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Abstract
Camels are increasingly recognized for their potential to meet future nutritional and medical needs due to their 
unique qualities. This study aims to advance our understanding of the genetic basis of body size in dromedaries by 
employing confirmatory factor analysis (CFA) and genome-wide association studies (GWAS). We used phenotypic 
data from 9 body measurements of 96 Iranian male camels to develop a latent variable model for body size. 
The CFA model demonstrated excellent fit (CFI = 0.99, TLI = 0.99, RMSEA = 0.05, SRMR = 0.02), confirming that the 
selected biometric traits effectively capture the body size latent variable. Subsequent GWAS, utilizing 14,522 SNPs, 
identified 13 significant SNPs associated with body size across several chromosomes. The candidate genes linked 
to these SNPs, including UBE3D, REPS1, SLC4A1AP, EFR3B, PRR11, and VMP1, were further examined through Gene 
Ontology (GO) enrichment analysis, revealing their involvement in crucial biological processes such as catabolic 
and metabolic activities, developmental processes, and protein and lipid transport. These findings provide valuable 
insights into the genetic mechanisms underpinning body size in dromedaries, offering a foundation for future 
research and potential applications in breeding and genetic improvement strategies.
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Introduction
Camels hold significant promise for meeting future 
human food and medical needs due to their distinctive 
qualities. Their meat, milk, and other products are known 
to offer a range of health benefits [11]. Therefore, it is 
essential to explore their productive capabilities within 
their natural environments, as camels have a remark-
able genetic potential compared to other ruminants [2]. 
Camel breeders primarily aim to enhance genetics to 
produce dual-purpose animals that are efficient in both 
meat and milk production [10].

The long generation interval of camels makes genetic 
improvement through traditional breeding methods a 
slow process, rendering significant advancements diffi-
cult to achieve using conventional techniques. Moreover, 
the costs associated with breeding through progeny test-
ing are substantially higher in the traditional methods 
compared to advanced genomic-based approaches. As a 
result, considering challenges in recording and pheno-
typing camels, marker-assisted selection (MAS) offers 
a promising alternative for evaluating dromedaries in 
extensive production systems [3].

In genetic evaluation programs of livestock species, 
the more accurate evaluation of selection candidates is 
largely based on several traits [7, 21]. A computation-
ally important feature of multivariate mixed models is 
that the number of parameters increases as more traits 
are included in the analysis, which can complicate the 
feasibility of genetic studies [26]. Structural equation 
modeling (SEM) is a powerful statistical technique, origi-
nally introduced by Wright, that enables the exploration 
of causal relationships among traits [30]. SEM applies 
various models to explain the relationships between 
observed variables and provides a framework for testing 
theoretical models representing these relationships [24]. 
This approach allows researchers to evaluate functional 
causal relationships between traits, making it possible to 
infer these relationships and also quantifying the strength 
of their associations [18].

Latent variable modeling (LVM) is a dimension reduc-
tion technique and a specific application of structural 

equation modeling (SEM) [24]. It can be used on phe-
notypic data to decrease data dimensionality and reduce 
computational complexity. According to Silva et al. [26], 
a small number of latent variables can effectively reduce 
data dimensionality, thus addressing the complex-
ity caused by model over-parameterization. Although 
latent variables cannot be measured directly, they can 
be described by several observable variables [24]. LVM 
enables the investigation of complex phenomena by con-
densing multiple measurable traits into a few underlying 
latent variables [12]. Confirmatory factor analysis (CFA) 
is one statistical method that can be used to construct 
latent variables [31]. CFA is typically used to assess the 
hypothesis that a group of measurable variables corre-
sponds to a smaller number of latent variables [23].

In a previous study, Bitaraf Sani et al. identified SNPs 
and genes associated with 12 morphometric traits in 
dromedaries using genotype-by-sequencing (GBS), a 
linear mixed model incorporating principal component 
analysis (PCA), and a kinship matrix [2]. The LVM can 
be applied as a dimension-reduction technique to the 
phenotypic data, for reducing the dimensionality of data 
and minimizing computational complexity. By leveraging 
the correlation between morphometric traits and animal 
performance, the CFA can be used for constructing latent 
variables based solely on morphometric measurements. 
Using latent variables allows researchers to understand 
the complexity of phenotypic traits, discover underly-
ing structures among variables, model polygenic effects, 
and reduce the dimensionality of genomic data [12]. This 
study aimed to model and identify the latent trait of body 
size (BS) using 9 measurable body dimensions, to per-
form a genome-wide association study (GWAS) for BS, 
and to identify candidate genes in dromedaries in the 
central desert of Iran.

Materials and methods
Ethics and consent to participate
We obtained informed consent from the owner(s) to use 
the animals. Blood samples were collected during quali-
fied veterinary treatment within the framework of gov-
ernmental programs aimed at the animal identification, 
monitoring of health, and parentage confirmation of the 
dromedary populations included in our study. No other 
kind of tissue was used in this study. No anesthesia and 
euthanasia was done in the study.

Investigated biometric traits
In this study, phenotypic records were used for nine 
body measurements of 96 Iranian male camels, as shown 
in Table  1. Among the 96 recorded camels, 18 camels 
belonged to the National Research and Development Sta-
tion on Dromedary Camel (Bafgh), and the rest belonged 
to local herds in Ardakan, Bahabad, Mehriz, Khatam, and 

Table 1  Summarizing the phenotypic records of the 9 body 
measurements for 96 Iranian male camels
Body Measurement Mean (cm) ± SE
Head Length (HL) 33.27 ± 0.32
Muzzle Circumference (MC) 30.73 ± 0.29
Neck Length (NeL) 60.10 ± 0.93
Chest Circumference (ChC) 113.73 ± 1.77
Hump Height (HH) 134.28 ± 1.30
Body Length (BL) 84.75 ± 1.39
Tail Length (TL) 37.62 ± 0.40
Pin Width (PW) 26.48 ± 0.41
Abdominal Width (AW) 31.80 ± 0.36
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Bafagh cities. It provides a clear overview of the mean 
values and standard errors for each of the body measure-
ments recorded. For further details about the animals 
and phenotypes, please refer to the study by Bitaraf Sani 
et al. [2].

Latent variable modeling
Figure 1 depicts the theoretical model considered to con-
struct the body size (BS) latent variable from nine bio-
metric traits. The CFA is applied to identify the latent 
factors that account for variations in BS. Conducting 
CFA requires establishing a measurement model that 
defines the relationships between observable variables 
and the latent factors. The CFA model used in this study 
is as follows:

In this model, ƺ denotes the vector of HL, MC, NeL, ChC, 
HH, BL, TL, PW, and AW measured variables. ξ repre-
sents the vector of latent factors. The matrix Λ contains 
the factor loadings that relate these latent factors to the 
measurable variables, while δ signifies the vector of resid-
uals. The CFA model was fitted using the lavaan package 
[10] in the R environment [20]. The model’s overall fit was 
evaluated with four goodness-of-fit indices including the 
standardized root mean square residual (SRMR) [1], root 
mean square error of approximation (RMSEA) [27], TLI 
and CFI [1]. Additionally, the model was tested for bias 
through permutation using the bootstrap function from 
the lavaan package [22] with 5,000 bootstrap samples. 
The values of a latent variable are not directly measurable 
but are inferred from other measured variables by using 
statistical models [24].

SNP data, GWAS analysis, identification of candidate 
genes, and gene ontology (GO) enrichment analysis
The study utilized SNP data from 96 Iranian male cam-
els. More information on SNP data and genomic infor-
mation is provided by Bitaraf Sani et al. [2]. Genotyping 
was conducted using genotype-by-sequencing (GBS) 

on the Illumina HiSeq 2000 platform, with the process 
performed by Bayan Gene Pars Company. This involved 
fragmenting DNA with the restriction enzymes EcoR1 
and HinF1, attaching adapters to the fragments, and 
amplifying them with DNA polymerase [2]. The sequence 
reads were mapped to the dromedary reference genome 
assembly on chromosome level (GCA_000803125.3 [1]; ) 
by using the BWA-MEM algorithm of Burrows–Wheeler 
Aligner (BWA) [15]. The GWAS analysis was carried 
out using TASSEL software version 5.2.48 [6]. After fil-
tering for a minor allele frequency (MAF < 0.01), 14,522 
SNPs were analyzed. The association between SNPs and 
body size (BS) was evaluated using the MLM_PCA + K 
statistical model, which included region as a fixed effect 
and camel age as a covariate. Data were collected during 
birth to 6 age-months old (every three months) from five 
regions of central desert of Iran in 2018. Suggestive sig-
nificance thresholds for Bonferroni p-values were estab-
lished at (− log p-value > 4) using the GEC software tool 
[14].

The Ensembl Variant Effect Predictor (VEP) web inter-
face (http://www.ensembl.org/vep) was utilized for the 
annotation and prioritization of genomic variants located 
in both coding and non-coding regions [17]. It assesses 
the molecular consequences of variants by utilizing the 
Ensembl/GENCODE or RefSeq gene sets. Additionally, 
Ensembl VEP offers filtering options to customize variant 
prioritization. The tool is well-supported and is updated 
approximately every quarter to incorporate the most 
recent gene, variant, and phenotype association data. 
Gene Ontology (GO) provides a consistent framework 
for globally categorizing gene functions. In this study, we 
utilized GO to clarify the roles and functions of the iden-
tified genes by assigning them to three distinct ontolo-
gies: Molecular Function (MF), Cellular Component 
(CC), and Biological Process (BP). The analysis was con-
ducted using the DAVID database [8, 25] and the web-
based Gene Ontology Resources interface ​(​​​h​t​t​p​:​/​/​g​e​n​e​o​n​
t​o​l​o​g​y​.​o​r​g​/​​​​​)​.​​

Fig. 1  Representation of latent variable of BS and the respective relationships with the considered body measurement traits including Head Length (HL), 
Muzzle Circumference (MC), Neck Length (NeL), Chest Circumference (ChC), Hump Height (HH), Body Length (BL), Tail Length (TL), Pin Width (PW), and 
Abdominal Width (AW)
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Results
The findings from this study offer valuable insights 
into the body size (BS) latent variable in dromedaries. 
Through a combination of confirmatory factor analysis 
(CFA) and genome-wide association studies (GWAS), 
we have been able to investigate and characterize the 
genetic factors affecting body size in these animals. The 
CFA results confirmed that our measurement model 
accurately represents body size, with biometric traits 
effectively capturing this latent variable. Additionally, 
the GWAS pinpointed several significant SNPs linked 
to body size, demonstrating the role of various genetic 
factors across the genome in influencing this trait. This 
combined approach not only validates our measurement 
model but also reveals the intricate genetic mechanisms 

behind body size in dromedaries, providing a solid foun-
dation for future research and practical applications in 
breeding and genetic studies.

Extracting BS latent variable
Figure 1 illustrates the schematic diagram of the mea-
surement model proposed for modeling the BS latent 
variable. The goodness-of-fit indices for the model were 
as follows: CFI = 0.99, TLI = 0.99, RMSEA = 0.05, and 
SRMR = 0.02. Table  2 presents the standardized fac-
tor loadings for the measurable variables including HL, 
MC, NeL, ChC, HH, BL, TL, PW, and AW, which were 
0.79, 0.76, 0.90, 0.93, 0.95, 0.94, 0.80, 0.88, and 0.92, 
respectively. All factor loadings were statistically sig-
nificant (p < 0.01). Positive factor loadings indicate that 
an increase in any of the measurable body dimension 
variables is associated with an increase in the BS latent 
variable. The goodness of fit for the measurement model 
was assessed using statistical indices, all of which dem-
onstrated that the model fit the data exceptionally well. 
Furthermore, all factor loadings were positive and sig-
nificantly different from zero (p < 0.01), confirming that 
the considered measurable variables of body dimensions 
appropriately represented the latent variable of BS in Ira-
nian male dromedaries.

GWAS and significant SNPs
In this study, a genome-wide association study (GWAS) 
was performed with 14,522 SNPs, revealing 13 SNPs 

Table 2  Standardized factor loadings of the measurable 
body dimension traits used for describing BS latent variable in 
dromedaries
Trait Factor loading Standard error Z-value
HL 0.79 0.02 35.02
MC 0.76 0.04 21.17
NeL 0.90 0.02 38.93
ChC 0.93 0.02 48.63
HH 0.95 0.01 111.60
BL 0.94 0.03 34.92
TL 0.80 0.03 29.45
PW 0.88 0.02 36.86
AW 0.92 0.01 64.75

Fig. 2  Manhattan plot representing chromosome-wide association with the body size latent trait in dromedaries using MLM_PCA + K GWAS. The red 
horizontal line represents the set significant threshold (–log10 p value = 4)
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linked to the body size latent variable on chromo-
somes 7, 9, 11, 14, 18, 19, and 31 (refer to Figs. 2 and 3, 
and Table  3). SNPs influencing body size are dispersed 
across the genome [16], with numerous genes poten-
tially involved in regulating this trait [5]. By contrast, 
Banestani et al. [23] identified 53 significant SNPs asso-
ciated with body size in pigs using GBLUP-GWAS. The 
six genes including UBE3D, REPS1, SLC4A1AP, EFR3B, 
PRR11, and VMP1 in the flanking regions of top SNPs 
(see Table 3) were proposed as candidate genes related to 
the BS latent variable in dromedaries.

Enrichment analysis for candidate genes
In our investigation, we conducted a Gene Ontology 
(GO) enrichment analysis on six candidate genes linked 
to body size. This analysis provided valuable insights into 
the roles of these genes across various biological dimen-
sions (Table  4). Notably, five of these genes were found 
to be significantly enriched in diverse biological pro-
cesses. These include catabolic and metabolic activities, 
which are fundamental for the breakdown and utilization 
of substances within the organism. Additionally, these 
genes play critical roles in biological and developmen-
tal processes, which are essential for growth and overall 
development. The enrichment in anatomical structure 

Table 3  Associated SNPs and genes for body size latent trait in dromedary
SNP Chromosome Position -Log ( P-Value) Candidate Gene
Chr7_208342 7 208,342 4.00 -
Chr9_56195360 9 56,195,360 5.20 -
Chr9_22874300 9 22,874,300 4.10 UBE3D
Chr9_76680599 9 76,680,599 4.10 REPS1
Chr11_71991797 11 71,991,797 4.10 SLC4A1AP
Chr11_71991805 11 71,991,805 4.10 SLC4A1AP
Chr11_74157812 11 74,157,812 4.09 EFR3B
Chr11_71991811 11 71,991,811 4.07 SLC4A1AP
Chr14_29144338 14 29,144,338 4.47 -
Chr18_29891428 18 29,891,428 4.27 -
Chr19_10153908 19 10,153,908 4.42 PRR11
Chr19_10684174 19 10,684,174 4.10 VMP1
Chr31_16992831 31 16,992,831 4.07 -

Fig. 3  Q-Q plot displays GWAS results from TASSEL for the body size latent trait in dromedaries

 



Page 6 of 8Bitaraf Sani et al. BMC Genomics          (2025) 26:645 

development and multicellular organism development 
further underscores their involvement in shaping and 
maintaining complex body structures.

Furthermore, the analysis highlighted four of these 
genes as being enriched in molecular functions. These 
functions encompass vital roles such as protein and 
lipid transport and lipid translocation, which are crucial 
for maintaining cellular and systemic balance. The abil-
ity of these genes to facilitate these processes suggests 
their importance in regulating and supporting bodily 
functions.

Additionally, all six candidate genes were significantly 
enriched in various cellular components. This enrich-
ment indicates that these genes are integral to essen-
tial cellular structures and processes, reinforcing their 
importance in maintaining cellular integrity and func-
tion. Table  4 provides a comprehensive summary of 
these findings, demonstrating the intricate roles these 
genes play in the regulation of body size. Overall, this GO 
enrichment analysis underscores the complex interplay of 
genetic factors involved in body size regulation, offering a 

deeper understanding of the genetic mechanisms under-
pinning growth and development in dromedaries.

Discussion
BS latent variable
In this study, the goodness-of-fit measures showed that 
the proposed measurement model for the BS latent vari-
able is well-suited. Similar approaches have been used in 
previous research involving latent variables in livestock 
species. For example, Penagaricano et al. [18] analyzed 
19 phenotypic traits in pigs and identified five latent 
variables. Leal-Gutierrez et al. [12] defined a latent vari-
able for carcass quality in beef cattle using variables 
such as quality grade, fat over ribeye, and marbling. 
Silva et al. [26] used 14 traits in broilers to develop four 
latent variables through Bayesian confirmatory factor 
analysis (CFA). Sanjari Banestani et al. [23] established a 
latent variable for body size in Yorkshire pigs using five 
observed body measurements including body length, 
body height, chest width, chest girth, and tube girth.

Table 4  Candidate genes significantly enriched to the body size latent trait-related GO terms in dromedaries
Enrich 
type

Genes Term

BP EFR3B GO:0046854 ~ phosphatidylinositol phosphate biosynthetic process, GO:0072659 ~ protein localization to the plasma 
membrane

REPS1 GO:0006897 ~ endocytosis, GO:0016197 ~ endosomal transport, GO:0150007 ~ clathrin-dependent synaptic vesicle 
endocytosis

SLC4A1AP GO:0000398 ~ mRNA splicing, via spliceosome, GO:0035196 ~ miRNA processing, GO:0035308 ~ negative regulation of 
protein dephosphorylation, GO:0051237 ~ maintenance of RNA location,

UBE3D GO:0009056 ~ catabolic process, GO:0008152 ~ metabolic process, GO:0008150 ~ biological process, 
GO:0000209 ~ protein polyubiquitination, GO:0006513 ~ protein monoubiquitination, GO:0019538 ~ protein metabolic 
process, GO:0030163 ~ protein catabolic process, GO:0036211 ~ protein modification process

VMP1 GO:0009056 ~ catabolic process, GO:0008152 ~ metabolic process, GO:0008150 ~ biological process, GO:0034329 ~ cell 
junction assembly, GO:0042953 ~ lipoprotein transport, GO:0098609 ~ cell-cell adhesion, GO:0140056 ~ organelle 
localization by membrane tethering, GO:1,901,896 ~ positive regulation of ATPase-coupled calcium transmembrane 
transporter activity, GO:1,990,456 ~ mitochondrion-endoplasmic reticulum membrane tethering, GO:0032502 ~ devel-
opmental process, GO:0048856 ~ anatomical structure development, GO:0007275 ~ multicellular organism develop-
ment, GO:0015031 ~ protein transport, GO:0006869 ~ lipid transport, GO:0034204 ~ lipid translocation

MF REPS1 GO:0005509 ~ calcium ion binding, GO:0005515 ~ protein binding, GO:0017124 ~ SH3 domain binding, 
GO:0060090 ~ molecular adaptor activity

SLC4A1AP GO:0003729 ~ mRNA binding, GO:0004865 ~ protein serine/threonine phosphatase inhibitor activity, 
GO:0005515 ~ protein binding

UBE3D GO:0030332 ~ cyclin binding, GO:0031624 ~ ubiquitin conjugating enzyme binding, GO:0061630 ~ ubiquitin protein 
ligase activity

VMP1 GO:0017128 ~ phospholipid scramblase activity
CC EFR3B GO:0005829 ~ cytosol, GO:0005886 ~ plasma membrane, GO:0015629 ~ actin cytoskeleton

REPS1 GO:0005654 ~ nucleoplasm, GO:0005737 ~ cytoplasm, GO:0005829 ~ cytosol, GO:0005886 ~ plasma
membrane, GO:0005905 ~ clathrin-coated pit, GO:0042734 ~ presynaptic membrane, GO:0097708 ~ intracellular vesicle

PRR11 GO:0005634 ~ nucleus, GO:0005737 ~ cytoplasm
SLC4A1AP GO:0005886 ~ plasma membrane, GO:0016607 ~ nuclear speck
UBE3D GO:0000151 ~ ubiquitin ligase complex, GO:0005634 ~ nucleus, GO:0005829 ~ cytosol
VMP1 GO:0000421 ~ autophagosome membrane, GO:0005783 ~ endoplasmic reticulum, GO:0005789 ~ endoplasmic reticu-

lum membrane, GO:0005886 ~ plasma membrane, GO:0012505 ~ endomembrane system, GO:0016020 ~ membrane, 
GO:0033116 ~ endoplasmic reticulum-Golgi intermediate compartment membrane
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Candidate genes
UBE3D and REPS1 play crucial roles in growth and cel-
lular signaling pathways. UBE3D, involved in mRNA 
3’-end processing, regulates gene expression essential 
for cellular differentiation and adipogenesis. Its activ-
ity ensures proper mRNA processing, maintaining the 
adipocyte-committed state, and supporting growth 
through differentiation [9]. REPS1, a Rab5 effector, is 
integral to endocytosis and recycling processes, includ-
ing the transferrin receptor pathway. It facilitates nutri-
ent uptake and receptor recycling, vital for cell growth 
and signaling. Both genes contribute to growth by regu-
lating critical cellular processes and signaling pathways, 
ensuring proper cellular function and development [13]. 
SLC4A1AP and EFR3B are essential for cellular func-
tion and development through their roles in ion trans-
port and membrane stability. SLC4A1AP is involved 
in maintaining optimal pH and ionic balance, which is 
crucial for metabolic processes. It works alongside AE1 
(anion exchanger 1) to facilitate efficient ion transport, 
ensuring that cells can regulate their internal environ-
ment effectively. Disruptions in this transport can lead to 
metabolic dysfunction and developmental abnormalities 
[19]. EFR3B contributes to membrane stability and lipid 
synthesis, supporting the structural integrity of cells. 
It is crucial for the recruitment of the phosphatidylino-
sitol 4-kinase (PI4KIIIα) complex to the plasma mem-
brane, which is vital for lipid composition and signaling 
pathways [28]. EFR3B’s role in modulating G-protein-
coupled receptor responsiveness further emphasizes its 
importance in cellular signaling [4]. PRR11 and VMP1 
play significant roles in tissue growth and maintenance 
by regulating critical cellular processes. PRR11 is impli-
cated in cell cycle progression, particularly in the transi-
tion from late S phase to G2/M phase. It has been shown 
to induce premature chromatin condensation, which is 
essential for accurate cell division. This regulation of the 
cell cycle is crucial for tissue growth and development, as 
it ensures proper cellular proliferation. VMP1 is a trans-
membrane protein that triggers autophagy, a process vital 
for cellular homeostasis and the degradation of damaged 
organelles. VMP1 also plays a role in regulating calcium 
homeostasis within the endoplasmic reticulum, which is 
important for various cellular functions, including signal-
ing pathways [29].

Conclusion
This research provides important information on the 
genetic basis of BS latent variable in Iranian male drom-
edaries by integrating confirmatory factor analysis (CFA) 
with genome-wide association studies (GWAS). By 
applying a latent variable model, we accurately described 
BS using nine measurable body dimension variables 
from 96 male Iranian camels. The CFA confirmed the 

reliability of our model, showing that the considered 
nine measurable body dimension variables effectively 
represent the BS latent variable. The GWAS revealed 
13 significant SNPs linked to BS across several chro-
mosomes. Key candidate genes such as UBE3D, REPS1, 
SLC4A1AP, EFR3B, PRR11, and VMP1 were associated 
with these SNPs and were involved in crucial biological 
processes, including catabolic and metabolic functions, 
development, anatomical structure formation, and cellu-
lar transport. Gene Ontology (GO) enrichment analysis 
highlighted the significant roles of these genes in genetic 
regulation of BS through various biological functions. 
This study promotes our understanding of the genetic 
framework influencing BS in dromedaries and paves the 
way for future genetic improvement and marker-assisted 
selection in camel breeding. The combination of CFA and 
GWAS methodologies provides a thorough approach to 
deciphering the complex genetic determinants of body 
size, offering valuable insights into animal genetics and 
breeding.
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