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ARTICLE INFO . o . . . . .
Human activities increase turbidity in aquatic environments worldwide, which often affects fish

behaviour. However, predicting how species react to higher turbidity remains difficult, as responses vary
depending on the species, their ecology and the ecosystem. It is thus important to improve our under-
standing of the responses of fishes living in ecosystems experiencing recent increases in turbidity,
especially those with unique species compositions where biodiversity is most vulnerable. One such
ecosystem is Lake Tanganyika in East Africa, which is home to a diverse fish community with a high
degree of endemism. In this study, we conducted a laboratory experiment with the territorial cichlid,
Neolamprologus pulcher, which is endemic to Lake Tanganyika, to investigate the effects of increased
turbidity on territorial and exploratory behaviour. We found that moderate increases in turbidity led to
reduced territory defence, decreased exploration and increased time spent in shelters. Given that these
fish live in large colonies, feed on planktonic particles in the water column and defend their territory
against conspecific and heterospecific intruders, these behavioural changes are likely to have substantial
implications for their social structure and reproduction in their native environments. Our study raises
important questions about whether these effects will persist in the long term as human activities are
likely to continue to increase turbidity in the lake over the coming decades and whether the responses to

turbidity affect the community composition of fishes in Lake Tanganyika.
© 2025 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
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Human activities, such as deforestation, agriculture and shore-
line habitat alterations, increase turbidity (that is, reduced visibility
caused by suspended particles) in aquatic ecosystems globally,
which frequently affects fish behaviours (Henley et al., 2000; Horka
& Vlachova, 2024; Smith, 2003). Some fish species respond by
moving away from degraded habitats and altering their movement
and activity patterns (Gray et al., 2011; Rodrigues et al., 2023). For
less mobile species that cannot relocate to undisturbed habitats,
increased turbidity can have far-reaching consequences, including
reduced reproductive success and changes in mating behaviour that
may lead to the loss of biodiversity through reverse speciation
(Engstrom-Ost & Candolin, 2007; Jarvenpaii et al., 2019; Seehausen
etal,, 1997, 2008; Sundin et al., 2010; Vonlanthen et al., 2012). Many
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fish species also show more subtle behavioural responses to
increased turbidity and subsequent reductions in visibility, such as
changed shoaling behaviour, courtship, foraging, predator—prey
interactions, reduced predator perception and territory defence
(Borner et al., 2015; Candolin et al., 2007; Fischer & Frommen, 2013;
Henriksson & Candolin, 2020; Horka & Vlachova, 2024; Leahy et al.,
2011; Michael et al., 2021; Ortega et al., 2020; Zanghi et al., 2023).
The direction and strength of these responses vary by species, their
ecology and habitat, making general predictions difficult (Rodrigues
et al., 2023). Therefore, it is important to explore the responses of
fish species native to habitats experiencing increased turbidity,
particularly in less mobile species with small geographical ranges.
Lake Tanganyika hosts an important fish community that is
characterized by a high degree of endemism and a small
geographical range, which is affected by increased turbidity (Phiri
et al., 2023). The lake is home to at least 241 cichlid fish species
(98% endemism) and 150 species of non-cichlid fishes (56% ende-
mism; Ronco et al., 2020). It is recognized as an important and
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threatened biodiversity hotspot that should be a priority for con-
servation efforts (Groombridge & Jenkins, 1998; Ronco et al., 2020;
Salzburger et al., 2014; Sturmbauer et al., 2009). The most species-
rich habitat is the littoral shoreline, down to a depth of 40 m
(Takeuchi et al., 2010). These habitats are particularly exposed to
the consequences of human activities on land. Historically, Lake
Tanganyika has maintained clear water with turbidity levels
ranging from 0 to 15 nephelometric turbidity units (NTU). However,
like in many other lakes worldwide, large-scale deforestation has
led to increased sediment loads being discharged into the lake (Alin
et al.,, 2002; Britton et al., 2017; Cisternas et al., 2001; O’hara et al.,
1993; Shen et al., 2022; Sichingabula, 1999). Consequently, visibility
has decreased in several areas due to the river inflow of suspended
particles during the rainy season and due to eutrophication (Moshi
et al., 2022; Shen et al., 2022; Yu et al., 2018). Although these
changes may affect many aspects of fish behaviour in the coastal
areas of the lake, very little is known about how species native to
the lake react to changes in turbidity.

An endemic cichlid species of Lake Tanganyika that is well suited
to investigate the responses of cichlids to increased turbidity is the
Princess of Burundi, Neolamprologus pulcher. This species is widely
distributed along the lake shores, predominantly inhabits depths of
3—40 m and feeds on pelagic plankton (Duftner et al., 2007; Gante
et al,, 2016; M. Taborsky & Limberger, 1981). N. pulcher is highly
social and both sexes defend territories that are the home of 140
individuals (Balshine-Earn et al., 1998; Hellmann & Hamilton, 2018;
Jungwirth & Taborsky, 2015; Jungwirth et al., 2023). These terri-
tories are part of large colonies, where the cichlids use a variety of
visual displays and aggressive behaviours to defend against
conspecific intruders (Balzarini et al., 2017; Culbert & Balshine,
2019; Desjardins et al., 2008). Territory owners breed in small cav-
ities between rocks, with some group members assisting in brood
care (Taborsky & Limberger, 1981; Zottl, Fischer, & Taborsky, 2013;
Zottl, Heg, et al., 2013). Due to their cooperative breeding and
colonial territorial structure, N. pulcher has become a model species
for studying fish social behaviour (Taborsky, 2016; Wong & Balshine,
2011), with standardized behavioural assays established for quan-
tifying behaviours, such as territory defence and exploration
(Balzarini et al., 2014; Chervet et al., 2011; Schurch & Heg, 2010b).

In this study, we conducted a laboratory experiment to inves-
tigate how N. pulcher responds to moderate increases in turbidity,
that is, levels found well within the natural range found in Lake
Tanganyika (Langenberg et al., 2002; Plisnier et al., 1999). We used
bentonite clay to increase turbidity in the treatment group to
around 4 NTU while maintaining control observations at levels
below 1 NTU (Illing et al., 2024; Leris et al., 2022; Randker et al.,
2012). Our behavioural assays focused on quantifying territorial
defence by measuring the fish’s responses to mirrors and assessing
boldness using an established exploration paradigm (Balzarini
et al., 2014; Schurch & Heg, 2010a). We predicted that increased

()

turbidity impairs the vision of cichlids and decreases the efficiency
at which cichlids can use visual displays towards conspecifics and
heterospecifics, leading to changes in their ability to defend their
territories. Additionally, we hypothesize that impaired vision
would make N. pulcher more risk-averse, less exploratory and more
shelter-seeking, as predators will be spotted at shorter distances.

METHODS
Subjects and Holding Conditions

We used cichlids, N. pulcher, that originate from wild individuals
caught in Lake Tanganyika near Mpulungu, Zambia, in the years
1999, 2006, 2009 and 2020. In the laboratory, they were main-
tained in breeding groups and stockholding tanks at a temperature
range of 26—27 °C with a 13:11 h light:dark photoperiod. The
tanks were equipped with commercial air-driven sponge filters
(XY-2822) and 1-2 heaters, and the bottom was covered with a
layer of sand (grain size 0.1—0.5 mm). The water was treated with
0.4 g Sera GH/KH-plus and 0.067 g sodium bicarbonate per litre
before use. All fish were fed once a day, 6 days per week, using
commercial food flakes (Tetra, Osnabruck, Germany). On experi-
mental days, we fed the experimental subjects after the last
observations.

Experimental Procedure

We haphazardly selected 36 individuals (18 females, mean + SD
standard length: 5.54 + 0.72 cm; 18 males, 5.41 + 0.53 cm) from
various stock tanks. We placed each of them into one of two com-
partments of 222 litre tanks (45 x 110 x 45 cm, Fig. 1). An opaque
polyvinyl chloride (PVC) sheet divided the compartments. Each
compartment included one flowerpot half, which the fish quickly
accepted as the centre of their new territory, indicated by the fish
frequently using it as a refuge. All fish were placed in the experi-
mental compartments 48 h before the start of the experiment to
ensure that they had fully settled in their new environment.

To investigate the effect of turbidity on cichlid behaviour, we
adopted a within-subject experimental design. Each of our experi-
mental subjects was tested in the control condition (turbidity mean
of two measurements before the mirror assay = 0.61 NTU + 0.23 SD;
range 0.33—1.15; and before the exploration assay = 0.68 NTU + 0.34
SD; range 0.3—2.2) and in a treatment where we used bentonite clay
to increase the turbidity (mean before the mirror assay = 4.73 NTU +
0.86 SD; range 2.8—6.3; and before the exploration assay = 3.15 NTU
+ 0.43 SD; range 2.30—4.05). To achieve this level of turbidity, we
suspended 4 g of bentonite clay in 200 mL of water and added this
suspension to the experimental tanks. A pilot trial indicated that
adding this suspension initially elevated the turbidity to 6 NTU and
that subsequent sedimentation led to a gradual decrease of turbidity
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Figure 1. The experimental set-up in subdivided tanks with two compartments during (a) the mirror test and (b) the exploration test.
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to 2—3 NTU during 1 h. In the control condition, we added 200 mL of
water to the tanks without suspending the bentonite clay before
adding the water to have the same chemical properties and
disturbance in the turbid treatment and clear control. Half of all
subjects underwent the treatment first and 1 day later the control,
whereas in the other half, we reversed this order. To measure
turbidity, we collected water samples in 50 mL Falcon tubes for each
individual before each behavioural assay and measured turbidity
with a WTW Lab Turbidity Meter Turb 550 IR.

We tested each subject for their investment in territorial
defence by using a mirror assay (Balzarini et al., 2014) and for their
tendency to explore the territory by using an exploration test
(Fig. 1; Schurch & Heg, 2010a). We started the mirror test 10 min
after adding the turbidity suspension or the control water by
placing a 15 x 22 cm mirror inside the tank. Subsequently, we
conducted 10 min of all-occurrence sampling of aggressive display
behaviours (head down, frontal display, lateral display, S-bend) and
of overt attacks (ramming, biting, bow-swim) against the mirror
(Balzarini et al., 2014; Culbert & Balshine, 2019; Reddon et al.,
2019). After a break of 15 min, we added 5 new flower pots to the
territory of the cichlid and started immediately to record their
exploratory behaviour for 10 min. During this 10 min, we recorded
each time the focal fish entered or left a pot and subsequently
derived the latency leaving the first pot, the number of unique pots
visited, the total number of pots visited, the time spent outside
pots, mean distance per pot jump and total distance covered. All
observations in both assays were carried out by the same observer
sitting 1 m from the tank, logging all events in real time on a laptop
running BORIS event-logger (Friard & Gamba, 2016).

Statistical Analysis

The different display behaviours and overt aggressive behaviours
were combined into two separate response variables: the number of
restrained aggressive behaviours (sum of head-downs, frontal dis-
plays, lateral displays and S-bends) and the number of overt attacks
(sum of ramming, biting and bow-swimming). We used paired

Sex Female

~

OF T

Number of restrained aggressive acts

Control Turbid

nonparametric Wilcoxon signed rank tests to test for behavioural
differences between control and treatment. To see if sex affected the
behavioural response, we calculated the difference in behaviours
between treatment and control for each individual. We then used
Wilcoxon signed rank tests to assess if the responses differed between
males and females. As latency, we defined the time it took for a fish to
exit the pot at the start of the exploration test. This variable could only
be calculated for the 15 fish in a pot at the onset of the observation in
both the treatment and the control groups, and we presented the data
for these cases. To score exploratory tendency, besides the number of
visited pots and the number of unique pot visits, we calculated the
total covered distance while exploring based on the sequence of
visited pots (Fig. S1). The level of turbidity in both the control and
treatment varied due to how much the previously added clay had
sedimented or the currently added clay kept being suspended. To see
if this difference in the magnitude of turbidity change was associated
with the strength of the treatment effect, we performed a linear
regression for each response variable. Because the data of one fish in
the exploration test got lost, the sample size is N = 35 for this test.

All data manipulation, statistical analyses and figure creation
were performed using the software R Version 4.3.3 (R Core Team,
2024) with packages ‘tidyverse’ (Wickham et al., 2019) and
‘ggpubr’ (Kassambara, 2023).

Ethical Note

The experiments were conducted at Linnaeus University, Kal-
mar, in June and July 2024 under the ethical approval of the
Swedish Board of Agriculture, Linkoping (DNR 19719-2023). We
followed the ASAB/ABS Guidelines for the treatment of animals in
behavioural research (ASAB Ethical Committee/ABS Animal Care
Committee, 2023) and the principles of the three Rs by reducing
stress through noninvasive test paradigms and reducing handling
times to a minimum. During the experiments, the fish showed no
indication of acute stress, pain or suffering; the experiments did not
cause injuries or death. We monitored the subjects’ wellbeing
throughout the experimental period daily, and we would have
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Figure 2. The effects of increased turbidity on (a) restrained and (b) overt aggression of N = 36 individuals of Neolamprologus pulcher. The lines connect the data points for each fish
across treatments and the colours indicate their sex. The box displays the median and IQR; whiskers indicate maximum (Q3 + 1.5 IQR) and minimum values (Q1 — 1.5 IQR); and dots
represent outliers. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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aborted any experiments if the fish were at risk of acute stress and
pain, incurring lasting injuries or dying. After the experiments, we
returned all the fish to their holding tanks.

RESULTS

Fish in Turbid Water Show Reduced Territory Defence and Explore
Less

Individuals in turbid water showed less territory defence than
individuals in clear water (paired Wilcoxon signed rank test,
restrained aggression: W = 28.5, P < 0.001; overt aggression:
W = 1075, P=0.052, N = 36; Fig. 2a and b). In the exploration test,

less time outside the pots, and although they did not shorten the
mean distance between their pot visits, they travelled a shorter
total distance when the water was turbid (paired Wilcoxon signed
rank test, latency: W = 25, P = 0.048, N = 15; pot visits: W = 179.5,
P=0.024, N = 35; unique pot visits: W =418, P = 0.04; N = 35; time
outside: W = 449, P = 0.028, N = 35; mean distance travelled per
pot jump: W = 244.5, P = 0.37; N = 35; total distance travelled:
W = 419.5, P = 0.038, N = 35; Fig. 3a—d, Fig. 4a and b).

No Effects of Sex or the Magnitude of the Change in Turbidity on
Territory Defence and Exploration

The cichlids did not show sex-specific responses to turbidity in

they started to explore their tank later, visited fewer pots and spent territorial defence (Wilcoxon signed rank test, restrained
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Figure 3. The effects of increased turbidity on (a) the latency to explore (seconds until exiting the pot), (b) the number of visited pots, (c) the number of unique pot visits and (d) the
time spent outside any pot in Neolamprologus pulcher. The sample size was N = 15 individuals for latency and N = 35 individuals for the rest of the explorative assays. The lines
connect the data points for each fish across treatments and the colours indicate their sex. The box displays the median and IQR; whiskers indicate maximum (Q3 + 1.5 IQR) and
minimum values (Q1 — 1.5 IQR); and dots represent outliers. Note that the lines are jittered in (c). (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)
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Figure 4. The effects of increased turbidity on (a) the total distance covered between all explored pots and (b) the mean distance between each pot visit. Distance is expressed in
arbitrary units with one unit representing the distance between two adjacent (nondiagonal) pots in the 2 x 3 grid. The sample size was N = 35 individuals. The lines connect the
data points for each fish across treatments and the colours indicate their sex. The box displays the median and IQR; whiskers indicate maximum (within Q3 + 1.5 IQR) and minimum
values (within Q1 — 1.5 IQR) and dots represent outliers. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

aggression: W = 164, P = 0.96; overt aggression: W = 162, P = 1,
N = 36) nor in exploratory behaviours (Wilcoxon signed rank tests,
latency: W = 20, P = 0.40, N = 15; pot visits: W = 171, P = 0.55,
N = 35; unique pot visits: W = 158.5, P = 0.87, N = 35; time spent
outside: W = 172, P = 0.55, N = 35; mean distance travelled per pot
jump: W = 177, P = 0.44, N = 35; total distance travelled: W = 156,
P = 0.93, N = 35). Similarly, the magnitude of the turbidity change
between treatments did not affect territorial defence (linear
regression, restrained aggression: Fi34 = 0.03, P = 0.86; overt
aggression: Fi34 = 0.01, P = 0.93, N = 36) or the exploratory
behaviour (linear regression, latency: F113 = 0.10, P = 0.76, N = 15;
the number of visited pots: Fy33 = 1.15, P = 0.29, N = 35; unique pot
visits: Fi33 = 0.15, P = 0.70, N = 35; time outside: Fy33 = 0.04,
P =0.85, N = 35; mean distance travelled per pot jump: F; 33 = 0.11,
P = 0.75, N = 35; total distance travelled: F;33 = 0.01, P = 0.91,
N = 35; Fig. S2).

DISCUSSION

In this study, male and female cichlids were less aggressive in
defending their territory and explored their tank more cautiously in
turbid conditions. Fish displayed threshold behavioural responses,
as the severity of the turbidity variations in the treatment (ranging
from 2.8 to 6.3 NTU) did not affect the strength of their reactions.
Our results show that even small increases in turbidity can have
measurable and predictable effects on behaviour. Despite a large
behavioural variation between individuals, which aligns with
earlier findings in N. pulcher (Schurch & Heg, 2010a; Schurch et al.,
2010), we observed consistent responses to decreased activity
across both behavioural assays. The results of this study offer
insight into how cichlids of Lake Tanganyika may respond to in-
creases in turbidity in their habitat.

Previous studies have shown the contrasting responses of
different fish species to changes in turbidity, making it difficult to
make general predictions about the expected responses of specific
species. Some species compensate for reduced visibility by
increasing antipredator behaviour, which, as observed in this

study, results in decreased general activity and mobility (Borner
et al., 2015; Engstrbm—ést & Mattila, 2008; Gray et al., 2011;
Leahy et al., 2011). In contrast, other species increase their activity,
likely to counteract reduced foraging efficiency in turbid waters
(Fischer & Frommen, 2013; Sweka & Hartman, 2001; Wishingrad
et al., 2015). The reasons for these varied responses remain un-
clear. A recent meta-analysis indicates that significant differences
among species cannot be attributed to factors such as trophic
position, size, eye size, turbidity source or ecosystem type
(Rodrigues et al., 2023). Instead, additional species-specific traits
or local ecosystem factors likely play a role. The fishes' foraging
and energy constraints could potentially link to their behavioural
responses. These effects may interact in more complex ways with
the species' ecological characteristics, which we have not yet
identified.

The reduction in territorial defence behaviour and exploration
documented in these experiments, as a consequence of increased
turbidity, has the potential to affect both the social interactions and
feeding ecology of N. pulcher. This species is highly social and lives
in cooperative, territorial groups and breeds in cavities dug out in
the substrate (Balshine-Earn et al., 1998; Jungwirth et al., 2023; M.
Taborsky & Limberger, 1981). Groups are part of large colonies that
may consist of hundreds of groups, sometimes including other
substrate-brooding cichlid species (Jungwirth & Taborsky, 2015;
Jungwirth et al., 2023; Taborsky & Limberger, 1981). When feeding,
group members leave their territories to feed on floating particles
in the water column above them (Gashagaza, 1988). Our results
suggest that the behavioural changes elicited by increased turbidity
would lead the fish to feed closer to their territories, potentially
reducing the effectiveness of foraging (Heg & Taborsky, 2010).
These modifications could result in reduced growth rates and
potentially decreased survival rates. Previous research has also
suggested that when N. pulcher spends more time in and close to
the shelter, aggression rates between group members may increase
(Heg & Taborsky, 2010). In contrast, aggression towards territorial
neighbours may decrease because of increased turbidity, as sug-
gested by our results. Investigating how the net changes in
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intraspecific aggression affect the growth and survival of cichlids in
turbid conditions would be a critical step towards a more complete
assessment of the effects of turbidity on the Lake Tanganyika fish
population.

We investigated the behavioural responses of N. pulcher to a
short-term increase in sediment-induced turbidity, followed by a
gradual decrease as the sediment settled. We simulated the effects
of abrupt river runoff from landscapes with land uses that elevate
erosion processes. However, because of the ongoing issue of
eutrophication in Lake Tanganyika (Moshi et al., 2022; Shen et al.,
2022; Yu et al., 2018), we are likely to observe prolonged periods
of increased turbidity caused by phytoplankton blooms. It remains
unknown whether N. pulcher would habituate to higher turbidity if
the changes in turbidity were long-lasting, whether the behav-
ioural changes that we saw in our experiments would persist long-
term or what potential developmental effects there may be (Gray
et al., 2012). It is also unclear whether and how the behavioural
changes to turbidity may impact the viability of this and other
social Tanganyikan fish species, which rely on visual displays for
communication and visual predator detection. Future research
should investigate the processes by which fish adjust to long-term
increases in turbidity, as well as the impact of turbidity on group
behaviours, such as interactions between breeding fish and their
helpers, territory size, feeding rates and vulnerability to predators.
Understanding these factors would provide critical information
about how a turbid environment affects N. pulcher and the wider
variety of cichlids in Lake Tanganyika.
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