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Cladoceran Chydorus sphaericus and Colonial Cyanobacteria:
Potentially a Toxic Relationship?
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Abstract: Chydorus sphaericus is often a dominant cladoceran zooplankton species in wa-
ter bodies experiencing harmful cyanobacterial blooms. However, its relationship with
toxin-producing algae remains largely unexplored. In this study, the feeding behavior of
C. sphaericus on colonial cyanobacteria and potentially toxic Microcystis was investigated
in a temperate, shallow, eutrophic lake. Liquid chromatographic analyses of phytoplank-
ton marker pigments in C. sphaericus gut content revealed that pigments characteristic
of cyanobacteria (identified a zeaxanthin, echinenone, and canthaxanthin) comprised the
majority of its diet. Among them, colonial cyanobacteria (marked by the pigment can-
thaxanthin) were the highly preferred food source despite their minor contribution to
phytoplankton biomass. qPCR targeting Microcystis genus-specific mcyE synthase genes,
which are involved in microcystin biosynthesis, indicated that potentially toxic strains of
Microcystis were present in C. sphaericus gut content throughout its temporal and spatial
presence in the lake. The results suggest that the common small cladoceran in eutrophic
waters, C. sphaericus, has a close trophic interaction with colonial cyanobacteria (including
Microcystis) and may represent an important vector for transferring toxigenic Microcystis to
the food web, even under conditions of low Microcystis biomass in the lake water.

Keywords: Chydorus sphaericus; Microcystis; aquatic food web; in situ feeding

Key Contribution: In situ feeding of a common small-bodied cladoceran, Chydorus sphaericus,
in cyanobacteria-bloom-dominated lakes revealed its close trophic interactions with colonial
cyanobacteria. Due to its feeding behavior, this species may facilitate an important transfer
of toxin-producing Microcystis to higher trophic levels in the food web.

1. Introduction

In recent decades, toxic cyanobacterial blooms in freshwater systems worldwide have
increased in both frequency and severity [1]. Colonial cyanobacteria, such as Microcystis
spp., are often among the genera that form the harmful algal blooms [2]. These cyanobacte-
ria form large gelatinous colonies composed of small coccoid cells. The aggregates, often
larger than 50 pm, are generally inedible or poorly edible due to their size, interference
with feeding, and the production of toxic metabolites, such as microcystins [3,4]. Although
this type of grazing resistance is rather effective, zooplankton have developed strategies
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to overcome these negative effects, such as smaller size, selective feeding, and resistance
to toxicity, reviewed by Moustaka-Gouni and Sommer [5]. Despite their potential toxicity,
cyanobacteria often represent the largest pool of algal biomass in eutrophic waters and
serve as food for various zooplankton, including protozoa, such as Paramaecium sp. [6,7],
rotifers [8], cladocerans [9], and both calanoid and cyclopoid copepods [10,11]. These
grazers differ in their feeding rates, ability to select for cyanobacteria [12,13], and survival
and fecundity on potentially toxic cyanobacteria [14], leading to variable interactions with
this phytoplankton.

Furthermore, recent research [15] has evidenced that copepod gut microbiota (Acar-
tia bifilosa and Eurytemora affinis) can effectively break down microcystins, providing an
adaptive mechanism for feeding on toxin-producing cyanobacteria during blooms. While
cyanobacterial grazing is often viewed as a potential biological control measure against
toxic cyanobacteria, in aquatic ecosystems, the ingested toxic cells are simply ‘packed and
ready’ for zooplanktivorous predators (predatory zooplankton and fish), potentially caus-
ing further contamination problems in food chains. Therefore, to understand the complex
interactions between toxin-producing cyanobacteria and zooplankton, further research on
grazer species co-occurring with cyanobacterial blooms is essential.

Regarding feeding and survival on cyanobacteria, cladocerans are among the most
studied zooplankters, particularly the planktonic genus Daphnia [16,17]. Research has
shown that the large, generalist-feeding Daphnia can be severely impaired by potentially
toxic cyanobacteria and tend to decrease or disappear with deteriorating water quality
due to eutrophication and bloom formation [18-20]. Relatively less attention, however,
has been paid to species that co-occur or increase in abundance during cyanobacterial
blooms, such as C. sphaericus. C. sphaericus is one of the small-sized cladocerans that often
appears as a common plankter in eutrophic waters in which extensive cyanobacteria blooms
are prevalent [21,22]. Unlike other chydorid species inhabiting littoral zones, it is well
adapted to a planktonic lifestyle, using mats or filaments of algae, including cyanobacteria,
as its substratum [23,24].

Analyses of numerous lakes across the gradient of trophic states in Europe and the USA
have indicated that the dominance of C. sphaericus is linked to eutrophication and higher
levels of chlorophyll a [25-27]. The abundance, dominance among zooplankton, and body
size of C. sphaericus are suggested as good bioindicators for environmental conditions and
trophic status [26,28,29]. Although C. sphaericus remains rare in the tropics and subtropics
of the Eastern Hemisphere, its anthropogenic introduction—primarily through the stocking
of fish from Europe—is facilitating its dispersal across the region [30,31]. It is assumed that
rather than being a single species, C. sphaericus sensu lato (s.l.) consists of a complex of taxa,
including at least three potentially valid species: C. sphaericus s.str., Chydorus biovatus Frey,
1985, and Chydorus brevilabris Frey, 1980 [32,33]. Since species differentiation is not the focus
of this study, we refer to the specimens studied in this research as C. sphaericus.

Recent research has shown that zooplankton clones constantly exposed to cyanobac-
teria develop genotypic resistance to toxins and exhibit better growth in cyanobacterial
environments [34]. This applies to C. sphaericus as well. Living in environments with toxic
cyanobacteria, C. sphaericus has evolved a tolerance to these organisms, which is further
enhanced with increasing microcystin concentrations in the environment [35]. Despite
C. sphaericus’s prevalence in bloom-forming waterbodies, its direct feeding interactions
with cyanobacteria have been seldom investigated [22]. Research indicates that C. sphaer-
icus is well adapted to the cyanobacterial detrital food. Cyanobacterial detritus added
to green algae in laboratory culture experiments enhanced the growth and production
of C. sphaericus [22]. However, the authors of another study found that C. sphaericus fed
with poor-quality food (50% fresh Microcystis aeruginosa and 50% Chlorella pyrenoidosa)
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had significantly lower population growth than the conspecifics fed good-quality food
(100% C. pyrenoidosa) [35]. Tonno and others [36] investigated crustacean zooplankton
algal diet selection in a eutrophic Lake Vortsjarv (Estonia) and found that phytoplankton
pigments from colonial cyanobacteria (most probably Microcystis spp.) constituted a major
source of algal food for C. sphaericus. However, only three samples of C. sphaericus were
analyzed for feeding assessment over its seasonal presence, leaving an open question about
its relationship with potentially toxic Microcystis [36].

We conducted further research using high-performance liquid chromatography
(HPLC) and quantitative PCR (qPCR) methods to more precisely assess the relationship
between colonial cyanobacteria and potentially toxic Microcystis with C. sphaericus in Lake
Vortsjarv (Figure 1). In this lake, C. sphaericus is the most abundant cladoceran species,
often reaching numbers of 100 individuals per liter of water during the growing period [37].
Recent research using long-term data from this lake indicate that ongoing rising trends in
temperature and cyanobacterial biomass are further favouring the increase in C. sphaericus
abundance in this lake [37,38]. Although Microcystis represents a minor phytoplankton
group in Vortsjdrv [36], it is the main microcystin producer there (K. Panksep, unpublished
data). Based on this knowledge, we hypothesized that (1) colonial cyanobacteria form
the main algal food source for C. sphaericus through its seasonal presence; (2) toxigenic
Microcystis spp. contribute substantially to the diet of C. sphaericus; and (3) the consumption
of toxic cells by C. sphaericus is positively associated with the biomass of Microcystis and
the concentration of Microcystis mcyE gene copy numbers in lake water. To achieve this
goal, we investigated the seasonal feeding of C. sphaericus, and compared the selectivity
and ingestion of potentially toxic cyanobacteria across the lake area with variable presence
of colonial cyanobacteria.
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Figure 1. Locations of sampling sites in Lake Vortsjarv.

2. Results
2.1. Temperature, Phytoplankton, and C. sphaericus Seasonal Dynamics

In 2015, the ice cover melted by 22 March, followed by a steady increase in tem-
perature up to 19.4 °C in August, and then decreased towards the end of December
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when the new ice cover formed (Figure 2). The water quality parameters are shown in
Supplementary Table S1.
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Figure 2. Temperature dynamics at sampling site 10 in Lake Vortsjarv in 2015.

Phytoplankton biomass peaked in May and again in July-August during the high-
est temperatures, dominated by diatoms (Aulacoseira sp.) and filamentous cyanobacteria
(mainly Limnothrix planktonica and L. redekei), respectively (Figure 3A). In August, the high-
est phytoplankton biomass across the lake occurred at sites 5 and 7 (Figure 3B), dominated
by L. planktonica and Aulacoseira sp. The biomass of colonial cyanobacteria fluctuated
seasonally between 0.035 and 2.495 mg WW /L, peaking in June and forming 11% of the
total phytoplankton biomass. In August, colonial cyanobacteria had the highest biomasses
at sampling site 2 (1.842 mg WW /L), site 4 (2.250 mg WW /L), and site 5 (2.018 mg WW/L).
Microcystis spp. (M. wesembergii, M. viridis, M. pulverea, Microcystis sp.) and Cyanodic-
ton sp. were the major taxa of colonial cyanobacteria, with minor contributions from
Gomphosphaeria lacustris, Gloeocapsa spp. and Merismopedia spp. (Figure 3C,D).
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Figure 3. Seasonal dynamics of major phytoplankton groups and total phytoplankton biomass
(TotBM) at sampling site 10 (A) and at sites sampled in August across Lake Vortsjarv (B). Seasonal
dynamics and composition of colonial cyanobacteria at sampling site 10 (C) and at sites sampled in
August across the lake (D). Seasonal abundance and biomass of C. sphaericus and total zooplankton
at sampling site 10 (E) and at sites sampled in August across the lake (F).
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The numbers of C. sphaericus fluctuated between 2 and 420 ind /L, with biomass
ranging from 0.01 to 2.02 mg WW /L, peaking in June. In August, the highest abundance
was observed at sites 7 and 6 (Figure 3E,F). Seasonally, C. sphaericus often dominated,
contributing up to 79% of the total multicellular zooplankton biomass, although it generally
contributed less than 30% in August across the lake.

2.2. Phytoplankton Marker Pigment Concentrations in Lake Water; C. sphaericus Feeding and
Selectivity for Cyanobacteria

In lake water, the marker pigment compositions and dynamics followed the phyto-
plankton community structure (Figure 4A,B). Pigments generally characteristic of cyanobac-
teria (zeaxanthin and echinenone, belonging to both filamentous and colonial forms) com-
monly formed half of the pigment concentration both seasonally and spatially. The second
largest group of the marker pigments (fucoxanhin and diadinoxanthin+diatoxanthin) be-
longed to diatoms. Marker pigments characteristic of green algae and cryptophytes made
minor contributions.
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Figure 4. Seasonal dynamics of phytoplankton pigments in depth-integrated water samples from
sampling site 10 (A), and at sites sampled in August in Lake Vortsjarv (B). Percentage contribution of
phytoplankton pigments in the guts of C. sphaericus at sampling site 10 (C) and at sites sampled across
the lake (D); Chl a—chlorophyll a; Cantha—canthaxantin; Zea—zeaxanthin; Echin—echinenone;
Fuco—fucoxanthin; D+D—diadinoxanthin+diatoxanthin; Lut—lutein; Chl b—chlorophyll b; Allo—
alloxanthin; Peri—peridinin.

In all studied samples, the gut content of C. sphaericus predominantly contained marker
pigments Cantha (colonial cyanobacteria) and Echin (cyanobacteria), with a lesser amount
of another cyanobacterial pigment, Zea (Figure 4C,D). Pigments related to cyanobacteria
formed approximately 80% of the ingested algal pigments. Marker pigments of chloro-
phyta (Chl b, Lut, and Neox) were also detected in C. sphaericus guts, along with minor
contributions from marker pigments of cryptophyta (Allo) and diatoms (Fuco and Di-
adino+Diato). Chesson’s selectivity index demonstrated a clear preference of Cantha and
to a lesser extent, Echin in C. sphaericus diet throughout the investigated timespan and
sampling sites (Figure 5).
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Figure 5. Chesson’s selectivity index of C. sphaericus for phytoplankton pigments in Lake Vértsjarv
at sampling site 10 (A) and at sites sampled in August across the lake (B); Values above the horizontal
line («i > 0.111) indicate positive selection. Fuco—fucoxanthin; D+D—diadinoxanthin+diatoxanthin;
Zea—zeaxanthin; Cantha—canthaxantin; Echin—echinenone; Lut—Ilutein; Chl b—Chlorophyll b;
Allo—alloxanthin; Peri—peridenin.

2.3. Potentially Microcystin-Producing Cyanobacteria in Lake Water and in C. sphaericus
Gut Content

The presence of mcyE genes in all studied water samples indicated potential micro-
cystin production throughout the seasons and across the study area in August (Figure 6A,B;
samples were not collected in January and June). The Microcystis genus was the predom-
inant potential producer of the microcystin in Vortsjarv. The measured abundance of
Microcystis mcyE genes fluctuated between 342 and 3000/mL, peaking seasonally in March,
July, and September and spatially in August at site P5 (Figure 6A,B).
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Figure 6. Seasonal dynamics of mcyE synthase genes at sampling site 10 (A) and at sites sampled
in Lake Vortsjarv in August (B). The abundance of Microcystis mcyE-containing cells in the gut
content of C. sphaericus at sampling site 10 (C) and at the sampling sites analyzed in Lake Vortsjarv in
August (D). Whiskers represent 2SD from the mean, and bars represent mean values.

Toxigenic Microcystis cells were present in the gut content of C. sphaericus on almost
all dates and at almost all sites analyzed (Figure 6C,D). The abundance of toxigenic cells
fluctuated between 1.1 and 7.4 cells per individual over the seasonal and spatial range
(August). The analyses conducted in September and December for C. sphaericus samples
were unsuccessful due to an insufficient amount of DNA gained from extraction. This
limitation hindered the ability to obtain reliable results from these samples.

As there were no statistical differences in Microcystis mcyE abundances in lake water
and mcyE-containing cells in Chydorus gut content between the sampling sites (Kruskal-
Wallis test, p > 0.05), the data from all eight sites across the lake (1, 2, 3, 4, 5, 6, 7, 10) were
analyzed together. Spearman’s rank correlation (rs) analysis did not reveal any significant
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(p > 0.05) relationships between mcyE copy numbers in lake water and phytoplankton,
zooplankton (C. sphaericus, cladocerans, and total zooplankton), or most physicochemi-
calcharacteristics, except for temperature. The abundance of Microcystis toxic genotypes in
lake water was negatively correlated with temperature (r; —0.5083, p < 0.05). The abun-
dance of Microcystis mcyE-containing cells in Chydorus gut content had no statistically
significant correlations with the tested parameters.

3. Discussion

Chydorus sphaericus is a small cladoceran that is often present with high abundance in
eutrophic lakes with cyanobacterial dominance or toxigenic blooms [22,28,29]. Our results
further complement this knowledge by explaining its close connection with cyanobacteria.
We showed that C. sphaericus not only uses the filaments and colonies as a substratum [23,24]
but also actively feeds on these algae. Phytoplankton marker pigment analysis indicated
that C. sphaericus had a predominantly cyanobacteria-based diet, with approximately equal
contributions from filamentous and colonial forms but a clear preference for colonial
cyanobacteria. The active feeding pattern and selection for colonial cyanobacteria persisted
throughout the lake and across seasons, even during periods of low water temperatures and
ice cover. This confirms that this small cladoceran has a tighter connection to cyanobacteria,
specifically colonial forms, than other co-occurring pelagic copepods and cladocerans, as
revealed by earlier zooplankton gut pigment analyses in Vortsjarv [36].

The strong dietary affinity of C. sphaericus towards colonial cyanobacteria is surprising,
given that these algae form only a minor fraction of the phytoplankton biomass in Vortsjérv.
The average contribution of colonial cyanobacteria to total phytoplankton biomass is ap-
proximately 10% [36]. Compared to other common planktonic cladocerans, Chydorus” dual
feeding mode, combining filter and raptorial feeding, allows it to exploit both suspended
seston particles and attached food sources, such as periphyton or algal colony cells [39]. C.
sphaericus can use the setae of its second trunk limbs to scrape surface cells [24]. This likely
explains the appreciable amount of pigments from colonial cyanobacteria in C. sphaericus
gut content. Experiments with polystyrene fluorescent particles [40,41] have revealed that
C. sphaericus is an efficient feeder on small particles, corresponding to the size of bacteria
and small algal cells (such as individual cells of Microcystis, Cyanodictyon, etc.). Therefore,
this may be a behavioural response to searching for suitable-sized food from the surfaces of
algal colonies, which in turn supports its feeding on potentially toxic colonial cyanobacteria,
such as Microcystis. We cannot detect a preference for certain colonial cyanobacteria based
on current analysis methods. However, qPCR detection of Microcystis-specific mcyE genes
clearly evidenced C. sphaericus ingestion of toxigenic Microcystis.

The occurrence of the Microcystis mcyE gene in Vortsjarv persisted throughout the
seasons, even under low water temperatures and low Microcystis biomass. This is in line
with recent findings that winter populations of Microcystis are capable of synthesizing
microcystins even during long-lasting ice cover in a permafrost lake [42]. Year-round
assessments of Microcystis growth and microcystin-producing gene detection have rarely
been conducted in temperate zones with seasonal ice formation. We studied the period
from February to December, with water temperature ranging from 1.0 to 19.4 °C, and
found a negative relationship between temperature and mcyE gene abundances. The
relationships between microcystin-producing genotypes (mcyA, mcyB, mcyD, mcyE, and
mcy]) and temperature have been analyzed by several authors, with them finding positive
association for all of these genes [43], and specifically for mcyA and mcyE [44], mcyD [45],
mcyB and mcyE [46]; negative associations for mcyD [47]; or no association for mcyB [48,49]
and mcyE [50,51]. This suggests that the potential to produce microcystin could be achieved
under a variable combination of environmental conditions [48,49]. Our results suggest
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that low temperatures do not suppress microcystin synthetase gene production and that
microcystins are most likely present year-round in Vortsjarv water.

Concurrently, qPCR analysis confirmed that C. sphaericus’s diet included toxigenic
Microcystis even during the cold period and across the lake area in August. However, con-
trary to predictions, the consumption of toxigenic cells by C. sphaericus was not correlated
with the biomass of Microcystis nor the abundance of Microcystis mcyE gene copy numbers
in lake water. Due to the scarcity of samples in the present study, further investigations
are necessary to confirm this feeding pattern. The average ingestion per individual was
4.2 cells, representing the last feeding before sampling. Similar individual ingestion of C.
sphaericus was also measured in another, closely situated Lake Peipsi [52], where both the
Microcystis spp biomass and mcyE gene abundances in lake water are more than 10 times
higher compared to Vortsjarv [50,53,54]. This suggests that C. sphaericus feeding on toxi-
genic Microcystis is more likely connected to its individual demand for suitable food and
not tightly influenced by the availability of Microcystis or the presence of toxin-producing
cells in the surrounding lake water.

This result highlights an important finding regarding zooplankton feeding on toxigenic
cyanobacteria in Vortsjdrv, and likely in other lakes with similar phytoplankton community
composition. Even though Microcystis biomass and water column mcyE abundances might
be low, reflecting an insignificant toxicity risk in the water body [55], the toxic cells are still
effectively consumed by C. sphaericus, a species closely associated with these potentially
toxic cyanobacteria. When preyed upon by invertebrates or fish, the toxic cells within the
gut content of Chydorus are transferred to the next trophic levels in the food web [56] and
can potentially cause problems for the food web despite insignificant levels of potentially
toxic Microcystis in the lake water.

Current knowledge indicates that C. sphaericus is an important food object for plank-
tivorous fish, such as young-of-the-year fish and bleak in Vortsjarv [57]. The seasonal
dynamics of C. sphaericus show substantial abundance and biomass decline during July—
August, coinciding with the period of active feeding by young-of-the-year fish [37,58].
Although microcystin concentrations in the water column of Vortsjarv are very low, current
research results indicate that microcystin-producing cells can still be effectively transferred
to higher levels in the food web via predation on C. sphaericus. We acknowledge the distinc-
tion between the presence of toxin production genes, actual toxin production, and potential
toxin degradation [15] as it moves through the food web. Therefore, to confirm the pro-
posed potential trophic transfer of microcystin via Chydorus, concentration measurements
should be performed.

4. Conclusions

We found that the algal diet of the commonly prevailing small cladoceran in eutrophic
waters, Chydorus sphaericus, consists predominantly of cyanobacteria, with a clear feeding
preference for colonial forms. qPCR detection of Microcystis-specific mcyE genes confirmed
the ingestion of toxigenic Microcystis. The results further suggest that, due to its affinity to
colonial cyanobacteria, the trophic transfer of toxigenic Microcystis via C. spaericus can occur
even in lakes with insignificant levels of potentially toxic Microcystis and under conditions
of low water temperature, as demonstrated in Lake Vortsjarv.

5. Materials and Methods
5.1. Study Site

Lake Vortsjarv is a large lake in Estonia with an area of 270 km? (58°05'-58°25' N
and 25°55'-26°10" E). It is shallow (mean depth 2.8 m; maximum depth 6 m), with a high
trophic state (total phosphorus~40 ug/L, total nitrogen~1000 ug/L, and chlorophyll a (Chl
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a) 32 ug/L), and high turbidity during the growing season with a Secchi depth less than
1 m [59,60]. The lake is ice-covered on average for 135 days per year, from the end of
November to late April [59,60]. Cyanobacteria represent 60-95% of the total phytoplankton
biomass [61,62], dominated by filamentous forms such as Limnothrix planctonica and L.
redekei, accompanied by Planktolyngbya limnetica and Aphanizomenon skujae. The crustacean
zooplankton biomass is dominated by small-sized cladocerans, including C. sphaericus,
Bosmina longirostris, Daphnia cucullata, and juvenile cyclopoid copepods (mostly Mesocyclops
leuckarti) [37,63]. Microcystins are present in the lake during the entire growing season, but
the concentrations in the lake are very low, ranging from 20 to 120 ng/L [64].

5.2. Field Survey

Sample collection, along with environmental measurements, was performed monthly
from January to December 2015 at the regular monitoring site, no. 10, in the deepest part
of the lake [60]. On 18th of August, samples were collected from eight sampling sites (1,
2,3,4,5,6,7, and 10) to compare feeding characteristics across the lake area (Figure 1).
These sites correspond to plankton-dominated conditions, with cyanobacteria forming the
majority of the phytoplankton biomass during the ice-free period [60]. However, between
the sites, some compositional differences in phytoplankton and zooplankton communities
occur, including variations in the abundance of C. sphaericus.

Water samples were collected at 1 m intervals with a Ruttner sampler from the entire
water column and mixed in a tank to obtain a depth-integrated sample for analysis. Sub-
samples were taken from this pooled sample to analyze phytoplankton and zooplankton
composition and biomass and to detect and quantify the phytoplankton pigments and
potentially toxic cyanobacteria. For the zooplankton sample, 10 L of this water was filtered
through a 48 pum plankton net. For phytoplankton, 200 mL was used. Phytoplankton
and zooplankton samples were fixed with acidified Lugol’s iodine solution at a final con-
centration of 1% and preserved in the dark for further analysis. For molecular analysis,
100-500 mL (according to the sample density) of the depth-integrated water was filtered at
low vacuum (max. 0.2 bar) through 5 pm pore size polycarbonate filters (Whatman, Cytiva,
Marlborough, MA, USA). The samples were stored at —80 °C until analysis. To analyze
phytoplankton marker pigments and potentially toxic cyanobacteria in C. sphaericus guts,
depth-integrated samples of bulk zooplankton were collected from June to December with
vertical tows of a 145 um plankton net. The bulk zooplankton was instantly rinsed with
deionized water to remove as much phytoplankton as possible, then concentrated in a
small volume, and frozen in liquid nitrogen.

Background data (water temperature, pH, and dissolved oxygen) were measured with
a YSI Professional multiprobe (Yellow Springs, OH, USA) concurrently with sampling,
as a part of the national monitoring program. A Secchi disk was used to measure water
transparency. Subsamples for water chemistry were analyzed by staff at the laboratory of
the Estonian Environmental Research Centre, following international and Estonian quality
standards (ISO and EVS-EN ISO).

5.3. Phyto- and Zooplankton Biomass and C. sphaericus Sample Preparations for Analysis

Phytoplankton samples were analyzed under an inverted microscope (Ceti Versus, Med-
line Scientific, Rotherham, UK) at <400 magnification, following Utermohl’s technique [65].
The counted taxa were converted to biovolumes by measuring cell/trichome/colony di-
mensions and approximating each taxon with a geometric shape. Zooplankton community
composition and biomass were analyzed under a stereomicroscope (Nikon AZ100, Nikon
Corporation, Tokyo, Japan) in a Bogorov chamber. For biomass, the lengths were converted
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to wet weight as described by [66-68]. Phytoplankton and zooplankton biomasses were
expressed as mg WW /L (milligrams of wet weight per liter of lake water).

Before phytoplankton pigment and molecular analyses, frozen zooplankton samples
were thawed to separate the C. sphaericus from other zooplankton species. From each
subsample, 130 to 400 individuals were separated for phytoplankton pigment analysis, and
100 to 400 individuals were separated for molecular analysis. The separated specimens
were rinsed with deionized water and inspected under a microscope to ensure no externally
attached phytoplankton cells or filaments on the animals. For pigment analysis, C. sphaericus
individuals were filtrated on GF/F filters (pore size 0.7 um, Whatman, Cytiva, Marlborough,
MA, USA), and for molecular analysis, they were placed into 1.5 mL microtubes for
immediate DNA extraction.

5.4. Pigment Extraction and HPLC Analysis

In the present study, the affinity of the phytoplankton pigments is based on find-
ings from the literature [69-72] and previously found correlations between water col-
umn pigments and phytoplankton groups in Lake Vortsjarv [36]. Briefly, the marker
carotenoids zeaxanthin and echinenone characterized cyanobacteria in general [69] while
the carotenoid canthaxanthin was mainly associated with colonial cyanobacteria. Diatoms
were represented by the carotenoids fucoxanthin and by the marker pigment group di-
adinoxanthin plus diatoxanthin [70]. Lutein, neoxanthin, and Chlorophyll b were used as
proxies for chlorophytes. Alloxanthin represented cryptophytes [70,71]. Chlorophyll a is
found in all primary producers and therefore represents the total phytoplankton biomass
in this study [71].

The analysis of phytoplankton pigments followed slightly modified protocols from
Leavitt and Hodgson [69] and Lie and Wong [73]. Depth-integrated water samples
(100-300 mL) and rinsed zooplankton suspensions were filtered through Whatman GF/F
0.7 um pore size filters and stored at —80 °C in the dark until phytoplankton pigment
analysis. A solution of 90% acetone (by volume) with the internal standard (trans-f-
apo-8'-carotenal, Sigma cat. #10810, Sigma-Aldrich, Darmstadt, Germany) was added
to frozen GF/F filters to extract phytoplankton pigments. The samples were sonicated
(Branson 1210, Branson Ultrasonics, Emerson Electric Co., St. Louis, MO, USA) for approx-
imately 10 min in an ice bath under dim light and extracted at —20 °C in the dark for 24 h.
Finally, the pigment extracts were clarified by filtration through a 0.45 pum filter (Millex
LCR, Millipore MilliporeSigma, Darmstadt, Germany) before chromatographic analysis to
remove any particles.

To separate phytoplankton pigments, reversed-phase high-performance liquid chro-
matography was applied, using a Shimadzu Prominence (Shimadzu Corporation, Kyoto,
Japan) series binary gradient system with a photodiode-array and fluorescence detector. A
fluorescence detector with an excitation wavelength set at 440 nm and emission at 660 nm
was used to confirm the correct identification and low concentrations of Chl a [74]. Further
details on the process of pigment analysis can be found in Tamm et al.’s study [75].

The estimated rates of pigment degradation in the zooplankton digestive system
are rather controversial. Some studies demonstrate full preservation of pigments in the
guts of copepods, cladocerans, and other small zooplankton [76,77], while others reveal
significant degradation of carotenoids [78,79]. In this study, we assumed that Chesson’s
selectivity index [80] represents a snapshot of phytoplankton pigments transferred to
zooplankton. Considering the fast gut evacuation of small zooplankters [80], the pigment
transfer is presumably much faster than the digestive changes affecting the carotenoid
pigment composition [81,82].



Toxins 2025, 17, 298

11 of 16

5.5. DNA Extraction and Molecular Analysis

Genomic DNA from zooplankton was extracted using a DNeasy® Blood and Tissue
extraction kit (Qiagen Inc., Venlo, The Netherlands) following the manufacturer’s instruc-
tions. DNA from filtered water samples was extracted using a DNeasy® PowerWater Kit
(Qiagen Inc. Venlo, The Netherlands). All extractions were made under a laminar flow
hood to protect samples and avoid contamination.

The quality and quantity of the extracted DNA were assessed using a NanoDrop
2000 UV-Vis spectrophotometer (Thermo Fisher Scientific Inc. Wilmington, DE, USA). The
DNA was stored at —80 °C until further analysis. qPCR analyses were performed as
described before [53,54,83].

Each environmental sample was tested in three replicates. Additionally, in every
qPCR analysis, a negative control sample and positive standard DNA dilution series
were included. qPCR reactions were conducted on a LightCycler® 480 System (Roche
Life Science, Roche Diagnostics, Basel, Switzerland) using a 384-well platform using the
following protocol: 95 °C for 12 min for initial denaturation, 40 cycles of 95 °C for 15 s,
and 62 °C. The results were analyzed using LightCycler® Software 1.5. The mcyE gene was
chosen to detect and quantify potential microcystin-producing Microcystis because of its
established role in microcystin production and its reliability as a molecular marker. Since
mcyE is typically found as a single copy per genome, it is ideal for assessing the abundance
of potentially toxic Microcystis cells in both environmental samples and grazers [54,84-86].

5.6. Data Analysis

To assess the feeding selectivity of zooplankton, the alpha selectivity index of Ches-
son [80] was used. The formula used for calculations is as follows:

ri/ pi

o = , 1=
2?21 7”1‘/]91'

2

where r; is the percentage of i-th phytoplankton pigments in zooplankter guts, p; is the
percentage of the same phytoplankton pigments in the lake water, and # is the total number
of pigments analyzed. When a = 1/n (in the present study 1/n = 0.111), zooplankton
feeding is non-selective. Values of a; > 0.111 or #; < 0.111 indicate selection and avoidance
of carotenoid pigments and respective phytoplankton groups by zooplankton, respectively.

To test the significance of relationships with toxigenic cyanobacteria, the nonparamet-
ric Kruskal-Wallis test was first used to evaluate the differences between sampling sites
in mcyE copy numbers in lake water and C. sphaericus ingestion of Microcystis containing
mcyE genes. Spearman’s rank correlation (rs) with the function “cor.test” was used to assess
the relationship between mcyE-containing cells in C. sphaericus gut content and Microcystis
mcyE cells in water, as well as phytoplankton indices. The relationship between Microcystis
mcyE-containing cells in water and physicochemical, phytoplankton, and zooplankton in-
dices (including Chydorus, cladoceran abundances and biomass, and total metazooplankton
biomass) was also tested. Spearman’s rank correlation analyses were performed using the
RStudio 4.1.2 package and its extensions.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/toxins17060298 /s1. Table S1: Water quality parameters at Lake
Vortsjarv sampling sites in 2015.
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Abbreviations

The following abbreviations are used in this manuscript:

HPLC  High-Performance Liquid Chromatography
qPCR Quantitative Polymerase Chain Reaction
WWwW Wet Weight

Chla Chlorophyll a

Chl b Chlorophyll b

Cantha Canthaxantin

Zea Zeaxanthin

Echin Echinenone

Fuco Fucoxanthin

Lut Lutein

Allo Alloxanthin

Peri Peridinin

D+D Diadinoxanthin+Diatoxanthin
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