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Abstract
Herbivores are an integral part of Arctic terrestrial ecosystems, driving ecosystem functioning and sustaining local liveli-

hoods. In the context of accelerated climate warming and land use changes, understanding how herbivores contribute to the
resilience of Arctic socio-ecological systems is essential to guide sound decision-making and mitigation strategies. While re-
search on Arctic herbivory has a long tradition, recent literature syntheses highlight important geographical, taxonomic, and
environmental knowledge gaps on the impacts of herbivores across the region. At the same time, climate change and limited
resources impose an urgent need to prioritize research and management efforts. We conducted a horizon scan within the
Arctic herbivory research community to identify emerging scientific and management priorities for the next decade. From
288 responses received from 85 participants in two online surveys and an in-person workshop, we identified 8 scientific and 8
management priorities centred on (a) understanding and integrating fundamental ecological processes across multiple scales
from individual herbivore–plant interactions up to regional and decadal scale vegetation and animal population effects; (b)
evaluating climate change feedbacks; and (c) developing new research methods. Our analysis provides a strategic framework
for broad, inclusive, interdisciplinary collaborations to optimise terrestrial herbivory research and sustainable management
practices in a rapidly changing Arctic.

Key words: Arctic herbivores, climate change mitigation, horizon scan, management, tundra

Introduction
Tundra herbivores are important components of Arctic

socio-ecological systems (Forbes et al. 2009). For example, ver-
tebrate herbivores represent a key resource for many north-
ern communities through hunting or herding (Huntington
et al. 2013), and invertebrate herbivores can influence lo-
cal livelihoods through their impacts on vegetation (Vuojala-
Magga and Turunen 2015). Herbivores are a fundamental
driver of energy flows and biogeochemical cycles of Arctic
tundra ecosystems (McKendrick et al. 1980; Barrio and Hik
2020). Through selective grazing, trampling, and waste depo-
sition, herbivores influence the composition of plant and an-
imal communities, with consequences to climate feedbacks
(Zimov et al. 1995; Koltz et al. 2022). The importance of herbi-
vores in the functioning of tundra ecosystems is amplified by
their interactions with other drivers of change, as herbivores
can buffer warming-induced plant responses and diversity

loss (Post and Pedersen 2008; Cahoon et al. 2012; Kaarlejärvi
et al. 2017; Jessen et al. 2020; Post et al. 2023), reduce decid-
uous shrub encroachment (Verma et al. 2020; Vuorinen et al.
2022; Spiegel et al. 2023), or increase the resilience of Arctic
ecosystems to warming (Post 2013; Kaarlejärvi et al. 2015).

Recent syntheses have shown a wealth of scientific studies
on the role of herbivores in Arctic environments while also
highlighting important knowledge gaps, including biases in
the geographical, taxonomic, and environmental coverage of
existing literature (Metcalfe et al. 2018; Soininen et al. 2021).
Coordinated research efforts such as the activities of the Her-
bivory Network (Barrio et al. 2016b) or the International Tun-
dra Experiment (Henry et al. 2022), and long-term monitor-
ing programmes, like the Climate-Ecological Observatory for
Arctic Tundra (COAT; Ims and Yoccoz 2017) or the Greenland
Ecosystem Monitoring (Schmidt et al. 2021), have been in-
strumental in generating new knowledge about the role of
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herbivores in Arctic ecosystems. In addition, the devel-
opment of new, more affordable technologies like high-
resolution satellites and unmanned aerial vehicles (UAVs)
(Siewert and Olofsson 2021), high-throughput DNA se-
quencing (Soininen et al. 2009), or artificial intelligence
(Christin et al. 2019) will continue to help advance
our knowledge of Arctic herbivory. Together with the
accelerating impacts of climate change on herbivores
and their habitats, these developments open new pos-
sibilities for both research and management of Arctic
herbivores.

Building on these advances and the need to prioritize re-
search efforts to address those knowledge gaps, we used a
horizon scan to identify future needs in Arctic herbivory
research as perceived by the scientific community. Horizon
scanning is a tool to create lists of research priorities (Dey et
al. 2020) that is often conducted as a democratic process by
consolidating expert advice (Sutherland and Woodroof 2009).
The goal of horizon scans is to guide future research and in-
form subsequent knowledge-based decision-making (Wintle
et al. 2020). Considering the unprecedented rate of climate
change at higher latitudes and the diversity and intercon-
nectedness of ecological, conservation, and socio-economic
issues regarding Arctic herbivory, a horizon scan offers an
effective way to identify viewpoints and establish a consen-
sus on strategic research needs related to Arctic herbivory
for the next decade. By prioritizing the most urgent research
needs, we aim to guide scientific efforts more effectively, so
that the most critical questions to understanding and man-
aging Arctic ecosystems in the face of accelerating environ-
mental change are addressed, as well as to provide a basis
for discussions with the broader community of rights hold-
ers and stakeholders.

Methods
The idea for this project emerged from a Herbivory Net-

work workshop organized in June 2023 in Cambridge Bay,
Nunavut (Canada), as a contribution of the Arctic herbivory
research community to the Fourth International Conferenc
e on Arctic Research Planning (ICARP IV) process. To iden-
tify emerging priorities in terrestrial herbivory research in
the Arctic, we followed a Delphi-approach commonly used
in horizon scanning and research prioritization exercises
(Sutherland et al. 2011; Mukherjee et al. 2015; Dey et al. 2020).
The process encompassed three key steps: (1) an elicitation of
expert knowledge through an online survey (hereafter “elici-
tation survey”), (2) a follow-up online survey requesting par-
ticipants to score a list of responses (hereafter “scoring sur-
vey”), and (3) an in-person workshop to summarize the infor-
mation (hereafter “workshop”; Fig. 1).

We solicited researchers with expertise in Arctic terrestrial
ecology to participate in the project. An initial call for col-
laboration was published on the Herbivory Network website
on 28 June 2023, and on the UArctic website on 26 July 2023,
and announced through the Herbivory Network email list (ca.
200 subscribers). An announcement was also placed on so-
cial media and forwarded to researchers with relevant back-
ground. In January 2024, the elicitation survey was sent to

Fig. 1. Schematic diagram of the Arctic herbivory horizon
scan process. The process was structured in three key steps:
(1) an elicitation of expert knowledge through an online sur-
vey (elicitation survey), (2) an online survey requesting par-
ticipants to score a list of responses (scoring survey), and (3)
an in-person workshop to summarize the information (work-
shop).

Herbivory Network members as a personalized email (Sup-
plementary Materials S1a) and advertised through the web-
site of the Nordic Society Oikos Conference 2024. Additional
reminders were sent through the Herbivory Network email
list. The initial 2-week period for submitting responses to the
elicitation survey was extended from 15 January to 28 January
2024.

In the elicitation survey, participants were asked to pro-
vide their perspectives on Arctic herbivory research for the
coming decade by formulating up to five research priori-
ties and needs (Supplementary Materials S1b). Here, we de-
fine the Arctic following Virtanen et al. (2016), including the
oroarctic tundra, the high elevation regions at higher lat-
itudes (∼north of 59◦), as these areas are climatically and
ecologically more similar to the Arctic tundra than to truly
alpine ecosystems farther south. Information about the par-
ticipants’ career stage, gender, and geographic scope of their
research was collected for the purpose of analyzing demo-
graphics of participants. Optionally, participants provided a
contact email address to stay informed about the project and
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Fig. 2. Relationship between the scientific and management relevance scores assigned to 146 responses by the 63 Arctic
herbivory experts participating in the scoring survey. Scores for individual responses included in each priority ranged between
0 (not relevant) and 3 (very relevant). Each point represents the average score for one response, with colours and shapes
indicating whether the response was scored in the top 25% responses according to its scientific relevance (green squares),
management relevance (blue triangles), or both (orange diamonds), or whether the scores were not among the top 25% of either
criterion (grey circles). Dashed grey lines indicate average scores across responses for scientific (2.84 points) and management
relevance (1.84 points).

contribute towards the next stages. Email addresses were
saved separately from the survey data, rendering the survey
data anonymous. All survey participants agreed that their an-
swers would be used for summary purposes in the horizon
scan, as part of the Herbivory Network’s input to ICARP IV
research prioritization.

The elicitation survey compiled 288 responses from 85 par-
ticipants (Fig. 1; the full list of responses can be found in Sup-
plementary Materials S2). A core group of authors collated
and edited the responses to improve clarity and remove du-
plication into 146 responses. In the elicitation survey, partic-
ipants were invited to formulate their priorities and needs
as questions, but some responses were not formulated as
questions; for these, no attempt was made to write them in
question form. The collated list of responses was randomly
split into two equally sized subsets (73 responses each) that
were used in the scoring survey (Fig. 1; Supplementary Ma-
terials S1c). The scoring survey was sent to the 83 partici-
pants who had indicated their willingness to be involved in
the next steps of the research as a link in a personalized
email (Supplementary Materials S1d) on 12 February 2024.
Participants were given 2 weeks to respond (until 25 Febru-
ary 2024) and were asked to score the responses according to

two criteria: scientific relevance (i.e., resolving the issue will
address an important knowledge gap) and management rel-
evance (i.e., resolving the issue will have important manage-
ment implications). The scores included four possible values:
“not relevant at all”, “little relevant”, “relevant”, and “very
relevant”.

A total of 63 participants responded to the scoring survey.
Participants were randomly split into two groups and each
group scored one of the subsets of responses, so that each re-
sponse was scored by 31–32 participants. Scores for each re-
sponse were transformed to integer values between 0 (not rel-
evant at all) and 3 (very relevant) and averaged per response
(the average scores for each response can be found in Supple-
mentary Materials S2).

The workshop was attended by 26 participants, who dis-
cussed the top 25% of scored responses for each criterion (42
responses for scientific relevance, 38 for management rele-
vance; Fig. 2). During the workshop, discussions took place
initially in four small groups of 5–8 participants. All groups
were tasked with synthesizing the top-ranked responses in
each criterion (ca. 60 min per criterion). After the four groups
had synthesized the responses independently, all workshop
participants met again to establish a final consensus list of
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Fig. 3. Overview of the relationships between the eight scientific (green) and eight management (blue) priorities identified by 26
Arctic herbivory experts in the in-person workshop of the horizon scan. Priorities with wide outline (S4, M1) indicate priorities
that included responses identified with both scientific and management relevance. S = scientific priority, M = management
priority.

broad priorities that were formulated as questions. A total of
16 broad priorities were identified (eight priorities for each
criterion; Fig. 1). It is important to emphasize that the hori-
zon scan’s objective was to prioritize the scientific questions
with important implications for management rather than
listing management needs per se. Therefore, management
relevance here reflects the views and experiences of the sci-
entists participating in this study.

After the workshop, the conclusions were summarized and
prepared as a manuscript draft. The full list of participants
who had contributed to the different parts of the process
(ca. 170 researchers) were contacted again and invited to
contribute to the resulting manuscript (79 researchers co-
authored the manuscript).

Results and discussion
Over half of the participants in the elicitation survey were

senior researchers (five or more years since obtaining a re-
search position; 56.5%), followed by recently established re-
searchers (15.3%), postdoctoral fellows (15.3%), PhD (11.8%),

and BSc (1.2%) students (Supplementary Materials S1e). Of
the 85 participants, 43 self-identified as males, 40 as females,
and 2 as non-binary. Regarding the geographical scope of the
participants’ research, multiple responses were possible per
participant. Fennoscandia was mentioned by 40 participants,
pan-Arctic scope was indicated by 25, followed by Greenland
(16), Canada (15), Iceland (13), Russia (10), Alaska (9), and Sval-
bard (5), while 5 reported their scope to be (also) outside the
Arctic (Supplementary Materials S1e). Although we did not
collect information about the participants’ country of pro-
fessional affiliation, the author list represents a broad geo-
graphic coverage with residents in 18 countries, including all
Arctic states.

The horizon scan identified 16 distinct priorities (eight
for each criterion) based on the top-ranked responses re-
sulting from the scoring survey (42 responses for scientific
relevance and 38 for management relevance). Only three
of these responses were identified as relevant (top 25%) for
both criteria (Fig. 2), and all these three responses were in-
cluded within the respective broad priority related to “cli-
mate change” (S4 and M1; Fig. 3). This is not surprising, given
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Fig. 4. Average scores for each of the eight scientific (green) and management (blue) priorities identified during the horizon
scanning exercise, as assessed by 63 Arctic herbivory researchers who participated in the scoring survey. Each priority included
between two and twelve responses (number of responses included in each priority are indicated at the base of each bar).
Scores for individual responses included in each priority ranged between 0 (not relevant) and 3 (very relevant). The ordering
of scientific (S1–S8) and management (M1–M8) priorities is based on their highest-scoring individual response (indicated by
the numbers in square brackets to the right of the bars). Average scores are indicated by black dots, and the horizontal lines
represent the range of scores of individual responses (min, max).

that climate change has high societal relevance and serves
as a cross-cutting theme that impacts both human and non-
human lives in the Arctic. About half of the responses iden-
tified as a priority under one criterion had below-average
scores for the other criterion (scientific relevance: 21 out
of 42; management relevance: 19 out of 38). These differ-
ences are possibly linked to variable research fields and ex-
perience with applied research in management among the
participants contributing to the scoring survey. Management
priorities differ across the Arctic and are context dependent
(e.g., type of ecosystems and threats, management strategies,
legislations, etc.), and participants likely had varying experi-
ence in translating science into practical management advice
or different perceptions of management strategy feasibility.
Future studies should consider these different perspectives.
For instance, submitting the same questionnaire to relevant
decision-makers, rights holders and stakeholders, such as lo-
cal herders and hunters, and comparing the resulting rank-
ing of priorities would provide further important context of
the priorities presented here.

The workshop developed a consensus definition of eight
broader priorities (questions) for each criterion (Figs. 3 and
4; for an overview of priorities and descriptions see Ta-

bles S3.1 and S3.2). Although face-to-face workshops bear
the risk of cognitive biases, such as the “bandwagon ef-
fect” where participants indiscriminately follow the major-
ity opinion (Winkler and Moser 2016), they have been con-
sidered a suitable way to reach consensus and tend to be
more inclusive and productive than other group-based tech-
niques (Sutherland et al. 2023). Furthermore, the division
of the workshop participants into four groups to indepen-
dently evaluate the priorities prior to evaluating them by
the entire group was intended to minimize biases. The fol-
lowing sections present each of the broad priorities iden-
tified for the scientific and management criteria, ordered
by their highest scoring response (Fig. 4; Supplementary
Material S2).

Scientific relevance

S1. How do herbivory and climate change interact
to impact Arctic ecosystems?

Climate change can modify the impact of herbivores on
different levels of biological organization, from individ-
ual organisms to ecosystems. Nine responses identified the
interactive effects between herbivory and climate change on
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Arctic ecosystems as a priority (Fig. 4), which received the
highest average score (2.47) for scientific relevance.

Herbivores can interact with climate change to affect Arc-
tic tundra plant phenology, physiology, and performance. For
instance, plant phenology can be advanced by warming but
be delayed by herbivory (Radville et al. 2016). In turn, changes
in plant phenology can drive habitat selection by herbivores
and lead to changes in the distribution of grazing pressure
across the landscape (Anderson et al. 2012; Iversen et al. 2014;
see S4 and S8). Earlier onset of spring in the Arctic allows
migratory herbivores like geese to arrive and start foraging
sooner at Arctic breeding sites (Hupp et al. 2018; Lameris et al.
2018), with potentially large effects on forage quality (Beard
et al. 2019a) and other plant traits (Choi et al. 2019). Climate
change and herbivory can also affect the physiology of for-
age plants synergistically. For example, both insect and mam-
malian herbivory can amplify the emission of plant volatile
organic compounds, simultaneously increased by warming
(Li et al. 2019; Brachmann et al. 2023).

The effects of herbivores and climate change on plant
phenology, physiology, or performance may scale up to
impact Arctic plant distributions and vegetation composi-
tion. For instance, herbivores may modulate vegetation re-
sponses to climate change (Post and Pedersen 2008; Barrio
et al. 2016a) through inhibiting warming-driven expansion
of woody species and buffering shrub- and treeline advance
(Christie et al. 2015; Virtanen et al. 2021). Vertebrate her-
bivores may also constrain the expansion of warm-adapted
forbs (Kaarlejärvi et al. 2013; Eskelinen et al. 2017), but the
paucity of studies focusing on non-woody plant species pre-
vents generalizations (but see, for example, Saccone et al.
2014; Post et al. 2022). By selectively feeding on common
species (see S2) vertebrate herbivory can counteract the neg-
ative effects of warming on species diversity (Kaarlejärvi et
al. 2017; Post et al. 2023). While vertebrate herbivores may
slow down tundra greening at regional scales (Sundqvist et
al. 2019; Spiegel et al. 2023), their influences on overall pan-
Arctic greening trends remain unaddressed (Myers-Smith et
al. 2020).

Herbivory can also modulate the effects of climate change
on Arctic ecosystem functioning (Koltz et al. 2022). By remov-
ing vegetation through grazing, herbivores suppress the re-
sponses of gross ecosystem productivity to warming (Cahoon
et al. 2012; Spiegel et al. 2023). Herbivores can indirectly al-
ter tundra carbon cycling and modify soil nutrient availabil-
ity through trampling and by selective feeding, which shifts
vegetation trajectories (Ylänne et al. 2015; Vowles and Björk
2019; Pichon et al. 2023), but these effects can differ under
warming (Ylänne et al. 2015, 2020). We still lack a detailed
understanding of the conditions under which the indirect
effects of herbivores on Arctic carbon and nutrient cycling
might interact with climate change.

Finally, it is important to recognize that climate change
entails factors other than warming, such as changing pre-
cipitation patterns, altered frequency of freeze–thaw cycles
during spring melt, and higher frequency and intensity of
extreme weather events (IPCC 2021). Yet, how herbivory
might modulate the role of these key environmental change
drivers on ecosystem functioning is virtually unknown, and

we urge future studies to test their potentially interactive
effects.

S2. How does herbivory influence ecosystem
processes in the Arctic?

Beyond their interactions with climate change (see S1),
herbivory influences ecosystem processes directly and indi-
rectly. Through the consumption of biomass, the deposition
of waste products, and habitat-modifying behaviours, herbi-
vores exert a strong influence on Arctic ecosystems (Koltz
et al. 2022). Despite the rich literature on herbivore effects
on Arctic tundra (Soininen et al. 2021; Barbero-Palacios et al.
2024), we are only beginning to understand these direct and
indirect influences and how they may interact. This priority
included the largest number of responses (11; Fig. 4), many
of them with high scores for scientific relevance, indicating
that we still lack basic understanding of herbivore effects on
tundra ecosystem processes. Responses covered a variety of
taxa and topics, including the effects of vertebrate and inver-
tebrate herbivores on the biodiversity, resilience, and resis-
tance of tundra ecosystems and on key ecosystem processes
like nutrient cycling.

Herbivores can affect competitive relationships between
plants and thus influence the biodiversity of Arctic ecosys-
tems (Ramirez et al. 2024). Both large and small herbivores
can reduce the decline in plant species richness in tundra by
selectively removing shrubs and allowing rare species to per-
sist (see S1; Kaarlejärvi et al. 2017; Gibson et al. 2021). Alter-
natively, consistent feeding on palatable species can result in
dominance of less palatable species that outcompete herba-
ceous plants (Bråthen et al. 2007). In addition, disturbance
from large herbivores can alter resource and habitat avail-
ability for other vertebrate (den Herder et al. 2008, 2016) and
invertebrate herbivores (den Herder et al. 2004), further in-
fluencing tundra biodiversity. The impact of large herbivores,
however, depends on the intensity of grazing (Bråthen et al.
2017) and on the diversity of herbivores (Olofsson and Post
2018). Large herbivores can preserve the integrity of tundra
ecosystems by preventing shrub encroachment and tree es-
tablishment (Moen et al. 2008; Bråthen et al. 2017; Olofsson
and Post 2018). In turn, high grazing pressures can shift
shrub-dominated tundra towards graminoid dominance (Van
der Wal 2006). To better understand the effects of herbivores
on biodiversity and the resilience and resistance of tundra
ecosystems, we need a better grasp of the role of different
intensities of grazing pressure (Bråthen et al. 2017).

Herbivores directly contribute to nutrient cycling through
the deposition of waste products, including faeces and urine
(Barthelemy et al. 2018; Beard et al. 2023), carcasses (Danell
et al. 2002), and natal fluids (Ferraro et al. 2024). In nutrient-
limited Arctic systems, nutrient supply commonly occurs in
pulses linked to animal inputs (Danell et al. 2002; Barthelemy
et al. 2015). These inputs can accelerate the pace of cycling
(Barthelemy et al. 2018), increase forage quality (Petit Bon
et al. 2022; Ferraro et al. 2024), change plant community
composition (Danell et al. 2002), influence plant biomass
(Barthelemy et al. 2015), topsoil microclimate (Deschamps
et al. 2023), and ultimately shape landscape heterogeneity
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(Ferraro et al. 2022). As such, animal inputs seem to be an
important mechanism of accelerated nutrient cycles in Arctic
ecosystems, but their impacts are modified by the underlying
biophysical conditions, including soil conditions and plant–
mycorrhizal associations (Ferraro et al. 2022).

Finally, our understanding of the impact of invertebrate
herbivores in Arctic ecosystems remains sparse. Background
levels of invertebrate herbivory in the Arctic are low (Barrio
et al. 2017; Rheubottom et al. 2019) and have limited overall
impacts on ecosystem-level processes such as carbon and nu-
trient cycling (Koltz et al. 2017; Kristensen et al. 2020; but see
Silfver et al. 2020). However, population outbreaks of herbiv-
orous insects can severely impact tundra productivity (Lund
et al. 2017) and are predicted to become more common with
warming temperatures in some regions (Finger-Higgens et al.
2021; Jepsen et al. 2023). As well, insect outbreaks can inter-
act with reindeer grazing, modulating the trajectories of veg-
etation recovery after massive defoliation events (Vindstad
et al. 2019). Further work investigating the role of inverte-
brate herbivores in shaping Arctic ecosystem-level processes
is needed.

S3. How can we improve measurements of
herbivory?

The need for standardized protocols and coordinated ef-
forts to measure herbivory across the tundra has been long
recognized (Barrio et al. 2016b, 2021; see also M7), but
challenges remain in scaling up from individual organisms
and plot-level to landscape- and ecosystem-level impacts. Al-
though only two responses were included within this prior-
ity (Fig. 4), participants ranked the need to improve measure-
ments of herbivory with high scientific relevance.

Several field-based methodologies for measuring herbivory
and herbivore use have been used, ranging from observa-
tional assessments of herbivore habitat use by pellet counts
and other signs of herbivore activity to the use of exclosures
to experimentally manipulate the presence of vertebrate her-
bivores (Barbero-Palacios et al. 2024). Standardizing existing
field methodology is an obvious and necessary first-step to-
wards accurate measurements of herbivory that allow mean-
ingful comparisons of data collected across studies. Tradi-
tional field-based approaches provide a basic understanding
of the impacts of herbivores, but additional insights can be
gained by leveraging GPS technologies to understand how
herbivores use space and resources. GPS collars on animals
are a key tool to track movement patterns and identify key
habitats for foraging. New devices like tri-axial accelerome-
ters that track specific behaviours (Rautiainen et al. 2022) and
camera collars that capture visual data on feeding behaviours
and plant species consumed (Ehlers et al. 2024) may expand
our ability to track and analyze the impact of herbivory on
Arctic ecosystems.

Recent advances in UAVs and satellite remote sensing
have also opened new possibilities for monitoring herbi-
vore impacts on vegetation. The emergence of pre-processed
high- (∼1–5 m, e.g., PlanetScope, Worldview) and medium-
resolution (∼5–30 m, e.g., Sentinel-2, Landsat) satellite re-
mote sensing products facilitates incorporating spatially ex-

plicit information, including phenology metrics, into pre-
dictive models. Additionally, UAVs offer the opportunity to
monitor herbivory across the spatially heterogeneous Arctic
tundra at fine-scale resolutions currently unavailable with
satellite imagery (Alonzo et al. 2020; Assmann et al. 2020;
Eischeid et al. 2021; Siewert and Olofsson 2021; Villoslada et
al. 2023). UAVs can also be used in combination with satellite
data through upscaling approaches (Villoslada et al. 2024), re-
solving sub-pixel heterogeneity while expanding the spatial
reach of models (but see Eischeid et al. 2021).

Despite these promising technological advances for moni-
toring herbivore populations and herbivory in the Arctic, sig-
nificant challenges remain regarding validation and charac-
terization of environmental controls (Beamish et al. 2020). Us-
ing several technological approaches will be our best bet for
improving measurements of herbivory in the Arctic. For ex-
ample, Spiegel et al. (2023) used spaceborne remote sensing
and participatory mapping to identify regional migrations of
domesticated reindeer herds and vegetation changes, show-
ing the potential to capture herbivore impact on Arctic vege-
tation over large spatial scales. Field-based measurements of
herbivory are still crucial for ground-truthing and develop-
ing reliable remote sensing models and provide the necessary
link between herbivory and remotely sensed information. Im-
portantly, scale mismatches between plot-level data and satel-
lite imagery can introduce uncertainties in modelling out-
puts (Beamish et al. 2020; Siewert and Olofsson 2021). In turn,
the rapid recovery of vegetation after herbivory also poses
challenges in detecting the impacts of herbivory in a timely
manner (Ravolainen et al. 2011). The use of remote sensing
technologies can allow collecting a great volume of data, but
requires cooperation between scientific disciplines and par-
ticipation of stakeholders (e.g., Spiegel et al. 2023), to effi-
ciently interpret and process large amounts of data. Advances
in deep machine learning and automated image recognition
may offer tools for increased processing speed and data in-
terpretation (Christin et al. 2019; Tuia et al. 2022; Wang et al.
2024).

S4. How will climate change affect herbivores and
their ecological role in Arctic ecosystems?

Ultimately, the effects of climate change on herbivore pop-
ulations will lead to altered herbivore densities and distribu-
tions (see S5), with consequences for both vegetation and tun-
dra ecosystem functions (see S1 and S2). Nine responses de-
scribed climate change effects on herbivores as a priority, and
three of these responses also scored as relevant (top 25%) for
management (orange points in Fig. 2). These three responses
highlighted the need for a better understanding of the impact
of extreme weather events on herbivore populations, how
herbivores will respond to climate-driven changes in vegeta-
tion, and the direct and indirect effects of climate change on
herbivore populations (Table S3.1).

The observed increases in the frequency and intensity of
extreme weather events, like rain-on-snow or warmer win-
ter spells, can dramatically impact herbivore populations
(Hansen et al. 2011; see M1). Refreezing of water on the
ground after rain-on-snow events can form basal ice layers
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that prevent access to food by herbivores (Hansen et al. 2013).
Examples of the devastating effects of winter warming on
herbivore populations include extensive mortality of rein-
deer in Yamal, Russia (Forbes et al. 2016) and the decline
of the entire herbivore community following “rain-on-snow”
events on Svalbard (Hansen et al. 2013). Autumn rains also
have strong effects on lemming demography, as they create
a hard ground ice layer that prevents lemming access to food
(Domine et al. 2018). While some information is available on
how winter warming and rain-on-snow events affect herbi-
vores (Hansen et al. 2013; Loe et al. 2016), knowledge about
the effect of other extreme weather events associated with a
changing climate, like extreme summer heat and droughts,
is virtually missing.

Climate change can also affect herbivores through its ef-
fects on forage quantity, quality, and availability and by alter-
ing the overall vegetation structure. For example, shrubifica-
tion associated with climate warming alters forage quantity,
quality, and availability to many herbivores (Joly et al. 2009;
Doiron et al. 2014; Thompson and Barboza 2014). Changes
in plant phenology associated with climate change (Prevéy
et al. 2017) can lead to trophic mismatches if the availability
of highly nutritious forage plants decouples from the timing
of high herbivore nutritional demands (Doiron et al. 2015).
Trophic mismatch can lead to reduced herbivore reproduc-
tive success (Post and Forchhammer 2008) and limited off-
spring growth and survival (Kerby and Post 2013b; Doiron et
al. 2015; Lameris et al. 2018; see M1). By altering vegetation
structure, warming-induced shrubification enhances habitat
quality for biting and parasitic insects and affects herbivores
by increasing insect harassment (Johnson et al. 2021). Shrubi-
fication can also alter habitat connectivity, potentially ben-
efiting browsers such as moose (Alces alces (Linneaus, 1758);
Zhou et al. 2020), but negatively impacting grazers such as
barren-ground caribou (Fullman et al. 2017) or other herbi-
vores like Arctic ground squirrels (Urocitellus parryii (Richard-
son, 1825); Wheeler et al. 2015) that rely on the openness of
the tundra to spot predators.

The combined direct and indirect effects of climate change
on herbivores are species- and context-specific, and therefore
complex to predict. For instance, warmer springs may lead
to shallower snowpacks and can influence lemming popu-
lations directly by providing less thermal insulation and in-
creasing their thermoregulatory costs (Poirier et al. 2023) and
indirectly by exposing them to greater predation (Domine
et al. 2018). In turn, earlier springs also lead to enhanced
food availability for muskoxen, indirectly increasing their fe-
cundity and reducing their mortality (Duncan et al. 2021).
Further, the effects of climate change need to be consid-
ered across seasons. For example, warmer summers and au-
tumns increase forage availability for wild reindeer, while
warm spells during winter can encase vegetation in basal
ice and hence reduce access to forage (Albon et al. 2017;
Loe et al. 2021). The strength of these climate-induced ef-
fects can also vary spatially, resulting in different population
trends (Hansen et al. 2019b). Our understanding of the com-
plex interplay between climate change and herbivore popu-
lation dynamics remains superficial and requires long-term
ecosystem-based monitoring programs to disentangle the di-

rect and indirect effects of climate change, and their com-
bined effects on herbivore populations.

S5. How do compositional changes in herbivore
communities affect ecosystem functioning of
Arctic ecosystems?

Arctic herbivore community dynamics are driven by the
complex interplay of many factors. Climate change, through
its direct and indirect impacts on herbivores (see S4), is a par-
ticularly strong driving force, currently altering the compo-
sition of herbivore communities in the Arctic (Speed et al.
2021). Understanding how these changes will influence the
functioning of Arctic ecosystems is a key scientific priority.
Three responses in the horizon scan described this priority
(Fig. 4), with a focus on understanding the combined effects
of guild-specific herbivore impacts on ecosystem functioning,
and the effects of changing herbivore diversity and commu-
nity composition on tundra ecosystems.

Tundra ecosystems host a range of functionally different
herbivores (henceforth referred to as “guilds”), from inverte-
brates to migratory geese and large herbivores (Speed et al.
2019b). Differences in body size, habitat preferences, and pop-
ulation dynamics across guilds imply different impacts on
ecosystem functioning (Barbero-Palacios et al. 2024). For in-
stance, heavy grazing by reindeer can increase albedo at a re-
gional scale by reducing shrub height and abundance (Cohen
et al. 2013; Te Beest et al. 2016), while lemmings and long-
term grazing by geese can locally and regionally decrease
albedo through the consumption of vegetation and subse-
quent exposure of darker soils (Conkin and Alisauskas 2017;
Lara et al. 2017). Even herbivore species within the same guild
can have contrasting effects on ecosystem processes. For ex-
ample, hay piles constructed by lemmings increase soil phos-
phorus content, but this effect is not observed under vole hay
piles (Roy et al. 2022). Further, the combined effect of her-
bivore guilds on tundra ecosystems is less well understood
and most evidence comes from effects on plants (Barbero-
Palacios et al. 2024). The effects of one guild may complement
or buffer the effects of another. For example, the combined
effects of grazing by reindeer and small rodents can suppress
the growth of tall shrubs (Ravolainen et al. 2014), while these
groups of herbivores dampen each other’s effects on plant nu-
trient content (Petit Bon et al. 2020). As such, changes in the
composition of herbivore communities will determine the
overall effects of herbivores and their spatiotemporal varia-
tion across the landscape.

Around the Arctic, ongoing environmental and manage-
ment changes modulate the abundance and distribution of
herbivore populations (e.g., Mallory and Boyce 2018; Ehrich
et al. 2019; Cuyler et al. 2020), which further shapes the
composition of herbivore communities (Speed et al. 2019a;
Defourneaux et al. 2024; Sokolova et al. 2024) and their im-
pact on tundra ecosystems. For example, some boreal her-
bivores like moose (Alces alces; Tape et al. 2016) and beaver
(Castor canadensis (Kuhl, 1820); Tape et al. 2018) are expand-
ing their distribution into the Arctic tundra, while the ranges
of other Arctic species are shrinking (van Beest et al. 2023),
leading to the borealization of Arctic herbivore assemblages
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(Speed et al. 2021). Due to the important role of herbivores
in Arctic ecosystems (see S2), it is necessary to understand
the differences between species, their interactions, and how
they may change to predict how Arctic systems will function
under future herbivore community assemblages.

S6. How are Arctic food webs structured and how
do they vary over time and space?

Herbivores are embedded in complex food webs where
they interact directly and indirectly with multiple species at
different trophic levels. Understanding how Arctic food webs
are structured and how they vary over time and space was
identified as a key scientific priority in three responses (Fig.
4).

Arctic herbivores have been instrumental for develop-
ing food web ecology as a discipline. Early studies investi-
gated the fluctuating population dynamics of small herbi-
vores using the long-term population records collected by
Canadian fur trading companies, such as the emblematic
Hudson Bay’s lynx–hare and fox–lemming datasets (Elton
1924). More recent studies have focused on understanding
the mechanisms behind Arctic herbivore population cycles
(Gilg et al. 2003; Ims and Fuglei 2005; Gruyer et al. 2008).
Consumer–resource interactions under the constraints of the
harsh Arctic environment provide plausible mechanisms ac-
counting for these cycles (Ims and Fuglei 2005), but ques-
tions remain about the relative importance of herbivore–
plant or predator–herbivore interactions as drivers of these
cycles (Gilg et al. 2003; Gruyer et al. 2008; Ruffino et al. 2016;
Soininen and Neby 2024).

Compared to temperate ecosystems, Arctic terrestrial food
webs are relatively simple (Elton 1927). Our understanding
of the major trophic linkages and compartments in Arc-
tic food webs has been greatly enhanced by comprehen-
sive ecosystem-based monitoring programmes (Pedersen et
al. 2019; Schmidt et al. 2021; Gauthier et al. 2024). However,
the functional links between species can be complex and
dynamic and require the explicit integration of spatial and
temporal variations in trophic interactions. High-resolution
data on replicated food webs can improve ecological assump-
tions and predictive capacity (Soininen et al. 2018) but re-
quire data-heavy approaches (Kissling et al. 2014). Sampling
trophic interactions remains a challenge, but the relatively
well-integrated research community could also be harnessed
to adopt a truly circumpolar food web approach, as exempli-
fied in Mellard et al. (2022). This will require developing cost-
efficient standard protocols to enable a coordinated and spa-
tially replicated sampling of trophic interactions (see, for ex-
ample, Kankaanpää et al. 2020). Deploying high-throughput
methods for diet analysis such as stable isotopes and DNA
metabarcoding (e.g., Hiltunen et al. 2022; Pansu et al. 2022)
should be part of the toolkit, enabling the broad-scale but
detailed characterization of multi-trophic interactions. DNA
metabarcoding already offers great scope for unlocking the
hidden dimensions of animal diets and trophic niche parti-
tioning (Soininen et al. 2009; Neby et al. 2024), and reveal-
ing winter diet in voles (Soininen et al. 2015). The genomic
approach can be generalized to fill the current knowledge

gaps in seasonal foraging of other herbivore species (see S8).
However, work should also be carried out in parallel to ad-
dress current methodological limitations: i.e., assessing the
quantitative performance of DNA metabarcoding (Kamenova
et al. 2024) and developing plant DNA reference databases for
Arctic regions outside Fennoscandia where these databases
are relatively complete (Voldstad et al. 2020). The structure
of food webs is an important determinant of ecosystem func-
tioning and stability (Tylianakis and Morris 2017) that can in-
fluence their resilience and transformation in response to bi-
ological invasions (Frost et al. 2019). This is highly relevant to
Arctic food webs, given the projected changes in herbivore
population dynamics and resource use stemming from cli-
mate warming-driven processes such as tundra borealization
or Arctic greening (see S1 and S2; Wirta et al. 2015; Schmidt
et al. 2017; Gauthier et al. 2024).

S7. What is the role of herbivores in the long-term
stability of Arctic ecosystems?

Understanding the role of herbivores in the long-term sta-
bility of Arctic ecosystems is an urgent priority, considering
the rapid pace of environmental changes in the region. Two
responses in the horizon scan identified this priority (Fig. 4).

Reconstructions of past megaherbivore assemblages offer
important insights into how the distribution, density, and di-
versity of herbivores have shaped community and ecosystem
dynamics from 300 million years ago up to the large mass
extinctions (Owen-Smith 1987). This work has contributed
to the “keystone herbivore” hypothesis (Owen-Smith 1987),
which posits that the productivity of the steppe–tundra dur-
ing the Pleistocene was maintained by megaherbivores. The
“keystone herbivore” hypothesis is further supported by
archived time series of dietary samples. Dietary reconstruc-
tions for species such as the woolly mammoth, including
analyses of the composition of gut tissue (Cucina et al. 2021),
gut and lower intestine content (Ukraintseva 1981), or copro-
lites (Polling et al. 2021) provide strong support for a diet
dominated by herbaceous plants and shrubs, with occasional
consumption of lichens, mosses, and green algae. In this con-
text, dietary samples can provide a key tool to assess long-
term changes in plant–herbivore interactions (see also S6).

The mass extinction of megaherbivores towards the end
of the Pleistocene coincided with a decline in the steppe–
tundra and the expansion of the shrub tundra in the Arc-
tic (Willerslev et al. 2014; Wang et al. 2021). Whether this
change in vegetation was driven by climate or by the extinc-
tion of megaherbivores, and whether the mass extinction of
megaherbivores was caused by changes in climate or by hu-
man hunting, has been debated (Zimov et al. 1995; Monteath
et al. 2021; but see also Svenning et al. 2024). There has been
much recent interest in re-establishing extinct past herbivore
assemblages (i.e., rewilding; Olofsson and Post 2018) and on
the capacity of current tundra vegetation to sustain these
herbivore assemblages (Poquérusse et al. 2024). The poten-
tial to reintroduce large herbivores in the Arctic could miti-
gate some of the effects of warming (Olofsson and Post 2018;
Macias-Fauria et al. 2020) but requires biological, social, and
ethical considerations (Burak et al. 2024; see M3 and M8).
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Following the mass extinctions of megaherbivores, large
mammalian grazers have continued to be important regula-
tors of vegetation patterns worldwide, including in the Arc-
tic (see S1 and S2). For instance, research on historical rein-
deer milking grounds and enclosures in Fennoscandia re-
veal long-term legacy effects of high local densities of semi-
domesticated reindeer (Egelkraut et al. 2018; Huusko et al.
2024). These studies show that locally, high reindeer densities
can lead to shifts from shrub-dominated tundra to alternative
stable vegetation states dominated by herbaceous plants that
can persist for hundreds of years (Normand et al. 2017). Small
mammalian herbivores, such as voles and lemmings, may fur-
ther contribute to limiting shrub growth in these historical
milking grounds (Egelkraut et al. 2018).

Through their effects on vegetation, nutrient cycling, and
climate feedbacks (see S2), herbivores are important regula-
tors of long-term ecosystem processes and ecosystem stabil-
ity in tundra ecosystems, although effects vary across spa-
tial scales (see S8) and among herbivore assemblages (see S5).
Improved understanding of the mechanisms that determine
large-scale and long-term effects of plant–herbivore interac-
tions is an important avenue of research.

S8. How do the effects of herbivores on Arctic
ecosystems vary in space and time?

It has long been recognized that the effects of herbivores
vary greatly depending on where and when herbivory takes
place. Two responses in the horizon scan identified the spa-
tiotemporal variability of herbivore impacts as a scientific
priority (Fig. 4).

Herbivores’ use of landscapes is heterogeneous, and their
foraging choices span multiple spatial scales, from individ-
ual plants to the landscape level (Senft et al. 1987). Forag-
ing decisions, in turn, may lead to an uneven distribution of
herbivore impacts across the landscape (see S1). One notori-
ous example is the profound spatial variation in the intensity
of the interactions between small rodents and plants, where
strong impacts have been documented in some parts of the
Arctic (Olofsson et al. 2012; Roy et al. 2022) but not in others
(Bilodeau et al. 2014). Even within the same region, the ef-
fects of small rodents on vegetation can differ between river
catchments 20 km apart (Ravolainen et al. 2011). Differences
in primary productivity and in food web structure could ac-
count for these pronounced spatial differences between dif-
ferent tundra ecosystems (Gauthier et al. 2011; Oksanen et al.
2020).

Another source of variation in plant–herbivore interac-
tions is timing, which is particularly important in highly sea-
sonal environments like the Arctic tundra (Post et al. 2008).
Some migratory herbivores are only present in the Arctic dur-
ing summer, while other herbivores are resident year-round
(Speed et al. 2019b). In addition, herbivore populations gener-
ally fluctuate among years, leading to temporal variations in
grazing impacts on vegetation. For example, the population
cycles of voles and lemmings cause synchronous fluctuations
in plant biomass (Olofsson et al. 2012; Siewert and Olofsson
2021), and periodic outbreaks of geometrid moths can lead
to vegetation shifts in the tundra–forest ecotone (Vindstad et

al. 2019). Changes in the timing of herbivory can have impor-
tant ecosystem consequences. For example, grazing by early
arriving migratory geese can shift tundra ecosystems from a
C sink to a source, while delayed goose arrival can lead to
opposite outcomes (Beard et al. 2019b). Further, food prefer-
ences of herbivores change throughout the growing season
in response to phenological changes in food quality and avail-
ability (Iversen et al. 2014; Barboza et al. 2018; see S4). Parallel
to these changes in food quality, the chemical composition
of waste deposition also varies seasonally (Beard et al. 2023),
potentially leading to varying seasonal impacts of herbivores
on tundra biogeochemistry. Understanding the drivers of the
spatiotemporal variability of herbivore effects is crucial for
predicting how tundra ecosystems will respond to ongoing
environmental changes. This will require targeted efforts that
include underrepresented Arctic environments (Soininen et
al. 2021) and special attention to the timing and multiple spa-
tial scales at which these effects manifest.

Although we have a relatively good understanding of
changes in herbivory during the growing season, there is
a clear gap in our knowledge on herbivore impacts dur-
ing winter and shoulder seasons (autumn and spring). Snow
properties, including the distribution of snow and timing
of snowmelt, can influence the spatiotemporal variability of
herbivore impacts across the landscape (Rixen et al. 2022). A
recent synthesis suggested that the effects of small rodents on
vegetation may be most pronounced during winter (Soininen
and Neby 2024), with winter browsing strongly suppressing
heavily defended dwarf shrubs (Dahlgren et al. 2009). Simi-
larly, winter browsing by ptarmigan and moose has strong
effects on the growth, reproduction, and architecture of wil-
lows (Christie et al. 2014). In turn, food availability during
winter has large repercussions for population dynamics of
resident Arctic herbivores and ultimately determines the car-
rying capacity (Albon et al. 2017; see M4). A better under-
standing of plant–herbivore interactions during winter and
their consequences to both plants and herbivores is therefore
needed.

Management relevance

M1. What are the management implications of the
effects of climate change on Arctic herbivores?

Climate change will affect Arctic herbivores in direct and
indirect ways (see S4). From a management perspective,
changes in disease dynamics of plants and herbivores, her-
bivore habitat or behaviour, herbivory rates, food availability
(e.g., access to food in winter), or in the adaptive capacity of
herbivores (e.g., physiological tolerance to climate extremes),
are highly relevant. This priority included the largest number
of responses (12) but received the lowest average score for
management relevance among the identified management
priorities (average score: 2.3; Fig. 4), including the highest
and the lowest ranked responses (scores 2.61 and 2.16, respec-
tively).

Rapid changes in abiotic and biotic conditions in the Arc-
tic will influence herbivore populations (see S4) and create
new challenges for natural resource managers and local liveli-
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hoods. Effective herbivore management in a changing cli-
mate requires high-quality data on herbivore abundances
and vital rates, and on drivers like abiotic factors, includ-
ing weather variability and extreme weather events. Effective
management will also require anticipating and mitigating
the various ecological and evolutionary disruptions caused
by rapid climate change. At broader spatial scales, these eco-
logical disruptions include shifting distributions of plants,
other herbivores, predators and pathogens (van Beest et al.
2021; Yarzábal et al. 2021), and the subsequent changes in
biotic interactions (Mellard et al. 2022; see S6). For example,
the northward expansion of deer and moose has indirectly
resulted in increased predation pressure on caribou by grey
wolf (Festa-Bianchet et al. 2011). In addition, the spread of
novel diseases represents formidable challenges for manage-
ment of herbivore populations. Range expansion of southern
deer species increases the risk of new zoonotic pathogens
and parasites not formerly present in the Arctic, which be-
come lethal when infecting new hosts (Pickles et al. 2013).
For instance, the outbreak of chronic wasting disease in Nor-
way in 2016 required the extirpation of the third-largest wild
reindeer population to prevent the spread of the disease
(Mysterud and Rolandsen 2018; Mysterud et al. 2024). These
examples demonstrate the need for assessing and monitor-
ing the spread of diseases and their vectors (Di Francesco et
al. 2021; Johnson et al. 2023).

An important management concern, as reflected explic-
itly by three responses, is how climate change will influ-
ence food availability and its consequences to herbivore diet
composition and quality. As mentioned in S4, rain-on-snow
events that prevent herbivore access to food in winter are
predicted to become more frequent under climate change,
and these events can lead to extensive mortality, particu-
larly when reindeer densities are high (Hansen et al. 2019a,
2019b). Warming-related changes in plant community com-
position, including decreases in lichen availability, can re-
duce pasture quality (Joly et al. 2009) and negatively impact
herbivore population growth, as described for caribou herds
across North America (Fauchald et al. 2017). Further, trophic
mismatches associated with climate change (see S4) can re-
duce herbivore reproductive success, as documented for cari-
bou in West Greenland (Post and Forchhammer 2008). Some
herbivores might be susceptible to phenological mismatches
(Gustine et al. 2017), while others might be able to adjust
their behaviour to buffer some of the negative effects of cli-
mate change (Kerby and Post 2013a; Loe et al. 2016). How-
ever, understanding and predicting the adaptive capacity of
Arctic herbivores to rapid abiotic and biotic changes is a crit-
ical step for effective management of herbivore populations
in the Arctic.

M2. How will increasing human pressure in
combination with environmental changes affect
Arctic herbivores?

As human impact in the Arctic accelerates and becomes
more ubiquitous, herbivore populations are increasingly
exposed to direct and indirect impacts affecting popula-
tion abundances and vital rates (Klein 2000). Understand-

ing how increasing human pressure and other environmen-
tal changes will affect Arctic herbivores was identified as a
key priority for management, with the third highest aver-
age score (Fig. 4). Human pressures include a wide range
of impacts, such as habitat loss to infrastructure, land use
changes and fragmentation, natural resource exploration
and exploitation, recreational activities, farming, and the
spread of diseases (see M1). Responses included in this pri-
ority highlighted studying the ability of herbivores and the
livelihoods that depend on them to adapt to both the indi-
vidual and the cumulative impacts from multiple stressors.

The impacts of anthropogenic activities on Arctic herbi-
vores have been well documented, particularly for muskoxen
(Ovibos moschatus (Zimmermann, 1780); Cuyler et al. 2020)
and wild and semi-domesticated Rangifer spp. (Festa-Bianchet
et al. 2011; Skarin and Åhman 2014). Human infrastructure
and resource extraction directly cause habitat loss, fragment
landscapes, and can disrupt migration routes for herbivores
between seasonal habitats (Severson et al. 2023; Boulanger et
al. 2024). Noise pollution, visual disturbance, dust deposition,
and pollutant contamination (Plante et al. 2018; Skarin et al.
2018; Watkinson et al. 2021) effectively increase the zone of
influence and lead to avoidance behaviour. Avoidance may
vary with season, level of human activity, type of industry,
and herbivore species. For example, large herbivores usually
have the largest avoidance during calving and higher toler-
ance towards disturbances during the insect harassment pe-
riod (Skarin et al. 2018; Johnson et al. 2020; Prichard et al.
2020). One major challenge is identifying the spatial and tem-
poral extent and variation of the zone of influence within
which herbivores respond to disturbances and their cumula-
tive impacts (Niebuhr et al. 2023). Tolerance to disturbance
varies with species, domestication, handling, and taming
of the animals. Tolerance can also increase if resources are
scarce, hiding possible adverse effects of disturbances. While
some studies conclude that habituation towards disturbances
is possible (Colman et al. 2013), others find it weak or ab-
sent (Johnson et al. 2014, 2020). Thus, predicting the ef-
fect of increased anthropogenic impacts remains difficult and
highly context dependent. Long-term studies across habitats
and seasons are needed to understand the implications of in-
creasing human activities on the habitats of Arctic herbivores
and how these impacts translate to population level conse-
quences. Furthermore, we need to understand better how
habitats can be restored to maintain the carrying capacity for
viable large herbivore populations to sustain the hunting and
herding livelihoods that depend on them. This includes, for
instance, restoring mining sites once mineral resources have
been depleted, as well as alternative forest management and
increased landscape connectivity for seasonal migrations.

M3. Can herbivores be used as a climate change
mitigation strategy?

Using large wild and domestic herbivores as a manage-
ment tool to mitigate some of the effects of climate change
is receiving increasing attention (see S7). Three responses
(Fig. 4) referred to the potential use of herbivores to restore
lost ecosystem functions, counteract climate change effects
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on tundra ecosystems, or prevent further warming through
their effects on climate feedbacks.

Herbivores in the Arctic and the subarctic can help miti-
gate climate change (Cromsigt et al. 2018; Beer et al. 2020;
Macias-Fauria et al. 2020; Windirsch et al. 2022). Browsing
on shrubs and trees by large herbivores prevents the expan-
sion of woody plants (Olofsson et al. 2009; Olofsson and Post
2018) and can promote graminoids, forbs, and other low-
lying biotic ground cover such as lichens (Stark et al. 2002;
Olofsson et al. 2004; see S1 and S2). These vegetation shifts
can have a cooling effect, as graminoids, forbs, and in partic-
ular lichens reflect more sunlight than darker, taller shrubs
and trees and increase albedo (Zimov et al. 2012; Cohen et
al. 2013; Te Beest et al. 2016). However, the most important
albedo effect of low-lying vegetation is in the continuous
snow layer that it promotes, which results in large quanti-
ties of solar energy reflected in the shoulder seasons, espe-
cially spring, as compared to landscapes where tall vegetation
protrudes from the snow layer and enhances snow melt and
energy absorption. In addition, low-lying vegetation can also
help mitigate permafrost thaw, as it promotes wind-packing
of snow, reducing the insulation capacity of the snowpack
and maintaining colder soil temperatures (Sturm et al. 2001a,
2001b). In addition, large herbivores trample snow in winter,
increasing soil exposure to cold air, aiding permafrost main-
tenance and expansion (Beer et al. 2020; Macias-Fauria et al.
2020). Yet, observations of accelerated permafrost degrada-
tion in mires grazed in summer by semi-domestic reindeer
in Fennoscandia (Holmgren et al. 2023) suggest that the ef-
fects of large herbivores on permafrost strongly depend on
environmental context and grazing regimes. To be able to
increase albedo and permafrost preservation through herbi-
vore management, we need further studies on the role of her-
bivore density, plant community composition, and environ-
mental context.

Large herbivores in Arctic systems could also mitigate
the impacts of climate change by increasing soil carbon
storage. Grazing-induced graminoid-dominated systems can
store more carbon than shrub-dominated systems due to
faster biomass turnover and relatively deep and dense root
structures, increasing soil carbon storage within the first me-
ter of soils (Olofsson et al. 2009; Windirsch et al. 2022). Herbi-
vores also accelerate nutrient cycles (Van der Wal and Brooker
2004), facilitating ecosystem carbon uptake (Falk et al. 2014).
Modelling studies suggest that they can also enhance net pri-
mary production (Zhu et al. 2018). However, this effect is
not universal and grazing intensity, grazing regime, and en-
vironmental context are important mediators of net effects
(Burak et al. 2024). For instance, intense grazing in upland
systems can reduce vegetation biomass, muting any increase
in ecosystem carbon storage (Jefferies et al. 2006; Väisänen
et al. 2014). In contrast, grazing in wetter landscapes can
decrease the ratio of emitted methane-to-CO2, reducing the
global warming potential without changing the net C-balance
(Fischer et al. 2022). A more comprehensive understanding of
the biotic and abiotic factors influencing herbivore–carbon
interactions, the spatiotemporal variability in herbivore im-
pacts, and how herbivores influence other elemental cycles
(Koltz et al. 2022) will lead to better predictive models of

where and when large herbivores may affect carbon storage
and energy balance and thus effectively be used to mitigate
climate change effects.

Although large herbivore management has the potential to
be used as a climate mitigation tool, the feasibility of apply-
ing such strategies remains questionable. To have a signifi-
cant effect on global climate, drastic increases in the diver-
sity and density of herbivore assemblages would be needed
(Macias-Fauria et al. 2020; Ylänne and Stark 2025). Such in-
creases might only be feasible at very local scales as induced
by human management, but also pose other problems associ-
ated with environmental degradation following overgrazing
(Windirsch-Woiwode 2024).

M4. Can we manage herbivores to enhance
biodiversity and ecosystem functioning in Arctic
ecosystems?

In addition to the potential application as a climate change
mitigation and adaptation strategy (see M3), management of
large wild and domestic herbivores can enhance biodiversity
and ecosystem functioning in the tundra (Bråthen et al. 2017;
see S2). In our horizon scan, this priority was described in
four responses (Fig. 4).

Current management of large herbivores varies across the
Arctic due to differences in legislations, and these differences
may lead to different impacts on tundra biodiversity and
ecosystem functioning (Forbes and Kumpula 2009). For ex-
ample, in Northern Fennoscandia, reindeer herding practices
differ among countries, from seasonal migration to sedentary
regimes, driving contrasting vegetation patterns and ecosys-
tem impacts (Holand et al. 2022). Reindeer herds fluctuate
due to both environmental and management changes. For
instance, the collapse of the Soviet Union caused large de-
clines in some domesticated reindeer herds but increases in
others (Uboni et al. 2016). In addition, pressures from compet-
ing land uses (see M2) prevent the use of some pastures, con-
centrating grazing pressure in the remaining pastures (e.g.,
Horstkotte et al. 2022). The additive effects of co-occurring
herbivore species also need to be considered (see S5). Al-
though herbivore diversity has been shown to slow the de-
cline in biodiversity driven by warming (Post et al. 2023) and
enhance ecosystem functioning (e.g., Ravolainen et al. 2014),
managing multiple species with different population densi-
ties and dynamics within the same area brings additional
challenges.

Taking domesticated reindeer in Eurasia as an example, the
possibility of managing herbivores to enhance biodiversity
and ecosystem functioning lies primarily in the right to use
the pastures and self-determination of the Indigenous rein-
deer herding groups (Larsson Blind 2022). Biodiversity and
ecosystem functioning could be enhanced, especially in sum-
mer pastures, by re-establishing long-term grazing practices
that have been lost or re-distributing grazing pressure to al-
low heavily grazed pastures to recover. However, such mea-
sures include a number of challenges as they would require
maintaining or even increasing herd sizes (Uboni et al. 2020).
This is difficult because herd sizes are largely constrained by
forage availability during winter (Moen et al. 2006), which is
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in turn reduced by climate change and increased pressures
from competing land uses (Uboni et al. 2020). Supplementary
feeding could increase reindeer survival and production but
is costly and difficult to maintain (Åhman et al. 2022), and
results in fundamental behavioural changes that affect the
overall ecosystem effects of herbivory as well as increasing
the risk of disease (Tryland et al. 2019). Further, the max-
imum number of reindeer allowed in a herding district is
based on winter grazing ground carrying capacity and is set
by government authorities, thus affecting self-governing by
the herders (Sarkki et al. 2022). In addition, a main constraint
to actively steering herds to appropriate summer pastures to
avoid excessive grazing of some areas is the availability of
labour, as the number of herders has declined in parts of
Fennoscandia (Uboni et al. 2020). In the extensive reindeer
husbandry systems that prevail, herds roam freely in sum-
mer, apart from certain activities such as calf markings, and
their habitat selection is largely dependent on forage avail-
ability and other biotic and abiotic factors, including human
disturbance (see M2). The possibility to explicitly manage do-
mesticated herbivores for maintaining biodiversity and the
provision of ecosystem services will thus be a complex pro-
cess that includes considering the annual pasture cycle, com-
peting land uses, and the political systems of governance.

M5. How can we effectively interweave different
types of knowledge to identify relevant questions
and solve management issues regarding Arctic
herbivores?

The value of experiential knowledge, derived from a close
cultural connection to the land and passed down through
generations, and Indigenous knowledge, rooted in specific
ethnic contexts and shaped by the cultures, traditions, prac-
tices, and beliefs of descendants of people who inhabited a re-
gion prior to colonization, is increasingly recognized within
the scientific community for its contribution to understand-
ing ecological and environmental processes and wildlife man-
agement (Berkes et al. 2000; Hill et al. 2020; Jessen et al.
2022). Three responses mentioned the importance of inter-
weaving experiential, Indigenous, and scientific knowledge
in managing herbivores and their ecosystem effects. Partic-
ipants ranked this priority the highest (average score: 2.49;
Fig. 4).

Experiential and Indigenous knowledge are often de-
scribed as integrated into a way of life and associated with
practices such as hunting, trapping, or herding. In this
sense, knowledge is cumulative and is culturally transmit-
ted through language, skills, and practices, and is continu-
ously tested against recent observations and is thus adap-
tive to environmental change (Savo et al. 2016; Ford et al.
2020). This knowledge is embedded in specific norms, val-
ues, and holistic worldviews (Berkes et al. 2000; Brondízio
et al. 2021). Taken out of its context, there is a risk that the
meaning and significance of these forms of knowledge will
be lost (Albuquerque et al. 2021). Successfully interweaving
different ontologies for knowledge co-production, and partic-
ularly Indigenous knowledge, therefore requires establishing
mutual trust, respectful engagement of cultural approaches,

and equal power relations between partners to overcome
the historical burden of colonialism and marginalization of
Indigenous peoples (Wheeler et al. 2020). The participation
of knowledge holders in all stages of the research process,
from identifying relevant questions and agreeing on meth-
ods, to data collection and analysis and knowledge dissemi-
nation, is vital to prevent extractive processes, but may vary
in agreement with involved research partners (David-Chavez
and Gavin 2018).

Contributions of interweaving various forms of knowledge
for Arctic herbivore management have led to deeper in-
sights of species and population trends, spatial and tempo-
ral changes in migration patterns, responses to disturbance,
spread of diseases, and the effects of climate change and in-
tegrity of the Arctic social-ecological system (e.g., Parlee et al.
2005; Peacock et al. 2020; Gagnon et al. 2023). For instance,
Gagnon et al. (2023) developed predictive models of caribou
distribution and hunters’ access to the herds in response to
environmental factors, based on hunters’ Indigenous knowl-
edge, GPS collared caribou, and climate models, as a tool to
assess the effects of climate change on the local communi-
ties’ food security and cultural relation to caribou. As this ex-
ample demonstrates, considering the impacts of human ac-
tivities and climate change, co-developing adaptive manage-
ment and conservation strategies to protect both herbivore
populations and their habitats is critical. Implementing these
strategies also requires bridging the interface between ex-
periential and Indigenous knowledge, scientific knowledge,
and government policies (Yua et al. 2022). For instance, poli-
cies that restrict hunting quotas or implement limits for
semi-domesticated reindeer herd size, while at the same time
promoting the exploitation of natural resources, can erode
trust and increase the potential for frictions between govern-
ment and communities, thus preventing meaningful knowl-
edge co-production and adaptive management (Parlee et al.
2018; Larsson Blind 2022; Sarkki et al. 2022). However, the
co-development of new management strategies offering so-
lutions to address current caveats is also on the rise (Simba
et al. 2024). For instance, the use of quality checked protocols
for stakeholder involvement, such as the strategic foresight
protocol (Hamel et al. 2022) and Community-Benefits Agree-
ments (Gunton and Markey 2021), can help define assets, in-
centives, risks, and roles and can create a roadmap of shared
purpose among participants involved in herbivore manage-
ment across rights holders and stakeholders who bring di-
verse ways of knowing.

M6. What is the role of herbivores in Arctic
socio-ecological systems?

The roles of herbivores within Arctic socio-ecological sys-
tems span biological, economic, and cultural dimensions. Six
responses emphasized the need to understand these roles
and their relevance to maintaining viable rural communities
in the Arctic and subarctic (Fig. 4, Table S3.2).

Reindeer/caribou, moose, muskoxen, ptarmigan, water-
fowl, and hares are hunted across the Arctic, providing food
for subsistence use, while other herbivores like reindeer are
herded in parts of their range. Aside from food, materials
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like furs, antlers, and bones can be reworked by local arti-
sans to make items for personal use or for sale, including
clothing, jewelry, and tools (Aslaksen et al. 2009). Carrying
out these practices provides Arctic people with material re-
sources, as well as opportunities to facilitate the transmis-
sion of cultural knowledge and skills (e.g., Pearce et al. 2015;
Laptander 2023). The language, behaviour, and stories shared
during these practices can maintain community bonds and
allow more intangible spiritual understandings about pur-
pose, identity, and how to relate to other beings to be com-
municated and enacted (Justice 2018; Ravna 2020; Salusky
et al. 2022). In the wider ecological system, the grazing and
fertilizing action of herbivores maintains multiple ecologi-
cal processes, creating habitats that support other plants and
animals that Arctic people rely on and can influence climate
feedback processes (Olofsson et al. 2004; Te Beest et al. 2016;
Ylänne et al. 2021), thus affecting humans globally. Despite
the importance of herbivores to the livelihood and subsis-
tence of local communities, these activities often do not rep-
resent a main economic source for the country (e.g., in com-
parison to fisheries; Bjørndal and Munro 2012), resulting in
lack of priority national funding for long-term monitoring.
Nevertheless, there are some positive counterexamples such
as the subnational support for preserving Indigenous country
food practices in Nunavut (Warltier et al. 2021).

Several aspects of the role of herbivores in these socio-
ecological systems require more research. The full extent of
the impact of herbivores on global climate processes is not
yet well understood (Koltz et al. 2022; Stark et al. 2023), and
larger spatial coverage of research on reindeer and other
herbivores across the Arctic would be valuable (Soininen et
al. 2021). Similarly, how herbivores are adapting to changes
in climate and anthropogenic land use requires more study
so that the consequences to food security can be predicted
(Cuyler et al. 2020; Stoessel et al. 2022; van Beest et al.
2023). Given the tight interplay between ecological and socio-
political factors in the Arctic (e.g., Naylor et al. 2021), inter-
disciplinary approaches encompassing natural, social, and In-
digenous sciences will be needed to address these gaps in un-
derstanding, and to reliably inform policy and management
strategies going forward (Riseth et al. 2011; Baztan et al. 2017;
Moirano et al. 2020; Pedersen et al. 2020; Tsuji et al. 2020;
Kater 2022).

M7. How can we gather information on Arctic
herbivores that is relevant to management?

Focus on improving and further developing methods to
monitor herbivore abundance and population dynamics, and
the use of new technologies to collect data at spatial and tem-
poral scales that are relevant to management, is a key prior-
ity. Two responses were included under this priority (Fig. 4).

Gathering information that is relevant to management
should be grounded in robust conceptual models that can
integrate the diversity of spatial and temporal data existing
for a system and guide new data collection. These concep-
tual models can help define key system-specific parameters
to monitor and identify data gaps and guide adaptive man-
agement approaches. An excellent example of a framework

where conceptual models guide monitoring and data collec-
tion is COAT (Ims and Yoccoz 2017). In COAT’s conceptual
models, climate and management are the main drivers of
change and data collection is tailored to management needs.
These needs are defined based on long-term involvement of
rights holders including Indigenous people (herders), stake-
holders, and managers, and are guided by national and in-
ternational management plans. For example, the need for re-
liable data on abundance and distribution of herbivores is
set by management goals targeting population sizes. Based
on these data, management decisions will guide different ac-
tions depending on whether the goal is to increase, reduce,
or maintain stable populations.

Collecting data at spatial and temporal scales relevant to
the herbivore and the management setting in question re-
mains challenging. However, recent technological develop-
ments in remote sensing, GPS tracking, and bio-logging (see
S3) to gather detailed information on herbivore movements,
feeding patterns, and real-time responses to environmental
changes represent a significant advance. In addition, high-
resolution and non-invasive methods such as genomic se-
quencing of pathogens (Seru et al. 2024) and faecal mate-
rial (Soininen et al. 2009; Neby et al. 2024), microhistology
(Filella et al. 2023), or near-infrared spectroscopy (Tuomi et
al. 2023) can provide spatially and temporally explicit infor-
mation on herbivore disease and diet, which can inform har-
vesting, herding, or other management decisions.

The rapid changes faced by herbivores in many ecosys-
tems demand that managers anticipate future changes to im-
plement short- and long-term strategies to reduce negative,
unwanted impacts. Near-term ecological forecasts provide a
framework for such predictions (see Marolla et al. (2021) for a
specific example on rock ptarmigan). Management contexts
and goals differ, and management actions must be based as
much as possible on scientific evidence and knowledge co-
production (see M5). Focusing on well-described, transparent,
and scientifically robust processes that set up the communi-
cation and workflows between scientists, managers, and lo-
cal communities involved is therefore key to jointly defining
research questions and study designs using an adaptive ap-
proach (Lindenmayer et al. 2011). For example, Henden et al.
(2020) offer a case study for stakeholder involvement in man-
agement of willow ptarmigan in northern Norway, where col-
lective learning allowed defining questions and guided data
collection. Successfully interweaving knowledge systems (see
M5) and developing strong partnerships requires investment
of time and funding to facilitate cooperation between stake-
holders, and building initiatives on key lessons learned from
successful initiatives (e.g., Hamel et al. 2022).

M8. Which societal obstacles prevent the use of
Arctic herbivores in ecosystem management and
how can these obstacles be overcome?

Knowledge is of little practical value if societal obstacles
prevent its use in management. Two responses mentioned
the attitudes of Arctic stakeholders and the societal obsta-
cles that prevent the use of Arctic herbivores in ecosystem
management (Fig. 4).
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Obstacles that prevent the translation of knowledge into
practice and policies can relate to economic, cultural, legisla-
tive, ethical, and behavioural factors. These factors can be
identified for example by mapping the attitudes of partici-
pants (Bauer et al. 2009) or promoting the use of delibera-
tive democracy methods in which public consultation with
citizens is central to democratic processes (Lépy et al. 2018).
Other approaches, like tackling legislative barriers across
country borders (Trouwborst et al. 2016; see also Heininen et
al. 2020), collaborating with environmental ethicists (Ferraro
et al. 2021), and developing micro- and macroeconomic so-
lutions to enable financing of more sustainable herbivore
management (Karolyi and Tobin-de la Puente 2023) could also
help overcome these obstacles. These approaches, however,
remain little used in the Arctic.

Interestingly, the two responses included in this priority
were ranked among the lowest in scientific importance (av-
erage scores for scientific relevance 1.90 and 1.31), which
might reflect the predominant natural science background
of survey participants and their varying experience in trans-
lating science into applied research and management advice.
Future prioritization exercises could engage more social sci-
entists, reinforcing inter- and transdisciplinary research (see
Ivanov et al. 2024), to identify the social dimensions of man-
agement decisions. Thus, in addition to strengthening our
knowledge on herbivores and their interaction with climate
change from a natural sciences perspective, there is a need
for economic, socio-political, cultural, juridical, ethical, and
human behavioural studies around herbivores and their use
(see Artner and Siebert 2006; Burak et al. 2024).

Conclusions
This horizon scan has identified 16 emerging priorities in

the field of Arctic terrestrial herbivory research that should
be addressed over the next decade. The horizon scan con-
cluded that understanding the impacts and effects of her-
bivory and herbivores on tundra ecosystems in rapidly chang-
ing environments remains a high priority. However, one gen-
eral observation from this horizon scan is that there is still a
need for closer integration of research and management pri-
orities. We chose to balance the number of research and man-
agement questions (Fig. 3), but also recognize that there is of-
ten a persistent gap between ecological science and environ-
mental management priorities (Underwood 1998; Gosselin et
al. 2018).

Our categories of science and management are complemen-
tary only to the extent that their knowledge perspectives
have an obvious interface. Researchers should be able to im-
prove the applicability of their research through interact-
ing better with resource managers and Indigenous organiza-
tions who are directly responsible for management decisions
and interventions. Further, we encourage partnerships to co-
design applied management research based on relevant ques-
tions and knowledge needs. Future research that addresses
the priorities that we have identified will benefit from a more
deliberate effort to conduct studies that incorporate manage-
ment perspectives, including testing of management inter-
ventions and investigating alternatives when current prac-
tices fail (Underwood 1998).

Our consensus was that the most important research ques-
tions for the next decade pertain to fundamental ecological
processes at different scales, climate change, technology and
innovation, sustainability, and the co-production of knowl-
edge and solutions. Climate change was featured in several
scientific (S1, S4) and management (M1, M3) priorities. The
impacts of climate change are seen and felt across Arctic envi-
ronments and are particularly impactful at the local and com-
munity level, for example for herbivores that are harvested
for subsistence. The impacts of climate change will influence
how research is conducted and may affect the implementa-
tion of natural resource use, management, and conservation
practices.

The upcoming Fifth International Polar Year in 2032–2033
will provide considerable motivation for planning and devel-
oping new research initiatives on Arctic herbivores. These
initiatives should include coordinated ecosystem-based and
circumpolar efforts that incorporate diverse knowledge sys-
tems into future research programs. It will be important to
match the current state-of-knowledge and emerging technol-
ogy with the quickly changing dynamics of many Arctic her-
bivores and the environmental changes occurring in tundra
ecosystems. Addressing these priorities will require develop-
ing new methods and inclusive, interdisciplinary collabora-
tions.

Including diverse research communities and management
bodies are both prerequisites for effective cross-domain
knowledge sharing and adoption. This new knowledge can be
incorporated into formal institutional policies and processes.
In terms of facilitating and enhancing the interface between
science and management, we are hopeful that our horizon
scan research prioritization will help to create and sustain in-
formal “communities of practice”, for example, through the
Herbivory Network (Barrio et al. 2016b; http://herbivory.lbhi
.is) or independently. These efforts will also enable periodic
updates of this horizon scan, complemented with the addi-
tional insights from diverse stakeholders.
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Bråthen, K.A. 2014. Phenology and cover of plant growth forms pre-
dict herbivore habitat selection in a high latitude ecosystem. PLoS
ONE, 9: e100780. doi: 10.1371/journal.pone.0100780.

Jefferies, R.L., Jano, A.P., and Abraham, K.F. 2006. A biotic agent promotes
large-scale catastrophic change in the coastal marshes of Hudson Bay.
Journal of Ecology, 94: 234–242. doi:10.1111/j.1365-2745.2005.01086.
x.

Jepsen, J.U., Vindstad, O.P.L., and Ims, R.A. 2023. Spatiotemporal dynam-
ics of forest geometrid outbreaks. Current Opinion in Insect Science,
55: 100990. doi:10.1016/j.cois.2022.100990.

Jessen, M.T., Kaarlejärvi, E., Olofsson, J., and Eskelinen, A. 2020. Mam-
malian herbivory shapes intraspecific trait responses to warmer cli-
mate and nutrient enrichment. Global Change Biology, 26(12): 6742–
6752. doi:10.1111/gcb.15378.

Jessen, T.D., Ban, N.C., Claxton, N.X., and Darimont, C.T. 2022. Contri-
butions of Indigenous Knowledge to ecological and evolutionary un-
derstanding. Frontiers in Ecology and the Environment, 20: 93–101.
doi:10.1002/fee.2435.

Johnson, C.J., and Russell, D.E. 2014. Long-term distribution responses of
a migratory caribou herd to human disturbance. Biological Conser-
vation, 177: 52–63. doi:10.1016/j.biocon.2014.06.007.

Johnson, H.E., Golden, T.S., Adams, L.G., Gustine, D.D., and Lenart, E.A.
2020. Caribou use of habitat near energy development in Arctic
Alaska. The Journal of Wildlife Management, 84: 401–412. doi:10.
1002/jwmg.21809.

Johnson, H.E., Golden, T.S., Adams, L.G., Gustine, D.D., Lenart, E.A., and
Barboza, P.S. 2021. Dynamic selection for forage quality and quantity
in response to phenology and insects in an Arctic ungulate. Ecology
and Evolution, 11: 11664–11688. doi:10.1002/ece3.7852.

Johnson, L.R., Wilcox, A.A.E., Alexander, S.M., Bowles, E., Castleden, H.,
Henri, D.A., et al. 2023. Weaving Indigenous and Western ways of
knowing in ecotoxicology and wildlife health: a review of Cana-
dian studies. Environmental Reviews, 31(3): 452–470. doi:10.1139/
er-2022-0087.

Joly, K., Jandt, R.R., and Klein, D.R. 2009. Decrease of lichens in Arc-
tic ecosystems: the role of wildfire, caribou, reindeer, competition
and climate in north-western Alaska. Polar Research, 28(3): 433–442.
doi:10.1111/j.1751-8369.2009.00113.x.

Justice, D.H. 2018. Why Indigenous literatures matter. Wilfrid Laurier
University Press. doi:10.51644/9781771121774.

Kaarlejärvi, E., Eskelinen, A., and Olofsson, J. 2013. Herbivory prevents
positive responses of lowland plants to warmer and more fertile con-
ditions at high altitudes. Functional Ecology, 27: 1244–1253. doi:10.
1111/1365-2435.12113.

Kaarlejärvi, E., Eskelinen, A., and Olofsson, J. 2017. Herbivores res-
cue diversity in warming tundra by modulating trait-dependent
species losses and gains. Nature Communications, 8: 419. doi:10.
1038/s41467-017-00554-z.

Kaarlejärvi, E., Hoset, K.S., and Olofsson, J. 2015. Mammalian herbivores
confer resilience of Arctic shrub-dominated ecosystems to chang-
ing climate. Global Change Biology, 21: 3379–3388. doi:10.1111/gcb.
12970.

Kamenova, S., Meyer, P., Brysting, A.K., Rescia, L., Folkow, L.P., Sund-
set, M.A., et al. 2024. DNA metabarcoding diet analysis in ruminants
is quantitative and integrates feeding over several weeks. BioRxiv.
doi:10.1101/2024.02.01.577814.

Kankaanpää, T., Vesterinen, E., Hardwick, B., Schmidt, N.M., Anders-
son, T., Aspholm, P.E., et al. 2020. Parasitoids indicate major climate-
induced shifts in arctic communities. Global Change Biology, 26(11):
6276–6295. doi:10.1111/gcb.15297.

Karolyi, G.A., and Tobin-de la Puente, J. 2023. Biodiversity finance: a call
for research into financing nature. Financial Management, 52: 231–
251. doi:10.1111/fima.12417.

Kater, I. 2022. Natural and Indigenous sciences: reflections on an attempt
to collaborate. Regional Environmental Change, 22: 109. doi:10.1007/
s10113-022-01967-3.

Kerby, J., and Post, E. 2013a. Capital and income breeding traits differen-
tiate trophic match–mismatch dynamics in large herbivores. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 368:
20120484. doi:10.1098/rstb.2012.0484.

Kerby, J.T., and Post, E. 2013b. Advancing plant phenology and reduced
herbivore production in a terrestrial system associated with sea ice
decline. Nature Communications, 4: 2514. doi:10.1038/ncomms3514.

Kissling, W.D., Dalby, L., Fløjgaard, C., Lenoir, J., Sandel, B., and Sandom,
C., 2014. Establishing macroecological trait datasets: digitalization,
extrapolation, and validation of diet preferences in terrestrial mam-
mals worldwide. Ecology and Evolution, 4: 2913–2930. doi:10.1002/
ece3.1136.

Klein, D.R. 2000. Arctic grazing systems and industrial development: can
we minimize conflicts? Polar Research, 19: 91–98. doi:10.3402/polar.
v19i1.6534.

Koltz, A.M., Asmus, A., Gough, L., Pressler, Y., and Moore, J.C. 2017. The
detritus-based microbial-invertebrate food web contributes dispro-

A
rc

tic
 S

ci
en

ce
 D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

SL
U

 o
n 

07
/1

8/
25

http://dx.doi.org/10.1139/as-2024-0080
http://dx.doi.org/10.1126/science.1226766
http://dx.doi.org/10.22022/AFI/11-2019.16175
http://dx.doi.org/10.1002/eap.2120
http://dx.doi.org/10.1139/as-2022-0041
http://dx.doi.org/10.1016/j.cosust.2019.12.006
http://dx.doi.org/10.1111/gcb.16420
http://dx.doi.org/10.4324/9781003118565-3
http://dx.doi.org/10.1007/s10021-023-0086
http://dx.doi.org/10.4324/9781003118565-7
http://dx.doi.org/10.1111/gcb.14418
http://dx.doi.org/10.1111/nph.19808
http://dx.doi.org/10.1641/0006-3568(2005)055[0311:TICITE]2.0.CO;2
http://dx.doi.org/10.1016/j.cosust.2018.01.003
http://dx.doi.org/10.1017/9781009157896
http://dx.doi.org/10.1029/2023EF004157
http://dx.doi.org/10.1371/journal.pone.0100780
http://dx.doi.org/10.1111/j.1365-2745.2005.01086.x
http://dx.doi.org/10.1016/j.cois.2022.100990
http://dx.doi.org/10.1111/gcb.15378
http://dx.doi.org/10.1002/fee.2435
http://dx.doi.org/10.1016/j.biocon.2014.06.007
http://dx.doi.org/10.1002/jwmg.21809
http://dx.doi.org/10.1002/ece3.7852
http://dx.doi.org/10.1139/er-2022-0087
http://dx.doi.org/10.1111/j.1751-8369.2009.00113.x
http://dx.doi.org/10.51644/9781771121774
http://dx.doi.org/10.1111/1365-2435.12113
http://dx.doi.org/10.1038/s41467-017-00554-z
http://dx.doi.org/10.1111/gcb.12970
http://dx.doi.org/10.1101/2024.02.01.577814
http://dx.doi.org/10.1111/gcb.15297
http://dx.doi.org/10.1111/fima.12417
http://dx.doi.org/10.1007/s10113-022-01967-3
http://dx.doi.org/10.1098/rstb.2012.0484
http://dx.doi.org/10.1038/ncomms3514
http://dx.doi.org/10.1002/ece3.1136
http://dx.doi.org/10.3402/polar.v19i1.6534


Canadian Science Publishing

22 Arctic Science 11: 1–26 (2025) | dx.doi.org/10.1139/as-2024-0080

portionately to carbon and nitrogen cycling in the Arctic. Polar Bi-
ology, 41: 1531–1545. doi:10.1007/s00300-017-2201-5.

Koltz, A.M., Gough, L., and McLaren, J.R. 2022.Herbivores in Arctic ecosys-
tems: effects of climate change and implications for carbon and nu-
trient cycling. Annals of the New York Academy of Sciences, 1516:
28–47. doi:10.1111/nyas.14863.

Kristensen, J.A., Michelsen, A., and Metcalfe, D.B. 2020. Background in-
sect herbivory increases with local elevation but makes minor con-
tribution to element cycling along natural gradients in the Subarctic.
Ecology and Evolution, 10: 11684–11698. doi:10.1002/ece3.6803.

Lameris, T.K., van der Jeugd, H.P., Eichhorn, G., Dokter, A.M., Bouten, W.,
and Boom, M.P., 2018. Arctic geese tune migration to a warming cli-
mate but still suffer from a phenological mismatch. Current Biology,
28: 2467–2473.e4. doi:10.1016/j.cub.2018.05.077. PMID: 30033332.

Laptander, R. 2023. The Yamal Nenets’ traditional and contemporary en-
vironmental knowledge of snow, ice, and permafrost. Ecology and
Society, 28. doi:10.5751/ES-14353-280306.

Lara, M.J., Johnson, D.R., Andresen, C., Hollister, R.D., and Tweedie, C.E.
2017. Peak season carbon exchange shifts from a sink to a source fol-
lowing 50+ years of herbivore exclusion in an Arctic tundra ecosys-
tem. Journal of Ecology, 105: 122–131. doi:10.1111/1365-2745.12654.
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Riseth, J.Å., Tømmervik, H., Helander-Renvall, E., Labba, N., Johansson,
C., Malnes, E., et al. 2011. Sámi traditional ecological knowledge as
a guide to science: snow, ice and reindeer pasture facing climate
change. Polar Record, 47: 202–217. doi:10.1017/S0032247410000434.

Rixen, C., Høye, T.T., Macek, P., Aerts, R., Alatalo, J., Andeson, J., et al.
2022. Winters are changing: snow effects on Arctic and alpine tundra
ecosystems. Arctic Science, 8: 572–608. doi:10.1139/as-2020-0058.

Roy, A., Gough, L., Boelman, N.T., Rowe, R.J., Griffin, K.L., and McLaren,
J.R. 2022. Small but mighty: impacts of rodent-herbivore structures
on carbon and nutrient cycling in arctic tundra. Functional Ecology,
36: 2331–2343. doi:10.1111/1365-2435.14127.

Ruffino, L., Oksanen, T., Hoset, K.S., Tuomi, M., Oksanen, L., Korpimäki,
E., et al. 2016. Predator–rodent–plant interactions along a coast–
inland gradient in fennoscandian tundra. Ecography, 39: 871–883.
doi:10.1111/ecog.01758.

Saccone, P., Pyykkonen, T., Eskelinen, A., and Virtanen, R. 2014. Environ-
mental perturbation, grazing pressure and soil wetness jointly drive
mountain tundra toward divergent alternative states. Journal of Ecol-
ogy, 102: 1661–1672. doi:10.1111/1365-2745.12316.

Salusky, I.R., Kral, M., Amarok, B., and Wexler, L.M. 2022. Navigating be-
tween two the worlds of school and ‘being on the land’: Arctic indige-
nous young people, structural violence, cultural continuity and self-
hood. Journal of Youth Studies, 25: 170–192. doi:10.1080/13676261.
2020.1858040.

Sarkki, S., Johnsen, K.I., Löf, A., Pekkarinen, A.J., Kumpula, J., Rasmus, S.,
et al. 2022. Governing maximum reindeer numbers in Fennoscandia.
In Reindeer husbandry and global environmental change: pastoral-
ism in Fennoscandia. Taylor and Francis. pp. 173–187. doi:10.4324/
9781003118565-13.

Savo, V., Lepofsky, D., Benner, J.P., Kohfeld, K.E., Bailey, J., and Lertzman,
K. 2016. Observations of climate change among subsistence-oriented

A
rc

tic
 S

ci
en

ce
 D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

SL
U

 o
n 

07
/1

8/
25

http://dx.doi.org/10.1139/as-2024-0080
http://dx.doi.org/10.1126/sciadv.1701611
http://dx.doi.org/10.1139/as-2019-0019
http://dx.doi.org/10.14430/arctic4475
http://dx.doi.org/10.1139/as-2020-0015
http://dx.doi.org/10.1111/oik.07074
http://dx.doi.org/10.1111/1365-2745.13790
http://dx.doi.org/10.1111/ele.14219
http://dx.doi.org/10.1111/gcb.12255
http://dx.doi.org/10.1016/j.biocon.2018.05.022
http://dx.doi.org/10.1007/s00442-023-05385-y
https://pubmed.ncbi.nlm.nih.gov/37351629
http://dx.doi.org/10.1016/j.quascirev.2021.107084
http://dx.doi.org/10.1038/s41598-024-60442-7
http://dx.doi.org/10.1098/rstb.2007.2207
http://dx.doi.org/10.1073/pnas.0802421105
http://dx.doi.org/10.1126/science.add2679
https://pubmed.ncbi.nlm.nih.gov/37347848
http://dx.doi.org/10.1038/s41598-022-05388-4
http://dx.doi.org/10.1098/rspb.2008.0463
http://dx.doi.org/10.1111/gcb.13619
http://dx.doi.org/10.2307/27012399
http://dx.doi.org/10.1186/s40665-016-0017-0
http://dx.doi.org/10.1111/oik.10595
http://dx.doi.org/10.1186/s40462-022-00339-0
http://dx.doi.org/10.1016/j.baae.2011.09.009
http://dx.doi.org/10.1111/1365-2664.12180
http://dx.doi.org/10.1007/s00300-019-02568-3
http://dx.doi.org/10.1017/S0032247410000434
http://dx.doi.org/10.1139/as-2020-0058
http://dx.doi.org/10.1111/1365-2435.14127
http://dx.doi.org/10.1111/ecog.01758
http://dx.doi.org/10.1111/1365-2745.12316
http://dx.doi.org/10.1080/13676261.2020.1858040
http://dx.doi.org/10.4324/9781003118565-13


Canadian Science Publishing

24 Arctic Science 11: 1–26 (2025) | dx.doi.org/10.1139/as-2024-0080

communities around the world. Nature Climate Change, 6: 462–473.
doi:10.1038/nclimate2958.

Schmidt, N.M., Hansen, L.H., and Hansen, J. 2021. BioBasis——conceptual
design and sampling procedures of the biological programme of
Zackenberg Basic. 24th ed. Roskilde, Denmark. Available from
www.zackenberg.dk.

Schmidt, N.M., Hardwick, B., Gilg, O., Høye, T.T., Krogh, P.H., Meltofte,
H., et al. 2017. Interaction webs in arctic ecosystems: determinants
of arctic change? Ambio, 46: 12–25. doi:10.1007/s13280-016-0862-x.

Senft, R.L., Coughenour, M.B., Bailey, D.W., Rittenhouse, L.R., Sala, O.E.,
and Swift, D.M. 1987. Large herbivore foraging and ecological hierar-
chies. Bioscience, 37: 789–799. doi:10.2307/1310545.

Seru, L.V., Forde, T.L., Roberto-Charron, A., Mavrot, F., Niu, Y.D., and Kutz,
S.J. 2024. Genomic characterization and virulence gene profiling of
Erysipelothrix rhusiopathiae isolated from widespread muskox mortal-
ities in the Canadian Arctic Archipelago. BMC Genomics, 25: 691.
doi:10.1186/s12864-024-10592-9.

Severson, J.P., Vosburgh, T.C., and Johnson, H.E. 2023. Effects of vehicle
traffic on space use and road crossings of caribou in the Arctic. Eco-
logical Applications, 33. doi:10.1002/eap.2923.

Siewert, M.B., and Olofsson, J. 2021. UAV reveals substantial but hetero-
geneous effects of herbivores on Arctic vegetation. Scientific Reports,
11. doi:10.1038/s41598-021-98497-5.

Silfver, T., Heiskanen, L., Aurela, M., Myller, K., Karhu, K., Meyer, N.,
et al. 2020. Insect herbivory dampens subarctic birch forest C sink
response to warming. Nature Communications, 11. doi:10.1038/
s41467-020-16404-4.

Simba, L.D., te Beest, M., Hawkins, H.J., Larson, K.W., Palmer, A.R.,
Sandström, C., et al. 2024. Wilder rangelands as a natural cli-
mate opportunity: linking climate action to biodiversity conserva-
tion and social transformation. Ambio, 53: 678–696. doi:10.1007/
s13280-023-01976-4.
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