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Abstract
Sesame (Sesamum indicum L.) is a valuable oilseed crop that is widely grown in trop-

ical and subtropical regions because of its high oil content and favorable fatty acid

profile. This study evaluated 200 genetically diverse genotypes in two distinct envi-

ronments (Abu-Naama and Matuq) using an augmented block design. We employed

three genome-wide association study (GWAS) models (fixed and random model

circulating probability unification [FarmCPU], Bayesian information and linkage-

disequilibrium iteratively nested keyway [BLINK], and multiple locus mixed model

[MLMM]) to dissect the genetic basis of the oleic acid, linoleic acid, and oil content.

Across environments, significant single nucleotide polymorphism (SNP) markers

explained 3%–23% of the phenotypic variance, reflecting the quantitative nature of

these traits. Notably, four SNPs (Chr1_1693157, Chr3_23284702, Chr5_17024932,

and Chr9_1711873) were common across all three models, suggesting stable and

robust associations between oleic acid and oil content. Candidate gene analysis

revealed four notable sequences linked to these loci: a transcription repressor OFP8
(Sesamum alatum), an HVA22-like protein, a 3-oxoacyl-[acyl-carrier-protein] syn-
thase 3 A, and a putative phospholipid diacylglycerol acyltransferase 2 in (S.
indicum), all of which may play key roles in oil biosynthesis and accumulation.

Environment-specific loci have also emerged for linoleic acid, particularly on chro-

mosomes 6, 9, and 13. These findings provide robust targets for marker-assisted

selection and underscore the value of integrating multi-model GWAS and functional

validation to develop elite sesame cultivars with improved oil quantity and quality.

Abbreviations: BLINK, Bayesian information and linkage-disequilibrium iteratively nested keyway; FarmCPU, fixed and random model circulating

probability unification; GP, genomic prediction; GWAS, genome-wide association study; MLMM, multiple locus mixed model; QTL, quantitative trait loci;

SNP, single nucleotide polymorphism.
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Plain Language Summary
Sesame, known for its rich oils and nutrients, is a globally valued crop. Sudan, a major

sesame producer, has unique varieties, yet little research has explored their potential.

This study investigated the genetic factors behind Sudanese sesame’s exceptional oil

quality, focusing on healthy fats like oleic and linoleic acids. By examining 200 types

of sesame in two environments, we identified key genetic markers (DNA “tags”) that

influence oil traits and revealed the significant role of the environment in shaping

these qualities. Combining the right genes and growing conditions could produce

sesame with superior oils. These findings offer valuable tools for farmers and breed-

ers to improve sesame varieties, enhancing the crop’s value for Sudanese producers

and delivering better sesame oil to consumers worldwide.

1 INTRODUCTION

Human well-being is closely tied to advancement in plant
breeding, particularly in enhancing oleic and linoleic acids.
Crops such as sesame (Sesamum indicum L.), soybean
[Glycine max (L.) Merr.], canola (Brassica napus), and sun-
flower (Helianthus annuus) serve as valuable sources of these
essential fatty acids and contributing significantly to nutri-
tion and health (Velasco & Fernández-Martínez, 2002). Oleic
acid, a monounsaturated fatty acid, is known for lowering low-
density lipoprotein cholesterol and supporting cardiovascular
health (Al-Madhagy et al., 2023). Linoleic acid, a polyunsat-
urated fatty acid, plays a key role in reducing chronic disease
risk and maintaining healthy cell membranes (Kapoor et al.,
2021; Mercola & D’Adamo, 2023). Thus, enhancing fatty acid
content through plant breeding meets consumer demand for
healthier foods, directly improving oil quality and nutritional
value.

Sesame (2n = 2x = 26, SiSi) has a compact 350 Mb diploid
genome and is one the earliest domesticated oilseed crops
valued for its oil-rich seeds (Elsafy, 2023). Renowned for its
nutritional and therapeutic qualities, sesame oil is rich in oleic
and linoleic acids (He et al., 2020; Rauf et al., 2024). Although
sesame is believed to have originated in Africa, where wild
relatives persist, historical records link its early domestication
to the Indian subcontinent, emphasizing its longstanding agri-
cultural significance (Lim, 2012). Its adaptability to diverse
environments has enabled its global expansion, particularly
in marginal regions where other oilseeds struggle.

Advancements in plant breeding have been driven by
genomics, phenomics, and gene–environment interactions (G
× E), primarily through genome-wide association studies
(GWASs). J. Wang et al. (2023) identified quantitative trait
nucleotides associated with nine fatty acids in peanuts and
detecting key single nucleotide polymorphisms (SNPs) across
15 chromosomes, particularly for oleic and linoleic acids.
Similarly, Song et al. (2022) used GWAS and metabolomics

to identify genetic markers linked to fatty acid variations,
including palmitic and unsaturated fatty acids in sesame.
These discoveries highlight the potential for marker-assisted
breeding to enhance fatty acid content and quality. However,
its application in predicting breeding value remains limited,
underscoring the need for further research.

The genetic basis of oil content and fatty acid compo-
sition in sesame has been extensively explored, revealing
key quantitative trait loci (QTL), SNPs, and candidate
genes. Notably, W. Wei et al. (2013) identified significant
marker-trait associations for oil content in diverse sesame
germplasms, pinpointing loci related to lipid biosynthesis.
Song et al. (2021) highlighted the nsLTP gene family, identify-
ing specific genes (SiLTPI.15 and SiLTPVI.1) that contribute
to high sesame oil accumulation. Similarly, X. Wei et al.
(2015) mapped genomic variations associated with oil traits,
uncovering multiple lipid-related genes involved in the oil
biosynthesis pathways.

In a comprehensive genome-sequencing effort, L. Wang,
Yu, et al. (2014) discovered numerous SNPs linked to key
enzymes in sesame’s fatty acid biosynthetic pathway, such as
stearoyl-ACP desaturase (SACPD) and FAD2, which regulate
oleic and linoleic acid levels. Building on these findings, Zhou
et al. (2022) integrated transcriptomic and QTL analyses to
reveal genotype–phenotype associations for oil content iden-
tifying SNPs in regulatory regions that significantly impact
seed lipid composition. These studies underscore the com-
plexity of the sesame oil biosynthesis and highlight critical
targets for marker-assisted selection, paving the way for devel-
oping cultivars with enhanced oil yield and improved fatty
acid profiles.

Genomic prediction (GP) models leverage genome-wide
genetic markers to predict breeding values, integrating all
effects within a unified regression framework (Crossa et al.,
2017). This approach has revolutionized plant breeding by
enabling selection without direct phenotypic assessment,
allowing breeders to make informed and efficient decisions
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based on predicted values. GP is particularly valuable for
sesame, where complex traits, such as fatty acid composition
and oil content, are difficult to assess using traditional phe-
notypic methods (Bashir et al., 2023). Environmental factors
significantly influence these traits, leading to trait variability
across different growing conditions (Kurt et al., 2016). GP can
enhance selection efficiency, improving resilience and nutri-
tional quality. Understanding G × E is crucial for predicting
trait expression and optimizing sesame genotypes in diverse
climates (Hu et al., 2022). When combined, GWAS and GP
serve as powerful, complementary tools, accelerating sesame
breeding and the development of resilience, high-quality culti-
vars to meet rising consumer demand for nutrient-rich oilseed
crops (Kole, 2019).

Global sesame production is dominated by Sudan, Myan-
mar, Tanzania, India, Nigeria, and China, collectively con-
tributing70% of the world’s harvest (FAOSTAT, 2022). Sudan
stands out as a major producer and a primary center of
origin for sesame, boasting rich genetic diversity (Sabiel
et al., 2015). However, despite its leading role in sesame pro-
duction, breeding advancements remain limited, with high
yields attributed more to extensive cultivation than genetic
improvements (Teklu et al., 2022).

Despite its economic significance, particularly in Sudan,
its genetic basis and fatty acid composition remain poorly
understood. Sudanese sesame genotypes exhibit high genetic
diversity, emphasizing the need to explore their unique oil
profiles and identify the genetic factors influencing fatty acid
content. Enhancing nutritional value can improve marketabil-
ity, generate value-added products, and create sustainable
income for producers. This study represents the first genome-
wide analysis of Sudanese sesame, aiming to uncover genetic
factors associated with oil content and fatty acid composi-
tion in 200 genotypes. The objectives of this study were to
(1) identify genetic loci associated with oil content and fatty
acid composition through GWASs, (2) estimate breeding val-
ues for oil quality traits using GP models, and (3) analyze the
genotype-by-environment (G × E) interactions influencing
the expression of oil content and fatty acid traits.

2 MATERIALS AND METHODS

2.1 Field experiment and plant materials

The field experiments were conducted at two locations in
Sudan: Abu Naama Research Station (AN), Sennar State
(12˚44′43″ N, 34˚07′21″ E) and Matuq (MT) Research Sta-
tion, Gezira State (14˚11′10″ N, 32˚34′48″ E), to evaluate
sesame genotypes under varying field conditions. At Abu
Naama (Sennar State), the average high and low temperatures
were 37.1˚C and 25.9˚C, respectively, with 39.99 mm average
precipitation, 30.45% relative humidity, and 63 rainy days per
year (≥1.0 mm rainfall). At Matuq (Gezira state), the average

Core Ideas
∙ Sudanese sesame is an underexplored genetic

resource to identify novel alleles and enhance
understanding of its role.

∙ Genome-wide association study (GWAS) and
genomic prediction models identify loci and breed-
ing values for oil quality, advancing sesame crop.

∙ Genotype-by-environment interactions influence
oil content and fatty acid composition in sesame.

high and low temperatures were 37.43˚C and 26.03˚C, with
25.67 mm precipitation, 27.38% relative humidity, and 41 rain
days per year (≥1.0 mm rainfall).

Two hundred genetically diverse sesame accessions,
including gene bank accessions, landraces, released varieties,
and breeding lines, were evaluated under field conditions
using an augmented block design, with eight blocks per site.
Each block contained 22 independent accessions and three
replicated control checks, totaling 28 plots per block, with
each plot measuring 4 m2 one-row long. Standard agro-
nomic practices, tailored to each location’s environmental
conditions, were applied throughout the growing season to
ensure optimal growth and reliable results. Seeds were har-
vested and stored under optimal conditions prior to laboratory
analysis to maintain data accuracy and consistency. This
experimental design was carefully chosen to minimize envi-
ronmental and positional effects and enhance comparative
analysis robustness and reliability across different genotypes
and locations.

2.2 Gas chromatography

Total lipids were extracted as described by Tesfaye et al.
(2024), with minor modifications. Briefly, 10 seeds per geno-
type were used, with three technical replicates. The seeds were
homogenized in 1 mL of 0.15 M acetic acid and 3.75 mL
of methanol/chloroform (2:1 v/v) using an IKA T18 ULTRA
TURRAX homogenizer in a glass test tube. Chloroform
(1.25 mL) and Millipore water (0.9 mL) were added, followed
by vortexing for 10 s and centrifugation at 3000 rpm for 2 min.

After centrifugation, 200 μL of the lower chloroform phase
was transferred to a clean screw-capped glass tube. The chlo-
roform was evaporated at 70˚C on a heated sand bed under
a nitrogen gas stream. Once dry, the samples were reconsti-
tuted in 100 μL heptane and methylated by adding 2 mL of
2% H2SO4 in anhydrous methanol. The reaction proceeded
at 90˚C for 1 h in a sealed tube. After cooling, 1 mL Mil-
lipore water and 0.75 mL heptane were added, followed by
vortexing (15 s) and centrifugation (3000 rpm for 2 min).
Following centrifugation, 100 μL of the upper heptane phase
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containing fatty acid methyl esters (FAMEs) was transferred
to a gas chromatography (GC) for analysis.

Fatty acid profiles were analyzed using an Agilent 8860 gas
chromatograph with a flame ionization detector. FAMEs were
separated on a wall-coated open tubular fused-silica CP-wax
58 capillary column (50 m × 0.32 mm, Agilent) with a 10:1
split ratio. The oven temperature program started at 150˚C for
0.2 min, increased by 4˚C/min to 210˚C, then by 10˚C/min to
250˚C, where it was held for 5 min. Fatty acids were deter-
mined by comparing retention times with a certified Me63
external standard (Larodan).

Fatty acid and oil content percentages were calculated using
the following equations:

Percentage of a fatty acid (%FA)

= Peak area of the FA∑
Peak areas of all FAs

× 100

To determine fatty acids mass, a known concentration of
17:0 artificial FA (Larodan) was used as an internal standard.
The total amount of each free fatty acid was calculated based
on their peak areas and molecular weights (Mw) in relation to
the 17:0 internal standard according to the following equation:

FA (mg) =
( Peak area FA
Peak area 17 ∶ 0

)
×
( Mw FA
Mw 17 ∶ 0

)

×17 ∶ 0 control (mmol) × Mw of FA species

Fatty acid content (mg) was expressed relative to the weight
of 10 seeds (mg/10 seeds). The total oil content was estimated
based on the combined mass of all fatty acid species, together
with the glycerol component of Triacylglycerol (TAG), using
the following equation:

Total oil content (mg) =
∑[

FAmg +
({FA𝜇mol

3

}

×41 (Mwglycerol in ester form)
)]

The oil content was calculated using the following equa-
tion:

Oil content % =
(
Total oil content
Mass of sample

)
× 100

2.3 Statistical analysis

Descriptive statistical for phenotypic traits across locations
were computed using the “psych” package in R, while corre-
lation analysis was performed with “corrplot”. Broad-sense
heritability (H2) was estimated to determine the genetic
contribution to oleic, linoleic, and oil content, using a mixed-
effects model based on genotype means, resulting in the

following estimation of H:

𝐻2 =
𝜎2
𝐺

𝜎2
𝐺

+
𝜎2
𝐺𝐿

𝐿
+

𝜎2
𝐸

𝐿

Where 𝜎2
𝐺

represents the genetic variance, 𝜎2
𝐺𝐿

denotes the
genotype by location interaction variance, 𝜎2

𝐸
is the residual

from environmental variance, and 𝐿 is the number of loca-
tions. The statistical analysis was conducted using R version
4.3.2, utilizing the “lme4” package to fit the mixed-effects
models.

2.4 Genotyping and data analysis

From each line, a circular section of young leaf tissue,
approximately 5 mm in diameter, was harvested from each
plant and placed in a 96-well plate designed for tissue
collection. Genomic DNA was extracted using the Qiagen
BioSprint 96 system with the Qiagen BioSprint DNA
Plant kit (https://www.qiagen.com/us/products/discovery-
and-translational-research/dna-rna-purification/dna-
purification/genomic-dna/biosprint-96-dna-plant-
kit/#orderinginformation). DNA was normalized to ng/μL,
and sequencing libraries were prepared using a genotyping-
by-sequencing protocol (Poland et al., 2012). Specifically,
the restriction enzymes PstI and MspI were used to induce
cuts at multiple sites in the genome, and the resulting pool
was ligated with unique barcode adapters, multiplexed with
96 samples per lane, and sequenced on NovaSeq 6000 (Illu-
mina). The DNA libraries were sequenced at the University
of Minnesota Genomics Center.

Generated sequencing data were filtered for a minimum
quality (Q) score of 30 and demultiplexed using “sabre”
(https://github.com/najoshi/sabre) to sort separate reads cor-
responding to each sample. The reads were then aligned to
the S. indicum updated genome assembly and annotations
(M. Wang et al., 2022) using the Burrow–Wheelers Align-
ment tool version 0.7.4 (H. Li & Durbin, 2009). Genome-wide
SNPs been identified using Samtools and bcftools (H. Li,
2011). The SNP markers were filtered to retain those with
a minimum minor allele frequency (MAF) of 3% and a
missing allelic proportion of 20% or less. This resulted in
3636 SNPs distributed among the 13 chromosomes and 17
high-confidence scaffolds.

2.5 Population relatedness and linkage
disequilibrium (LD)

The estimation of the genetic relatedness matrix among
the genotypes was conducted in Tassel 5 utilizing the
Centered_IBS method with default settings, followed
by the generation of the kinship heatmap using the
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“kinship2” R package. Moreover, to analyze the popu-
lation structure and identify the optimal K, the software
Structure 2.3.4 was employed (https://web.stanford.edu/
group/pritchardlab/structure_software/release_versions/
v2.3.4/html/structure.html), with the outcomes being
compiled on the “StructureSelector” online platform
(https://lmme.ac.cn/StructureSelector/). Furthermore,
genetic variation across genotypes was assessed through
principal component analysis (PCA) using the prcomp
function in R. To estimate LD decay, Pairwise LD between
markers was determined using Tassel 5 by applying a sliding
window approach with 50 markers. LD decay was assessed
using Tassel by employing a sliding window technique with
a set of 50 markers. The calculated LD values, expressed as
r2, were plotted against the physical distances ascertained
from the Sesame genome V.3.0 reference. To illustrate the
LD decay pattern, a locally weighted scatterplot smoothing
curve was applied, and the LD decay distance was estimated
based on the approach outlined by Hill and Weir (1988).

2.6 Association analysis and trait prediction

The SNPs marker identification was performed using three
GWAS models: fixed and random model circulating prob-
ability unification (FarmCPU), Bayesian information and
linkage-disequilibrium iteratively nested keyway (BLINK),
and multiple locus mixed model (MLMM) on GAPIT 3 in
R version 4.3.2. (Liu et al., 2016; J. Wang & Zhang, 2021).
Significant SNPs were declared at the default Bonferroni
thresholds in association analyses at α = 0.05. For single
SNP markers, at α/LD = 0.05/effective number of indepen-
dent markers, the significance threshold corresponded to a
p-value of approximately −log10(0.0002451) or a logarithm
of odds score equivalent of 3.6, and all the significant SNPs
are displayed as Manhattan and Q–Q plots. A GP model was
employed to predict oleic acid, linoleic acid, and oil con-
tents across two locations using the “rrBLUP” R package
(Endelman, 2011).

2.7 Candidate gene search

In the pursuit of identifying potential genes that influence
oil content and fatty acid composition, candidate genes were
identified in areas proximate to only significant common
SNP markers detected in the three GWAS models, involving
the analysis of putative protein-coding sequences (Support-
ing Information) found within 409780 base pairs (bp) around
significant genetic loci, utilizing data from a refined sesame
genome assembly and annotation (M. Wang et al., 2022).
However, this specific distance was selected based on the
observed genome-wide average LD in sesame genotypes,
which extended up to 204890 bp.

A protein BLAST search was conducted on the NCBI
experimental clustered nr database platform (NCBI, 2019) to
further refine this search, targeting S. indicum protein-coding
sequences that exhibited more than 80% identity and an E-
value of 1E-10 or lower. This process retained only the top
three alignments for each S. indicum protein sequence for in-
depth analysis. This subsequent phase of analysis involved
filtering these alignments to identify candidate genes with
known involvement in regulating the oil content and fatty acid
profiles.

3 RESULTS

3.1 Phenotyping

Significant variability was observed in oleic, linoleic acid, and
total oil content among the 200 sesame genotypes across the
two sites, Abu Naama and Matuq (Table 1). Oleic acid lev-
els averaged 5.34 mg/10 seeds (40.5%) at Abu Naama and
5.78 mg/10 seeds (44%) at Matuq, with individual accessions
ranging from 3.07 (32%) to 9 mg/10 seeds (48.6%) and 3.1
(36%) to 8.35 mg/10 seeds (49%), respectively. Linoleic acid
averaged 5.54 mg/10 seeds (42%) at Abu-Naama with a range
of 3.28 (32%) to 9.12 mg/10 seeds (51%), and 5.02 mg/10
seeds (38.5%) at Matuq, within a 2.76 (33%) to 8.22 mg/10
seeds (46%) range.

Oil content showed greater variation, averaging 44.45% at
Abu Naama (ranging from 33.14% to 62.05%) and 42.06%
at Matuq (with a range from 30.95% to 50.27%). Skewness
and kurtosis in most traits indicated non-normal, asymmetric
distributions among accessions. Pairwise correlation analy-
sis showed a negligible linear relationship between the sites
for oleic (r = 0.03) and linoleic acid (−0.06) (Figure 1),
which support non-normal, asymmetric distributions among
the genotypes, likely due to the complex interplay of genetic
and environmental factors affecting these traits.

The broad-sense heritability analysis (H2) revealed a
small proportion of variance in oleic acid and oil content
(H2 = 0.28). On the other hand, for linoleic acid, it showed
nearly zero heritability, suggesting minimal genetic influence
under the study conditions.

3.2 Population relatedness and LD

The study identified population structure among the sesame
genotypes (Figure 2), with PCA showed that PC1 accounted
for 33% of the genetic diversity. However, distinct groups
can be distinguished based on the location of the genotype.
Genotypes from the GenBank collection formed a relatively
tight cluster, showing their genetic relatedness and likely a
common ancestral background, whereas breeding, collection,
landrace, and variety genotypes showed greater dispersed
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T A B L E 1 Variation in sesame oil and fatty acid composition traits across 200 accessions.

Measure

Abu-Naama Matuq
Oleic (mg/10 seeds) Linoleic (mg/10 seeds) Oil content% Oleic (mg/10 seeds) Linoleic (mg/10 seeds) Oil content%

Minimum 3.07 3.28 33.14 3.1 2.67 30.95

Maximum 9 9.12 62.05 8.35 8.22 50.27

Mean 5.43 5.54 44.45 5.78 5.02 42.06

SE 1.03 1.22 5.06 0.98 0.92 3.51

Median 5.07 5.1 43.42 5.21 4.52 40.58

Variance 4.36 5 261.1 7.79 5.97 385.46

Skewness −1.17 −0.99 −1.72 −0.59 −0.53 −0.78

Kurtosis 0.83 0.47 1.64 −1.35 −1.29 −1.31

Note: The table provides a statistical summary of sesame oil and fatty acid composition traits, including oleic acid, linoleic acid, and total oil content, for 200 sesame

accessions grown in Abu Naama and Matuq. The data included the minimum, maximum, mean, standard error, median, variance, skewness, and kurtosis values.

Abbreviation: SE, standard error.

patterns, exhibiting their higher genetic diversity and poten-
tial admixture. Structure analysis determined an optimal
K value of 2 (Figure 3a), indicating the presence of two
major subpopulations within the germplasm panel, which was
corroborated by the population structure membership coef-
ficients (Figure 3b), where most genotypes showed strong
assignment to one of the two subpopulations. The kinship
matrix heatmap (Figure 4a) highlighted varying degrees of
genetic relatedness among the 200 sesame genotypes, based
on genome-wide marker. LD decay showed r2 = 0.1 at a
physical distance of approximately 204890 bp (Figure 4b),
indicating the extent of genetic recombination across the
genome.

3.3 Association analysis and trait prediction

Using three GWAS models (FarmCPU, Blink, and MLMM)
across two environments (Abu-Naama and Matuq), several
significant SNP markers were identified for oleic acid, linoleic
acid, and oil content (Table 2; Figure 5a–c).

In Abu-Naama, FarmCPU detected five SNPs on chromo-
somes 1, 5, and 9 for oleic acid, two SNPs on chromosomes 9
and 13 for linoleic acid, and two SNPs on chromosome 3 for
oil content, explaining 7%–9% of the phenotypic variance.
Blink model identified oleic acid-associated SNPs on chromo-
somes 1, 5, and 7 (R2 = 11%–16%) and an oil-content marker
on chromosome 3 (R2 = 9%). MLMM pinpointed oleic acid
SNPs on chromosomes 1 and 5 (R2 = 10%–21%) and two oil
content SNPs on chromosome 3.

In the Matuq, all three models consistently identified SNPs
on chromosome 8 (Chr8_31702733 and Chr8_31825156) and
chromosome 11 (Chr11_14710318) for oleic acid and chro-
mosome 9 (Chr9_1711873) for oil content (R2 up to 23%).
Notably, Chr9_1711873 was consistently significant for oil
content, through effect directions varied between models,

highlighting how reference alleles and statistical frameworks
influence marker effect estimation.

Across analyses, minor allele frequencies ranged from 0.06
to 0.49, underscoring substantial allelic diversity. While indi-
vidual SNPs explained a modest portion of the variance,
reflecting the polygenic nature of these traits, the consistent
association of Chr5_17024932 (oleic acid in Abu-Naama) and
Chr9_1711873 (oil content in Matuq) highlights potential key
targets for further genetic dissection and breeding.

Across the three GWAS models, several common
SNPs were identified in both environments (Abu-Naama
and Matuq), indicating robust associations despite the
model differences. In Abu-Naama, Chr1_1693157 and
Chr5_17024932 were consistently associated with oleic acid,
whereas Chr3_23284702 was a shared marker for oil content
across all three models. However, no significant SNPs were
detected for linoleic acid in any model.

In the Matuq, Chr9_1711873 consistently influenced the
oil content across FarmCPU, Blink, and MLMM, under-
scoring its potential importance for oil trait improvement.
However, no single SNP was universally identified for oleic
or linoleic acid, likely reflecting their polygenic complexity.

The GP for oil content oleic and linoleic acid concen-
trations across two environments, Abu Naama and Matuq,
indicated varying predictive abilities. Linoleic acid at Matuq
was had the highest mean predictive ability (0.21), ranging
from −0.24% to 0.56%, closely followed by oil content at Abu
Naama (a mean prediction of 0.22 within the range of−0.10 to
0.56) (Figure 6). Oleic acid at Matuq showed a slightly lower
mean prediction of 0.15, ranging from −0.34 to 0.52. Linoleic
acid in Abu Naama had a mean predictive ability of 0.13, rang-
ing from −0.24 to 0.40, while oleic acid in Abu Naama had
the lowest mean prediction (0.07), with a broader range from
−0.23 to 0.26. The weakest predictive ability was observed
for oil content at Matuq, with a mean of −0.04 and a range of
−0.42–0.25.
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ELSAFY ET AL. 7 of 16Crop Science

T A B L E 2 Genome-wide identification of the genetic markers associated with oil content, oleic acid, and linoleic acid composition in 200

sesame accessions using the following models: fixed and random model circulating probability unification (FarmCPU), Bayesian information and

linkage-disequilibrium iteratively nested keyway (BLINK), and multiple locus mixed model (MLMM).

Model Trait/locations SNP Marker Chr Position/bps Alleles MAF LOD R2 (%) Effect
FarmCPU Abu-Naama

Oleic acid Chr1_1693157* 1 1693157 C/T 0.45 3.21 7 0.4

Oleic acid Chr5_17024932* 5 17024932 C/T 0.1 3.22 7 −0.49

Oleic acid Chr5_17029387 5 17029387 T/A 0.11 2.95 7 0.45

Oleic acid Chr5_17034072 5 17034072 A/G 0.11 3.39 8 −0.5

Oleic acid Chr9_26574216 9 26574216 C/T 0.06 2.98 7 −0.89

Linoleic acid Chr13_13034832 13 13034832 A/T 0.14 3.03 7 0.48

Linoleic acid Chr9_3976219 9 3976219 G/A 0.07 3.01 7 −0.68

Linoleic acid Chr9_3976223 9 3976223 A/C 0.07 3.06 7 0.68

Oil content Chr3_23284702* 3 23284702 A/G 0.3 3.99 9 1.75

Oil content Chr3_23284761 3 23284761 T/A 0.31 3.76 8 −1.68

Matuq

Oleic acid Chr11_14710318 11 14710318 C/T 0.18 3.5 8 0.38

Oleic acid Chr8_31702733 8 31702733 G/A 0.06 3.61 8 0.63

Oleic acid Chr8_31825156 8 31825156 A/T 0.06 3.61 8 −0.63

Oil content Chr9_1711873* 9 1711873 A/G 0.09 4.07 8 −2.06

Blink Abu-Naama

Oleic acid Chr1_1693157* 1 1693157 C/T 0.49 4.28 11 −0.35

Oleic acid Chr5_17024932* 5 17024932 C/T 0.11 4.05 16 0.42

Oleic acid Chr7_15291065 7 15291065 G/A 0.08 3.22 12 −0.57

Oil content Chr3_23284702* 3 23284702 A/G 0.3 4.44 9 −1.38

Matuq

Oleic acid Chr11_14710318 11 14710318 C/T 0.25 3.3 3 −0.23

Oleic acid Chr6_25438022 6 25438022 G/T 0.46 3.45 20 −0.7

Oleic acid Chr8_31702733 8 31702733 G/A 0.06 3.68 18 0.43

Oleic acid Chr8_31825156 8 31825156 A/T 0.06 3.77 0 0.44

Linoleic acid Chr6_24421274 6 24421274 G/C 0.12 3.56 19 −0.29

Oil content Chr9_1711873* 9 1711873 A/G 0.11 4.32 23 1.22

MLMM Abu-Naama

Oleic acid Chr1_1693157* 1 1693157 C/T 0.49 3.48 10 −0.36

Oleic acid Chr5_17024932* 5 17024932 C/T 0.11 3.27 21 0.43

Oil content Chr3_23284702* 3 23284702 A/G 0.3 3.26 9 −1.38

Oil content Chr3_23284761 3 23284761 T/A 0.3 3.15 0 −1.35

Matuq

Linoleic acid Chr6_24421274 6 24421274 G/C 0.12 3.5 19 −0.36

Linoleic acid Chr6_24440370 6 24440370 G/A 0.12 3.15 0 −0.34

Oil content Chr9_1711873* 9 1711873 A/G 0.11 3.25 23 1.22

Note: This table provides details of single nucleotide polymorphism (SNP) markers significantly associated with key traits, including oleic acid, linoleic acid, and oil con-

tents, in sesame accessions grown at two locations, Abu-Naama and Matuq. The table includes the SNP marker ID, chromosome (Chr) and physical position (position/bp)

of the marker, alleles, minor allele frequency (MAF), logarithm of odds (LOD) score, proportion of phenotypic variance explained (R2%), estimated effect size of the

associated allele (effect), and the shared SNP markers across the three models (*).
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8 of 16 ELSAFY ET AL.Crop Science

F I G U R E 1 Correlation of sesame oil and fatty acid composition traits between locations. The heat map depicts the correlation between sesame

oil and fatty acid composition traits, including oleic acid (oleic acid), linoleic acid (linoleic acid), and total oil content (oil), across the two locations,

Abu Naama (AN) and Matuq (MT). The values represent the correlation coefficients, indicating the strength and direction of the relationship

between the two locations for each trait.

T A B L E 3 Candidate genes associated with fatty acid and oil content traits in sesame.

NCBI candidate
genes Trait SNP Species Annotation E-value % identity
APMJ01000051 Oleic acid Chr1_1693157 S. alatum Transcription repressor OFP8 4.00E-90 81.40

APMJ01001210 Oil content Chr3_23284702 S. indicum HVA22-like protein a 2.00E-114 100

APMJ01003105 Oleic acid Chr5_17024932 S. indicum 3-oxoacyl-[acyl-carrier-protein] synthase 3 A 0.0 99.70

APMJ01005016 Oil content Chr9_1711873 S. indicum putative phospholipid:diacylglycerol
acyltransferase 2

0.0 100

Note: The table summarizes the key candidate genes linked to oleic acid and oil content traits in Sesamum species identified through significant SNPs. Gene annotations,

E-values, and percentage identity scores indicate the strength of genetic association and homology to known proteins.

Abbreviation: SNP, single nucleotide polymorphism.

3.4 Candidate gene search

Candidate gene analysis using the S. indicum v1.0 refer-
ence genome identified four protein-coding sequences with
high homology (≥ 80% identity, E-value ≤ 1E-10) near
significant SNP markers (Table 3; Supporting Informa-
tion). APMJ01000051, associated with oleic acid at SNP

Chr1_1693157, showed 81.4% identity (E-value: 4.00E-
90) with a transcription repressor OFP8 from S. alatum.
For oil content, APMJ01001210 (SNP Chr3_23284702)
matched a HVA22-like protein a in S. indicum (100% iden-
tity, E-value: 2.00E-114). Another oleic acid candidate,
APMJ01003105 (SNP Chr5_17024932), had 99.7% identity
(E-value: 0.0) to 3-oxoacyl-[acyl-carrier-protein] synthase

 14350653, 2025, 3, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.70099 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [21/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ELSAFY ET AL. 9 of 16Crop Science

F I G U R E 2 Genetic diversity and population structure of 200 sesame accessions. The principal component analysis (PCA) plot illustrates the

genetic diversity and population structure among various sesame accession groups. Each point represents an individual accession, with colors

distinguishing different groups, such as breeding lines, collections, GenBank accessions, landraces, and varieties. The x- and y-axes correspond to the

first and second principal components, respectively, representing the primary dimensions of the genetic variation within the dataset.

F I G U R E 3 Population structure analysis: (a) estimated Delta K and LnP(K) values for different K values. (b) Population structure of the 200

sesame accessions. The heatmap illustrates the subpopulations structure, with accessions grouped into two distinct subpopulations represented in red

and green.
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10 of 16 ELSAFY ET AL.Crop Science

F I G U R E 4 (a) Kinship heatmap showing the genetic relationships among 200 sesame accessions based on additive relationships. (b) Linkage

disequilibrium (LD) patterns in the sesame genome. The figure shows the distribution of LD decay across genomic distances in the sesame

populations. The x-axis represents the physical distance in base pairs (bp), whereas the y-axis represents the LD measure (r2). Each data point

corresponds to a pairwise comparison of the genetic markers. The red line depicts the overall trend of LD decay, indicating a decrease in genetic

linkage between markers as the physical distance increases.

3 A, an enzyme in fatty acid elongation. APMJ01005016
(SNP Chr9_1711873), linked to oil content, aligned with a
phospholipid, diacylglycerol acyltransferase 2, in S. indicum
(100% identity, E-value: 0.0), a key enzyme in triacylglycerol
biosynthesis.

4 DISCUSSION

In this study, 200 Sudanese sesame accessions were evalu-
ated across two locations, Abu Namma and Matug Research
farms of the Agricultural Research Corporation, Sudan, using
an augmented design with replicated checks. The accessions
represented a diverse collection, including gene bank acces-
sions, landraces, advanced breeding materials, and released
cultivars. Oil content and fatty acid composition, specifically
oleic and linoleic acid, were analyzed using GC. Broad-sense
heritability and population structure analyses were conducted
to assess the genetic variation among the accessions. Three
GWASs were performed using three models namely Farm-
CPU, BLINK, and MLMM to identify SNPs associated with
oil content, oleic, and linoleic acid across both locations. A
total of four SNPs were identified for oil content, and oleic
acid across, while no significant SNPs were detected in case
of linoleic acid content. To the best of our knowledge, this is
the first study to utilize GWAS for identifying SNPs associ-

ated with oil content and fatty acid composition in Sudanese
sesame germplasm

4.1 Phenotypic traits

Evaluating 200 sesame genotypes across Abu Naama and
Matuq locations revealed significant variations in fatty
acid composition and oil content, shaped by genotype-
by-environment (G × E) interactions. The wide range of
oleic (32.8%–49.6%) and linoleic acids highlights substan-
tial genetic diversity, offering valuable potential for breeding
programs targeting health and industrial applications. Oleic
acid is favored for its stability and health benefits, whereas
linoleic acid, a polyunsaturated fatty acid, is essential for
human health but reduces oil stability (Gunstone, 2011). Our
finding aligns with previous reports including X. Wei et al.
(2015), who documented oleic acid values of 32.08%–53.14%
in a diverse sesame panel, while Mondal et al. (2010) reported
a range of 36.7%–52.4% in Indian sesame and Uzun et al.
(2008) reported 29.3%–41%. The observed variation con-
firms the potential of Sudanese sesame germplasm for genetic
improvement to enhance oil quality, reinforcing its nutritional
and economic value.

The significant variation in oil content, averaging of
44.45% in Abu Naama and 42.06% in Matuq, demonstrates

 14350653, 2025, 3, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.70099 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [21/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ELSAFY ET AL. 11 of 16Crop Science

F I G U R E 5 Manhattan and Q–Q plots based on three different GWAS models: (A) fixed and random model circulating probability unification

(FarmCPU), (B) Bayesian information and linkage-disequilibrium iteratively nested keyway (BLINK), and (C) multiple locus mixed model

(MLMM), identifying significant single nucleotide polymorphisms (SNPs) associated with oil content, oleic acid, and linoleic acid in 200 sesame

accessions across two locations Abu Naama (AN) and Matuq (MT). The Manhattan plots show the distribution of −log10(p-values) for each SNP

across the 13 sesame chromosomes, with the x-axis representing chromosomal position and the y-axis indicating the strength of association.

Horizontal lines across the plots denote genome-wide significance thresholds. The Q–Q plots compare the expected versus observed p-values

distributions, where deviations from the diagonal at the upper end suggests an enrichment of significantly associated SNPs beyond random

expectation.

the potential for selecting genotype with higher oil yields. The
minimal correlation between oleic and linoleic acid content
across locations (with r-values near zero) indicated a weak
linear relationship between these traits under the different
environmental conditions. This aligns with previous findings
that environmental factors, such as soil type and temperature,
strongly influence oil content and fatty acid composition in
sesame (Uzun et al., 2008).

The low broad-sense heritability (H2 = 0.28) for oleic acid
and oil content, along with near-zero heritability for linoleic
acid, indicates minimal genetic variance, suggesting that the
phenotypic differences are largely environmentally driven
rather than genetic (Holland et al., 2003). This poses chal-
lenges for breeding programs, as selecting genotypes based
on performance in one environment may not predict outcomes
in different conditions. Similar findings in oil crops support
this, with Uzun and Çağırgan (2006) demonstrating that envi-
ronmental factors significantly impact fatty acid profiles in

sesame. Likewise, Khan and Nawaz (2022) reported low her-
itability estimates for oil content and fatty acid composition,
reinforcing the dominant role of environmental influences.
Arslan et al. (2007) further reported significant genotype-
by-environment interactions affecting oil content and fatty
acid composition in sesame mutants, reinforcing the need for
breeding strategies that integrate environmental assessments
alongside genetic evaluations to improve the stability across
diverse growing conditions.

4.2 Population relatedness and LD

Population structure analysis revealed substantial genetic
diversity, as indicated by PCA using 3636 SNP markers.
The first principal component accounted for 33% of the
genetic variation, surpassing the 27% reported by Sabag et al.
(2021) in their study on flowering date and yield component
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12 of 16 ELSAFY ET AL.Crop Science

F I G U R E 6 Predicted values for oil and fatty acid content in

sesame accessions across two locations. The boxplots show the

predicted distributions of oleic and linoleic acids and oil content in 200

sesame accessions grown at two locations: Abu Naama (AN) and Matuq

(MT). The central line indicates the median, while the boxes represent

the interquartile range (IQR). Whiskers extend to the non-outlier range,

and individual points denote the outliers. Colors differentiate traits and

locations: blue and yellow for oleic acid, red and orange for linoleic

acid, and green and purple for oil content at AN and MT, respectively.

trade-offs in sesame using 20,294 SNP markers across 184
genotypes. This variation may stem from differences in the
reference genome as their study used the L. Wang, Yu, et al.
(2014) reference genome, whereas this study employed the
updated annotation reference genome from M. Wang et al.
(2022). The clustering of “GenBank” genotypes suggest close
genetic relationship, likely due to shared ancestry and similar
selection pressures.

The dispersed clustering of “breeding,” “collection,” “lan-
draces,” and “variety” genotypes reflects their broader genetic
diversity, shaped by their geographical origins and distinct
selection pressures. Sudan’s long history of sesame cultiva-
tion (Mohamed, 2011) has contributed to this wide genetic
variation, as confirmed by a structure analysis, which iden-
tified K = 2 as the optimal value, dividing the germplasm
into two subpopulations. This classification provides valu-
able insights into genetic architecture, supporting the strategic
integration of desirable traits for developing improved sesame
varieties, aligning with Parry and Hawkesford (2012).

The kinship matrix illustrates genetic relationships within
the sesame population, identifying diverse parent lines suit-
able for heterosis exploitation. A LD measure (r2) of 0.1 at
approximately 204890 bp indicates relatively rapid LD decay,
differing from the 163930 bp reported by Tesfaye et al. (2022)
using an older sesame reference genome version. Our LD

decay is longer than 150 kb (L. Wang, Han, et al., 2014)
and 166 kb (Seay et al., 2024) but shorter than 1639.3 kb
reported by Tesfaye et al. (2022) in Ethiopian sesame acces-
sions. This variation may stem from differences in population
structure, as our Sudanese germplasm subset likely experi-
enced greater recombination events or stronger bottlenecks,
resulting in larger linkage blocks. In addition, differences in
marker density and selection criteria could influence LD esti-
mates; as our study utilized a denser SNP set and an updated
reference genome, potentially detecting fewer recombination
breakpoints and inflating LD block sizes.

Sample size and genetic diversity significantly influence
LD decay; genetically uniform or those under strong selec-
tion tend to exhibit extended LD. In addition, methodological
differences, such as defining LD thresholds (r2 = 0.1 vs.
r2 = 0.2) and variations in analytical pipelines, contribute
to discrepancies in LD estimates across studies. Despite this
variation, the relatively high LD observed here supports fine
mapping of agronomically important genes in sesame breed-
ing. Our results suggest that recombination has fragmented
linkage blocks over generations, and this rapid LD decay
benefits association mapping by improving the resolution for
identifying trait-controlled genes.

4.3 Association analysis and trait prediction

GWAS has gained prominence in sesame research, identifying
genomic associations for agronomic traits, such as 1000-seed
weight, seed size, plant height, seed coat color (Du et al.,
2019; L. Wang, Yu, et al., 2014; L. Wang et al., 2016). For
quality traits, Wu et al. (2017) mapped QTLs linked to oil,
protein, and sesamin content across sesame chromosomes.
Zhou et al. (2022) expanded this by analyzing 14 fatty acids
over 2 years using GC–mass spectrometry, identifying 249
QTLs associated with fatty acid composition. In addition, they
detected 43 unique SNPs linked to key oil traits, including
palmitic, stearic, oleic, linoleic, and arachidic acids. Shared
loci across traits, such as those for linoleic acid, palmitic acid,
and oil content on chromosome 11, highlight the genetic com-
plexity of fatty acid biosynthesis. Further analysis of these
SNP loci identified 671 genes within an 88 kb window, linked
to metabolic, cellular, and singling pathways, providing criti-
cal targets for improving sesame oil quality through molecular
breeding.

Despite progress in sesame genomics, few studies have
examined the genetic associations of fatty acids and oil con-
tent, particularly in Africa. This study used GWAS to analyze
oleic and linoleic acids and oil content in a set of 200 Sudanese
sesame genotypes using GWAS across two distinct envi-
ronments. These findings provide insight into the genetic
architecture of sesame in Africa, where environmental condi-
tions strongly influence trait expression. Similar to Zhou et al.
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ELSAFY ET AL. 13 of 16Crop Science

(2022), this study identified multiple SNP loci associated with
key oil quality traits, enhancing the understanding of fatty acid
composition and oil content. The results confirm the poly-
genic inheritance of seed oil traits in sesame, with multiple
loci contributing to trait variability, consistent with findings
in other oilseed crops (Pandey et al., 2014; Reinprecht et al.,
2009; X. Wei et al., 2015).

Our GWAS results underscore the polygenic nature of
sesame oil traits, revealing environment-dependent and
model-specific SNP associations. The repeated detection of
Chr1_1693157 and Chr5_17024932 across models and envi-
ronments suggests a stable QTL for oleic acid, aligning
with an earlier work mapping seed-quality traits to chromo-
some 5 (W. Wei et al., 2013). Similarly, Chr3_23284702 and
Chr9_1711873 were consistently associated with oil content,
supporting earlier findings that identified these chromosomes
as oil-related QTL hotspots (C. Li et al., 2014).

A recent GWAS combined with transcriptome analysis
identified novel loci and regulatory genes involved in fatty
acid biosynthesis (Zhou et al., 2022). This underscore the
importance of integrating functional validation and expres-
sion profiling, as single-marker GWAS may not fully capture
regulatory genes influencing fatty acid composition. Com-
bining expression data with marker-trait associations enables
the identification of key transcription factors or enzymes
with significant allelic effects under different environmental
conditions.

The presence of low frequency of minor alleles (MAF
as low as 0.06) with notable effect sizes, modest R2 values
(3-23%), and the environment-specific signals (linoleic acid
SNPs on chromosome 9 in Abu-Naama vs. chromosome 6 in
Matuq) support a quantitative inheritance model and G × E
interaction for these traits. Recent transcriptomic studies show
the importance of multi-omics approaches in dissecting com-
plex pathways, confirming candidate genes and regulatory
elements that GWAS alone overlooks. Future breeding efforts
will benefit from validating these candidate genes at genomic
and transcriptomic levels while integrating fine-mapping and
marker-assisted selection to accelerate the development of
high-oil, high-oleic sesame cultivars.

This study showed variations in predictive ability across
traits and environments, highlighting the complex interplay
between genetic and environmental factors in determining
crop traits. The moderate predictive power observed for
linoleic acid and oil content in specific environments sug-
gests that genomic selection, particularly using models such as
rrBLUP, can aid in breeding sesame varieties with improved
oil content and fatty acid profiles. However, lower predictive
abilities observed for oleic acid and oil content highlight the
need to consider trait–environment interactions when apply-
ing genomic selection strategies. Moderate to high predictive
abilities in some trait–environment combinations demonstrate
genomic selection’s potential for improving sesame oil qual-

ity, through further model optimization and integration of
environmental covariates may improve accuracy, especially
for traits with lower predictability (Crossa et al., 2017).
Environmental factors significantly influence sesame oil con-
tent and fatty acid composition, leading to substantial trait
variability (Kurt et al., 2016; J. Wang et al., 2023).

Hu et al. (2022) reported the significant influence of envi-
ronmental and genetic diversity on sesame oil and fatty acid
profiles, with oleic acid ranging from 39% to 54% and linoleic
acid from 39% to 59%. The advancement of GP models has
improved breeding value estimation, enabling breeders to
make informed selections by considering multiple interact-
ing factors. L. Chen et al. (2015) emphasized that genomic
selection is particularly beneficial for complex traits like
fatty acid composition, as it integrates environmental factors,
improving traits predictability and crop performance under
specific conditions. Combining genomic data with environ-
mental variables can enhance the development of nutritionally
rich, climate-resilient sesame varieties, promoting sustainable
cultivation.

4.4 Candidate gene search

Our candidate gene analysis identified four protein-coding
sequences near the significant SNP markers associated
with oleic acid and oil content. APMJ01003105 on
Chr5_17024932 corresponds to 3-oxoacyl-[acyl-carrier-
protein] synthase 3A (KAS III), an enzyme involved in
fatty acid synthesis by catalyzing the initial condensation
of acetyl-CoA with malonyl-ACP (Guo et al., 2019). This
elongation step is essential for seed oil composition (Berg
et al., 2015). In addition, APMJ01000051 on Chr1_1693157
shares 81.4% identity with the transcription repressor OFP8,
which may regulate key enzymatic genes influencing fatty
acids accumulation in sesame seeds.

For oil content, APMJ01001210 on Chr3_23284702
encodes an HVA22-like protein, which is involved in stress
response and membrane trafficking (W. Chen et al., 2002),
although its direct role in oil biosynthesis remains unclear.
Its strong alignment indicates a potential link between
seed development and lipid metabolism. Another candidate,
APMJ01005016 on Chr9_1711873, corresponds to phospho-
lipid diacylglycerol acyltransferase 2 (PDAT2), an enzymes
that facilitates TAG production by transferring acyl groups
from phospholipids to diacylglycerol (Dahlqvist et al., 2000).
Enhanced PDAT2 activity can boost TAG levels, ultimately
increasing sesame oil content.

Zhou et al. (2022) identified three candidate genes
(SINPZ1100015, SINPZ1201700, and SINPZ1201748) linked
to key loci for fatty acid and oil content across diverse
global accessions. While our study analyzed fewer accessions
across two environmental conditions, it leveraged the broad
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genetic diversity of Sudanese sesame germplasm, a center
of origin for the crop. Integrating these findings with large-
scale GWAS and transcriptomic studies (Dossa et al., 2019;
Zhou et al., 2022) could enhance our understanding of the
genetic mechanisms governing oil traits. Fine-mapping major
QTLs across multiple environments is crucial for accurately
capturing genotype–environment interactions.

The candidate genes highlight the key molecular regula-
tors of fatty acid and oil biosynthesis, with potential links
to stress response pathways that may influence oil yield and
composition. Future studies should focus on functional valida-
tion through gene expression analysis, knockout/knockdown
approaches, and overexpression studies. Marker-assisted
selection targeting these genes could enhance breeding effi-
ciency for high-oleic, high-oil sesame cultivars, thereby
meeting growers, consumers, and industrial demands.

While this study does not capture the full genetic diver-
sity of Sudanese sesame, there remains considerable untapped
variation in wild relatives, landraces, and underutilized cul-
tivars. Exploring these resources could reveal lines with
enhanced oleic acid content. Molecular breeding approaches,
including marker-assisted selection and CRISPR/Cas genome
editing of key fatty acid biosynthesis genes, such as FAD2
(Rauf et al., 2024), could accelerate genetic improvement.
Introgression from related species and optimized agro-
nomic practices may further expand the oil content and
oleic acid range, enhancing sesame’s nutritional and market
value.

5 CONCLUSION

This comprehensive GWAS analysis provides insight into the
complex genetic factors influencing oil content and fatty acid
composition (oleic and linoleic acids) in Sudanese sesame
genotypes, identifying the key loci responsible for these traits.
The observed variability across environments demonstrates
the significant impact of environmental factors on trait expres-
sion, underscoring the need for environment-specific breeding
strategies. The identification of candidate genes associ-
ated with these traits offers new opportunities for molec-
ular breeding to enhance the nutritional quality of sesame
oil.

GP also showed promise for specific traits in distinct envi-
ronments, particularly for oleic acid in Abu Naama and oil
content in Matuq, suggesting that genomic selection could
improve these traits and optimize sesame breeding programs.
This study enhances the genetic understanding of sesame
and supports the development of improved varieties in both
local and global markets. Future work should emphasize
validating gene function (expression assays, knockouts, and
overexpression) and using marker-assisted selection to boost
breeding efficiency for high-oleic, high-oil sesame, meeting
both market and consumer needs.
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