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A B S T R A C T

The Goal and scope are essential phases within a life cycle study as they lay the foundation for the subsequent 
inventory modelling, impact assessment, and interpretation of results. Stakeholder engagement is critical 
throughout life cycle studies. Addressing diverse stakeholder interests and priorities have so far relied on 
stakeholder-expert dialogues, which remain challenging, particularly in projects with numerous stakeholders 
leading to a broad range of environmental, social, and economic impact categories and subcategories. This study 
therefore introduces a machine-assisted goal and scope approach to manage large volume of stakeholder re-
sponses generated in stakeholder-expert dialogues. It is designed to complement current manual stakeholder 
engagement approaches with semi-automated computer assisted analysis that identifies stakeholder interests, 
concerns, and prioritises them. We apply Natural Language Processing (NLP) in the goal and scope phase to 
preprocess stakeholder response documents collected during a life cycle study within a larger EU project. After 
preprocessing, unsupervised clustering algorithms were used to determine stakeholders’ interests, concerns, and 
priorities. This innovative use of NLP and clustering was tested on a life cycle study of bioenergy value chains in 
Namibia (2021–2024). The approach successfully analysed stakeholder responses and identified key impact 
categories and subcategories on which to focus the assessment. Compared to manual methods, the machine- 
assisted goal and scope phase improved the level of detail while maintaining the same time frame and 
resource constraints. The current study serves as a proof of concept and demonstrates how life cycle studies can 
benefit from a machine-assisted goal and scope approach.

1. Introduction

Life cycle studies cover a range of methodologies to systematically 
quantify and assess the sustainability of a product or service. They take 
every step of the life cycle into account, including raw material 
extraction and upgrading, production, use, and end of life (waste 

treatment). There are separate methods to assess the three pillars of 
sustainability, such as environmental life cycle assessment (LCA), social 
LCA (SLCA), and life cycle costing (LCC). When all three are assessed 
together and quantitative and qualitative conclusions are drawn 
regarding potential trade-offs between and within the different pillars of 
sustainability, it is commonly referred to as a life cycle sustainability 
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assessment (LCSA) (Klöpffer, 2008). There are many ISO standards 
related to life cycle studies published under the ISO 14000 family (ISO). 
The main reference documents for LCA and SLCA are ISO 14040 (ISO, 
2006a), ISO 14044 (Technical Committee ISO/TC 207, 2006) and ISO 
14075 (ISO, 2024). LCC is less standardised and conceptually inter-
preted in different ways (Hunkeler et al., 2008). One way of including 
economic aspects in a life cycle study, coherent with the life cycle 
definition used in LCA and SLCA, is to perform an environmental LCC 
(Swarr et al., 2011).

Life cycle studies normally consist of 4 phases: a) goal and scope, b) 
inventory, c) impact assessment, and d) interpretation (Guinee et al., 
2002). LCC is an exception. Since the inventory is described in monetary 
terms there is normally no need for a separate impact assessment step 
(Swarr et al., 2011). The goal of the study describes the reasons for 
carrying out the study, the intended application and audience, and 
whether the results will be disclosed to the public. In the scope, the 
system to be studied is described including its functions, the functional 
unit used, and the system boundaries. It also describes the allocation 
procedures, impact category selection, impact assessment methods, how 
these are interpreted, data requirements, assumptions, limitations, and 
whether and how a critical review will be performed (Technical Com-
mittee ISO/TC 207, 2006). The goal and scope phase can enhance the 
practical applicability of the study outcomes by directly involving 
project stakeholders (Guinee et al., 2002).

A rigorous life cycle sustainability assessment requires considering a 
broad set of impact categories. Selecting only a few categories risks 
overlooking burden shifting and undermines the goal of a comprehen-
sive evaluation. While value choices and assumptions should be mini-
mised, it is crucial to consider the interests, priorities, and preferences of 
the target audience and affected stakeholders, collectively referred to as 
interested parties in the SLCA standard (ISO, 2024). Their input can 
provide valuable insights, enabling meaningful conclusions and more 
relevant recommendations. Although methods that assess multiple 
impact categories are essential to prevent burden shifting, it is equally 
important to conduct a more detailed assessment of impact categories 
that are of particular concern to stakeholders. The selection of impacts 
for emphasis directly influences the level of detail required in the life 
cycle inventory and determines the depth of quantitative data collection 
necessary for a comprehensive assessment. Therefore, stakeholder 
participation and engagement are beneficial for ensuring the quality and 
usefulness of a life cycle study.

LCA and SLCA include different impact assessment methods, each 
with a broad and diverse set of impact categories The number of impact 
categories in a study depends on the chosen method and must align with 
the study’s goal and intended application. However, there is limited 
guidance on prioritising impact categories in a way that ensures feasi-
bility in later phases of a life cycle study (Rosenbaum, 2016), especially 
when multiple stakeholders are involved and the study targets a broad 
audience.

Time and resource constraints in any given life cycle study makes it 
challenging to collect detailed data and assess all possible impact cate-
gories, regardless of the availability of background data in life cycle 
databases. This challenge is particularly pronounced in studies covering 
the social dimension, where stakeholder preferences play a key role in 
guiding the assessment (ISO, 2024), (UNEP, 2020), (UNEP, 2021). To 
enhance the relevance and usefulness of the study, stakeholder interest 
and priorities should inform the selection of categories and sub-
categories on which to focus data collection and impact assessment ef-
forts, ensuring more meaningful and useful study outcomes.

Depending on the purpose and scope of a life cycle study, the number 
of stakeholders and the size of the target audience can vary significantly. 
In small studies with a specific target group, selecting relevant impact 
categories and interpreting the study is often straightforward (Curran, 
2016). However, when assessing larger systems and value chains with 
numerous stakeholders - such as policy makers, industries, non-state 
actors, local communities, workers, and unions - stakeholder interests 

and concerns become more complex and sometimes contradictory. This 
complicates the goal and scope phase in general, particularly the se-
lection of assessment methods and impact categories.

Moreover, when practitioners engage with stakeholders, maintain-
ing complete objectivity is challenging, even though it is essential for 
conducting an unbiased analysis. This not only affects the outcome of 
the study, but also shapes how the system is perceived by those who 
receive the practitioners interpretation (Yamamoto, 2012). Addition-
ally, stakeholder responses may be unintentionally influenced by the 
mere presence of practitioners, potentially leading to a systematic 
misrepresentation of their preferences and priorities (Miyazaki and 
Taylor, 2008). Given these challenges, there is a need for structured 
methods that improve transparency and minimise subjectivity in 
stakeholder engagement data analysis. This study explores the applica-
tion of natural language processing (NLP) and clustering techniques to 
address these issues.

Life cycle practitioners often simplify the interpretation of large 
datasets generated from multiple impact categories and diverse stake-
holder groups by using scoring and indexing approaches, (e.g. 
(Romagnoli et al., 2024), (Abdella et al., 2020), (Bachmann, 2013)). 
While these methods aid in result interpretation and communication, 
they may lack the depth needed to address concerns that are highly 
relevant to specific stakeholder groups, particularly smaller or more 
localized ones. As a result, the study’s findings may not be relevant to 
certain stakeholders (Guinee et al., 2002). To enhance the relevance of a 
life cycle study’s results, this study explores the use of NLP tools 
(Chowdhury, 2003), and machine learning (ML) or data mining tech-
niques (e.g. a clustering algorithm as an unsupervised method in ML 
(Yadav and Sharma, 2013)) to identify stakeholder interests and prior-
ities during the goal and scope phase of a life cycle study. This is espe-
cially relevant to life cycle studies that include an SLCA component, 
where stakeholder perspectives play a central role.

This study aims to demonstrate how the NLP and clustering tech-
niques can be combined and applied to analyse stakeholder responses to 
aid in the identification of impact assessment categories and sub-
categories of high relevance to stakeholders during the goal and scope 
phase of a life cycle study. This application has not been thoroughly 
explored in the life cycle methodology related literature.

The proposed approach was applied and tested in a larger EU project, 
where a complete life cycle sustainability assessment (LCSA) was carried 
out to assess the potential environmental, social, and economic impacts 
of introducing potential new biomass-based value chains in southern 
Africa. The study discusses how this machine-assisted approach can 
enhance the goal and scope phase and improve the relevance of the 
study’s outcomes for stakeholders and the target audience. By auto-
mating aspects of stakeholder response analysis, this study addresses the 
challenge of maintaining objectivity by the life cycle practitioner when 
identifying impact categories of high relevance and concern to 
stakeholders.

2. Materials and methods

2.1. The proposed machine assisted goal and scoping concept

ML is a computational approach that enables computer models to 
autonomously learn from data and perform complex tasks through the 
use of machine learning tools without explicit programming. This 
learning process can involve acquiring new declarative knowledge, 
developing motor and cognitive skills through instruction or practice, 
discovering new facts and theories through observation and experi-
mentation, or organising existing knowledge into structured insights 
(Carbonell et al., 1983). ML is often described as an artificial mechanised 
system that refines its performance through experience (Mitchell, 2006) 
and can be integrated with data mining techniques to enhance analytical 
effectiveness (Dogan and Birant, 2021).

NLP, a subfield of artificial intelligence, focuses on the 
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computational understanding and manipulation of the human language 
in text or speech form (Chowdhury, 2003). In this study, NLP is applied 
to process text-based responses from stakeholders, which are collected 
during the goal and scope phase of the life cycle study. A clustering 
technique is then employed to group stakeholder interests and priorities, 
helping to identify impact categories that require emphasis. These 
identified impact categories subsequently inform the life cycle in-
ventory, impact assessment and interpretation phases, following an 
iterative life cycle study methodology (Technical Committee ISO/TC 
207, 2006).

While the application of ML and NLP techniques in life cycle studies 
are still emerging, their adoption has grown in recent years (Romeiko 
et al., 2024). To date, ML has been predominantly used in life cycle 
inventory modelling, impact assessment, and interpretation phases 
(Romeiko et al., 2024), (Ghoroghi et al., 2022). These applications 
primarily aim to address data gaps (Meng et al., 2019), manage un-
certainties (Abokersh et al., 2020), and improve life cycle studies 
through systems optimisation (Azari et al., 2016), hotspot identification 
(Zhao et al., 2019), and sensitivity analysis (Abokersh et al., 2020). NLP 
has also been applied to incorporate textual data into life cycle studies, 
further supporting data integration and analysis (Chiu et al., 2024). 
Despite the widespread use of ML and NLP in industrial applications 
(Pechsiri and Kawtrakul, 2007), (Pechsiri et al., 2016), their integration 
into the goal and scope phase of life cycle studies remains largely 
unexplored.

Including stakeholders in the goal and scope phase of a life cycle 

study is important for ensuring that the assessment aligns with their 
priorities and concerns. Stakeholder perspectives provide crucial input 
for drawing meaningful conclusions and making recommendations 
during the life cycle interpretation phase. Traditionally, participatory 
approaches involve stakeholder engagement tools, where life cycle 
practitioners manually process the collected input to define the study’s 
goal and scope (Fig. 1, approach A). However, this manual approach can 
be time-intensive and subject to expert interpretation biases.

This study introduces an alternative machine-assisted approach. ML 
and NLP were incorporated to enhance the goal and scope phase (Fig. 1, 
approach B). By leveraging computational tools, the proposed method 
aims to automate the alignment of the study’s goal and scope with 
stakeholder priorities, improving efficiency and reducing subjectivity.

In our proposed machine assisted goal and scope approach, stake-
holder concerns and priorities were collected as unfiltered and un-
screened textual data. This approach encourages the integration of 
diverse stakeholder perspectives, which can improve the relevance of 
the final study (Sala et al., 2013). To prevent any unintended influence 
on stakeholder perspectives (Miyazaki and Taylor, 2008), only 
open-ended questions were used rather than multiple-choice or struc-
tured survey questions.

Stakeholders were asked broad, qualitative questions such as. 

• “What are your social, economic, and/or environmental concerns at 
the moment?”

• “What are your interests and concerns within the biomass industry?”

Fig. 1. The four methodological phases of a Life Cycle Study. Traditionally, life cycle practitioners manually analyse stakeholder inputs during the goal and scope 
phase (A) using various participatory tools. This study proposes a modified approach (B), which integrates machine assistance through natural language processing 
and machine learning. In the second approach, computational linguistics experts process stakeholder responses to help semi-automatically identify stakeholder 
interests, concerns, and preferences, which are then aligned with life cycle study objectives by life cycle practitioners.
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These responses were collected into a textual data or corpus for 
subsequent processing using NLP and ML techniques.

When applying ML and NLP in decision-support systems, it is com-
mon to include a supervised NLP phase to process textual input (Pechsiri 
et al., 2016), (Pechsiri and Piriyakul, 2021), (Pechsiri and Piriyakul, 
2016a). In this study, NLP techniques were used to transform stake-
holder responses into structural linguistic data, ensuring that key con-
cerns and priorities could be systematically analysed. The NLP process 
included lemmatisation, which refines textual data by reducing words to 
their base forms while preserving their intended meaning. Information 
identifying the sources was removed to minimise potential bias from life 
cycle practitioners in subsequent stages and to comply with General 
Data Protection Regulation (GDPR) requirements (The European 
Parliament and of the Council).

The processed textual data was then used to extract key-term fea-
tures, which served as input for the next stage: clustering. In this step, 
linguistic tags were removed, and stakeholder responses were grouped 
into three arbitrary clusters based on shared features. These clusters 
represented broad categories of stakeholder interests and concerns, 
which served as a foundation for prioritising impact categories in the life 
cycle study.

Two main common clustering techniques were applied (Jung et al., 
2014), (Schön, 2009), (Krantz et al., 2009) to group stakeholder 
concerns. 

1. k-means clustering algorithm, which is based on Euclidean distance 
measurements.

2. Expectation Maximization (EM) clustering algorithm, which em-
ploys probabilistic statistical modelling to iteratively optimise 
parameter estimation.

K-means clustering is widely used to identify homogeneous clusters 
within datasets based on predefined characteristics of interests (Krantz 
et al., 2009), (Schreiber and Pekarik, 2014). In previous life cycle 
studies, k-means has been combined with logistic regression and 
weighted scaling of social, economic, and environmental values to 
simplify complex sustainability assessments. For example, k-means were 
used to aggregate life cycle impact assessment results into a composite 
sustainability index for stakeholders and complementing multi-criteria 
decision-making methods (Abdella et al., 2020). In this study, we used 
k-means clustering differently. Inspired by its application in audience 
segmentation studies (e.g understanding museum visitors’ perspectives 
(Krantz et al., 2009)), we applied K-means clustering to identify patterns 
in stakeholder concerns and priorities from the supervised NLP pro-
cessed textual data. Unlike studies that relied on predefined stakeholder 
interests, this study predefined three arbitrary clusters as a demonstra-
tion of how clustering can assist in identifying key stakeholder interests. 
This choice of three clusters served as an initial proof of concept, 
allowing for an exploration of how unsupervised clustering can structure 
stakeholder concerns in the goal and scope phase.

As an alternative approach, EM clustering was also applied in a 
similar manner. Inspired by Darena et al. (2012), EM clustering was 
explored to compare its effectiveness against k-means, providing an 
additional perspective on how different clustering techniques can be 
leveraged to enhance stakeholder analysis in life cycle studies.

After the clustering step, the general concept of each cluster was 
interpreted or assigned a theme label by life cycle practitioners to 
represent each cluster as a group class. Unlike typical classification 
models, which rely on predefined labels and performance metrics (such 
as confusion matrices, precision, recall and false positives), this study 
focused on expert-driven thematic assignment to help ensure that the 
identified stakeholder concerns aligned meaningfully with the life cycle 
study objectives. As a result, traditional performance evaluation metrics 
were not applicable.

A panel of three life cycle practitioners examined the key-term fea-
tures within each group to assign the theme label that would best 

represent the primary stakeholder concerns captured in the responses. 
To minimise subjectivity bias, this thematic assignment of clusters was 
conducted without knowledge of who the stakeholders were. By 
redacting stakeholder sources and only presenting the lemmatised 
words from each cluster, this method enables experts to make in-
terpretations based solely on the semantic patterns of stakeholder re-
sponses, rather than any preconceived notions about specific 
stakeholder groups.

Once themes were assigned, life cycle practitioners identified impact 
categories of high relevance to be used as guidance for subsequent 
phases of a life cycle study. The assignment of impact categories was 
determined by analysing which key-term features appeared most 
frequently in each cluster, reflecting stakeholder priorities and concerns. 
These impact categories then informed the life cycle inventory, impact 
assessment, and interpretation phases to help the assessment remained 
stakeholder focused and contextually relevant. The structured assign-
ment of themes and impact categories also helps translate stakeholder 
concerns into meaningful recommendations for decision-making in the 
interpretation phase (Fig. 1).

The machine assisted goal and scope approach described here was 
tested alongside a manual approach as part of the larger project’s life 
cycle studies, allowing for an assessment of its limitations and benefits.

2.2. Case study

This case study was conducted in Namibia between the years of 2021 
and 2024 as part of a broader effort to assess the sustainability of 
biomass-based value chains. Bush encroachment is a significant envi-
ronmental and economic challenge in the region (O’Connor et al., 
2014), and the project aimed to investigate the feasibility of establishing 
value chains that would utilize unwanted woody biomass while 
providing economic incentives for sustainable land management. 
Extensive stakeholder engagements were conducted to ensure that the 
life cycle study reflected local environmental, social and economic 
concerns.

Life cycle studies were used to assess the environmental, social and 
economic sustainability of the biomass value chains. The assessment 
made use of the product environmental footprint (EF3.1) and the 
Ecoinvent 3.7.1 database (Andreasi Bassi et al., 2023), (Crenna et al., 
2019), (Wernet et al., 2016), the product social impact life cycle 
assessment (PSILCA) database (UNEP, 2020), (Kirill et al., 2020), and 
the net added value approach based on primary and literature data 
(Swarr et al., 2011), (Damodaran, 2017) for the environmental, social, 
and economic assessments, respectively.

2.2.1. Stakeholder engagements and participatory methods
The stakeholder engagement process followed four key phases: (1) 

identifying relevant value chain stakeholders with local experts, (2) 
selecting and preparing participatory activities, (3) conducting stake-
holder engagement sessions, and (4) processing stakeholder input for 
integration into the life cycle study (Fig. 2). This structured approach 
ensured that stakeholder concerns were systematically incorporated into 
the assessment.

2.2.1.1. Stakeholder groups. Stakeholder mapping was conducted 
through literature review (Mlunga and Gschwender, 2015), (Brüntrup 
et al., 2012) and consultations with project partners to identify relevant 
groups. The stakeholder groups engaged in the study included govern-
ment agencies, value chain operators, unions, farmers, industrial 
off-takers, households and local communities (Table 1). Representatives 
of these groups were engaged throughout the project and, additional 
stakeholders were identified through an evolving engagement process. 
However, demographic data such as gender distribution, age range, and 
educational background were not systematically recorded. This study 
was designed as a proof of concept, focusing on testing the 
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machine-assisted approach rather than analysing demographic in-
fluences on stakeholder concerns. While demographic insights could 
provide additional depth in future research, their absence does not affect 
the primary objective of evaluating the feasibility of the proposed 
method.

Partner organizations facilitated access to many stakeholders, and 
participation levels varied across groups. Communal area stakeholders 
had higher participation due to their geographic proximity of in-
dividuals to their community centres. This made group activities easier 
to organise, especially when community leaders were involved, but low 
literacy and language barriers posed challenges. Commercial farmers, 
were geographically dispersed, which limited group participation. Some 
farmers also had engagement fatigue from previous development pro-
jects, leading to lower attendance. Unions, associations, universities and 
governmental agencies participated through their representatives.

2.2.1.2. Selection of participatory tools. We utilised different participa-
tory tools depending on the group and structure of stakeholders in each 
engagement event. The selection of participatory tools was based on. 

1. Stakeholder group size - large groups required interactive methods 
such as brainstorming.

2. Target information - Specific concerns required structured 
discussions.

3. Available resources. - Methods were adapted to time and logistical 
constraints.

The study employed brainstorming, semi-structured dialogues, focus 

groups, and formal surveys to collect stakeholder input. These methods 
were chosen to maximise inclusion and relevance, ensuring broad rep-
resentation of stakeholder concerns.

2.2.2. Implementation of stakeholder engagement methods
Brainstorming sessions was used primarily with groups in communal 

areas to gather concerns and priorities. participants were given note 
cards to write their primary concerns, particularly regarding bush 
biomass harvesting. Each note card contained a single concern, while 
each individual was allowed to write as many note cards as needed, 
ensuring that a diverse set of issues were captured. This method allowed 
stakeholders to express their views independently, minimising the risk 
of dominant voices overshadowing others (Geilfus, 2008).

Semi-structured dialogues were conducted with individuals, families, 
or small groups. This method facilitated in-depth conversations and 
allowed researchers to explore concerns beyond predefined topics. Un-
like formal questionnaires, semi-structured dialogues allowed stake-
holders to introduce new discussion points, which reduces bias from 
preset questions (Geilfus, 2008).

Focus groups, a variation of semi-structured dialogues, were con-
ducted with more groups focused on specific activities. For example, a 
workshop with farmers involved in bush thinning was held to under-
stand their perspectives on biomass harvesting.

Formal questionnaires were used to engage a broader set of stake-
holders, particularly those unable to attend in-person discussions. The 
questionnaires included open-ended questions to capture stakeholder 
perspectives on social, economic, and environmental values related to 
the biomass industry. Due to time and resources constraints, formal 
questionnaires were selectively distributed. One key data collection 
event was the 2023 Biomass Fair in Namibia, where stakeholders from 
the biomass sector participated in surveys. Fig. 3 provides an overview 
of the stakeholder groups and their associated biomass-related activities.

2.3. Manual approach for identifying relevant impact categories

To systematically categorise stakeholder concerns, the stakeholder 
input collected through participatory methods was analysed using two 
complementary approaches. The manual approach relied on expert 
interpretation to sort stakeholder responses into thematic categories 
linked to relevant impact categories. This method provided a baseline 
for assessing the feasibility and limitations of machine assisted 
processing.

2.3.1. Data collection, categorisation and impact category assignment
Stakeholder responses were collected through the participatory tools 

described in section 2.2.1 and compiled into a corpus for the manual and 
machine assisted analyses (Supplementary material A). The manual 
approach required life cycle practitioners to identify patterns in the 
responses and organise concerns in thematic clusters. These clusters 
were then linked to impact categories commonly used in different types 
of LCA, SLCA and LCC.

A matrix was developed to structure stakeholder concerns by envi-
ronmental, social and economic dimensions. This matrix supported the 

Fig. 2. Work flow of stakeholder participation planning and execution.

Table 1 
Groups and types of stakeholders that were engaged in Namibia in the case 
study.

Stakeholder group Type of stakeholder

Governmental agencies Government Ministries
Academic Institutions
Healthcare Services in Namibia

Non-Governmental Organizations (NGOs) Developmental Organisation
Conservation Organisation

Unions and Associations Unions representing the agriculture 
sector
Unions representing workers and 
industries

Harvest Operators Manual Harvesting Operators
Mechanised Harvesting Operators

Potential large and small-scale commercial 
end users

Industries
Small-Medium Enterprises
Households

Commercial farmers Cattle Ranges
Charcoal producers

Tourism Service Providers Game farms 
Accommodation providers

Smallholders from communal areas Communal areas of Namibia
Financial Institution Consumer Banking Service Provider
Value Chain Operators Biomass Industry Service Providers

Certification Service providers
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systematic prioritisation of impact categories, ensuring that key stake-
holder concerns were reflected in the life cycle study. It also served as a 
reference for aligning stakeholder priorities with system modelling and 

data collection in the inventory phase.
The assignment of impact categories was guided by: (i) the frequency 

and intensity of concerns raised by stakeholders, (ii) relevance to 

Fig. 3. Grouping of stakeholders that responded to the questionnaire at the 2023 Biomass Fair (a) and the biomass products engaged with by these stakeholders (b).

Fig. 4. Two systematic representations of processes: a) illustrates the sequential workflow used to process stakeholder concerns, from data collection to impact 
category assignment, while b) presents the same process from a computational systems perspective, showing the data storage (as cylinders), processing flow (as 
boxes), and algorithmic structure necessary for automation Stakeholder responses were collected in engagement activities (step A), translated (step B), and processed 
using natural language processing techniques (step C). Clustering was performed using the Waikato Environment for Knowledge Analysis platform (WEKA) which 
found arbitrary clusters of stakeholder interests and concerns (step D). These clusters were then assigned themes by LCA experts following their respective features 
within each cluster and used to identify high priority impact categories and subcategories (Step E). Steps A and E were conducted manually by LCA experts (authors); 
Steps B and C were conducted using machine assistance under LCA expert supervision (authors); Step D was unsupervised.
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existing LCA, SLCA and LCC impact assessment methods, (iii) cross- 
cutting themes affecting multiple stakeholder groups (e.g. economic 
viability, environmental degradation, or social well-being. Responses 
were recorded with accompanying metadata to maintain traceability 
and provide context for impact category assignment. Since some re-
sponses represented individuals and, others reflected collective per-
spectives (e.g. community representatives, NGOs) the data was not 
processed statistically but rather qualitatively categorised based on 
thematic clustering.

While expert interpretation attempts to capture contextual accuracy, 
the process is time-intensive and subjective. Potential limitations of the 
manual approach included (i) inconsistencies in expert judgment across 
different life cycle practitioners, (ii) difficulty in processing large vol-
umes of stakeholder input efficiently, and (iii) potential bias in assigning 
impact categories based on expert perceptions rather than purely data- 
driven insights. The machine-assisted approach was therefore devel-
oped to increase transparency, efficiency and replicability in identifying 
impact categories of high relevance and priority to stakeholders.

2.4. Machine-assisted approach for identifying relevant impact categories

The machine-assisted approach used the same transcribed stake-
holder responses as the manual approach (Supplementary material A). 
To facilitate structured processing, semi-automatic coupling of NLP and 
clustering techniques were applied.

The workflow consists of five key steps (Fig. 4a). Step A and B consist 
of data collection and transcription. In the case study this is where the 
stakeholder input was gathered using participatory methods and 
compiled into a text corpus. Since responses were provided in various 
local languages and dialects, low literacy and language barriers posed 
significant challenges and local translators were often required.

A total of 114 responses with 1477 words were collected during the 
stakeholder engagements. Given that many local dialects lack written 
standardization, a professional translator assisted in ensuring accuracy 
and consistency before text processing.

In Step C (Fig. 4), the collected data are digitalised, stored, and 
preprocessed using NLP with techniques such as part-of-speech tagging, 
lemmatisation and key-term annotation. Part of speech tagging is a 
linguistic method that refers to markup tagging of words based on their 
grammatical part of speech, e.g. “I eat carrots” is tagged as “I/PRP eat/ 
VBP carrots/NNS”, where PRP, VBP, and NNS refer to personal pronoun, 
verb present, and plural noun, respectively. During this step, words are 
assigned syntactic categories (Fig. 5) using Penn Part of Speech tags 
(Santorini, 1990). Lemmatisation reduces words to their base form. As 
an example, words like “go”, “went”, “gone” are all related to the word 
“go”. In the case study, we used a lemmatiser from the Centre for Lan-
guage Technology at University of Copenhagen (Jongejan and Dalianis, 
2009), (Jongejan and Haltrup, 2005).

Key-term annotation identifies domain-specific terms based on a 
lexical database, WordNet ((Fellbaum, 2010), (Miller, 1995)), in order 
to facilitate the upcoming clustering process. In the case study, each 
identified key-term concept (ti; i = 1,2, …,numberOfKeyTermConcerpts) 
was added to a key-term set (T) (equation (1)): 

T=
{
t1, t2, t3,…, tnumberOfKeyTermConcepts

}
(1) 

The key-term set was then used to extract key-term concept features 
from the corpus, to be used as clustering features. The annotations of 
key-term concepts was achieved using computational linguistic experts’ 
annotation of key-term concepts based on WordNet (Fellbaum, 2010), 
(Miller, 1995) with a random sample of the corpus. An example of 50 
random textual responses, with annotated key-term concepts can be 
found in Supplementary Material B.

Step D is the clustering process. The term-feature vectors within the 
Term-Feature Vector Determination step (Fig. 4a) are initially deter-
mined from the corpus. The feature vectors are extracted before using 
clustering techniques to cluster responses into arbitrary groups, repre-
senting stakeholder concerns and priorities. A term-feature vector (tvdj) 
is a binary feature vector of the extracted key-term concept from textual 
responses or document instances (dj; j = 1,2, …,numberOfDocuments) on 
the corpus. Each binary feature vector is a numerical representation of 
textual data that enable the posterior clustering algorithms to process 
and analyse the data. In the case study, tvdj is determined from each 
stakeholder textual response by extracting the presence of key-term 
concepts in dj. String matching method ((Santorini, 1990), (Pechsiri 
et al., 2020)) was used between each T element and each dj terms 
(Table 2 and Supplementary Material C).

Once the feature vector had been determined, the k-means and EM 
clustering techniques were applied. The two techniques algorithms were 
performed in parallel to demonstrate the potential use for different 
clustering techniques in step D.

The k-means clustering was performed using data mining software 
from the Waikato Environment for Knowledge Analysis platform 
(WEKA) (Bouckaert et al., 2016), (Hall et al., 2009). In the k-means 
clustering algorithm, n samples (number of instances of stakeholder 
textual responses) were analysed using k-means instance clustering 
(Equation (2)) (Pechsiri and Piriyakul, 2016b), (Aloise et al., 2009). 

Cluster
(
tvdj

)
= arg min

1≤k≤K

⃦
⃦tvdj− μk‖

2 (2) 

where tvdj is the term-feature vector of ti extracted from dj; i = 1,2,.., 
numberOfKeyTermConcept; j = 1,2,..,numberOfDocuments; number-
OfDocuments is the number of documents in the corpus; μk is the mean 
vector of the cluster.

In Eq. (2), k represents the number of clusters used as representatives 
for the different cluster concepts from stakeholder textual responses, i is 
the number of key-term concepts, j is the number of documents in the 
main corpus, and μk is the mean vector of the cluster k. The number of 
clusters is predefined between 2 and 10 (see Supplementary Material D). 
The centroid coordinate values resulting from each clustering of key- 
term features was used to determine a final k-value. A k-value of 3 
was chosen to generate three clusters of stakeholder responses. This 
choice was made pragmatically based on expert judgment to illustrate 
the feasibility of applying clustering techniques in a life cycle study. 
Supplementary Material D provides additional examples with alterna-
tive k-values.

Fig. 5. An example of POS tagged (e.g. PRP, NN, VBG) and annotated KT tags 
used for annotating key terms as key-term concepts in textual documents 
containing stakeholder responses collected during stakeholder engage-
ment activities.

Table 2 
Example of vectors determined from stakeholder textual responses.

Instances or Documents t1 t2 … t65 … tnumberOfKeyTermConcepts

d1 0 0 … 0 … …
d2 0 0 … 1 … …
…. … … … … … …
dj 0 1 … 0 … …
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Another common clustering algorithm applied in the case study is 
EM clustering (Schön, 2009), (Dempster et al., 1977). This was con-
ducted using WEKA to observe how the key-term feature concepts affect 
each cluster. Unlike Euclidean distance based k-means, EM clustering 
uses statistical methods to determine clusters (Jung et al., 2014). There 
are two sub-processes in the EM clustering algorithm (Schön, 2009), 
(Dempster et al., 1977). The first sub-process guesses initial parameters: 
mean and standard deviation (if using normal distribution model). The 
second sub-process iteratively refines the parameters with Expectation 
and Maximization steps. In the Expectation step, the membership pos-
sibility for each instance is computed based on the initial parameter 
values. In the Maximization step, the parameters are recomputed based 
on the new membership possibilities.

Once the three arbitrary clusters had been generated from the key- 
term features in the case study, the response instances containing the 
key-term features in each cluster were documented as instance clusters. 
These were the final outputs from the NLP and clustering processes.

Step E is the impact category assignment and consists of interpreting 
the clustered stakeholder responses, assigning thematic labels and 
matching them to relevant life cycle impact assessment categories. Once 
the clusters containing the key-term features were obtained through 
unsupervised clustering a panel of 3 life cycle practitioners reviewed and 
categorised the stakeholder concerns and priorities Each expert had a 
different professional and national background and came with different 
experiences in life cycle studies, thus giving a diverse range of 
perspectives.

To assign themes, the experts analysed key-term features within each 
cluster and reached a consensus through a majority voting process (max- 
win voting). Thematic labels were then used to identify impact cate-
gories of high relevance to the stakeholders. If consensus could not be 
reached for a given cluster, the clustering results were considered 
inconclusive and a different clustering method was attempted.

For quality control, k-means and EM clustering were applied in 
parallel, as a cross-validation measure. The final themed clusters (rep-
resenting the three primary stakeholder concerns) were then mapped to 
impact categories in LCA, SLCA and LCC. Ultimately, the thematic 
clusters reflected stakeholder priorities, guiding the selection of impact 
categories which warranted particular focus when planning data 
collection and assessment. This structured semi-automated approach 
helped mitigate bias and promote a stakeholder focused life cycle study 
while maintaining methodological rigour.

3. Results

Both the manual and machine assisted goal and scope approaches 

successfully identified stakeholder concerns and associated impact cat-
egories, but the manual approach introduced the risk of subjectivity 
through bias and inconsistency in interpreting the responses by life cycle 
practitioners. The machine assisted approach aimed to mitigate these 
limitations by using automating pattern recognition and categorisation, 
and succeeded in reducing the dependency on expert judgment.

3.1. Manual approach

The result of manually identifying prioritised impact categories is 
shown in Table 3. They are illustrated using a matrix of impact cate-
gories and subcategories identified as highly prioritised by different 
stakeholder groups, based on their responses during participatory 
activities.

The SLCA impact subcategory ‘local employment’ was the only one 
prioritised by all stakeholder groups (Table 3). This may be due to the 
fact that Namibia has been afflicted by high unemployment in recent 
years (Amutenya, 2021). Most stakeholder groups had the category 
‘access of stakeholders to resources and basic services’ as a serious 
concern. This was often connected to the need for either infrastructure 
or educational services, especially in rural areas (Nguvenjengua and 
Undji, 2017). ‘Climate impact’ was highlighted by several stakeholder 
groups. As a response to extreme poverty and income inequality 
(Nguvenjengua and Undji, 2017), (NPC, 2023), stakeholders directly 
and indirectly involved in the value chains (e.g. value chain operators 
and harvest operators, and government agencies and academics) pri-
oritised ‘cost’ and ‘added value’ in the value chain as a whole from an 
LCC perspective. Some stakeholders raised issues related to ‘biodiver-
sity’, particularly concerning the species of animals and vegetation that 
could be affected by bush related activities. Some stakeholder groups 
prioritised ‘fair salary’, ‘human toxicity’, ‘health and safety’, ‘work 
equality’, and ‘water footprint’ for points of discussion, but these were 
not considered as important as employment.

It is worth noting that Table 3 was solely based on the issues raised 
during participatory activities, and does not represent all the potential 
impacts of the investigated value chains. Many real impacts are often 
overlooked by stakeholders. For example, healthcare service providers 
(included in the ‘government agencies’ stakeholder group) identified 
‘risk to injuries’ and ‘development of respiratory illnesses’ as potential 
impacts on workers in the bioenergy value chains. These were, however, 
frequently downplayed by these stakeholder groups themselves. The 
lack of concern for these issues could partly be explained by under-
equipped and underfunded healthcare service providers, leading to a 
lack of awareness of the issues amongst other stakeholders. This high-
lights the need and relevance to include a comprehensive set of impact 

Table 3 
Manually determined impact categories, based on stakeholder responses (Supplementary Material A).

Impact Categories and Subcategories 
Raised

Engaged Stakeholders

Government 
Agencies

NGOs Small Holders in Communal 
Areas

Farmers & Harvest 
Operators

Value 
Chain 
Operators

End 
users

Academics

Energy Demand ​ ​ ■ ​ ■ ​ ■
Resource Depletion ​ ​ ■ ■ ​ ■ ​
Climate impacts ​ ​ ■ ■ ​ ■ ■
Particulate Matter ​ ​ ■ ■ ​ ​ ​
Water footprint ​ ​ ■ ​ ​ ​ ​
Human Toxicity ​ ​ ​ ■ ​ ​ ​
Biodiversity ​ ​ ■ ■ ​ ​ ■
Economic Costs ​ ​ ​ ■ ■ ■ ■
Added value ■ ​ ■ ■ ■ ■ ■
Resources and Services Access ​ ■ ■ ■ ■ ■ ​
Employment ■ ■ ■ ■ ■ ■ ■
Working Hours ​ ​ ​ ​ ​ ​ ■
Fair salary ​ ​ ​ ■ ​ ​ ■
Health and Safety ​ ​ ​ ■ ​ ​ ​
Women at work and Equality ​ ​ ​ ​ ■ ​ ​
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categories in a life cycle study, which is recommended by guidelines and 
standards (ISO, 2024), (Rosenbaum, 2016), (ISO, 2006b). Nevertheless, 
the manual approach identifies impact categories that are of heightened 
importance by stakeholders to be used further in the data collection, 
impact assessment and interpretation phase of a life cycle study.

A key challenge with the manual approach, especially under time 
and resource constraints, is the risk of subjectivity in how practitioners 
interpret responses, first as issues and subsequently into impact cate-
gories. In one of the engagements performed in this study, one of the 
respondents mentioned just one word: ‘Water’. This can be interpreted 
in at least three different ways: a) access to drinkable water and sani-
tation; b) water resource scarcity in regions surrounding the Kalahari 
Desert; and c) the effect of water on the balance between woody vege-
tation and grass in the region. When translating this into impact cate-
gories, it could be interpreted as a need to emphasize the ‘water 
footprint’, or ‘biodiversity impacts’ in an LCA; the need to emphasize 
‘safe and healthy living conditions for local communities’ in the SLCA; 
focusing on the subcategories relating to ‘access to resources and ser-
vices’ (e.g. drinking water coverage and sanitation coverage); or all of 
the above. The issue could be resolved through an iterative process with 
more stakeholder interaction. However, given limited resources and 
with time constraints, there is a risk that additional rounds of stake-
holder engagement activities may not take place, and the selection of 
high priority impact categories may become a subjective choice.

3.2. Machine-assisted approach

In the machine-assisted approach, NLP techniques were combined 
with clusters to determine stakeholder concerns and priorities during 
the goal and scope phase of the life cycle study. Using WordNet 
((Fellbaum, 2010), (Miller, 1995)), 75 annotated key-term concepts 
were extracted from the stakeholder responses (Table 4, Supplementary 
Material B).

Once extracted, feature vectors were generated for the key-term 
concepts (see supplementary material A), enabling further analysis. 
Two different clustering methods, k-means and EM were applied in 
parallel to test their effectiveness in identifying distinct patterns within 
stakeholder concerns and priorities.

3.2.1. K-means clustering and expert-assigned themes and impact 
categories

The k-means clustering method, using k = 3, was applied following 
Eq. (2) using the WEKA software. The detailed results of the clustering 
analysis, including the centroid coordinate values, are provided in 
Supplementary Material D. A subset of these values is presented in 
Table 5, which illustrates the three clusters along with their associated 
key-term concepts.

Term-feature vectors were categorised based on their degree of as-
sociation with each cluster. Terms with a feature vector score below 0.1 
were considered marginally associated, while those with a score 
exceeding 0.2 were considered highly associated with a given cluster. 
Scores falling between 0.1 and 0.2 were considered moderately associ-
ated. (Supplementary Material E contains the resulting clusters).

Cluster 1 contained the largest proportion of feature vectors, 

representing 80.5 % of the total feature vectors, while Cluster 
0 accounted for 14.5 % and Cluster 2 contained 5 % of the feature 
vectors (Table 5). Certain key-term concepts (e.g t8, t65, t66) were 
highly associated with Cluster 2, whereas others (t7, t8, t65) were 
moderately associated with Cluster 1 (For a full list of centroid coordi-
nate values, refer to Supplementary Material D). The results indicated 
that most stakeholder responses could be distinctly classified into a 
single cluster, facilitating the subsequent thematic analysis by life cycle 
practitioners.

To interpret the clustering results, life cycle practitioners manually 
assigned thematic labels to each cluster (Supplementary Material E, F, 
and G). The identified themes were then aligned with existing impact 
categories to identify impact categories of high relevance and priority to 
stakeholders (Table 6).

The results indicated that stakeholder responses could be grouped 
into three primary themes. 

1. local community and smallholder concerns,
2. issues of employment and decent work, and
3. future technology and education requirements.

As responses did not overlap between clusters, the assignment of 
thematic labels by the life cycle practitioner panel was conducted with 
high consistency and efficiency. Based on the themes, the impact cate-
gories and subcategories of highest relevance and priority to the stake-
holders included: land transformation, climate impact, water footprint, 
energy demand, toxicity, access to services by small holders, access to 
material resources by local communities, employment qualities for 
workers, fair competition in the value chain, capital expenditures, and 
potential financial performance.

3.2.2. EM clusters and expert-assigned themes and impact categories
To compare the k-means clustering results with an alternative tech-

nique, EM clustering was applied using the same data. Unlike k-means, 
which assigns each response to a single cluster, EM clustering assigns 
responses probabilistically, allowing overlapping membership of re-
sponses across multiple clusters.

The application of EM clustering resulted in a more even distribution 
of responses across clusters than k-means clustering. Several of the re-
sponses were assigned to multiple clusters using EM clustering, where 
Cluster 1 contained 40 % of the feature vectors, while Clusters 0 and 2 
contained 35 % and 25 % of the total feature vectors respectively.

Since some stakeholder responses were present in multiple clusters, 
the resulting stakeholder concerns covered by the themes assigned to 
each cluster overlapped significantly. This affected the expert interpre-
tation process. It took about twice as long to reach consensus on the-
matic labels using EM clustering, compared to k-means clustering.

The three main themes identified using EM clustering were (Table 7). 

1. economic developmental challenges,
2. land management funding and investments, and

Table 4 
Examples of key-term concept features (see Supplementary Material A).

Key Term 
ID

Annotated Key-Term Concept

t1 GovermentOfNamibia2/regionalOffice/Namibia/town/Okakarara1/ 
Grootfontein1

… …
t4 environmentManagement/GreenHouseGas/ClimateChange/rainfall/ 

healthyAir
… …
t75 Living/betterLiving/livelihoods

Table 5 
Example of centroid coordinate values for key-term concepts derived from 
stakeholder textual responses within each cluster, based on the k-means clus-
tering method (k = 3) in WEKA (Supplementary Material D).

Key-Term 
ID (from 
Table 4)

If All Key-Term 
were considered as 
a group (100 %)

Key-Term in 
Cluster 
0 (14.5 %)

Key-Term in 
Cluster 1 
(80.5 %)

Key-Term 
in Cluster 2 
(5.0 %)

… … … … …
t7 0.1068 0.0667 0.1205 0
t8 0.165 0.1333 0.1687 0.2
… … … … …
t65 0.1845 0.2667 0.1566 0.4
t66 0.0485 0.0667 0.0361 0.2
… … … … …
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3. social and environmental farming challenges.

Despite the differences in the clustering structure, the impact cate-
gories and subcategories identified as of high relevance and priority to 
stakeholders were largely consistent with those derived from k-means 
clustering.

These were land transformation, climate impact, water footprint, 
resource depletion, photochemical oxidation, local community access to 
material resources, employment qualities for workers, promotion of 
social responsibilities within the value chain, contribution to economic 
development for societies, and potential cost/revenue as indicators of 
financial performance. (Detailed results for the EM clustering can be 
found in Supplementary Material G).

4. Discussion

4.1. Comparison of manual and machine assisted approaches

Although, the manual approach did allow life cycle practitioners to 
assign impact categories based on stakeholder priorities, they are 
directly influenced by their involvement with stakeholders. Meanwhile, 
A computational linguistic expert is instead used separately to conduct 
the NLP and clustering process in the machine-assisted approach. This 
meant that the machine-assisted approach ensured that results could not 
be traced back to individual respondents by the life cycle practitioner, 
preserving stakeholder anonymity when processing stakeholder re-
sponses. Moreover, by reducing responses to their linguistic features and 
using heuristic based quantitative driven techniques to derive patterns, 
transparency and reproducibility of results from the machine assisted 
approach is enhanced when compared to the manual approach.

In terms of human resources, the manual approach required three 
LCA practitioners and one local translator while the machine-assisted 
approach required a minimum of three LCA practitioners, one compu-
tational linguistics expert, and one local translator. As machine learning 
and NLP methods continue to develop, they will likely allow for faster 
identification of high-priority impact categories and subcategories, even 
when dealing with complex arrays of stakeholder groups. This allows for 
a potentially more efficient scale up of the machine-assisted approach 
for larger life cycle study projects when compared to the manual alter-
native. The machine-assisted approach also enables more focus on 
themes of common interest shared across multiple stakeholder groups 
and are perceived to represent the interests and concerns of stakeholders 
as a whole, as opposed to the more individualised focus of the manual 
approach.

Although reducing part of the effort required to analyse data with the 
manual approach, some human involvement within the machine assis-
ted approach is still necessary. Unlike typical classification models, 
which rely on predefined categories and performance metrics (e.g., 
precision, recall, false positives), the current method requires life cycle 
practitioners to manually interpret the thematic clusters. This helps 
ensure that the identified stakeholder concerns align with the study 
objectives rather than being dictated purely by statistical relationships 
within the data.

While the clustering step organises stakeholder responses into 
cohesive groups, human expertise is still required to contextualise and 
assign themes to these clusters in a way that reflects real-world impli-
cations. Moreover, due to the overlapping nature of certain stakeholder 
concerns, especially in EM clustering, experts must reach a consensus on 
appropriate labels. Thus, some level of human judgment remains 
necessary to validate and refine the assignment of impact categories.

4.2. Practical implications for life cycle studies

Taking into account the impact categories identified using the pro-
posed machine-assisted approach not only allows the objectives of a life 
cycle study to be met but also helps guide resource allocation more 
efficiently, making sure data is collected, impacts are assessed, and 
conclusions are drawn on impacts of high relevance to stakeholders. 
Examples of how the themes in Tables 6 and 7 can be translated into 
impact categories that further guide decision making in the development 
of the life cycle inventory, impact assessment and interpretation phases 
of the life cycle study can be found in supplementary material H (Table- 
H).

One key example is the identification of future technology and ed-
ucation requirements using k-means clustering, which led to an 
increased emphasis on energy demand and human toxicity in the envi-
ronmental impact assessment. This ensured that the energy consump-
tion and emissions associated with new technologies were carefully 
considered during data collection and impact modelling. Similarly, EM 
clustering identified social and environmental challenges in farming, 

Table 6 
High priority impact categories and subcategories for each k-mean based cluster 
of responses and features.

Cluster Cluster theme LCC 
Impact 
Categories

Environmental 
LCA 
Impact 
Categories

Social LCA Impact 
Categories and 
Subcategories

Cluster 
0

Local 
Communities 
and Small 
holder 
concerns

- Revenue
- Cost

- Land 
Transformation

- Water 
Footprint

- Resource 
Depletion

Small Holders:  

- Access to 
services

Local 
Communities:  

- Access to 
Material 
Resources

Cluster 
1

Issues on 
Employment 
and Decent 
Work

- Revenue
- Cost
- Net 

added 
Value

- Land 
Transformation

- Water 
Footprint

- Climate Impact

Small Holders:  

- Access to 
Services

Local 
Communities:  

- Access to 
Material 
Resources

- Local 
Employment

- Secure Living 
Condition

Workers:  

- Employment 
Relationship

- Health and 
Safety

- Fair Salary
- Equal 

Opportunities
- Working Hours
Value Chain 
Representatives:  

- Fair 
Competition

- Promoting 
Social 
Responsibility

Cluster 
2

Future 
Technology 
and 
Education 
Requirements

- Revenue
- Cost
- Net 

added 
value

- Human 
Toxicity

- Energy Types 
and Demands

Small Holders:  

- Access to 
services
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highlighting climate impact, resource depletion, and employment con-
ditions. This prompted a more focused evaluation of the social impli-
cations of farming practices in the SLCA, particularly regarding worker 
health, safety, and fair employment conditions. Additionally, clustering 
also emphasised economic development challenges, which informed the 
integration of revenue generation, cost structures, and financial feasi-
bility, ensuring that these aspects were adequately integrated into the 
LCC.

However, prioritisation does not imply exclusion of other impact 
categories. Instead, it helps guide strategic allocation of time and data 
collection efforts to maximise the depth and relevance of analysis. LCSA 
aims to provide a comprehensive sustainability assessment while rec-
ognising practical constraints on data availability, time, and resources. 
The prioritisation process helps identify the most stakeholder-relevant 
categories for detailed examination and therefore potentially allowing 
the study to be methodologically rigorous and relevant for decision- 
making. At the same time, a broad set of categories is still considered 
to prevent burden shifting and to capture important sustainability trade- 
offs. By integrating machine-assisted techniques, practitioners can 
navigate these constraints more systematically. All relevant impacts are 
still acknowledged and contextualised in the interpretation phase, even 
those not selected for deeper assessment.

A major advantage of this data-driven stakeholder analysis is its 
ability to process large, unstructured datasets enabling practitioners to 
incorporate diverse perspectives while minimising individual biases. 
This can be particularly beneficial for multi-stakeholder projects, where 
diverse perspectives must be integrated into a single assessment. While 
this study focused on Namibia, the project itself was performed within 
had a wider scope, including Botswana and South Africa, where stake-
holder priorities differ. The machine-assisted approach can help narrow 
down the diverse responses from these three countries to a manageable 
set of stakeholder preferences. Additionally, automating identification 
of stakeholder concerns and priorities improves reproducibility, so re-
sults should remain consistent across different operating practitioner 
teams.

The machine assisted goal and scope approach can also be expanded 
to projects involving stakeholders across multiple continents and lan-
guages. As technology advances, incorporating more African languages 

into translation platforms, POS tagging, and lemmatisation will make 
the digitalisation of stakeholder responses and preprocessing of text 
more automated. However, improvements in the efficiency of applying 
machine learning and NLP methods to stakeholder engagement will 
require further investigation. It is important to note that this study was 
achieved by using a relatively small dataset. As the size and complexity 
of datasets increase, the time-saving advantages of the machine-assisted 
approach will become even more pronounced.

Beyond life cycle studies, this approach has potential applications in 
sustainability reporting, environmental policy analysis and corporate 
social responsibility assessments. The ability to systematically extract 
and group stakeholder concerns efficiently could be valuable in sectors 
where stakeholder engagement is critical, such as renewable energy 
development, and circular economy initiatives.

4.3. Limitations and future research

While this study demonstrates the potential of NLP and ML for 
stakeholder response analysis, several limitations must be acknowl-
edged, and future research should refine and expand upon the approach.

One limitation of this study is the lack of recorded demographic data 
(e.g., gender, age, education) for the stakeholder groups. As a result, 
potential biases related to representation and diversity in stakeholder 
perspectives could not be systematically assessed. While this study 
aimed to develop and test a machine-assisted approach for impact 
category selection rather than analyse demographic influences on 
stakeholder concerns, future research should integrate structured de-
mographic data collection to allow for more detailed subgroup analyses. 
This would help assess whether specific demographic factors influence 
stakeholder priorities and how they may affect the relevance of different 
impact categories in life cycle studies.

Another challenge lies in extracting causal relationships between 
stakeholder concerns and impact categories. For example, biodiversity 
was identified as a priority in the manual approach but was not captured 
in the machine-assisted clustering results. This is due to the NLP model’s 
reliance on surface-form word matching, which does not account for 
deeper contextual meaning or causality. In order to identify 
biodiversity-related features, observations must be conducted at the 

Table 7 
High priority impact categories and subcategories for each EM based cluster of responses and features.

Cluster Cluster theme LCC Impact Categories Environmental LCA 
Impact Categories

Social LCA Impact 
Categories and Subcategories

Cluster 0 Economic Development Challenges - Revenue
- Cost

- Climate Impact
- Water Footprint
- Resource Depletion

Workers:  

- Health and Safety
- Employment Relationships
Local Communities:  

- Secure Living Conditions
- Access to Material Resources
Society:  

- Contribution to Economic Development
Cluster 1 land management funding and investments - Cost - Land Transformation

- Water Footprint
- biotic resource depletion

Local Communities:  

- Access to Material Resources
- Local Employment
Workers:  

- Equal Opportunities
Cluster 2 Social and environmental challenges in farming - Revenue - Photochemical Oxidation

- Climate Impact
- Resource Depletion

Workers:  

- Health and Safety
- Equal Opportunities
- Trading Relationships
Value Chain Representatives:  

- promoting social responsibilities
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elementary discourse unit level, leveraging lexico-syntactic patterns to 
extract causality. Without causality extraction, phrases like ’bush 
encroachment affects animal pathways’ are reduced to individual words 
(’bush,’ ’effects,’ ’pathways’, ‘animal’), potentially leading to misclas-
sification. When this text is presented to life cycle practitioners, these 
individual words may be overshadowed by other cluster features, 
shifting the interpretation from biodiversity impacts to resource deple-
tion. When compared to other NLP-based text analysis approaches, such 
as those used in (Pechsiri et al., 2016), it becomes evident that inte-
grating reasoning-based techniques, including textual causality mining 
(Pechsiri and Kawtrakul, 2007), causality extraction (Pechsiri and Pir-
iyakul, 2010), causal web determination (Pechsiri et al., 2020), and deep 
learning for causality mining (Ali et al., 2021) — could significantly 
improve the machine-assisted goal and scoping process. Future studies 
should investigate the integration of these advanced NLP methodologies 
to enhance the ability of machine-assisted approaches to capture and 
correctly categorise causal relationships in stakeholder concerns.

A key limitation of the machine-assisted approach is the subjectivity 
involved in selecting the number of clusters, or k-value, which can 
significantly impact the analysis (Ikotun et al., 2023). Unlike typical 
classification methods, where predefined categories exist, unsupervised 
clustering requires determining an appropriate k-value, which is often 
based on expert judgment rather than an optimised statistical method. In 
this study, the k-value was pragmatically set to 3 to illustrate how 
clustering can be applied in the goal and scope phase of a life cycle 
study. The objective was not to capture all possible stakeholder concerns 
comprehensively but rather to demonstrate the feasibility of 
machine-assisted clustering for structuring stakeholder responses. Given 
that life cycle studies often face resource constraints that limit the extent 
of primary data collection, prioritising which impact categories to 
analyse in greater detail becomes essential. Setting k to 3 allowed for a 
manageable number of stakeholder concerns to be grouped into distinct 
themes, facilitating subsequent data collection and impact assessment.

While the chosen k-value was guided by domain knowledge, alter-
native methods exist for determining an optimal number of clusters 
(Naeem and Wumaier, 2018). Studies in other fields, such as healthcare, 
have set k-values based on expert knowledge of structured domains, 
such as diseases and major body systems (Pechsiri and Piriyakul, 
2016b). Similarly, statistical approaches such as silhouette analysis, the 
elbow method, or stability-based validation could be applied to refine 
cluster selection. In this study, k-values ranging from 2 to 10 were tested 
(Supplementary Material D), but a systematic optimisation process was 
beyond the study’s scope. Future research should explore approaches for 
optimising k-values in stakeholder response clustering, including the 
integration of factor analysis method as dimensionality reduction tech-
nique that focuses on identifying latent factors that explain correlations 
between variables or features [80, 81]. Additionally, identifying key 
performance metrics for validating clustering results in life cycle studies 
remains an important area for further investigation.

Scalability and language limitations present additional concerns. 
This study was conducted in Namibia, where stakeholder responses were 
translated and processed using English-based NLP tools. The effective-
ness of this method in multilingual settings, particularly for languages 
with limited NLP resources, remains uncertain. Future research should 
explore how to adapt NLP models to underrepresented languages, 
especially in regions where life cycle studies require engagement with 
linguistically diverse communities. Advances in machine translation, 
part-of-speech tagging, and lemmatisation could improve the automa-
tion of stakeholder response processing, enabling more accurate clus-
tering of key concerns across different linguistic contexts. As NLP 
technologies evolve, integrating African and other underrepresented 
languages into translation platforms and computational linguistic 
frameworks will be essential for expanding the applicability of machine- 
assisted stakeholder analysis in life cycle studies. However, further 
research is needed to enhance the efficiency and accuracy of unsuper-
vised machine learning and NLP methods in these multilingual contexts.

Another limitation relates to the need for more automation in expert 
interpretation. Although the machine-assisted approach successfully 
automated the categorisation of stakeholder concerns, the final assign-
ment of thematic labels and impact categories still required expert 
judgment. This introduces a degree of subjectivity and manual effort. 
Future studies should investigate semi-supervised or reinforcement 
learning techniques that allow models to learn from expert-labelled 
data, gradually improving their ability to assign themes and impact 
categories with reduced human intervention.

By addressing these limitations and research gaps, future studies can 
improve the robustness, scalability, and automation of machine-assisted 
goal and scope methods, further enhancing their contribution to life 
cycle studies and other decision-making frameworks.

5. Conclusion

The proposed machine-assisted approach significantly narrowed a 
broad range of impact categories to a more focused, prioritised selection. 
This study demonstrates the potential use of machine learning and 
natural language processing techniques during the goal and scope phase 
of a life cycle study, specifically for analysing stakeholder responses 
from engagement activities. The results demonstrate the successful 
application of both NLP and machine learning to process stakeholder 
responses.

However, several challenges remain. Optimising the number of 
clusters, incorporating languages that are not yet well supported by NLP 
models, improving causality extraction from responses, and addressing 
resource constraints are areas that require further research. While this 
method enhances objectivity, it does not eliminate the need for expert 
interpretation, particularly in refining thematic assignments and 
ensuring contextual accuracy.

One of the most important advantages of this method is its ability to 
maintain objectivity when analysing the data from stakeholder en-
gagements. By emphasising specific impact categories based on stake-
holder input rather than expert judgment, life cycle practitioners could 
address the most critical concerns raised by a diverse and complex 
network of stakeholders in Namibian bio-energy value chains with 
greater precision and neutrality.

By integrating NLP and ML into stakeholder response analysis, this 
study opens new possibilities for automating and streamlining stake-
holder engagement in life cycle studies. Future advancements in NLP, 
clustering optimisation, and multilingual processing could further 
improve this approach, ensuring more transparent, efficient, and data- 
driven assessments.
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