

b1 Empirical intercept of the stomatal response to VPD (Equation S9 in Supporting
Information S1)

M

LAImax Maximum leaf area index (Equation S15 in Supporting Information S1) G, S, M

SLA Specific leaf area (Equation S15 in Supporting Information S1) G, S, M

Autotrophic respiration

C0,leaf Maintenance respiration coefficient for leaves (Equation S11 in Supporting Information S1) G, S, M

GRfrac Fraction of biomass allocated to growth respiration (Equation S12 in Supporting
Information S1)

G, S, M

SOC decomposition

τpeat Carbon decomposition rate parameter for peat vegetation (Equation S13 in Supporting
Information S1)

G, S, M

Q10 Temperature sensitivity coefficient of the decomposition rates for all carbon pools (Equation
S14 in Supporting Information S1)

‐

Note. The G, S, and M letters in the column PFT represent graminoids, shrubs, as well as mosses and lichens, respectively.
The default values and ranges for each parameter are shown in Table S2 in Supporting Information S1.
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evolutionary algorithms and inspired by genetic and natural selection prin-
ciples (Goldberg, 1989; Haupt & Haupt, 2004), facilitates the iterative
refinement of the cost function. Further insights into this algorithm can be
found in the study of Bastrikov et al. (2018).

In this study, the model is calibrated against daily‐averaged GPP and NEE
simultaneously, using equal weighting in the cost function. Observation er-
rors were defined as the root mean square deviation (RMSD) between the
observations and the prior model simulation results (Bastrikov et al., 2018;
Kuppel et al., 2014). Two types of calibrations were performed over each site‐
specific calibration period defined in Table S1 in Supporting Information S1:
(a) A single‐site calibration, in which parameters were calibrated to optimize
model performance at each specific location and (b) a multi‐site calibration, in
which a single set of parameters was optimized to optimize model perfor-
mance across all locations at the same time. Both experiments were per-

formed for 50 iterations, aiming to find the lowest cost function employing the model–data RMSD. The prior
uncertainty of the parameter was set to 15% of the range of variation for each parameter following Bacour
et al. (2023). Given correlation between GPP and NEE in field observations because GPP is derived from NEE
after accounting for ecosystem respiration (Reichstein et al., 2005), we assessed the impact of employing all
observed data versus using one daily flux data point per week in the calibration process. Results showed that using
all observed data versus one flux data per week had little effect on NEE and a negligible impact on GPP cali-
bration. For example, at the SE‐Sto site (Figure S2 in Supporting Information S1), the single‐site calibration
employing one data per week led to a slight increase in RMSD for NEE (from 0.31 gC m− 2 day− 1 to 0.36 gC
m− 2 day− 1) and GPP (from 0.31 gC m− 2 day− 1 to 0.32 gC m− 2 day− 1). Thus, in the model calibration, all daily
data during the calibration period (Table S1 in Supporting Information S1) were used.

Water table depth (WTD) is an essential variable controlling the carbon cycle of peatlands (Chen et al., 2021;
Evans et al., 2021; Zou et al., 2022). While it was only recorded at 9 sites (Table 1), we conducted an additional
single‐site calibration for sites where field WTD had been measured. In this extra single‐site calibration, the
observed WTD values were prescribed in the model, which should give more realistic hydrological conditions to
constrain peat decomposition parameters (e.g., Q10).

2.4. Simulation Protocol

Four groups of simulations (S0, S1, S2, and S3) were conducted (Table 3). In S0, the previous version of the
ORCHIDEE‐PEATmodel with only a C3 graminoid PFT to represent peat vegetation, for which parameters were
previously calibrated across 30 northern peat sites (Qiu et al., 2018, 2019). S0 serves as the reference simulation
(hereafter default simulation) used to evaluate modifications of the ORCHIDEE‐PEAT v.3.0 model with multiple
peatland PFTs (S1, S2, and S3). In S1 (multi‐site calibration), parameters were simultaneously calibrated across
all sites, resulting in a single set of parameters. In S2 (single‐site calibration), parameters were calibrated indi-
vidually for each site. In S3 (single‐site calibration with prescribed WTD), the calibration was similar to S2, but
the field observed water table was used to prescribe the simulated water table.

For each simulation, at each site, the model was spun up for 10,100 years, with the pre‐industrial atmospheric CO2
concentration of 285 ppm, repeated site‐specific meteorological forcing, and fixed peat vegetation fractions. The
spin up process comprised two steps: First, ORCHIDEE‐PEAT was run for 100 years to reach the equilibrium for
hydrology and soil thermal conditions, fast carbon pools, and soil carbon input from plants residue. Then a sub‐
model solely of soil carbon dynamics was run for 10,000 years to reach the equilibrium of soil carbon. After the
soil carbon spin up, transient simulations were conducted, forced by repeated site‐specific forcing and rising
atmospheric CO2 concentration from the pre‐industrial level to the beginning of the respective observation period
of CO2 flux listed in Table 1. During the site‐specific calibration period (Table S1 in Supporting Information S1),
parameters related to GPP and NEE in S1, S2, and S3 were calibrated against observations as explained above.

2.5. Evaluation Metrics

For evaluating the model performance of each simulation (Table 3) we used the Pearson correlation coefficient (R,
Equation 1), and the normalized standard deviation (nSD, Equation 2), defined as the ratio between the standard

Table 3
Simulation Protocol

Simulation S0 S1 S2 S3

PFT Unique Multiple Multiple Multiple

Calibration – Multi‐site Single‐site Single‐site

Water table prescription No No No Yes

Note. Unique and multiple indicate that the simulations used only one C3
graminoid peat PFT and multiple peat PFTs, respectively. For the simulation
S0, the parameters have been calibrated by Qiu et al. (2018). Yes or No
indicates whether field observed WTD values were used to constrain peat
decomposition, and this simulation was conducted only at 9 sites where field
observed WTD is available (Table 1).
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deviation of modeled values (SDmodel, Equation 3) to that of observed values (SDobs, Equation 4), and root mean
square deviation (RMSD, Equation 5). Presenting all the results for all sites, Taylor diagrams (Taylor, 2001) were
used to facilitate concise comparisons. These diagrams integrate standard deviation, RMSD, and R, into a single
polar plot, allowing for detailed and intuitive visualization of the precision and accuracy of predictive models
compared to observations. Taylor diagrams provide a clear and efficient way to compare the performance of
different models (Gleckler et al., 2008).

In addition, the Akaike Information Criterion (AIC) (Akaike, 1974) was used to assess the quality of model‐data
fit across different simulations (S0, S1, and S2). Since the simulations involve varying numbers of optimized
parameters, AIC allows for performance analysis while accounting for differences in degrees of freedom (Bazzi
et al., 2024), that is the total number of optimized parameters. In this study, AIC based on weighted least squares
(Equation 6) was employed (Banks & Joyner, 2017).

R =
∑
n
i=1( yi − y) ( ŷi − ŷ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
n
i=1 (yi − y)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
n
i=1 ( ŷi − ŷ)

2
√ (1)

nSD =
SDmodel
SDobs

(2)

SDmodel =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
n
i=1( ŷi − ŷ)
N

√

(3)

SDobs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
n
i=1( yi − y)
N

√

(4)

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
n
i=1 ( yi − ŷi)

2

N

√

(5)

AIC = N ln

⎛

⎜
⎜
⎜
⎜
⎝

∑
n
i=1 wj

− 2 ( yi − ŷi)
2

N

⎞

⎟
⎟
⎟
⎟
⎠
+ 2 ( p + 1) (6)

where yi is the observed flux value, ŷi is the modeled flux value, y is the mean of the observed flux values, ŷ is the
mean of the modeled flux values. N is the total number of simulated flux values, wj is the flux observation un-
certainty, here represented by the variance, and p is the number of optimized parameters.

2.6. Assessment of the Sensitivity of Calibrated Parameters to Bioclimatic Variables

The simulations with single‐site optimized parameters performed well in capturing field‐observed GPP and NEE
at the site scale (S1, Section 3.1). A key question is whether the optimized values of parameters at individual sites
can be heuristically related to environmental conditions, allowing for the definition of new functional relation-
ships or parameterizations that explicitly describe how parameters depend on site‐specific environmental con-
ditions. Such relationships could then be integrated into the model to represent the spatial variations of parameters
and fluxes. To explore this, linear regressions were applied to evaluate the spatial gradients of the calibrated
parameter values across sites in relation to bioclimatic variables, including latitude (Lati), air temperature (Tair),
shortwave downward radiation (SW), and precipitation (PRE). The regressions were performed using the mean
values of the bioclimatic variables computed during the simulation period (Table 1).

3. Results
3.1. Model Performance

The timeseries of observed and modeled CO2 fluxes for four sites (CZ‐Wet, DE‐Zrk, FI‐Sii and SE‐Ham) are
shown in Figure 2 as an example, and the rest can be found in Figures S3 and S4 in Supporting Information S1.
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The single‐site calibrated simulations (S2, red lines) demonstrate substantially improved model performance in
capturing field observations for both GPP and NEE compared to the default simulations (S0, gray lines). As
expected, the multi‐site calibrated simulations (S1, orange curves) display an intermediate performance. This
improvement is particularly visible in the simulated magnitude of GPP. Default simulation significantly un-
derestimates GPP at the CZ‐Wet site, whereas it is overestimated at the other three sites, especially during the
growing season. The multi‐site calibration reduces this discrepancy slightly, but single‐site calibration closely fits
all field observations, particularly at the FI‐Sii and SE‐Ham sites (Figures 2e and 2g). In addition, the improved
vegetation composition leads to better model performance in capturing seasonal variations in GPP and NEE. For
instance, at the SE‐Ham site (Figures 2g and 2h), during the shoulder seasons (the beginning and the end of the
growing season), modeled GPP and NEE from the new model version with multiple PFTs (S1 and S2) accurately
reflect field observations compared to the model version with only one C3 graminoid PFT (S0).

Taylor diagrams are shown in Figure 3, and statistics are calculated using daily data from the evaluation period for
each site in Table S1 in Supporting Information S1. In the default simulations using only one graminoid PFT (S0),
the correlation coefficient (R, Equation 1) between simulated and observed daily GPP ranges from 0.67 to 0.97
(Figure 3), with a mean value of 0.91 ± 0.08 (±σ, standard deviation across 14 sites). This mean R‐value is
smaller than that of the simulations using multi‐site optimized parameters (S1) ranging from 0.60 to 0.99 (mean
R = 0.92 ± 0.10) and using single‐site optimized parameters (S2) ranging from 0.71 to 0.99 (mean
R = 0.94 ± 0.07). A similar pattern is observed in NEE simulations, with mean R‐values of 0.84 ± 0.08 (range:
0.68 to 0.93), 0.88 ± 0.09 (range: 0.68 to 0.98) and 0.88 ± 0.08 (range: 0.70 to 0.97) for the default simulations,
simulations using multi‐site optimized parameters and simulations using single‐site optimized parameters,
respectively (Table S3 in Supporting Information S1).

The normalized standard deviation (nSD, Equation 2) in Figure 3, calculated as the ratio between the standard
deviation of the modeled values (SDmodel, Equation 3) and that of the observed values (SDobs, Equation 4), serves
as a metric for evaluating the model's ability to capture observed variability. A value of nSD greater than 1 in-
dicates that the variability in the simulation exceeds that of the observation (nSD>1), and vice versa. Results show
that, in default simulations, the ranges and mean values of nSD are 0.50–2.35 and 1.32± 0.58 for GPP, and 0.43 to
2.49 and 1.35 ± 0.65 for NEE, indicating that the modeled variability of both GPP and NEE are significantly
overestimated in these simulations. This overestimation, as quantified by nSD, is significantly reduced in the
multi‐site calibrated simulations, with ranges and mean values of nSD are 0.59–1.78, 1.05± 0.38 and 0.50 to 1.57,

Figure 2. Timeseries of gross primary production and NEE for (a–b) CZ‐Wet (c–d) DE‐Zrk, (e–f) FI‐Sii and (g–h) SE‐Ham. The plots have been smoothed by a running
mean with a window equal to 15 days. The gray shading in each plot indicates the period used to calculate evaluation metrics (Table S1 in Supporting Information S1).
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0.97 ± 0.38 for GPP and NEE respectively (Table S3 in Supporting Information S1). In contrast, the single‐site
calibrated simulations exhibit a slight underestimation of the observed variability for both GPP (nSD ranging
from 0.69 to 1.16, mean nSD= 0.94 ± 0.13) and NEE (nSD ranging from 0.53 to 1.07, mean nSD= 0.83 ± 0.16)
(Table S3 in Supporting Information S1).

The RMSD (Equation 5) between modeled and observed GPP reduces by approximately 22% and 53% from the
default simulations of 1.67 ± 0.69 gC m− 2 day− 1 to 1.30 ± 0.67 gC m− 2 day− 1 in multi‐site calibrated simu-
lations, and further to 0.78 ± 0.50 gC m− 2 day− 1 in single‐site calibrated simulations, respectively. For NEE, the
RMSD values decrease by about 23% and 40%, from 0.84 ± 0.29 gC m− 2 day− 1 for the default simulations to
0.65 ± 0.34 gC m− 2 day− 1 and 0.50 ± 0.28 gC m− 2 day− 1 for the multi‐site calibrated and the single‐site cali-
brated simulations, respectively (Table S3 in Supporting Information S1).

We further analyzed the model performance at a yearly timescale, using data from all observed periods. For the
sites with gaps in field observations, we identified a valid year as containing data over at least 339 days in a 365‐
day period. We then aggregated daily fluxes into an annual scale for both modeled and observed data during each
valid year (Table S4 in Supporting Information S1). Finally, we calculated the mean annual fluxes over multiple
years (Figure 4). There was only one valid year was identified for the DK‐Skj and UK‐Bal sites. The GL‐NuF site
was excluded from this analysis due to its field observations being limited to the growing season and having gaps
exceeding 50% each year (Figures S3 and S4 in Supporting Information S1). The single‐site calibrated simula-
tions of annual GPP (mean value = 734.1 ± 407.7 gC m− 2 year− 1) show a better match with observations (mean
value = 711.2 ± 392.9 gC m− 2 year− 1), than the multi‐site calibrated simulations (mean value = 678.8 ± 204.8
gC m− 2 year− 1). In contrast, default simulations significantly underestimated annual GPP at 4 sites (CZ‐Wet, DE‐
Akm, DK‐Skj and FI‐Let) and overestimated GPP at 6 sites (DE‐Zrk, FI‐Sii and the four SE‐sites). For annual
NEE, model performance has the most significant improvement at the DE‐Zrk, FR‐LGt and UK‐Bal sites using
single‐site calibrated parameters. At these three sites, simulations using single‐site optimized parameters match
with observations, indicating that they act as carbon sources (positive values), whereas default and multi‐site
calibrated simulations suggested they are all carbon sinks (negative values). In addition, the multi‐site cali-
brated simulations have better performance at DE‐Akm, FI‐Lom, SE‐Deg, SE‐Hal, and SE‐Sto sites than the
default simulations.

The impact of the water table on the carbon cycle of peatlands has been well‐documented (Chen et al., 2021;
Evans et al., 2021; Zou et al., 2022). In this study, we conducted an additional single‐site optimization experiment

Figure 3. Taylor diagram of (a) gross primary production (GPP) (gCm− 2 day− 1) and (b) NEE (gCm− 2 day− 1) for default (S0,
gray square), multi‐site calibrated (S1, orange diamond) and single‐site calibrated (S2, red circle) simulations. Statistics were
calculated using daily data of the evaluation period for each site (Table S1 in Supporting Information S1). All points were
normalized by dividing the standard deviation of model results by the standard deviation of the corresponding measurements
(nSD, unitless); thus, the reference point is 1.0. Timeseries plots of both GPP and NEE for each site are shown in Figures S3
and S4 in Supporting Information S1, respectively.

Journal of Advances in Modeling Earth Systems 10.1029/2025MS004940

LIU ET AL. 10 of 23

 19422466, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025M

S004940 by Sw
edish U

niversity O
f A

gricultural Sciences, W
iley O

nline L
ibrary on [03/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



at 9 sites where the observed WTD data was available and used directly to force the model (Table 1). When
prescribing the observed WTD, the performance of simulated GPP weakened slightly compared to the standard
single‐site calibration simulations (S2), where WTD is internally simulated by the model. Specifically, the nSD
decreased from 0.96 ± 0.11 (median ± σ) to 0.86 ± 0.11 and the RMSD value increased from 0.41 ± 0.27 to
0.44 ± 0.24 (Figure 5 and Table S3 in Supporting Information S1). Conversely, the model performance for NEE
improved slightly with prescribed WTD. The nSD increased from 0.89 ± 0.17 to 0.92 ± 0.18, and the RMSD
value decreased from 0.42 ± 0.14 gC m− 2 day− 1 to 0.39 ± 0.16 gC m− 2 day− 1. At the annual scale, the
improvement of model performance for NEEwith prescribedWTD is more evident at 5 out of the 9 sites (DE‐Zrk,
FI‐Lom, FI‐Sii, SE‐Deg and SE‐Hal, Figure 4b). This improvement can be attributed to two factors: first, the soil
moisture profile controlling peat carbon decomposition in the model (Equation S13 in Supporting Information S1)
(Ise et al., 2008; Ise & Moorcroft, 2006), and second, the organic matter content and associated hydro‐physical
properties of the soil are directly influenced by the WTD (Ahmad et al., 2020; Górecki et al., 2021). Prescribing

Figure 4. Comparison of observed and modeled fluxes at the annual scale. (a) gross primary production, (b) NEE. The error
bars represent the SD.* indicates the site where field observation has data gaps, and annual fluxes were calculated from the
periods with 365 continuous days (e.g., 20 December 2020 to 19 December 2021 for DK‐Skj site). Periods and total years
used to calculate the mean annual values for sites with gaps are shown in Table S4 in Supporting Information S1. The light
blue bars represent the results from single‐site calibration with prescribed Water table depth (WTD) for 9 sites where field
observed WTD is available (Table 1).

Figure 5. Comparison of modeled gross primary production and NEE between the standard single‐site calibration (S2, red
boxes) and the single‐site calibration with prescribed Water table depth (S3, blue boxes). (a) Pearson correlation coefficient
(R), (b) normalized standard deviation and (c) root mean square deviation. The dark dashed lines in the boxes represent the
median value. Statistics were calculated using daily data of the evaluation period for each site (Table S1 in Supporting
Information S1).
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WTD therefore introduces more realistic variations in soil moisture and water table levels, resulting in a more
accurate simulation of SOC decomposition and accumulation processes.

Compared with the single‐site calibration (S2), which involved optimizing a total of 260 parameter values for the
14 sites, the multi‐site calibration (S1), with only 22 parameters optimized, has a worse performance in simulating
CO2 fluxes. To better evaluate the performance of the model between the default simulation (S0), the multi‐site
calibrated simulation (S1) and the single‐site calibrated simulation (S2), the AIC of weighted least squares (AIC,
Equation 6) shown in Figure 6 illustrates that the single‐site calibration (S2) has higher AIC scores for GPP and
slightly lower scores for NEE compared to the default simulation. This indicates that despite the significantly
increased degree of freedom, results from the single‐site calibration remain robust for NEE, without suffering
from overfitting, but GPP parameters may be over‐fitted. While the single‐site calibration (S2) promotes more
significant performance improvement of the model at each location (Figure 3, Table S3 in Supporting Infor-
mation S1), in regional‐ or large‐scale simulation, a single set of parameters must be used across all locations. The
multi‐site calibration (S1) exhibits the lowest AIC value for both GPP and NEE compared to the other experi-
ments. This indicates that at the scale encompassing all 14 sites, multi‐site calibrated simulation outperforms both
default and single‐site calibrated simulation.

3.2. Spatial Gradients in Optimization Parameters Across Sites

The correlation coefficients (R) of the linear regression between each optimized parameter, obtained from single‐
site calibration, and bioclimatic variables, including latitude (Lati), air temperature (Tair), short wave incoming

Figure 6. Akaike Information Criterion for the default simulations (S0, gray), multi‐site calibrated simulations (S1, orange)
and single‐site calibrated simulations (S2, red) calculated using daily data for (a) gross primary production and (b) NEE. The
numbers beside each bar correspond to the number of parameters optimized for each experiment. Statistics were calculated
using daily data of the evaluation period for each site (Table S1 in Supporting Information S1).

Figure 7. Correlation between calibrated parameters from single‐site calibration and latitude of the site location (Lati), air temperature (Tair), shortwave downward
radiation (SW), as well as precipitation (PRE). The corresponding scatter plots are shown in Figures S5 to S8 in Supporting Information S1. * and ** indicate the
P ≤ 0.05 and P ≤ 0.01, respectively. The G, S, and M represent graminoids, shrubs, and mosses and lichens, respectively.
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radiation (SW), and precipitation (PRE), are shown in Figure 7, and corresponding plots are shown in Figures S5
to S8 in Supporting Information S1. Although most of the regressions revealed non‐significant correlations
(P > 0.05), the regressions provide a basis for analyzing gradient variations among different parameters for each
PFT. Furthermore, it is worth noticing that the gradient patterns involved by both Tair (Figure S6 in Supporting
Information S1) and SW (Figure S7 in Supporting Information S1) could also be attributed to differences in
latitudinal positions, as both SW (R = − 0.93, P < 0.01) and Tair (R = − 0.67, P < 0.01) exhibits a linear decrease
with increasing latitude (Figure S9 in Supporting Information S1).

We found that climatic conditions are influencing parameters related to photosynthesis. The leaf maximum
photosynthesis rate (Vcmax) for three PFTs has a positive correlation with air temperature (Tair) and a negative
correlation with latitudinal position This implies that peatland vegetation trends to have higher Vcmaxwhere there
is higher temperature in lower latitudes, particularly for mosses and lichens which exhibit a stronger positive
relationship between Vcmax and air temperature (Tair) (R = 0.54, P = 0.11) than graminoids (R = 0.12, P = 0.67)
and shrubs (R= 0.18, P= 0.59). While Vcmax has a stronger positive correlation with precipitation (PRE) for both
graminoids (R = 0.41, P = 0.15) and shrubs (R = 0.39, P = 0.21), suggesting that higher precipitation amount
enhances the maximum rate of carboxylation for graminoids and shrubs in peatlands. The parameter of maximum
leaf area index (LAImax) for graminoids exhibits a negative correlation with both Tair (R = − 0.51, P = 0.06) and
SW (R = − 0.41, P = 0.15), and a positive correlation with latitude (R = 0.54, P ≤ 0.05). These correlations
suggest that higher temperatures or light levels decrease the LAImax of graminoids. In contrast, it has the opposite
behavior for shrubs where LAImax shows a positive correlation with both Tair (R = 0.57, P ≤ 0.05) and SW
(R = 0.32, P = 0.31), and a negative correlation with latitude (R = − 0.51, P = 0.09). In addition, it shows a
negative correlation with PRE (R = − 0.51, P = 0.09), implying that excess precipitation may constrain the
LAImax of shrubs. Specific leaf area of graminoids and shrubs, which is a parameter influencing the LAI
(Equation S15 in Supporting Information S1), demonstrates stronger correlations with Tair and PRE than for
mosses and lichens. In particular, the Specific leaf area of graminoids and shrubs show a positive correlation with
Tair (R = 0.54, P ≤ 0.05) and PRE (R = 0.45, P = 0.14), respectively. For the three parameters (a1, b1 and g0)
associated with the stomatal conductance (gs) of mosses and lichens (Equation S9 in Supporting Information S1).
Both g0 and b1 have stronger correlations with bioclimate variables than that of a1. Specifically, the parameter g0,
which defines the baseline stomatal conductance at zero light, shows a positive correlation with SW (R = 0.65,
P ≤ 0.05) and PRE (R = 0.49, P = 0.15), while the parameter b1, which hinders stomatal conductance, also
demonstrates a positive sensitivity to SW (R = 0.34, P = 0.34) and PRE (R = 0.42, P = 0.22). These findings
suggest that the stomatal conductance of mosses and lichens is sensitive to increased light and precipitation
intensity while it may have a complex mechanism in response to climate.

For two parameters (GRfrac andC0,leaf) related to autotrophic respiration. The analysis fromGRfrac, the parameter
defining the proportion of biomass consumed by growth respiration (Equation S12 in Supporting Information S1),
shows that it has a positive correlation with air temperature (Tair) across all three PFTs. This correlation is
particularly strong for graminoids, with a significant positive correlation (R = 0.59, P ≤ 0.05), suggesting that
higher temperatures lead to increased biomass consumption through growth respiration. Conversely, C0,leaf, the
parameter representing the maintenance respiration coefficient for leaves (Equation S11 in Supporting Infor-
mation S1), exhibits less sensitivity to bioclimate variables compared to GRfrac. However, for mosses and li-
chens, both GRfrac and C0,leaf are positively correlated with PRE (R = 0.38 for C0,leaf and R = 0.35 GRfrac,
P ≥ 0.05 for both), suggesting higher precipitation level may enhance autotrophic respiration under warm
condition.

Regarding the parameters controlling SOC decomposition. The parameter τpeat, representing the carbon
decomposition rate for peatland vegetation (Equation S13 in Supporting Information S1), has negative correlation
with Tair and SW for graminoids (R are − 0.44 and − 0.27, P > 0.05 for both) and shrubs (R are − 0.24 and − 0.29,
P > 0.05 for both), indicating that carbon decomposition is faster with increased temperature or light intensity.
The parameter Q10, by which respiration rates increase for a 10°C increase in temperature, is robustly correlated
to both latitudinal position (R= 0.68, P ≤ 0.01) and Tair (R= − 0.58, P ≤ 0.05). Both τpeat andQ10 demonstrate a
strong sensitivity of soil carbon decomposition to temperature across the latitudinal gradient of sites. We remind
that the spatial variations of soil carbon decomposition parameters will imply a different response to future
warming. For example, there may be more CO2 emissions for a unit warming at high latitudes compared to low
latitudes for the same WTD.
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4. Discussion
4.1. Biochemical Mechanisms Reflected From Optimized Parameters

From the single‐site calibration, we observed that, for all PFTs, optimized Vcmax has a positive linear correlation
with air temperature and a negative linear correlation with latitude (Figure 7, Figures S5 and S6 in Supporting
Information S1). This result aligns with findings from Walker et al. (2017), who noted a decrease in Vcmax with
increasing latitude in the Northern Hemisphere, attributing it to nitrogen (N) uptake constraints, which are
influenced by soil carbon and nitrogen recycling, and mean annual temperature. The relationship between Vcmax
and latitude (temperature) identified in our study likely stems from two key factors. First, sites at lower latitudes
have longer growing seasons and higher temperatures, which enhances vegetation productivity (Fang et al., 2003;
Nemani et al., 2003; Piao et al., 2007). Second, higher temperatures increase nutrient availability by promoting
plant litter decomposition and nitrogen release, although litter decomposition is also influenced by soil moisture,
vegetation type, litter quality, and its interactions with temperature (Aerts, 2006; Cornelissen et al., 2007; Gogo
et al., 2016). Since nitrogen is essential for proteins involved in photosynthesis, the photosynthetic capacity is
highly correlated with N availability (Evans, 1989; Takashima et al., 2004; Walker et al., 2014). Although the
nitrogen cycle is not explicitly modeled in ORCHIDEE‐PEAT, the relationship between Vcmax and latitude
(temperature) may indirectly reflect the influence of nitrogen on photosynthesis rates.

Previous studies suggested that autotrophic respiration, comprising both growth and maintenance respirations, is
highly sensitive to temperature variations (Juszczak et al., 2013; Lafleur et al., 2005). This sensitivity is
particularly notable in peatlands with vascular plants which can access deeper water through root systems
(Murphy & Moore, 2010). In contrast, non‐vascular species such as mosses, which lack root systems accessing
deeper water (Nijp et al., 2014), are more responsive to precipitation levels (Porada et al., 2018; Robroek
et al., 2009). Consistent with these observations, our findings show that graminoids exhibit increased biomass
consumption through growth respiration in response to rising temperatures, as evidenced by the positive sig-
nificant correlation between GRfrac and Tair (R = 0.59, P < 0.05) (Figure 7 and Figure S6 in Supporting In-
formation S1). In contrast, growth (C0,leaf) and maintenance (GRfrac) respiration parameters in mosses and
lichens show greater sensitivity to precipitation (R = 0.38 for C0,leaf and R = 0.35 for GRfrac, P > 0.05 for both)
than to temperature (R= 0.1 for C0,leaf and R= 0.34 forGRfrac, P> 0.05 for both) (Figure 7, Figures S6 and S8 in
Supporting Information S1). These results align with the studies cited above, suggesting that autotrophic respi-
ratory responses to environmental factors vary among different functional types of plants.

The constantQ10 values are used in most land surface and dynamic vegetation models, but recent findings suggest
that theQ10may be higher in cold climate regions (Byun et al., 2021; Koven et al., 2017; Peng et al., 2009). In this
study, we found robust negative linear correlation between optimizedQ10 and temperature (R = − 0.58, P < 0.05)
(Figure 7 and Figure S6 in Supporting Information S1), which is consistent with previous work that reports lower
temperature sensitivities of the decomposition of soil organic matter under warmer climate conditions (Fang
et al., 2005; Hilasvuori et al., 2013; Koven et al., 2017; Li, Nie, et al., 2020, Li, Pei, et al., 2020). Several
mechanisms have been identified to explain why Q10 values are lower at higher temperatures, related to
ecosystem thermal acclimation and the lower quality of organic matter. These include biochemical adjustments,
such as the decreasing capacity of microbes to surmount enzyme activation energies with rising temperatures (Ma
et al., 2023; Smith & Dukes, 2013), and structural changes like alterations in community composition or re-
ductions in microbial biomass (Atkin & Tjoelker, 2003; Bradford et al., 2008; Niu et al., 2012). Furthermore,
other studies highlight increasing constraints on substrate availability for decomposers as a significant limiting
factor at warmer sites (Hartley et al., 2009; Ågren & Wetterstedt, 2007). These studies indicate that multiple
mechanisms, each contributing at varying degrees, influence the Q10 dependence on temperature in different
environmental contexts (Davidson & Janssens, 2006; Niu et al., 2021).

4.2. Impact of Incorporating Calibration Derived Trait–Climate Relationships Into the Model

In most LSMs, constant parameter values are used to prescribe trait‐related or process‐related parameters of a
given PFT, derived from discrete observations (Kattge et al., 2009; Reich et al., 2007). This rigid parameter values
overlooks the fact that climate can modulate plant traits in the real world (Maire et al., 2015; Ordoñez et al., 2009;
van Ommen Kloeke et al., 2012; Wright et al., 2005). Consequently, this limitation hinders the improvement of
model performance through generic optimization in large‐scale simulations. This is evident in our results, where
the model did not show significant performance improvement in simulating CO2 fluxes in the multi‐site
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calibration (Figures 2 and 3, Table S3 in Supporting Information S1). To
address this, we use theQ10 andVcmax parameters as examples to demonstrate
that model accuracy at the regional scale can be enhanced by incorporating
trait‐climate relationships diagnosed from single site optimizations. Specif-
ically, the negative linear relationship between Q10 and mean air temperature
(Tair) (Figure S6J in Supporting Information S1, R = − 0.58, P ≤ 0.05), and
the positive linear relationship betweenVcmax and Tair for mosses and lichens
(Figure S6C in Supporting Information S1, R = 0.54, P = 0.11) derived from
the single site calibration simulations were incorporated into ORCHIDEE‐
PEAT v.3.0, and an additional set of simulations across 10 sites, where
there is mosses or lichens growth (Table 1), have been conducted, in which
the multi‐year mean air temperature from the observation period for each site
was used to define the relationships (Table 1).

The results show that for those 10 sites, the performance of the model is
improved when the two trait‐climate relationships are incorporated. Specif-
ically, the RMSD of GPP and NEE are decreased from 1.08 ± 0.36 gC

m− 2 day− 1 (median ± σ) to 0.85 ± 0.42 gC m− 2 day− 1 and from 0.52 ± 0.22 gC m− 2 day− 1 to 0.44 ± 0.27 gC
m− 2 day− 1, respectively (Table 4). In addition, regarding annual GPP and NEE (Figure S10 in Supporting In-
formation S1), with data from 9 available sites (Table S4 in Supporting Information S1), the results show
improved performance for annual GPP at 7 of the 9 sites (Figure S10A in Supporting Information S1). This
improvement is less pronounced for annual NEE, with only 7 out of 9 sites having the right sign of simulated
annual NEE after optimization (Figure S10B in Supporting Information S1). At two sites (FR‐LGt and UK‐Bal),
the inclusion of trait‐climate relationships in the model optimization led to NEE being annual carbon sinks
(negative values, Figure S10B in Supporting Information S1), whereas single‐site calibrated simulations (S2) and
observations indicated carbon sources as observed (positive values, Figure 4b). This bias arises because NEE is
calculated by subtracting autotrophic and heterotrophic respirations from GPP. While incorporating trait‐climate
correlations improved processes GPP, additional trait‐climate relationships controlling autotrophic and hetero-
trophic respirations were not included in this experiment, contributing to observed discrepancies for mean annual
NEE. Furthermore, the optimization focused on fitting daily flux variability, and despite improvements, residual
errors in daily values were significant enough to cause deviations in mean annual NEE from observed data. We
outline here that we do not aim to force the model to simulate annual NEE but to fit daily value.

In summary, these results underline the feasibility and importance of including trait dependencies on climate into
LSMs. Such integration is essential for accurately modeling ecosystem dynamics across temporal and spatial
scales, as well as their response to global drivers such as climate, elevated CO2 and nutrient fertilization (Atkin
et al., 2015; Hartig et al., 2012; Kroner & Way, 2016; Reich et al., 2016).

4.3. Impact of WTD on SOC Decomposition Parameter

Soil moisture, which is correlated to WTD, is a crucial factor indirectly affecting the optimization of the tem-
perature sensitivity of SOC decomposition (Q10 in the model) in peatlands (Byun et al., 2021; Davidson &
Janssens, 2006; Fairbairn et al., 2023; Wang et al., 2006). Across 9 sites where field observed WTD data are
available, the observed multi‐year median WTD ranges from − 39.8 to 47.4 cm (negative value indicates water
table is below the soil surface), while modeled WTD ranges from − 24.5 to − 1.9 cm. The modeled WTD (mean
value= − 7.8± 7.6 cm) is generally lower than that of field observation (mean value= − 0.9± 20.8) for the 9 sites
(Table S7 in Supporting Information S1). Results from our single‐site calibration show that, after prescribing
WTD with field observations, the value of optimized Q10 (Q10,prescribe, mean value = 1.76 ± 0.53) is generally
smaller than that from the standard single‐site calibration (Q10,model, mean value = 3.82 ± 1.92), in which
internally simulated WTD is used (Table S7 in Supporting Information S1). This finding aligns with previous
studies which showed that lower soil moisture or lower WTD tends to increase the Q10 of peat decomposition
(Hardie et al., 2011; Szafranek‐Nakonieczna & Stêpniewska, 2014), especially at the SE‐Deg and SE‐Ham sites,
where modeled WTDs were significantly lower than field observations, Q10,model are more than two times larger
than Q10,obs (Table S7 in Supporting Information S1). Moreover, at the individual site scale, especially for the 7
pristine sites, the optimized Q10 increases as the corresponding WTD decreases (Figure 8), consistent with
findings that drier conditions (i.e., lowerWTD) enhance the temperature sensitivity of SOC decomposition (Chen

Table 4
Statistics of Root Mean Square Deviation (Median± σ, Unit: gC m− 2 Day− 1)
Between Field Observations and Simulations for Gross Primary Production
(GPP) and NEE Across 10 Sites, Where There is Mosses or Lichens Growth
(Table 1)

Variable

RMSD

Multi‐site Multi‐site‐new

GPP 1.08 ± 0.36 0.85 ± 0.42

NEE 0.52 ± 0.22 0.44 ± 0.27

Note. Statistics were calculated using daily data of the evaluation period for
each site (Table S1 in Supporting Information S1). Multi‐site represents the
simulations using multi‐site optimized parameters (S1). Multi‐site‐new
represents simulation using multi‐site optimized parameters and the devel-
oped model which incorporates correlations betweenQ10, mosses' Vcmax and
Tair.
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et al., 2018; Liu et al., 2024). It suggests that under the trend of peatlands drying from natural climate change in
some areas (Swindles et al., 2019; Xi et al., 2021) and global warming (Cook et al., 2014), CO2 emissions and
evapotranspiration (ET) from peatlands are likely to increase (Grosse et al., 2011; Helbig et al., 2020). Peatland
rewetting, achieved by raising the water table close to the surface, is advocated as a viable strategy for curbing
CO2 emissions from peatlands when the water table is no more than 20 cm from the ground surface (Evans
et al., 2021). The correlation between WTD and the optimized Q10 (Figure 8, Table S7 in Supporting Infor-
mation S1) suggests that peatland rewetting could additionally mitigate climate change by lowering Q10 values
under wet conditions.

4.4. Uncertainties and Outlook

Degradation (e.g., drainage) and restoration (e.g., rewetting) will lead to changes in hydro‐physical properties of
peatland (Liu et al., 2020; Menberu et al., 2016; Morris et al., 2011; Wang et al., 2021), results in different GHG
exchange than pristine peatlands (Laine et al., 2019; Renou‐Wilson et al., 2019; Zou et al., 2022). In this study, 2
rewetted (DK‐Skj, DE‐Zrk) and 2 drained (FI‐Let, FR‐LGt) sites were included in the calibration, together with
10 pristine sites, which brings uncertainties on the multi‐site calibration results (S1). To address this bias,
additional multi‐site calibration was conducted, in which only the 10 pristine sites were used. The results show
that there was no significant difference between the multi‐site calibration using all sites (S1) and the one using the
10 pristine sites only (Table S8 in Supporting Information S1). For GPP (and NEE), the average R, nSD and
RMSD are 0.92 ± 0.12 (0.89 ± 0.09), 1.16 ± 0.39 (0.98 ± 0.38), and 1.26 ± 0.71 (0.61 ± 0.39) gC m− 2 day− 1

respectively for multi‐site calibration using all sites, and 0.93± 0.12 (0.90± 0.08), 1.20± 0.37 (0.99± 0.38), and
1.17 ± 0.59 (0.62 ± 0.39) gC m− 2 day− 1 respectively when using the 10 pristine sites only. This indicates that
improving the vegetation description of the ORCHIDEE‐PEAT improved the model's performance in simulating
CO2 fluxes of peatlands. Moreover, for simulations at the European scale using ORCHIDEE‐PEAT v.3.0, multi‐
site optimized parameters from this study may be a suitable approach, especially in the region with little
disturbance.

From the single‐site calibration, we found trait (parameters)‐climate relationships (Figure 7, Figures S5‐S8 in
Supporting Information S1). However, only 10 important parameters were calibrated in this study. Considering
that ORCHIDEE includes a significantly larger number of parameters, it would be worthwhile to test the opti-
mization of more parameters and consider more sites in the future to further explore trait‐climate relationships and
underlying mechanisms. Additionally, among the 14 peatlands used in this study, 13 are fens and only 1 is bog.

Figure 8. Correlation between optimized Q10 from single‐site calibration and corresponding Water table depth (WTD).
(a) Optimized Q10 (Q10,model) with model internal simulation WTD (b) optimized Q10 (Q10,prescrib) with field observed
WTD. Median WTD is the multi‐year mean water table for each site and the negative value represents the water table below
the ground surface. Solid dark and dashed orange lines represent the linear regression for the 9 data points and 7 data points
that excluded FI‐Let (drained site, modeled and observed multi‐year median WTD are − 14.9 and − 39.8 cm, respectively)
and DE‐Zrk (rewetted site, modeled and observed multi‐year medianWTD are − 6.8 and 47.4 cm, respectively), respectively.
The regular and bold text are correlation coefficients and corresponding p‐values for linear regressions for all data points and
7 data points, respectively. The colored shadings represent the 95% confidence interval. The values of each data point are
shown in the Table S7 in Supporting Information S1.
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Bogs rely primarily on precipitation for water supply, making them nutrient‐poor (ombrotrophic) and highly
acidic, whereas fens are fed by groundwater or surface runoff, which provides mineral‐rich water, making them
nutrient‐rich (minerotrophic) and typically neutral to slightly alkaline pH (Golovchenko et al., 2007; Keller
et al., 2006). These differences significantly influence plant communities and ecological characteristics (Aerts
et al., 1999; Pedrotti et al., 2014; Weltzin et al., 2000). Therefore, the predominance of fens in this study may limit
the representativeness of the calibration for bogs, which needs to be further implemented in future work.

Compared with the standard single‐site calibration (S2), our single‐site calibration with prescribed WTD from
field observations (S3) shows slightly improved performance (Figure 5 and Table S3 in Supporting Informa-
tion S1). Prescribing WTD also led to differences in optimized parameter values (Tables S5 and S6 in Supporting
Information S1), particularly Q10, defining the temperature sensitivity of SOC decomposition. The mean values
of optimizedQ10 across the 9 sites are 3.82± 1.92 and 1.76± 0.53 for prognostic WTD and for prescribedWTD,
respectively (Table S7 in Supporting Information S1). Furthermore, although a detailed site‐specific calibration
of soil hydro‐physical parameters was not performed, because no site data on soil porosity, compaction, and
lateral water influx, was available except for water table, we acknowledge the fact that the long termWTD can be
similar between sites with different porosities although its seasonal and interannual fluctuations could differ, so
that prescribing the WTD in simulations correct implicitly for unresolved soil hydrological parameters differ-
ences between sites.

5. Conclusion
This study developed a new version of the ORCHIDEE‐PEATmodel (v.3.0) by incorporating three new peatland‐
specific PFTs, namely deciduous broadleaf shrub, moss and lichen, as well as evergreen needleleaf tree in
addition to previously peatland graminoid PFT. Simulated GPP and NEE have been evaluated at 14 European
peat sites. The parameters involved in photosynthesis, autotrophic respiration, and carbon decomposition for
graminoids, shrubs, and mosses and lichens, as well as stomatal conductance‐related parameters for mosses and
lichens, were calibrated individually for each site (single‐site calibration) and across all sites (multi‐site cali-
bration). The results showed that the single‐site calibration exhibited notable agreement with field observations,
with a gradient pattern in calibrated parameter values primarily attributed to latitudinal differences. In compar-
ison, multi‐site calibration yielded limited improvements compared with the simulation with default parameters
due to the neglect of trait‐climate correlations in the model. This study is a step forward in providing a more
accurate representation of peatland vegetation cover in ORCHIDEE‐PEAT. Future developments should include
more peatland‐specific PFTs, such as boreal evergreen trees, tropical evergreen trees, and tropical raingreen trees.
Additionally, incorporating trait‐climate correlations into the model is warranted to enhance the reliability of
quantifying peatland feedback to climate change, thereby improving the accuracy of global projections con-
cerning the effects of peatland vegetation changes on the carbon cycle.

Data Availability Statement
The ORCHIDEE‐PEAT model (Liu, 2024) used in this study is open‐source and distributed under the CeCILL
(CEA CNRS INRIA Logiciel Libre) license. It is deposited at https://forge.ipsl.jussieu.fr/orchidee/wiki/Group-
Activities/CodeAvalaibilityPublication/ORCHIDEE‐PEAT_V3. Alternatively, the model, alongside the field
data used in this study including meteorological forcing, field observed CO2 fluxes and WTD, and the
ORCHIDEE data assimilation system (ORCHIDAS), is accessible (Liu, 2025) via Zenodo at: https://doi.org/10.
5281/zenodo.14605345.
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