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ABSTRACT
We investigate the potential of a new citizen science paradigm that facilitates 
collaborative learning between humans and artificial intelligence (AI). Recognising the 
potential of AI to support and empower rather than replace human participation, we 
explore the integration of image recognition as a ‘dialogic AI partner’ in citizen science 
(CS) projects, interacting with participants in real time. We study this in the context of 
a biodiversity monitoring project that relies on volunteers to identify biological species 
from images taken in the wild. Guided by the idea of Bakhtin’s dialogism and Bayesian 
inference principles, we developed a web interface that integrated an image recognition 
model, fine-tuned for classifying 22 UK bumblebee species, into an interactive interface 
based on visual feature keys to enable real-time dialogue between humans and AI. We 
report a significant improvement in identification accuracy for both humans and AI when 
they engage in such dialogue and retain the ability to reach independent conclusions 
rather than achieve consensus. Given the inherent need for convergence in decision-
making within scientific processes such as species identification tasks, we augmented 
the dialogic process with a Bayesian model that unifies potentially divergent human and 
AI perspectives post collaboration to achieve a more accurate consensus decision than 
that achieved by either AI or citizens. Our work provides new understandings around the 
design of a dialogic space for CS practice that effectively builds on the complementary 
strengths of human and AI visual recognition approaches.
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INTRODUCTION

The integration of artificial intelligence (AI) technologies into 
society has raised significant concerns about the potential 
replacement of human effort and consequent de-skilling of 
individuals. These concerns are similarly expressed within 
citizen science (CS) communities, where the increasing 
utilisation of AI for data collection and analysis poses 
the risk that valuable skills and knowledge traditionally 
developed by volunteers may diminish (Sambasivan and 
Veeraraghavan 2022). However, alongside these concerns, 
AI integration also offers opportunities for enhancing 
CS projects by not only processing and analysing large 
datasets, but also by introducing novel methods for public 
participation, thus enriching the volunteer experience 
and fostering deeper engagement. This can lead to a 
potentially transformative shift in public engagement 
with scientific research. We propose that a human-AI 
collaborative partnership may be central to this integration. 
Here, we report the findings of a study conducted in the 
context of biodiversity monitoring that included the use 
of a specific AI for image recognition. We assessed the 
particular role this played in supporting and empowering 
the collective efforts of citizen science volunteers engaged 
in collaborative species identification activities. 

BACKGROUND
Biological recording has a long history of utilising efforts 
from the general public to record and identify biological 
species for use by science and society (Pocock et al. 2015; 
Silvertown 2009). This field faces unique challenges; For 
instance, the UK alone is home to over 70,000 species, many 
of which are not well known to the public beyond familiar 
groups like mammals or birds (Hopkins and Freckleton 
2002). Furthermore, environmental change further 
necessitates continuous monitoring, as species distributions 
are ever-changing (Pimm et al. 2014). Central to effective 
monitoring is the ability to accurately identify species, a 
task that requires familiarity with species observation and 
recording, as well as problem solving and decision-making 
skills. Recent AI advancements are fuelling interest in 
human-AI collaboration for tasks like species identification 
(Memmert and Bittner 2022; Palmer et al. 2021; Truong and 
Van der Wal 2024) as automated image recognition plays 
a crucial role, both in lab environments and in CS projects 
involving photo submissions, highlighting the integration of 
technology in traditional practices (Martineau et al. 2017; 
Horn et al. 2018). However, in CS projects, AI predictions 
are presented to the participants as either suggested or 
likely identifications (Truong and Van der Wal 2024), with 
no meaningful collaboration with participants around the 
task, thereby limiting opportunities for learning within such 

projects. Moreover, effective use of image recognition for 
photos by CS participants is further challenged by technical 
issues like inconsistent image quality and biases affecting 
less common species. Addressing these issues through 
effective interaction design for human-AI collaboration is 
thus important to help improve data quality for ecological 
research and also enhance learning and engagement 
within CS initiatives. 

The introduction of technology is often associated 
with concerns of deskilling and disempowerment (Rafner 
et al. 2022a). Hence, as we integrate more sophisticated 
technologies into CS, it is important to address new 
concerns and explore how AI can augment, rather than 
diminish, the skills of volunteers. For volunteers, the 
honing of identification skills is a key motivator of species 
recording (Ellis 2011; Sharma et al. 2019). Hence, designing 
technology that provides opportunities for learning for 
humans as well as machines is crucial. 

To address such concerns, we offer a productive point 
of departure by drawing on emerging conceptions in 
AI literature, suggesting that AI technologies are best 
integrated as complementary to human input for decision-
making tasks (Steyvers et al. 2022). Such an approach 
aims to improve efficiency but also increase volunteer 
engagement in citizen science projects by preserving 
opportunities for unexpected, serendipitous findings 
(Trouille et al. 2019). Hence, in practice, AI technologies 
can be designed as partners capable of collaborating 
with human participants to enhance their experience and 
learning. While human-AI collaboration through dialogue 
is largely well established in language-based applications, 
such as through conversational agents and large language 
models (LLMs) like ChatGPT, its application to visual tasks 
for biodiversity conservation remains largely unexplored. 
This includes human-AI dialogues in the context of visual 
tasks such as species identification from images. To 
address this, we draw upon a prior project in biodiversity CS 
to examine the potential for collaboration between human 
participants and AI technologies in CS with a framework 
derived from the linguistic tradition of dialogism. Our 
approach combines ideas of dialogism (Bakhtin 1984) and 
Bayesian inference as applied within CS (e.g., Siddharthan 
et al. 2016). By designing AI as a dialogic partner in visual 
tasks, we aim to create a richer, more interactive dialogue 
between human participants and AI systems, enhancing 
learning and improving species identification.

HUMAN-AI DIALOGUE FOR CITIZEN SCIENCE 
PRACTICE 
Human-AI collaboration has been envisioned since the 
late 1950s through the work of Ashby on cybernetics and 
intelligence amplification (Ashby 1957), Licklider’s concept 
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of man-computer symbiosis (Licklider 1960) and Englebart’s 
vision of augmenting human intellect (Engelbart 1962), 
all advocating systems that promote human-computer 
cooperation for societal benefit. This idea has further 
evolved into concepts like extended intelligence, hybrid 
intelligence, and collective intelligence (Dellermann et 
al. 2019; Peeters et al. 2021; Clark and Chalmers 1998). 
Although mainstream research has primarily focused 
on computer-supported human collaboration across 
disciplines (Dillenbourg 1999; Jeong and Hmelo-Silver 
2016; Ludvigsen et al. 2021), advancements in machine 
learning have brought into focus the role AI tools can 
play in augmenting human decision-making in real-world 
settings (Reverberi et al. 2022; Tejeda et al. 2022).

As AI becomes more integrated in society, new models 
of knowledge co-production may be required to guide 
the design of interactive systems, fostering rich, multi-
perspective interactions between AI and users. To this end, 
the framework of dialogism, first introduced by Mikhail 
Bakhtin, focuses on the emergence of meaning through 
a dynamic interaction of multiple voices or perspectives 
while maintaining independence within a conversation. 
In citizen science communities, knowledge creation can 
be considered as a collaborative dialogue among diverse 
participants from across a gradient ranging from expert 
to non-expert (Bakhtin 1984; Stahl et al. 2014; Trausan-
Matu, Wegerif, and Major 2021). Adopting this concept, 
we aim to integrate AI as an independent voice in citizen 
science processes, utilising its analytical capabilities and 
unique data-driven insights to enrich the dialogue beyond 
what human participants can achieve themselves. This 
independent voice can be crafted through a carefully 
designed dialogic space to facilitate real-time, meaningful 
exchanges between humans and AI. As Wegerif and Major 
(2019) argue, while AI lacks human qualities, its ‘ontological 
ambivalence’—when designed and presented as an 
independent voice or a dialogic partner for language-based 
applications—allows it to simulate engaging dialogues 
with humans (Wegerif and Major 2019). The intentional 
design of these interactions and underlying technology is 
crucial as it ensures that AI does not merely function as an 
automated tool but can act as a dynamic participant that 
enhances dialogic interactions. This approach demands 
careful design and specific affordances in interactive 
settings to accommodate computer-supported human-
AI interactions, ultimately leading to an expansion of the 
dialogic space (Wegerif 2024).

In our study we facilitate these interactions between 
AI and human users through the development and 
assessment of an interface for identifying bumblebee 
species, a visual task that requires the critical skill of 
comparing and contrasting specimens with similar 

features. In this context of identifying species, exchange 
and evaluation of different viewpoints facilitates divergence 
and convergence of opinions, negotiation, self-reflection, 
and inference (Trausan-Matu, Wegerif, and Major 2021; 
Sharma et al. 2022). This method is especially effective 
in tasks like species identification, where distinguishing 
visual features between similar species is essential. By 
simulating a multivocal approach, participants can be 
guided to look closely and evaluate these features by 
taking into account different perspectives, thus enhancing 
their identification skills (Ellis 2011). Interacting with AI 
in this manner may prompt participants to attend to 
visual features that might have been initially overlooked, 
and encourage them to move beyond their inherent 
biases by considering alternative suggestions and details 
highlighted by AI models. This approach likely fosters 
richer collaboration and improved outcomes, enhancing 
both learning and data quality (Rezwana and Maher 
2022). 

 Given the inherent need for convergence within 
scientific processes, we further focus on consensus-based 
decision-making based on the outcomes of human and 
AI participants, especially if the participants come to 
different decisions. We study decision-making processes 
where human and AI participants individually arrive at 
their decisions and, post collaboration, we apply Bayesian 
consensus modelling to integrate these decisions (Mugford 
et al. 2021; Siddharthan et al. 2016). Bayesian reasoning 
updates probabilities based on prior knowledge and new 
evidence, and it aligns well with dialogic principles as 
a pragmatic method for integrating diverse inputs in a 
structured manner. This statistical method is particularly 
relevant in scientific tasks that require continuous 
integration of new evidence, echoing the dialogic idea that 
knowledge evolves and that understanding is shaped by 
new evidence (Holquist 2002). By employing a Bayesian 
framework, we facilitate a methodological integration 
of diverse contributions for collective decision-making in 
CS. This approach fosters an environment where multiple 
perspectives are valued, each contributing uniquely to the 
consensus-building process. 

Drawing on empirical findings from a CS project, we 
investigate how AI, integrated as a dialogic partner within 
citizen science processes, enhances learning and decision-
making on visual identification tasks. We demonstrate 
that interactions between humans and AI integrated with 
a Bayesian consensus model not only improves individual 
and collective performance but also leads to more 
accurate outcomes than decision-making involving human 
participants and AI alone. Through this investigation, we 
contribute to the field of CS by advancing science practice 
and learning through a human-AI dialogue, and further 
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quantify the effectiveness of such collaboration for CS 
practice. 

METHODOLOGY

In this section, we describe our collaborative learning 
environment where an AI system for automated image 
recognition provides predictions for human users to 
support the task of species identification from images, 
and where—crucially—the user can input visual features 
to constrain AI predictions. We expect that this process of 
visual collaborative dialogue, which fosters cooperation 
and exchange of information, can lead to improved species 
identification accuracy by both AI and human users. 
Next, we describe the development of the AI system, the 
interfaces utilised for species identification tasks, the forms 
of dialogue that users and AI enter into, and who makes 
the final decision.

AI DEVELOPMENT
We first describe the development of the deep learning 
models for the automated species classification task. 

Dataset
We used the BeeWatch dataset (Van der Wal et al. 2016) 
for fine-tuning the AI model described. The dataset consists 
of UK records of 22 bumblebee species submitted with 
images through an online platform by citizen scientists. 
Each record was verified with the help of bumblebee 
experts (Siddharthan et al. 2016). A bumblebee record 
could include multiple photographs of the species, as 
different angles help capture the relevant features needed 
for identification. The dataset consisted of a total of 21,688 
images having 24 classes (22 UK bumblebee species and 
two further classes: not-a-bumblebee and not-identifiable-
from-images).

Network architecture and implementation 
We used the Inception V3 architecture for model training 
(Szegedy et al. 2016), which was state of the art when we 
deployed it in June 2020. To understand how the dynamic 
of collaboration is impacted by the quality of AI, we 
analysed results for human-AI collaboration separately for 
cases in which AI performed well and for cases where it 
performed poorly.

Specifically, we used the Inception V3 model (Cui et al. 
2018) trained on the iNaturalist dataset (Horn et al. 2018), 
and then used transfer learning to optimise for our task. 
We used TensorFlow Hub, which provides pre-built AI 
models (without the top classification layer) to adapt an 
existing model to our specific needs. This technique, known 

as transfer learning, allowed us to train this model on the 
BeeWatch dataset. The open-source Tensorflow was used 
to train the model (Abadi et al. 2016). A MacBook Pro 2.3 
GHz Intel Core i9 processor with a dedicated Radeon Pro 
Vega 20 GPU was used. We trained the model using the 
Adam optimizer with a learning rate of 0.001 (Kingma 
and Ba 2014). A batch size of 200 images was used with 
image augmentation using random rotation of 40 degrees, 
horizontal flip, and vertical flip. The data was split into 
80% training and 20% validation set at the record level, 
to avoid correlated images (e.g., different images of the 
same specimen) crossing training and test sets. A total of 
17,371 images were used for training, and 4,317 (19.9%) 
were used for validation. We report a model accuracy of 
51.9% (the percentage of images where the top prediction 
by the model is correct), and top-3 recall of 69.5% (the 
percentage of images where the correct answer is in the 
top 3 predictions). Inception V3 has performed well with 
accuracies of over 90% on bumblebee species in other 
datasets (Spiesman et al. 2021). However, it is important 
to highlight that these datasets are usually not balanced, 
dominated by a smaller number of species that are easier 
to distinguish and generally have higher quality images 
than submitted on BeeWatch, which engages members of 
the general public rather than naturalists. It is worth noting 
here that common species are arguably of less interest 
for biological monitoring, and monitoring rare species is 
challenging with AI because their majoritarian bias typically 
results in these being mislabelled as common species (Koch 
et al. 2022). Our method encourages proper consideration 
of rarer species and shows the value of collaborative 
approaches, which could benefit other challenging groups 
such as fungi. 

INTERFACES DESIGN
We compared two different interfaces for species 
identification tasks, described below. For the control, 
users performed the identification tasks using an 
interactive identification key (Figure 1). For the human-AI 
collaboration interface, AI predictions were integrated into 
this identification key (Figure 2). The interfaces were co-
designed with regular inputs from two bumblebee experts 
who tested them iteratively to improve the design and 
workflow.

Interactive key
This interface provides users with an image to identify 
(left), an interactive key (middle) and the full list of possible 
species (right), as depicted in Figure 1. Users can examine 
the visual features of the bumblebee in the image (e.g., 
sequence of stripes on the thorax) and select matching 
ones from the interactive key. The system then filters 
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out (by shading) bumblebee species that do not have 
those features. Users can modify their choice of filters 
and mouse-over a bumblebee species to see its detailed 
visual description and focused tips on distinguishing it from 
similar species. At the end, they can submit any species 
from the list, even those greyed out that do not match the 
selected filters. Similar types of keys are commonly made 
available to citizen scientists for nature recording purposes, 

for example, the interactive keys on iSpot, Discover Life, and 
Butterfly Conservation identification tools for butterflies 
and moths, and the Royal Society for the Protection of Birds 
(RSPB) bird identification tool. The interaction using this 
interface is largely univocal and user driven. It restricts the 
system’s responses to the user’s input via a responsive and 
logical interface, with no external prompts or guidance. 
This design inherently limits the interface to unidirectional 

Figure 1 Interactive identification key. Bumblebee image (left), feature filters (middle), and bumblebee species (right). The feature filters 
can be used to shade out incompatible species. Detailed description of any species can be viewed by moving the mouse over the species.

Figure 2 Interactive identification key with AI predictions. This figure shows the Bumblebee photo (left), feature filters (middle), 
bumblebee species (right), and AI predictions (top). The top 3 AI predictions are shown at the top of the species list with clickable tips 
to distinguish them. The feature filters can be used to change the top 3 AI predictions in addition to shading out the species choices not 
corresponding with the feature filters.
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communication, focusing solely on the user’s decisions and 
maintaining a single-voiced interaction throughout the 
identification process (Wegerif 2008).

Human-AI collaboration interface
We designed the human-AI collaborative interface as a 
dialogic space to foster real-time dialogue between humans 
and AI. The interface, depicted in Figure 2, shows the 
bumblebee images and an interactive key augmented with 
dynamic AI-generated species predictions. In this interface, 
the user and AI enter an interactive visual dialogue. AI 
provides visual predictions for the three most likely species, 
displayed at the top-right, accompanied by detailed 
explanations on distinguishing features, as illustrated in 
Figure 2. These predictions serve as visual prompts that can 
initiate divergent or convergent viewpoints with respect to the 
user’s beliefs. The user can help AI revise these by inputting 
visual features using the identification key. Each time the 
user selects a feature, the interface filters out AI predictions 
if they do not match the selected features and picks the 3 
highest-probability remaining species consistent with the 
user’s feature selections. The features selected can be either 
similar or different from the ones they can observe from the 
AI predictions, and hence supports divergent and convergent 
interactions initiated from the user. However, the updated AI 
predictions converge towards only the user’s feature selection. 
At the end, the user can choose to accept one of the AI 
predictions or submit a different species entirely, by scrolling 
down to select any species, as before. The interaction this 
interface supports is simultaneous between the participants, 
with both the AI and the user expressing opinions grounded 
in prior beliefs. The interface also provides an opportunity for 
divergence (from the user’s perspective) and convergence 
of opinions through negotiation and self-reflection, and the 
dialogue modality permits both the user and AI to modify 
the other’s decision. The goal of the interaction is to support 
a dialogue, and both the user and AI can come to different 
outcomes post collaboration. This interface thus supports 
polyphony more completely than the interactive key.

After completing an identification task using either of the 
interfaces, users were shown a popup (Figure 3) informing 
them if they were correct, and automatically generated 
feedback was provided to help improve their identification 
skills (Van der Wal et al. 2016). With reference to dialogism, 
this feedback process introduces multi-vocality, whereby 
the previously hidden voice of the expert is introduced to 
confirm the correct identification and support learning on 
the task through feedback.

DECISION-MAKING 
The interface for human-AI collaboration requires the 
user to submit the final decision on the species. A key 

issue to consider is whether this leads to the most 
accurate species identification, for example, when the 
user and AI arrive at different identifications. We report 
results for three methods for assigning the final say: (i) 
Always letting the user have the final say, as already 
imposed by the interface, (ii) always letting AI have 
the final say, but taking into account the user’s views, 
and (iii) combining the evidence from the user and AI 
identifications in a Bayesian framework that also models 
the biases in the dataset to determine the most likely 
identification.

User has final say: This is the standard setting on the 
platform, whereby the user submits the identification 
after considering the filtering through the keys and the 
suggestions from the AI.

AI has final say: We designed a method to allow the 
AI the final decision, after taking into consideration the 
identification by the user. We implemented rules to identify 
the top prediction of the AI that is visually compatible with 
the user’s identification as follows:

1. The 22 bumblebee species were manually clustered 
into 5 distinct sets that shared visual features in the 
identification key. This approach grouped together 
visually similar species, and we would expect the 
correct identification to be within the cluster containing 
the user’s identification.

2. The species-level identification by a user was mapped 
to one of the five sets.

Figure 3 Natural language generated (NLG) texts providing 
feedback on an incorrect user identification.
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3. The top 3 species-level AI predictions were also each 
mapped to one of the 5 sets.

4. The user-mapped set was matched to the top 3 AI-
mapped sets in order and if any of them matched; then 
that AI predicted species-level identification was used 
as the final identification. If none of the top 3 predicted 
sets matched, the user’s species-level identification 
was used as the final identification.

Bayesian method to integrate identifications: In this 
method, we select the species with the highest odds of 
being the correct identification, given the evidence from 
identifications by the human user and the AI. Consider 
Bayes’ rule in odds notation:

 
( ) ( ) ( ) ( )L L1 n 1| , , = × | × × | nO H E E O H H E H E… …  (1)

 
( ) ( )

( )
L i

i
i

P |
where | =

P | ¬

E H
H E

E H
 (2)

These are the conditional odds O for a hypothesis H, 
given independent evidence E1 to E𝑛. The hypothesis H in 
this context is a possible species identity. Each evidence 
E𝑖 comes from an identification by a human or AI. The 
odds depend on O(H), the prior odds of the hypothesis H 
(as not all species are equally abundant in our data set, 
a priori some are more likely than others before we have 
seen any identifications from human or AI), and Λ terms, 
each of which updates the existing odds for H based on 
the incoming evidence E𝑖. Intuitively, the conditional odds 
for a hypothesis H increase when the numerator of the 
term in (2), the likelihood of seeing this evidence E𝑖 for the 
hypothesis H, is high and the denominator, the likelihood 
of seeing this evidence E𝑖 for alternative hypotheses, is low.

We estimate the prior odds and the Λ terms from a 
confusion matrix of species identifications by users and 

the AI versus the correct identifications, as determined by 
taxonomic experts within BeeWatch. A Laplace smoothing 
function is used to add a count of one to each cell of the 
matrix, to account for previously unseen evidence, and to 
prevent the denominator in (2) being zero (cf. Siddharthan 
et al. 2016 for details of method). In this article, we consider 
two sources of evidence, E1 and E2, the identifications 
provided by a human user and the AI, and select the 
species H with the highest odds O(H |E1, E2) .

STUDY DESIGN
We collected data “in the wild” through an online CS 
platform (https://plantingforpollinators.org/). Participants 
did not need to provide any information about themselves 
or their skill levels to participate. Data was collected in 
each case through usage of a training tool for bumblebee 
identification that allowed participants to identify a 
sequence of bumblebee images using one of the interfaces. 
The training tool for bumblebee identification was initially 
designed in 2014, using the interactive key interface 
(Figure 1). Participants could practise their identification 
skills on initially one dataset, with a second set added 
in 2019. The interactive key interface was replaced in 
2020 with the two-way dialogue interface for human-AI 
collaboration (Figure 2), though there was a highly visible 
option for users to turn AI off or back on at any point. For 
the human-AI collaboration interface, participants were 
not informed about AI’s accuracy during the study to 
mirror CS practice, in which AI accuracy of a classification 
may be unknown to the user. 

Image datasets
The training tool offered two image datasets for species 
identification (Table 1). The Easy dataset was created 
in 2014 with the tool’s first version and consisted of a 
selection of 49 curated images by bumblebee experts. 

EASY DIFFICULT

DATE CREATED 05/2014 03/2019

No. of images 49 35

No. of species (max. 22) 12 21

No. of users 849 105

No. of users who used the human-AI collaboration interface 48 62

No. of identifications 13949 1649

No. of identifications with two-way dialogue (human-AI collaboration) 765 931

No. of identifications with AI turned off by user 155 161

No. (and %) of images with AI prediction not in Top 3 8 (16%) 10 (29%)

Table 1 Characteristics of the two datasets resulting from online use of the identification tools.

https://plantingforpollinators.org/
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These images were submitted by citizen scientists 
during a two-week period within the bumblebee season, 
predominantly including common species and relatively 
fewer species overall. This dataset was tailored for 
training novices on species which they may encounter 
in their everyday settings. The dataset was available 
for a longer period and a considerably higher number 
of users attempted this dataset using the interactive 
key. The Difficult dataset comprised a careful selection 
of 35 images to include almost all the bumblebee 
species (21 out of 22 possible). It was created to provide 
comprehensive species training and hence also included 
rare and very rare species. As the name suggests the 
Difficult dataset was of higher difficulty than the Easy 
dataset and may be targeted for training proficient users 
such as naturalists. 

Data analysis
By comparing the interfaces, we assessed whether 
the collaboration of users with AI resulted in increased 
accuracy. For these comparisons, we analysed data at 
the level of individual identifications; i.e., where each data 
point represents a single instance of a user interacting 
with the interface to identify a species. The dependent 
variable was user accuracy, modelled as a binary outcome 
by comparing the user-submitted identification with 
the expert identification (correct = 1, incorrect = 0). We 
utilised a generalized linear mixed model with the “glmer” 
function from the lme4 package (Bates et al. 2015) using 
R statistical software (v.4.0.4; R Core Team 2021), with 
Interface type and Dataset as fixed effects and User and 
Image as random intercepts to account for variability 
among different users and unique characteristics of each 
image. We also compared human performance in the 
study with the accuracy of the AI on that set of photos, 
and the accuracy of the AI when assisted by the user as 
described previously.

To understand how the quality of AI predictions affected 
accuracy, we also separately analysed images in which the 
correct answer was in the top 3 AI predictions shown to 
the user and images in which the correct answer was not 
in the top 3 AI predictions. There were 8 images out of 49 
in the Easy dataset and 10 images out of 35 in the Difficult 
dataset, where the top three AI predictions did not include 
the correct answer (Table 1).

To assess how the interface and AI prediction quality 
affected engagement, we analysed the time taken for 
identification. We focused on 2,892 records from 2019 
onwards, when the Difficult dataset was introduced to 
the platform. After excluding 10 records where users 
had been inactive for between 5 minutes and 18 hours, 

indicating they had left the interface to do something else, 
2,882 records were considered. A linear regression model 
was fitted to assess whether dataset type and type of AI 
assistance (no AI assistance, with AI and correct answer in 
top 3, with AI and correct answer not in top 3) influenced 
the time users spent on their tasks.

RESULTS

EFFECT OF INTERFACE AND DATASET TYPE ON 
ACCURACY (2 INTERFACES, 2 DATASETS)
We found a significant improvement in accuracy when 
the human-AI collaborative interface was used to 
identify species (β = 0.486, SE = 0.1191, z = 4.082, p < 
0.001), showing that the collaboration with AI improved 
human performance. Additionally, the choice of dataset 
significantly impacted accuracy outcomes, with the Easy 
dataset leading to higher accuracy (β = 0.9289, SE = 0.3103, 
z = 2.994, p < 0.01). The mean human accuracy without AI 
assistance was 64.4% for the Easy dataset and 46.7% for 
the Difficult dataset (Figure 4). Similarly, automated image 
recognition was successful in 58.5% of photos for the Easy 
dataset and 45.4% of photos for the Difficult. The human-
AI collaborative interface significantly outperformed the 
interactive key, which relies on interactions initiated by 
the user. Overall performance comparison across the two 
datasets, that is, Easy (49 images, 849 participants) and 
Difficult (35 images, 105 participants), revealed that the 
two-way dialogue improved accuracy of both participants 
(+3.8% Easy; +12.5% Difficult, relative to using the interface 
without AI) and the AI model (+18.9% Easy; +5% Difficult, 
compared with the original AI prediction).

It seems reasonable to assume that the collaboration 
with AI helps users more when the AI predictions are 
accurate, and users need just choose one of the answers 
from the top three predictions. For each dataset, we 
investigated images separately when the correct answer 
was in the top 3 predictions and when the answer was not 
in the top 3 predictions. 

For the images where the correct answer was among 
the top 3 AI predictions, the average accuracy for these 
images improved from 65% (interactive key) to 69% 
(human-AI collaborative interface) for the Easy dataset 
and substantially from 50% (interactive key) to 65% 
(human-AI collaborative interface) for the Difficult dataset 
(see Table 2).

When the correct answer was not in the original AI top 
3 predictions, the collaboration still improved accuracy for 
the Easy dataset. For this dataset, the humans (like the 
AI) found these images substantially harder irrespective 
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of interface (accuracy dropping from 65–59% to 35–41%). 
For the Difficult dataset, human accuracy was the same 
irrespective of interface for images when the AI predictions 
were originally wrong, and interestingly, these accuracies 
were relatively high even though the AI found these images 
hard and failed to predict the correct answer in its top 3. 

Analysing the time taken to complete the identification 
revealed that dataset type significantly affected task time 
(p < 0.001), with the Easy dataset (24.6% faster) taking less 
time than the Difficult. AI assistance did not significantly 
affect task time, with the users taking 31.25 seconds on 
average using the interactive key and likewise with the 
human-AI collaboration interface when the correct answer 
was not in the top three predictions. When the correct 
answer was in the top 3 predictions, the average time to 
completion was 28.63 seconds. 

EFFECT OF FINAL DECISION (HUMAN, 
ARTIFICIAL INTELLIGENCE, BAYESIAN 
CONSENSUS)
The dialogic nature of the human-AI collaboration through 
our interface offers the possibility for the user and AI to 
arrive at different decisions. However, for practical reasons, 
the expected outcome of an identification task is usually 
a final decision on one of several possible species. As 
described previously, this final decision can be determined 
in three possible ways: the user’s decision after utilising 
AI’s input (which is implemented within the interface as a 
submit button), AI’s decision after utilising the user’s input, 
or a Bayesian method, which combines these identifications 
from AI and the user to arrive at a decision. Figure 5 shows 
that over the combined dataset, the Bayesian method 
(results reported over the full dataset using 10-fold cross-

Figure 4 Performance across different image datasets for longer-term use by users. In comparison, the accuracy of automated image 
recognition over these images was 58.5% for the Easy dataset and 45.4% for the Difficult dataset.

CORRECT ANSWER IN ORIGINAL AI TOP 3 CORRECT ANSWER NOT IN ORIGINAL AI TOP 3

INTERACTIVE KEY HUMAN-AI COLLABORATION 
(HUMAN DECISION)

INTERACTIVE KEY HUMAN-AI COLLABORATION 
(HUMAN DECISION)

Easy 65% 69% 35% 41%

Difficult 50% 65% 59% 59%

Table 2 Accuracy of the user for images when the correct answer is in the original top 3 predictions of the AI, and when it is not.
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validation) provides the highest accuracy of 66%. The 
results indicate that the Bayesian method is indeed useful 
for building consensus as opposed to delegating the final 
decision to either a human or AI. This consensus building 
is thus a continuation of the dialogic process. The Bayesian 
method has the advantage that we can filter out images for 
which we have particularly low confidence in identification. 
For example, if we only accept consensus identifications for 
which the odds are greater than 1 (indicating the case in 
which one species is more likely than all the other species 
together), then we are able to identify 91.8% of the images 
in the combined dataset with an accuracy of 70.3%.

DISCUSSION

CS processes have emerged as a practice to engage the 
wider public in scientific activities, both as a means to 
enhance public understanding but also to foster public 
participation in issues—such as biological conservation—

that are deemed relevant to wider society (Irwin 1995). This 
reframing of scientific research towards open knowledge-
production processes has been crucial in developing 
participatory models of CS, which recognises various levels 
of participation, from experts to non-experts, within groups 
and communities with varying levels of knowledge, and 
participants possessing a range of skills and familiarity with 
research (Conrad and Hilchey 2011; Haklay 2013; Shirk et 
al. 2012). Drawing on a Bakhtinian lens, we have further 
expanded the idea of participation by proposing a view of 
CS as a dialogic space inviting contributions from people 
with different levels of expertise, which may be expressed 
through a multi-modality of registers and forms. This space 
typically ranges from monologic interactions, exemplified 
by crowdsourcing and contributory projects (Haklay 2013), 
to dialogic interactions as they occur in collaborative 
projects (Shirk et al. 2012) and community-based 
monitoring groups (Conrad and Hilchey 2011). Although 
less common in CS practice, interactions can be further 
classified as carnivalesque, where traditional boundaries 

Figure 5 Final decision accuracy comparison after human-AI collaboration. The graph shows the average accuracies for each dataset 
individually and for a combined dataset, and for situations in which the final decision is taken by a human (taking AI suggestions into 
consideration), by AI (taking human decisions into consideration), and by the Bayesian method, deriving consensus from these two 
human and AI identifications.
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between stakeholders diminish, as seen in Extreme Citizen 
Science (Haklay 2013), collegial contributions (Shirk et al. 
2012), and community led and funded community-based 
monitoring groups (Conrad and Hilchey 2011).

In this frame, technology has already played and 
continues to play a central role in facilitating interactions 
between scientific experts and the broader public, illustrated 
in large-scale projects such as eBird and Zooniverse for 
species monitoring and data classification tasks, and on 
platforms like iSpot and iNaturalist for creating online 
biological recording communities. However, as AI becomes 
integral to various facets of society, there emerges a need 
to further explore its integration within such communities. 
Here, we suggest that CS, with its diverse applications 
and participatory models, provides an ideal setting for 
such explorations. We interpret the interactions between 
humans and AI in CS as multi-voiced, or polyphonic, 
showcasing a novel framing of dialogism for CS practice.

Building on this concept, this paper introduces a novel 
application of dialogism to a visual modality, rather than 
a linguistic one, expanding the interactive capabilities of 
AI in enhancing human decision-making processes in CS. 
We exemplify this by incorporating AI into the species 
identification process, designing it as a dialogic partner. 
This AI system prompts users to consider the top three 
predictions, enabling them to refine their decisions and/or 
alter the AI predictions based on visual features observed. 
This interaction occurs through an interface that serves as a 
dialogic space to maximise the complementary capabilities 
of humans and AI, that is, human expertise in visual 
features analysis and AI pattern recognition at the pixel 
level. We found that such an interactional setting, which 
supports a dialogue through complementarity, improved 
identification outcomes for both human participants 
and AI models across datasets of varying difficulty. The 
results highlighted that the collaboration benefited both 
humans and AI, but in different, complementary ways. For 
the easier dataset with more common species reflecting 
real-world settings, collaboration allowed AI accuracy to 
improve considerably whereas human accuracy saw a 
modest increase. In contrast, for the difficult dataset, AI 
gains were much smaller but human accuracy increased 
substantially. Interestingly, users benefitted from the 
dialogue even when AI did not initially offer any correct 
identifications. Since AI was introduced on the platform, 
we found that not many participants turned off the AI 
predictions and that most identifications were submitted 
in collaboration with AI (83.2% in the Easy dataset and 
85.3% in the Difficult). Additionally, the engagement data 
showed no significant difference in the time taken across 
interfaces and regardless of whether the correct answer 
was among the top three predictions. These results indicate 

that while the user engagement with the identification 
process remained similar, the performance improved 
through collaboration with AI. It appears that when AI 
is correct, users engage with the interface to validate AI 
predictions. Conversely, when AI predictions are incorrect, 
users collaborate to arrive at a decision, which leads to 
better learning processes in both scenarios. These results 
highlight a critical role played by AI as a learning partner, 
helping users validate identifications in some cases and 
supporting critical reflection in other cases.

However, our implementation also highlighted the 
challenges of maintaining true multivocality in a CS setting, 
which often involves maintaining a balance between 
data quality (independent classifications) and citizen 
learning. Although the interface allowed for an exchange 
of perspectives, it guided users towards converging on 
a single, ideally correct identification. This suggests a 
tension between the dialogic principle of maintaining 
multiple voiced interactions and the practical necessity 
of converging on a decision, an expected scientific 
outcome (Riesch and Potter 2014). We developed these 
consensus-building processes using Bayesian modelling 
to integrate conclusions from humans and AI participants 
into a combined decision, a technique increasingly utilised 
across human-AI collaboration research in other domains 
(Steyvers et al. 2022; Reverberi et al. 2022). This method 
outperformed the decisions made by either AI or humans 
alone, demonstrating its effectiveness in unifying diverse 
perspectives. The Bayesian method brings a novel form 
of vocality as it expands the dialogic space to include 
methods and voices beyond the originally intended 
participants, and generates expertise by highlighting 
consensus, continuing the dialogic process. Additionally, 
the Bayesian method provides a framework to include any 
additional sources of evidence available, such as through 
additional human participants or different AI predictions. 
All these are useful outcomes for CS practice. However, a 
limitation of the Bayesian method is its inherent design 
to converge on a simplified conclusion, which contrasts 
with the multivocal nature of dialogism. Despite the 
convergence, preserving multiple opinions within the 
dialogic space remains valuable in biological classification 
processes as it can maintain traceability, transparency, 
and accountability, while also yielding practical outcomes 
and new research directions for projects. For instance, on 
the BeeWatch project platform, images with diverging 
volunteer classifications (often poor-quality images, rare 
species, or other pollinators such as solitary bees) have 
been automatically referred to experts for classification 
when they fail to meet a consensus threshold. Additionally, 
this dataset with diversity of volunteer opinions has been 
useful for exploring new consensus-building models 
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(Siddharthan et al. 2016) and collaboration techniques 
between volunteers (Sharma et al. 2022). Finally, keeping 
dissenting opinions can also be useful for science when 
revisiting historical data or considering new evidence, for 
example, when searching for new or non-native species. 

The interfaces explored here illustrate how AI can be 
designed to simulate active participation in CS processes to 
move away from mostly univocal to multivocal interactions 
even in visual modalities, leading to improved performance 
and learning. There are additional roles that AI can play in CS 
processes involving individual participants, wider community 
members, multimodal AI systems, and domain experts. We 
contextualise these roles from the perspective of Legitimate 
Peripheral Participation (LPP) (Lave and Wanger 1991), 
in which a novice engages with these processes through 
legitimate participation such as training or observation, and 
through continued interaction and learning, gradually moves 
towards more central roles within the community. During 
initial engagement and training, AI models and systems can 
support individual learning by providing tailored feedback 
on practice classifications, catered specifically to novice 
participants. AI could take on a “learning partner” role, 
offering guidance and explanations during the identification 
process. It could also simulate an expert voice by delivering 
insights on volunteer classifications through multimodal 
feedback like highlighting key visual features. Additionally, 
AI could serve as a facilitator, mediating communication 
between novices and more experienced volunteers or 
scientific experts, keeping track of evolving skills. As 
volunteers develop their skills through practice, there is 
opportunity for increased engagement in more complex 
collaborative tasks like analysing real scientific data. In this 
phase, AI’s participation can significantly enhance the data 
processing workflow. AI could be integrated as an additional 
participant, making classifications while also facilitating 
consensus-building by combining different human and AI 
perspectives using techniques like Bayesian modelling. AI 
systems as facilitators could streamline communication 
with experts when conflicts need resolution. With sustained 
involvement, novices can transition to taking on central 
expert roles themselves within the community, diminishing 
traditional hierarchies. Here, AI could continue collaborating 
through advanced analyses while also strategically 
identifying areas where human experts or experienced 
volunteers could provide valuable contributions based on 
their prior work. Facilitated by AI, these participants could 
engage in more open-ended, peer-driven dialogues and 
real-time collaboration, fostering the vibrant exchange of 
ideas aligned with dialogic principles.

While citizen science projects often explore human-
AI collaboration focused on interactive machine learning 
to improve model performance (Rafner et al. 2022b; Willi 
et al. 2019), our study underscores the importance of 

facilitating true two-way interaction between humans and 
AI for learning tasks like species identification. This dialogic 
approach not only enhances identification accuracy and 
consensus-building by integrating human intuition with AI 
pattern recognition, but also helps address ethical concerns 
around de-skilling participants. Involving participants in 
identification tasks, even if they can be easily performed 
by AI models, helps develop connectedness with nature 
and provokes interest in socio-ecological issues such 
as biodiversity loss and climate change, and can lead to 
attitudinal change and positive action (Sharma et al. 2019; 
Deguines et al. 2020). 

Central to our work is a transformative shift in CS 
practice, highlighting a dialogic space for human-AI 
collaboration to enhance scientific outcomes and learning 
experiences. We achieve this by transcending traditional 
dichotomies, neither proposing AI as a tool or solution, nor 
viewing participants as experts or lay. By fostering a dialogic 
interaction, we aim to create a more inclusive and engaging 
citizen science participation that has the potential to better 
address complex environmental challenges.

CONCLUSIONS

We have unfolded how dialogic collaboration can play 
out between humans and AI around a biological species 
identification task. We found that a two-way dialogue 
between AI and the human user improved accuracy over 
either acting alone. With respect to Bakhtin’s dialogism, 
our developed collaborative space supported a polyphony 
of distinct voices and prior beliefs, allowing for different 
species identifications by AI and human participants. 
We further examined which participant should make the 
final identification, considering its practical and ethical 
implications with regards to how new knowledge is validated 
and by whom. We found that the best results are achieved 
by deriving post-collaboration consensus from the decisions 
of the AI and the human using a Bayesian framework, thus 
highlighting the potential of this approach for designing 
effective human-AI collaborative spaces guided by dialogism 
and Bayesian inference. Our application of dialogism to 
visual interfaces rather than linguistic ones is novel, and 
our evidence suggests that when used in combination 
with Bayesian ideas, they offer a framework for human-
AI collaboration research in decision-making and scientific 
inquiry. Their focus on prior beliefs and dialogic consensus-
building offers a mixed-method approach to encourage the 
formation of new communities of practices for participatory 
learning in CS and conservation practices. While our findings 
are derived from a specific image identification task and our 
interface thus implemented visual methods, we suggest 
that our approach can be applied to wider CS applications 



13Sharma et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.735

to broaden participation and engagement through the 
integration of explainable AI and interactive, language-
based generative AI models. Through our research, we 
therefore advocate and call for further research that 
incorporates a multimodal dialogic space design in order to  
cultivate participatory and inclusive citizen science. 
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