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ABSTRACT
Local adaptation is a fundamental process that allows populations to thrive in their native environment, often increasing genetic 
differentiation with neighboring stands. However, detecting the molecular basis and selective factors responsible for local adap-
tation remains a challenge, particularly in sessile, non- model species with long life cycles, such as forest trees. Local adaptation 
in trees is not only modeled by climatic factors, but also by soil variation. Such variation depends on dynamic geological and 
ecological processes that generate a highly heterogeneous selective mosaic that may differentially condition tree adaptation both 
at the range- wide and local scales. This could be particularly manifest in species inhabiting mountain ranges that were formed 
by diverse geological events, like sacred fir (Abies religiosa), a conifer endemic to the mountains of central Mexico. Here, we used 
landscape genomics approaches to investigate how chemical edaphic variation influences the genetic structure of this species at 
the range- wide and local scales. After controlling for neutral genetic structure, we performed genotype- environment associa-
tions and identified 49 and 23 candidate SNPs at the range- wide and local scales, respectively, with little overlap between scales. 
We then developed polygenic models with such candidates, which accounted for ~20% of the range- wide variation in soil Ca2+ 
concentration, electric conductivity (EC), and pH, and for the local variation in soil EC and organic carbon content (OC). Spatial 
Principal Component Analyses further highlighted the role of geography and population isolation in explaining this genetic- 
soil co- variation. Our findings reveal that local adaptation in trees is the result of an intricate interaction between soil chemical 
properties and the local population's genetic makeup, and that the selective factors driving such adaptation greatly vary and are 
not necessarily predictable across spatial scales. These results highlight the need to consider edaphic variation in forest genetic 
studies (including common garden experiments) and in conservation, management and assisted migration programs.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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1   |   Introduction

Understanding how the environment influences the distribu-
tion of genetic variation is a major goal in evolutionary ecol-
ogy and biogeography (Sanmartín and Ronquist 2004; Rellstab 
et al. 2017; Martins et al. 2018). Environmental selective pres-
sures often vary in space and time, causing populations to evolve 
traits that are advantageous under local conditions (Blanquart 
et al. 2013; Lascoux et al. 2016; Guerrero et al. 2018). The study 
of local adaptation is paramount for predicting species' evolu-
tionary responses to present and future environmental changes 
(Nielsen et  al.  2011; Prunier et  al.  2013), from which we can 
guide conservation and management programs (Savolainen 
et al. 2013; Oddou- Muratorio et al. 2020; Neophytou et al. 2022).

Identifying adaptive processes in natural landscapes can be 
challenging because the main environmental agents that have 
historically shaped genetic variability are mostly unknown 
(Manel et al. 2010; Aitken et al. 2008; Flanagan et al. 2018). For 
instance, genetic divergence across a heterogeneous landscape 
is often driven by the environmental conditions at different geo-
graphic and temporal scales that either impose selective pres-
sures on individuals or limit gene flow (Mckown et  al.  2014; 
Dalongeville et al. 2018). Such processes can be further amplified 
by historical demographic factors (genetic drift) that can be cor-
related to environmental variation (Zellmer and Knowles 2009), 
such as the one observed during the Pleistocene glacial cycles 
(Excoffier et al. 2009; Sork et al. 2013).

During the last two decades, disentangling the evolution-
ary factors that shape genetic diversity has been facilitated by 
next- generation sequencing and novel, powerful statistical ap-
proaches, particularly for understanding the genetic basis of 
local adaptation at various landscape scales (Manel et al. 2010; 
Forester et al. 2016). This is especially important for long- lived 
species with large genomes, like forest trees, which are at the 
base of vast terrestrial ecosystems and possess important eco-
nomic value (Brockerhoff et  al.  2008). Understanding the pat-
terns behind local forest adaptation can thus help optimize seed 
supply, reforestation efforts, and other forest management appli-
cations (Aitken and Whitlock 2013; Aitken and Bemmels 2016; 
Martins et al. 2018). Such a knowledge can further contribute to 
forest persistence under current and future environmental chal-
lenges (Jump and Peñuelas 2005; Savolainen et al. 2007; Alberto 
et al. 2013; Sork et al. 2013; Isabel et al. 2020).

Recently, landscape genomics approaches have been imple-
mented to identify potential candidate genes that may respond 
to local selective pressures (Riordan et al. 2016; Scotti et al. 2016; 
Talbot et al. 2017). Forest trees are particularly suitable for this 
kind of study, as they grow over long periods of time in hetero-
geneous environments. Evidence exists that trees are indeed lo-
cally adapted at both the range- wide (e.g., Eckert et al. 2012 in 
Pinus) and local spatial scales (~20 km) (e.g., Eckert et al. 2012 in 
Pinus; Pluess et al. 2016 in Fagus; Brousseau et al. 2020 in Eperua 
falcata; Zimmermann et al. 2025 in Quercus). Landscape genet-
ics studies in forest trees have indeed shown that local adapta-
tion can arise independently through similar selective forces 
acting on isolated genetic lineages (Orsini et al.  2013; Prunier 
et al. 2013; Riordan et al. 2016) or within the same lineage that 
evolves in a heterogeneous landscape (e.g., Scotti et  al.  2016; 

Rellstab et al. 2017). However, how gene flow and adaptive pro-
cesses interact across nested spatial or temporal scales remains 
unclear, as does the extent to which polymorphisms identified 
at one scale predict adaptation at a larger or smaller scale. If 
genotype- environment associations hold across scales, strong, 
shared selective pressures may be shaping adaptation. In con-
trast, shifts between scales suggest context- dependent local ad-
aptation. For species with high levels of gene flow, like conifers, 
the balance between this homogenizing force and the local se-
lective constraints may condition our ability to predict adaptive 
responses, depending on the scale at which we are evaluating 
such changes.

When compared with climate factors, soil variation has been 
somehow overlooked in local adaptation studies in forest trees 
(Schweitzer et al. 2011; Purahong et al. 2016). However, edaphic 
traits are capital for tree establishment and survival, and they 
can be highly heterogeneous along a landscape, driving genetic 
divergence at multiple geographic scales (including the microen-
vironmental level) (Mckown et al. 2014; Gugger et al. 2021). This 
spatial heterogeneity may exert differential selective pressures 
on populations, generating local adaptations that are not nec-
essarily observed at broader scales (Gugger et al.  2021). Thus, 
it is likely that the dynamic geological and ecological processes 
that have driven soil formation are related to the spatial distribu-
tion of genetic variation in forest trees. Indeed, some range- wide 
studies have detected associations between edaphic variables, 
such as the nitrogen and phosphorus concentration in the soil, 
soil pH, and patterns of genetic divergence in trees (Plomion 
et al. 2016; Collevatti et al. 2019; Ellis and Jonågren 2024). Such 
associations have also been observed at finer spatial scales, 
including a differential capacity to use the various forms of 
nitrogen available in edaphic microsites between genotypes 
(Guerrero et  al.  2018; Arenas et  al.  2021). Assessing the con-
sistency of these associations across spatial scales will provide 
valuable information on the predictability of local adaptation 
across the landscape and help optimizing “gain size” in land-
scape genomics studies in forest trees.

The Trans- Mexican Volcanic Belt (TMVB) is a complex moun-
tain range located in central Mexico that was formed through 
a mosaic of geological processes during the last 65 My (Siebert 
et  al., 2002; Gómez- Tuena et  al.  2005). These processes have 
generated a large number of volcanic structures since the early 
Miocene, particularly during the last 2.5 Myr (late Pliocene and 
Pleistocene; Gómez- Tuena et al. 2005; Ferrari et al. 2012), during 
which most of the massive stratovolcanoes (> 3500 m) of the re-
gion began their formation. These volcanoes are now covered by 
large temperate forests, whose dominant species usually exhibit 
a strong population genetics structure (e.g., Herrera- Arroyo 
et al. 2013; Giles- Pérez et al. 2022; Izaguirre- Toriz et al. 2024). 
It is believed that such a structure has been modelled, at least in 
part, by the soil characteristics of the TMVB, which has likely 
changed innumerable times and at different spatial and tempo-
ral scales, among others because of volcanic and glacial activi-
ties (Gómez- Tuena et al. 2005; Ferrari et al. 2012).

In the present study, we focused on sacred fir (Abies religiosa 
(Kunth) Schltdl. and Cham.), one of the dominant taxa of the 
montane forests along the TMVB, at elevations ranging from 
2400 to 3600 m asl (Castellanos- Acuña et al. 2014). This species 
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plays a key ecological role in water retention and soil stabiliza-
tion, and as the overwintering habitat of the monarch butterfly 
(Danaus plexippus; Sáenz- Romero et al. 2024). Sacred fir has a 
strong genetic and morphological differentiation along both lon-
gitudinal and altitudinal gradients (e.g., Ortiz- Bibian et al. 2017; 
Cruz- Nicolás et al. 2019; Giles- Pérez et al. 2022), which might 
be due, at least in part, to local adaptation. Understanding 
how such structure has been modeled is essential for develop-
ing conservation and management strategies (Sáenz- Romero 
et al. 2012), given that climate projections indicate that its suit-
able habitat could decrease by up to 92% by the end of the cen-
tury (Heredia- Bobadilla 2012).

Here, we explored how the balance between gene flow and local 
edaphic selection varies between spatial scales. To do so, we 
compared the associations detected between the genetic compo-
sition of sacred fir populations and soil chemical properties at 
both a range- wide and a local scale. At the range- wide scale, we 
expected strong genetic differences between stands, which could 
be explained by a combination of population isolation and selec-
tion driven by edaphic variation. At the local scale, we expected 
a more subtle genetic structure produced by the homogenizing 
effect of pollen- mediated gene flow (Ortiz- Bibian et  al.  2017; 
Paluch et al. 2019). However, we also anticipated that the high 
edaphic heterogeneity observed at this scale may also favor 
local adaptation (Méndez- González et  al.  2017; Zimmermann 
et al. 2025).

More specifically, we aimed to (1) identify candidate SNPs at 
both spatial scales using GEA (Genotype- environment associ-
ations), (2) compare and look for candidate SNP repeatability 
between scales, and (3) develop polygenic models to predict the 
variation in one scale using the candidates detected at the other 
scale. This multiscale approach should help improve our abil-
ity to predict how forests will respond to future environmental 
changes and contribute to the discussion regarding one of the 

most recurrent challenges in landscape genetics studies: how to 
define an appropriate grain size for detecting local adaptation 
(Manel et al. 2010; Forester et al. 2016).

2   |   Materials and Methods

2.1   |   Plant Material, Extraction, Sequencing, 
Assembly, and SNP Calling

For studying range- wide variation, we selected 113 individu-
als from previous sampling efforts across the natural distribu-
tion of A. religiosa (Aguirre- Planter et  al.  2000; Cruz- Nicolás 
et al. 2019; Giles- Pérez et al. 2022; that is, range- wide scale; see 
Figure 1A and Table 1 for information on sampling in each pop-
ulation). These needle samples were collected between 1996 and 
2019 for adult cone- bearer trees separated by at least 30 m from 
each other at 18 fir populations that were at least 6 km apart. 
Samples are all preserved at −80°C in the germplasm bank at 
the Institute of Ecology, Universidad Nacional Autónoma de 
Mexico (IE- UNAM).

For the local scale variation, we selected samples from three 
populations resulting from natural regeneration located in the 
central area of the distribution of A. religiosa (n = 95, Figure S1 
and Table S1). These stands differ in elevation (between ~2500 
and ~3400 m.a.s.l), soil and vegetation composition, and were 
separated by a maximum of 7.4 km from each other (Arenas 
et  al.  2021). For both this and the range- wide scale, we made 
sure to include only individuals resulting from the natural re-
generation of the native forest and avoided those introduced by 
management programs (see Arenas et al. 2021).

Total DNA was extracted with the Qiagen DNeasy Plant Mini Kit. 
DNA integrity was verified with a 1% agarose gel electrophore-
sis and quantified using QubitTM V 3.0. After being normalized 

FIGURE 1    |    Top. Geographic location of sacred fir (Abies religiosa) populations surveyed at the range- wide and local scales (location indicat-
ed with a dashed arrow). Bottom. Contribution of identified genetic clusters to each population and individual (left: K = 3 at the range- wide scale; 
right: K = 2 at the local scale). The full names of the abbreviated populations are provided in Table 1 for the wide- range scale and in Suppl. Table 1 
for the local scale. Am, Amanalco; CZ, Cerro Zamorano; CB, Cerro Blanco; CP, Cofre del Perote; DL, Desierto de Leones; Aj, Ajusco; EC, El Chico; 
Ix, Ixtapalucan; LM, La Malinche; M, Monarca; NC, Nevado de Colima; NT, Nevado de Toluca; PG, Puerta Garnica; SA, San Andrés; SM, Sierra 
Manantlán; Tl, Tlaxco; VA, Volcán Atlitzín; VT, Volcán Tancítaro; RG, Rincón de Guadalupe; HSB, Hight San Bartolo; DSB, Down San Bartolo.
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at a concentration of 20–25 ng/μL, DNA was sequenced on the 
genomic analysis platform at the Institute of Integrative Biology 
and Systems at Université Laval (http:// www. ibis. ulaval. ca/ en/ 
servi ces-  2/ genom ic-  analy sis-  platf orm/ ). Libraries were prepared 
following Poland et  al.  (2012), after digestion with restriction 
enzymes MspI (C|CGG) and PstI (TGCA|G). Sequencing was 
performed on an Illumina HiSeq2500 system, which produced 
~100 bp single- end reads. Read quality was determined with 
FASTQC, before and after demultiplexing, and quality filtering. 
These last steps, together with de novo assembly, read alignment 
and SNP calling were performed with the IPYRAD v0.7.23 pipe-
line (Eaton  2014). Assembly parameters included a clustering 
threshold of 0.9, a minimum majority rule depth of 100,000, a 
minimum sequencing depth of 8, and a maximum barcode mis-
match of 0. We then used PLINK v1.07 (Purcell 2010) to remove 
monomorphic reads, variants with missing call rates above 20% or 
that were in Hardy–Weinberg disequilibrium within populations 
(p- value < 1 × 10−6; Minamikawa et  al.  2018), and samples with 
minimum allele frequencies (MAF) below 5%. Given that com-
plete datasets are required for assessing genotype- environment 

associations, we imputed missing genotypes with TASSEL v.5 
(Bradbury et  al.  2007) using LD and the K- nearest neighbor 
(Beretta and Santaniello 2016).

2.2   |   Genetic Diversity, Population Structure, 
and Differentiation

The final dataset included 1585 SNPs that were successfully 
genotyped for 189 individuals; these comprised 102 trees for 
the range- wide scale study and 87 plants for the local- scale 
survey (Table  1 and Table  S1). These were used to estimate 
the mean observed (Ho) and expected heterozygosities (He) 
and the nucleotide diversity (π) per population, with R pack-
age hierfstat (Goudet and Jerome et  al., 2015), PLINK v1.04 
(Purcell 2010), and DNAsp v.5 (Rozas et al. 2017). Population 
structure was inferred through a Principal Components 
Analysis (PCA), in SNPRelate (Zheng et  al.  2012), and 
ADMIXTURE (Alexander and Lange  2015). For this last ap-
proach, we performed 10 replicate runs for k values ranging 

TABLE 1    |    Sample size, coordinates, elevation, and genetic diversity estimates for each of the 18 sacred fir (Abies religiosa) populations analyzed, 
and for the three range- wide genetic clusters obtained with Admixture (see Figure 1 and Table S2).

Population N NES Longitude Latitude Elevation π HO HE

Sierra Manantlán (SM) 6 4 −103.63 19.63 2515 0.026 0.073 0.091

Ajusco (Aj) 6 5 −99.23 19.22 3369 0.046 0.188 0.200

Desierto de Leones (DL) 10 10 −99.30 19.29 3474 0.042 0.193 0.198

El Chico (EC) 6 5 −98.7 20.15 2940 0.043 0.188 0.193

Nevado de Colima (NC) 6 6 −103.59 19.597 3276 0.029 0.127 0.139

Nevado de Toluca (NT) 5 5 −99.81 19.18 3387 0.040 0.190 0.199

Ixtapalucan (Ix) 5 5 −98.61 19.25 3236 0.044 0.196 0.201

Cerro Blanco (CB) 5 5 −100.24 19.57 3416 0.044 0.192 0.198

Puerta Garnica (PG) 4 4 −100.82 19.67 2913 0.040 0.174 0.184

Volcán Tancítaro (VT) 6 6 −102.32 19.38 3030 0.031 0.153 0.164

Monarca (M) 6 3 −100.23 19.57 3516 0.049 0.196 0.208

San Andrés (SA) 5 5 −100.59 19.80 3237 0.042 0.180 0.208

Amanalco (Am) 12 12 −99.92 19.23 3170 0.044 0.196 0.204

Volcán Atlitzin (VA) 8 8 −97.35 18.97 3060 0.049 0.186 0.200

Cerro Zamorano (CZ) 5 4 −100.18 20.93 3156 0.040 0.187 0.191

Tlaxco (Tl) 5 5 −98.08 19.68 2760 0.045 0.192 0.198

La Malinche (LM) 6 5 −98.04 19.26 3358 0.043 0.181 0.184

Cofre del Perote (CP) 7 5 −97.15 19.52 3510 0.050 0.177 0.190

Cluster I — 11 — — — 0.031 0.113 0.144

Cluster II — 24 — — — 0.043 0.184 0.201

Cluster III — 67 — — — 0.047 0.189 0.204

Whole sample 113 102 0.046 0.186 0.209

Note: Tajima's D. N corresponds to the number of originally selected individuals per population and NES to the number of individuals that were efficiently sequenced.
Abbreviations: π, Nucleotide diversity; HE, expected heterozygosity; HO, observed heterozygosity.
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from 1 to 10, using cross- validation for choosing the most 
likely value of k (Alexander et al. 2009; Fatokun et al. 2018), 
and Q- plots for visualizing results.

2.3   |   Collection and Processing of Soil 
Environmental Variables

We collected high- resolution data for nine soil chemical traits 
per population (Cruz- Cárdenas et  al.  2014), which have been 
found to account for most of the forest soil variability along the 
TMVB (Peña- Ramírez et al. 2015). These data are the result of a 
comprehensive interpolation at a national scale (1:1,000,000) of 
4400 random soil samples from evenly distributed points across 
Mexico's continental surface (approximately 1,949,359 km2; 
Ortiz- Solorio and Gutierrez- Castorena 2001). Each of these sam-
ples was taken from the top 20 cm of the soil and was evaluated 
for the electrical conductivity (EC), the content of both organic 
carbon (OC; in kg m−2) and organic matter (OM), and the con-
centration of Ca2+, K+, Mg2+, and Na+. The final datasets were 
generated from models (i.e., exponential, pentaspherical and 
spherical) selected through rigorous 10- fold cross- validation 
(Cruz- Cárdenas et  al.  2014) at a spatial resolution of approxi-
mately 1 km2, which is compatible with large- scale environmen-
tal studies.

We obtained values for the location of each fir population using 
the extract function in the raster package in R (Hijmans 2024). 
Highly correlated soil variables (Pearson's r ≥ 0.75) were removed 
through pairwise multicollinearity analyses using the corrplot 
package (Wickham 2019). We performed the multivariate and 
univariate normality tests using Royson's test and Anderson- 
Darling test in the MVN package (Korkmaz et al. 2014). The in-
tegration of these geostatistically derived datasets allowed us to 
maintain the scientific integrity and reproducibility of our work 
while eliminating the need for additional field sampling or lab-
oratory analyses.

2.4   |   Gene–Environment Association (GEA) 
Analyses

We independently searched for genotype–chemical soil asso-
ciations at both geographic scales (range- wide and local) using 
three conceptually different genetic- environmental association 
(GEA) methods (LFMM, SAMβADA and BAYESCENV). LFMM 
is a Bayesian regression MCMC algorithm that models random 
effects, using population history and isolation- by- distance, as 
unobserved (latent) factors (Frichot et  al.  2013). This approach 
has been shown to be effective when selection is weak and pop-
ulations have a complex hierarchical structure (Lotterhos and 
Whitlock 2015; Rellstab et al. 2015). Based on population struc-
ture analyses (see Results), we assumed two (at the local scale) 
and three (at the range- wide scale) latent factors (see Results) and 
performed five runs of 50,000 iterations for each chemical soil 
variable after an initial burn- in 5000 steps. We calculated median 
z- scores and adjusted p- value (Q) using a genomic inflation factor 
(λ) procedure as in (Devlin and Roeder 1999), and retained can-
didate SNPs after applying an FDR (false discovery rate) of 0.05 
with the Benjamini- Hochberg procedure (François et al. 2016).

SAMβADA is based on a logistic regression model that incor-
porates both spatial autocorrelation and neutral genetic struc-
ture, considering the geographic coordinates of populations and 
a pre- defined number of genetic clusters (Frichot et  al.  2013). 
We assumed the same number of clusters as for LFMM and per-
formed analyses for all possible gene–environment pairs. After 
performing G- score tests (Duruz et  al.  2019), we retained loci 
with significant Q- values after Bonferroni correction (equiva-
lent to p- value = 3.16 × 10−5).

BAYESCENV detects putative signals of local adaptation by 
combining an FST outlier approach with associations to the 
environmental variation of populations (De Villemereuil 
et al. 2013). We calculated environmental distances for each 
soil variable as the population value of each variable sub-
tracted by the average of all populations. We ran two inde-
pendent MCMC analyses with 20 initial pilot runs of 10,000 
generations for parameter fine- tuning, followed by a main 
run; this had an initial burn- in of 100,000 generations, after 
which samples were taken every 20 generations for 100,000 
generations. We confirmed the convergence between runs 
by using the Gelman and Rubin statistic (Gelman and 
Rubin 1992) and retained loci with Q- values below 0.05 (Storey 
and Tibshirani 2003). The flanking ~80 bp on each side of the 
candidate SNPs detected by all three methods were blasted for 
nucleotide similarity against the TodoFirGene transcriptome 
database (https:// fores tgen. ffpri. go. jp/ en/ info_ todom atsu. 
html) (Ueno et al. 2018).

As a first approximation to identify putative differential effects 
of stochastic and adaptive forces on population structure, we 
performed Discriminant Analyses of Principal Components 
(DAPCs) with the identified candidates and with non- retained 
loci at both scales; we used adegenet v.2.1.0 (Jombart  2008) 
and assumed cluster values (K) of 1–20. We determined the 
most likely K- value for each dataset and scale by running 60 
iterations of the ‘find.clusters’ function (Jombart 2008) and av-
eraged Bayesian information criterion (BIC) values across iter-
ations (Miller et al. 2020). We also simulated 100 pairwise FST 
matrices among genetic lineage pairs using both the candidate 
and non- candidate datasets in ARLEQUIN 3.5.2 (Excoffier and 
Lischer 2010) with 10,000 permutations and retained their val-
ues and p- value.

2.5   |   Partitioning Total SNP Variation

To assess the relative contribution of demographic history and 
chemical soil traits on the distribution of genetic variation, we es-
timated the amount of genetic diversity attributable to chemical 
soil differences using polygenic models built through distance- 
based redundancy analyses (dbRDA). dbRDA is a form of ordina-
tion that allows assessing the explanatory power of multivariate 
predictors (in this case, chemical soil traits) that best explain lin-
ear combinations of the response variables (genotypes; Legendre 
and Legendre 2012). As with other forms of eigen- analyses, pre-
dictors are summarized in canonical axes that are orthogonal 
to each other (Gibson and Moyle 2020). Here, these axes repre-
sented the genotypic variance of the candidate SNPs, which are 
also correlated (explained) to selected chemical soil predictors 
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(i.e., those with a variance inflation factor (VIF) lower than 3). 
Additionally, we incorporated the principal components (PCA) 
of the SNPs as conditioning variables to account for population 
structure (see above). To better capture the edapho- chemical dis-
tance between samples, we used the non- Euclidean Bray- Curtis 
distance. We performed dbRDAs at both scales using the dbrda 
function in vegan, v. 2.5.2 (Oksanen et al. 2019) by applying a for-
ward selection of predictors, which allowed optimizing the ad-
justed coefficient of determination (R2) of the model (Peres- Neto 
et al. 2006). We tested the significance of each final canonical/
constrained axis with the anova.cca function, by running 999 
permutations of the genotype matrix as in Forester et al. (2018). 
For each scale, we performed this analysis using the candidates 
retained in the genotype- environment associations and a set of 
non- retained loci that matched the number and MAF of the can-
didates (Segovia et al. 2020). For accounting for possible biases, 
we constructed 20 random subsets of such non- candidate loci 
with the sample() function of R (i.e., there were 40 subsets in 
total). For each analysis at each scale, we first selected the most 
important explanatory variables, after eliminating co- linear 
traits and those with a variance inflation factor (VIF) lower than 
3 (Capblancq et al. 2018; Forester et al. 2018), and calculated the 
total genotypic variance explained by these predictors. Then, to 
test replicability between spatial scales, we developed predictive 
models for the range- wide dataset using the candidate SNP re-
tained at the local scale and vice versa. We assumed that if the 
associations were not spurious or produced by stochastic pop-
ulation processes, the proportion of variation calculated with 
candidate loci would always be larger than that obtained with 
random data subsets.

2.6   |   Spatial Interpolation of Candidate SNP 
Variation

To analyze the geographic distribution of the candidate SNP 
variation, we performed a Spatial Principal Component 
Analysis (sPCA) on all candidates detected with all methods 
at both scales (i.e., 49 loci at the range- wide level and 23 at the 
local scale) using adegenet v.2.1.0 (Jombart  2008). sPCA is a 
spatially explicit multivariate method that produces scores (or 
lagged scores) that summarize the genetic variability and spa-
tial structure among individuals (Jombart  2008). These scores 
are presented as canonical axes, which are linear combinations 
of genetic variables and represent multilocus geographic clines 
with polygenic effects (Segovia et  al.  2020). To determine the 
role of soil variation in driving such clines, we interpolated the 
lagged scores of the first two environmental axes and each soil 
predictor on a 10× m resolution grid that covered the whole spe-
cies range using MATLAB (The MathWorks Inc., 2022). We re-
peated this analysis by using the minor allele frequencies (MAF) 
of the candidates that had the highest effects on the sPCA to 
assess if they were more associated with the soil chemical vari-
ation than those contributing the least to the sPCA. Finally, we 
carried out multiple stepwise linear regressions using the lm() 
function in R, using individuals as replicates, multilocus clines 
as response variables, and chemical soil predictors (including 
the retained environmental axes) as explanatory variables to 
pinpoint individual variables that best explained the spatial dis-
tribution of candidate loci. Independent models were built for 
each geographic scale.

3   |   Results

3.1   |   Data Filtering, Genetic Diversity, 
and Population Genetic Structure

We obtained an average of 2,803,267 raw reads per individual, 
with an average length of 82 bp per read. After quality filtering, 
31,462 consensus reads were retained and assembled de novo 
for identifying 373,267 SNPs. After posterior quality filtering 
(including Hardy–Weinberg disequilibrium, minimal allele fre-
quencies below 5% and consensus read present in less than 80% 
of individuals), we retained 1587 of these high- quality SNPs that 
were genotyped for 102 individuals sampled for the range wide- 
scale study and 87 trees for the local scale study.

Following cross- validation (Table  S2), admixture results re-
vealed three genetic clusters (k- value) at the range- wide scale 
and two groups at the local scale (Figure 1 and Table S2A). At 
the range- wide scale, the westernmost populations (SM and NC; 
Cluster I) formed a clearly distinct group, while stands at the 
center (CB, CZ, PG, VT, Mo and SA; Cluster II) and the east of 
the TMVB (Figure 1; Aj, DL, EC, NT, Ix, Am, VA, Tl, LM and CP; 
Cluster III) formed a gradient- like pattern with a large contact 
zone west of Mexico City. The PCA further showed that genetic 
differentiation at this scale was weak, with each principal com-
ponent explaining only a small fraction of the total genetic vari-
ance (PC1 = 6.57% and PC2 = 3.17%, Figure  S2A). Individuals 
from Cluster I were separated along the first principal compo-
nent, while samples from populations belonging to Clusters II 
and III were distributed along the second principal component, 
suggesting a pattern of isolation by distance (Figure S2). At the 
local scale, genetic structure and differentiation were weaker (k 
of 2; Table S2B), with only some individuals from the lower ele-
vation stand being genetically different from the rest (Figure 1). 
A similar pattern was found with the PCA (Figure S2B).

Summary statistics per population are summarized in Table 1 
and Table S1. At the range- wide scale, mean expected heterozy-
gosity (HE) was 0.186 and ranged from 0.091 (in SM) to 0.208 (in 
SA and Mo); mean observed heterozygosity (HO) was 0.176, and 
values varied between 0.073 (in SM) and 0.196 (in SA and Mo); 
mean nucleotide diversity (π) was 0.046 and ranged from 0.026 
(SM) to 0.050 (CP). In all three cases, populations from Cluster 
I had significantly lower estimates than those from Clusters II 
and III (Table  1), suggesting lower effective population sizes 
and less connectivity. At the local scale, genetic diversity re-
mained homogeneous among localities, with practically identi-
cal heterozygosity and nucleotide diversity values (mean values: 
HO = 0.201, HE = 0.207, and π = 0.046 (Table S1)).

3.2   |   Gene–Environment Association (GEA) 
Analyses

After multi- collinearity tests, seven (pH, Ca2+, K+, OC, EC, Mg2+ 
and RAS) and five (pH, Mg2+, Ca2+, OC and EC) uncorrelated 
chemical edaphic traits met the multivariate normality test crite-
ria at the range- wide (p- value = 0.37) and local (p- value = 0.105) 
scales, respectively. These variables were further used as pre-
dictors for the models below, as they all had variance inflation 
factors below 3 (VIF < 3).
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Association analyses (LFMM, SAMβADA and BayescEnv) 
showed significant correlations between soil variables and 
12–29 candidate SNPs at the range- wide scale and 2–16 
SNPs at the local scale (Figure  2), from which only two 
(Locus371903 and Locus636335) overlapped between scales. 
At the range- wide scale, Ca2+, pH, and EC had the highest 
number of correlated loci (15, 10, and 7 SNPs, respectively), 
while K+ and SAR were associated with only two and one 
variant, respectively. Three candidates (6.1%) were pinpointed 
by all three methods at this scale (Locus23352, Locus24032 
and Locus296370), while between four and nine SNPs were 
identified by two analyses. Only one marker (Locus 371,068) 
was associated with more than one chemical soil trait in these 
range- wide analyses (Ca2+ and pH).

At the local scale, chemical soil traits showing the highest num-
ber of correlations were EC (10) and OC (4). However, no loci 
were identified by more than one method, suggesting low statis-
tical power for detecting candidates at this scale. We decided to 
keep all identified loci at both scales (49 and 23 respectively) and 
use them as response variables in the polygenic models below. It 
is worth noting that one of the SNPs retained at the local scale 
(Locus636335; correlated with EC) was also identified at the 
range- wide level (but associated with Ca2+).

Annotation was possible for nine contigs containing candi-
date SNPs at the range- wide scale and for three of the loci 
retained at the local scale (Table  2). The most noteworthy 
cases included a non- intrinsic ABC protein 6 gene (similar to 
Locus371068; correlated with both Ca2+ and pH at the range- 
wide scale), a calcium- dependent lipid- binding family protein 
(CaLB domain; that contained Locus107661; associated with 
Ca2+ at the range- wide scale), and a ribosomal protein L23/
L15e family protein (that contained Locus636335, which was 
identified at both scales).

3.3   |   Genetic Structure Based on Candidate 
and Neutral Markers

The pairwise- FST matrix at both scales showed higher genetic 
differentiation when using candidates than when using the 

non- candidate SNPs (Table  S3A,B). At the range- wide scale, 
differentiation was the lowest among populations closer to the 
center of the species' distribution (Aj, DL, NT, Am, VT, EC, Ix 
and Mo), and the highest when comparing stands at the west 
of the species range with populations in the center or the east 
of its distribution. At the local scale, genetic differentiation was 
lower, with neutral FST values not exceeding 0.0114 (all signif-
icant; Table  S3B). Although comparisons involving the lowest 
elevation stand (DSB) had slightly higher values than those be-
tween the two other stands.

Similar to Admixture results using the whole dataset and based 
on the Bayesian Information Criterion (BIC), the Discriminant 
Principal Component Analysis (DAPC) performed with the 
candidate SNPs revealed three genetic clusters at the range- 
wide scale (Figure  S3). At the local scale, and contrary to the 
Admixture results, only one genetic cluster was obtained with 
the retained candidates.

3.4   |   Association Between Soil Predictors 
and Genetic Variation

The relative contribution of environmental variables to genetic 
structure was inferred at both scales using distance- based re-
dundancy analyses (dbRDAs), for both the retained candidates 
(Table S4–S6 and Figure S4) and for the 20 sets of non- candidate 
SNPs (i.e., non- correlated loci matching the number and MAF of 
the candidates, Figure S4).

Soil predictors (constrained variance) explained a larger part 
of the total genetic variation than the residual variance (un-
constrained) for the candidate SNPs (p- value < 0.001), at both 
the range- wide (17.52%) and local scales (9.67%). These same 
predictors only accounted for 14.42% and 6.62% of the total 
genetic variance of the non- correlated SNPs at the range- wide 
and local scales, respectively (p- value < 0.001; Table 3). Models 
that included candidate loci explained conditional variance 
better than those that did not (13.71% and 7.94% in range- wide 
and local scales, respectively). Models transferred between 
scales (i.e., using range- wide candidates to predict local chem-
ical soil variation and vice versa) were not significant. The 

FIGURE 2    |    Venn diagram showing the number and percentage of candidate SNPs detected with three genotype- environment association (GEA) 
methods in sacred fir (Abies religiosa) populations analyzed at the range- wide (A) and local (B) scales. See Table S3 for further details.
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variance explained in all simulated models was between one- 
third and one- fourth of the variance explained by the model 
using candidate SNPs.

Variance partitioning showed that the first two genetic eigen-
values contributed ~80% of the total variance at both scales 
when using candidate SNPs (F1 = 54.6% and F2 = 18.9%, range- 
wide; and F1 = 43.6% and F2 = 30.5%, local), while more than 
four eigenvalues had to be included to account for such a 
portion of the total variance when using the non- candidate 
loci. Interestingly, several soil chemical traits had a signifi-
cant contribution to the model for explaining the candidate 
SNP variation at the range- wide scale (although Ca2+, EC, 
and pH were the most significant ones; Table S5A), while only 
Ca2+, OC, and EC contributed to such model at the local scale 
(Table S5B).

dbRDAs further showed that populations could be better differ-
entiated at both scales when using neutral markers than can-
didate SNPs (Table  S6), although with low correlation values 

(Radj
2 = 0.14 and 0.06 at the range- wide and local scales, respec-

tively; Table 3 and Figure 3). These analyses imply that chemical 
edaphic traits are differentially influencing the distribution of 
candidate and neutral SNPs between scales, except for OC and 
EC, which were both significant in all cases.

For the validation of polygenetic models using random numbers 
of neutral SNPs that matched the number and MAF of the can-
didates (49 and 23 for range- wide and local scales, respectively), 
we were only able to explain a very low portion of the variance 
in all cases. In addition, reduced proportions of the variance 
were explained when using the range- wide scale outliers to cal-
culate the variance constrained at the local scale and vice versa 
(Figure S4).

3.5   |   Spatial Distribution of Putatively Adaptive 
Genetic Variation

To evaluate the role of geography in the distribution of can-
didate SNP variation at both scales, we used spatial Principal 
Component Analyses (sPCA; Figure 4, Figures S5 and S6). We 
extracted two lagged scores (multi- locus clines) that summa-
rized the genetic variability of the candidate SNPs linked to 
the spatial distribution of populations (range- wide scale) or 
individuals (local scale). We then performed multiple step-
wise linear regressions between these clines and the edaphic 
predictors used for the GEA analyses, both for each individual 
chemical soil trait and after summarizing chemical soil vari-
ation in two principal components (EPCs 1 and 2; Table 4 and 
Table S7).

At the range- wide scale, significant correlations were observed 
for both lagged scores (1 and 2) and EPC1 (Radj

2 = 0.34–0.38, p- 
value < 0.001; Figure  4, Figure  S6 and Table  S7), indicating a 
significant contribution of geographic proximity to both soil and 
candidate SNP variation. When chemical soil variables were an-
alyzed individually, the most significant correlations for lagged 
score 1 were with EC and Ca2+ (Radj

2 = 0.31 and Radj
2 = 0.40, 

respectively); for lagged score 2, significant correlations were 
observed for pH, EC, and OC (Radj

2 = 0.45, 0.304 and 0.24, re-
spectively) (Table 4).

At the local scale, only lagged score 1 was correlated with EPC1, 
while lagged score 2 showed no correlations. The only individ-
ual variables that were correlated with both lagged scores at 
this local scale were EC (Radj

2 = 0.155, p- value < 0.001) and OC 
(Radj

2 = 0.082, p- value = 0.01) (Table S7).

Candidate SNPs contributed differentially to the inferred multi- 
locus clines at the range- wide scale (Figure  4, bottom right), 
with those SNPs that were detected by more than one method 
(Locus 296,370, Locus 371,068, Locus 370,337, Locus 422,516 and 
Locus 636,335) having a larger contribution than those detected 
by only one method. It is worth noting that one of these loci 
(Locus 636,335) also had a strong contribution to the multi- locus 
cline at the local scale (Table 2). Among the candidates detected 
at the range- wide scale, loci 296,370, 370,737, and 371,068 had 
contrasting genotype compositions in soils differing in Ca2+, 
EC, and pH. For instance, soils with higher Ca2+ concentrations 
and higher EC and pH tended to have AA and AT genotypes 

TABLE 3    |    Results of partial redundancy analyses (RDA) showing 
the proportion of the soil chemical variance explained by polygenic 
models at two different spatial scales in sacred fir (Abies religiosa).

Source of 
Explained 
Variance 
(Polygenic models)

Contribution to total 
variance (%)

Inertia Proportion Radj
2

Total SNPs—range- wide scale (n = 1562)

Total 22.42 100

Conditional 0.60 2.69

Explained 3.23 14.42 0.14

Residual 18.58 82.85

Candidate SNPs—range- wide scale (n = 49)

Total 20.00 100

Conditional 2.74 13.71

Explained 3.50 17.52 0.18

Residual 13.75 68.77

Total SNPs local scale (n = 1562)

Total 17.55 100

Conditional 0.31 1.76

Explained 1.160 6.62 0.06

Residual 16.08 91.60

Candidate SNPs—local scale (n = 23)

Total 13.58 100

Conditional 1.07 7.94

Explained 1.31 9.67 0.10

Residual 11.18 82.04

Note: Variance partitioning and significance values for each soil chemical 
variable are shown in Table S5.
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at Locus 296,370 and GG genotypes at loci 370,737 and 371,068 
(Figure S7). At the local scale, this was inferred for loci 337,921 
and 636,335 and soil EC and OC, but with much less statistical 
power (Figure S8).

4   |   Discussion

We explored whether the same gene- edaphic associations could 
be detected at two different spatial scales (range- wide and local) 
in a long- lived tree from central Mexico (sacred fir; Abies reli-
giosa). Our findings revealed a complex genomic architecture 
that differs between scales, suggesting an intricate interplay 
between chemical soil factors and the distribution of genetic 
diversity. They further imply that adaptation to soil has a poly-
genic basis, likely influenced by the local genetic composition 
and the degree of population isolation (Figure 2 and Table 3). 
Researchers focusing on forest tree adaptation should start 
addressing chemical edaphic variation and investigating the 

genetic architecture underlying soil- related selective pressures 
in common garden experiments; they should also start taking 
edaphic traits into account for bonifying management and con-
servation programs. It is likely that similar results will be ob-
served in other forest trees.

4.1   |   Genetic Structure and Gene–Environment 
Associations

We obtained the same phylogeographic structure previously re-
ported for A. religiosa, involving one isolated genetic pool in the 
westernmost portion of the Trans- Mexican Volcanic Belt and 
a gradient of differentiation between eastern and central pop-
ulations (Cruz- Nicolás et  al.  2019; Giles- Pérez et  al.  2022). As 
discussed in previous phylogeographic and population genetics 
works, the lower genetic diversity observed in the western pop-
ulations could be associated with orogenetic processes that iso-
lated them and diminished both their effective population sizes 

FIGURE 3    |    Redundancy analyses (RDA) biplots showing soil traits and SNP co- variation in sacred fir (Abies religiosa) populations analyzed at 
two different spatial scales. Soil variables as blue arrows, and populations as colored circles. Left (A, C) analyses performed using the total SNP data-
set. Right (B, D) analyses carried out with retained candidate SNPs (see text Figure 2 and Table S3). Top (A, B) co- variation at the range- wide scale. 
Bottom (C, D) co- variation at the local scale (see Table 1 and Table S1 for population locations and abbreviations).
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and their capacity to accumulate genetic diversity (Cruz- Nicolás 
et al. 2020; Giles- Pérez et al. 2022). In contrast, the high amounts 
of genetic diversity observed in central and eastern populations 
reflect larger historical effective population sizes and population 
connectivity, probably because of a greater environmental and 
population stability (Cruz- Nicolás et al. 2019, 2020; Giles- Pérez 
et al. 2022).

As expected for conifers, genetic structure was subtle at the 
local scale, indicating rampant homogenization through pollen- 
mediated gene flow (Figure 1; Heredia- Bobadilla 2012; Méndez- 
González et al. 2017; Ortiz- Bibian et al. 2017).

dbRDA analyses further suggested that this subtle differen-
tiation was aligned with soil dissimilarities, especially along 
the first discriminant axis, which was loaded by soil electric 
conductivity (EC) and the amount of organic carbon (OC). 
Chemical edaphic factors were also important for explaining 

range- wide scale differentiation, again including EC and OC, 
but most importantly, traits like the Ca2+ concentration and soil 
pH (Figure 3a). Such an interplay between the local soil chem-
ical properties and the population genetic structure is a recur-
rent factor in plant landscape genetic studies, which have often 
shown that edaphic constraints are important drivers of local 
adaptation (Bragg et  al.  2015; Méndez- González et  al.  2017; 
Orsini et al. 2013).

Up to 70 SNPs showed associations with chemical soil traits; 
12–29 candidates were observed at the range- wide scale, while 
2–16 SNPs were detected at the local scale (Figure 2). Together, 
these SNPs explained larger portions of the total chemical soil 
variance at both scales than random SNP sets matching their 
number and MAF. Although our study is likely underpowered to 
pinpoint most of the variants contributing to soil adaptation (be-
cause of the low number of individuals surveyed and a suboptimal 
coverage of the ~17 Gb genome of A. religiosa), it is noteworthy 

FIGURE 4    |    Spatial distribution of soil electric conductivity (EC; A), and pH (B) variation in central Mexico and correlation with allele frequency 
at Locus 371,068 (A) and population lagged scores of a multi- locus cline composed of 49 candidate SNPs in sacred fir (Abies religiosa) (B). Lagged scores 
were obtained from a sPCA analysis, and reflect the genetic variability linked to the spatial distance between sites. (C) Linear adjustment between the 
first PCA- axis summarizing soil variability in central Mexico and the lagged scores of each individual in the multi- locus cline. Diagonal represents 
the best- fit regression lines (R2

adj = 0.31; p- value < 0.05). (D) Boxplot showing the contribution of the top 13 markers to the multi- locus cline of the 
sPCA analysis.
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that associations were recurrently inferred with conceptually 
different statistical methods and generally involved the same 
chemical soil traits (i.e., pH, Ca2+, and EC; Figure  2; Table  2). 
Even though there was little overlap between the candidates de-
tected at both scales (only two out of 70 SNPs), the annotation of 
the contigs that contained such candidates indicated that some 
of them could be more than mere false positives. Indeed, many 
candidates were located within genes involved in the regulation 
of gene expression and membrane transport, including a contig 
that carried a SNP associated with Ca2+, which was annotated as 
a calcium- dependent protein (see below; Table 2).

To understand how a species responds to putatively simi-
lar selective pressures at different geographic scales, we first 
need to consider the evolutionary history of populations, their 
genetic makeup, and the likelihood of individuals to locally 
adapt (Zellmer and Knowles 2009; Capblancq et al. 2020). For 

instance, the main genetic lineages of A. religiosa started diverg-
ing ~1.0 Ma ago (Giles- Pérez et al. 2022), and while the western 
lineage remained effectively isolated after its initial divergence, 
the central and eastern genetic pools exchanged genes during 
the last ~200Ky (Giles- Pérez et al. 2022). This demographic his-
tory likely produced the unique genetic associations observed 
herein between the western and central/eastern genetic pools, 
despite having common chemical edaphic pressures, including 
pH, Ca2+ and EC variation (Figures 3 and 4). The demographic 
history of A. religiosa further hints at an eventual, and recent, 
genetic exchange of adaptive alleles between the eastern and 
central lineages (Giles- Pérez et  al.  2022). However, exploring 
this would necessitate a different sampling and analytical ap-
proach than the one used here (Giles- Pérez in prep.).

While the range- wide distribution of genetic variation in sa-
cred fir is likely driven by the interaction between demographic 
history and chemical edaphic adaptation, the distribution of 
within- population genetic variation is apparently modeled by 
traits that can be viewed as proxies of soil cation exchange ca-
pacity (i.e., EC and OC), a key property that influences ion re-
tention, nutrient availability, and the structural stability of the 
substrate (Li et al. 2015; Madritch et al. 2006; Terés et al. 2019). 
This indicates that tree growth and physiological performance 
could be at the base of local- scale edaphic adaptation, such as 
observed in a previous study in the same stands surveyed herein 
(Arenas et al. 2021). In addition, the implication of EC and OC 
in adaptation may also be hinting that the role of the decom-
posing microorganisms that make nutrients available for plant 
uptake might be at stake (Raven and Andrews 2010; Schweitzer 
et al. 2011). The quantity and composition of microorganisms in 
the soil can indeed vary greatly at very short distances (Kubota 
et al., 2015; Purahong et al. 2016; Chen et al. 2019) and should 
be the focus of future studies aiming to understand edaphic tree 
adaptation at the local scale.

It may be, however, argued that local- scale adaptation in sa-
cred fir is actually driven by soil traits that were not considered 
in the present study, such as ammonium concentration (NH4; 
Arenas et al. 2021), bulk density (Argüelles- Moyao and Garibay- 
Orijel 2018), water retention capacity, relative humidity (Csilléry 
et al. 2020) or soil aridity (Steane et al. 2017). Disentangling the 
role of the many variables involved in soil variation, most of 
which are expected to be correlated, is indeed a complex task 
that will need experiments with controlled soil conditions, and 
which are out of the scope of the present study. Furthermore, 
GEA studies combining climate and soil traits are also neces-
sary for exploring how they intertwine to affect water avail-
ability and local adaptation, as proposed for other forest trees 
(Csilléry et al. 2020; Zimmermann et al. 2025).

4.2   |   Edaphic Adaptation Has a Polygenic 
Architecture in Abies religiosa

We used multilocus models based on candidate SNPs to provide a 
first approximation to polygenic soil adaptation in a forest trees, 
which allowed us to explain 16.96 and 23.95% of the edaphic 
variance at the local (23 SNPs) and range- wide (49 SNPs) scales, 
respectively (Table 3). This mirrors the amount of variance ex-
plained by recent polygenic models for climate adaptation and 

TABLE 4    |    Results of stepwise multiple regression analyses between 
the distribution of spatial genetic variation (lagged scored 1 and lagged 
score 2) and range- wide soil chemical variation in A. religiosa.

Equation Linear Model 
y = b0 + b1x1 Radj

2 p- value

Lagged scores 1

0.0243 − 0.367 × Mg2+ 0.198 1.6 × 10−6

0.0238 + 0.067 × K+ — > 0.05

0.0236 − 0.594 × Ca2+ 0.401 2.2 × 10−14

0.0241 − 0.168 × pH 0.122 0.0038

0.0248 + 0.224 × OC 0.069 0.0044

0.0249 − 0.441 × EC 0.31 2.0 × 10−9

0.0229 + 0.195 × SAR — > 0.05

0.0199 − 0.268 × EPC1 0.339 7.8 × 10−11

0.0239 + 0.058 × EPC2 — > 0.05

0.024 − 0.144 × EC − 0.465 × Ca2+ 0.438 2.2 × 10−16

Lagged scores 2

0.0019 − 0.195 × Mg2+ 0.185 3.7 × 10−6

0.0017 + 0.018 × K+ — > 0.05

0.0017 − 0.080 × Ca2+ — > 0.05

0.0025 − 0.305 × pH 0.451 3.7 × 10−16

0.0248 + 0.224 × OC 0.237 1.2 × 10−7

0.0023 − 0.245 × EC 0.304 1.1 × 10−9

0.0017 + 0.011 × SAR — > 0.05

−0.0009 − 0.154 × EPC1 0.373 5.5 × 10−12

0.0018 − 0.060 × EPC2 — > 0.05

0.003–0.128 × EC − 0.244 × pH 0.523 2.1 × 10−16

0.003–
0.114 × EC − 0.214 × pH + 0.08 × OC

0.548 2.3 × 10−16

Abbreviations: EC, electric conductivity; EPC, environmental principal 
component; OC, organic carbon; SAR, sodium absorption ratio.
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pest resistance in other forest trees (e.g., De La Torre, Sekhwal, 
and Neale (2021); De La Torre, Wilhite, et al. (2021); Neophytou 
et al. (2022)).

In a polygenic a model, it is the locus combinations, rather than 
specific polymorphisms at genes with major phenotypic effects, 
that are driving local adaptation (Savolainen et al. 2007; De La 
Torre et al. 2014; Carvalho et al., 2021; George et al. 2021). In 
other words, polygenic adaptation relies on multiple (and often 
redundant) loci of small effect, upon which moderate selective 
pressures operate, generating subtle allele frequency changes 
among populations (Crouch and Bodmer  2020). This implies 
that different genomic backgrounds (i.e., genetic pools) may har-
bor non- overlapping gene–environment associations when sub-
mitted to similar selective pressures (Prunier and Verta  2016; 
Chen et al. 2021; George et al. 2021).

In the case of soil adaptation, one would expect that a polygenic 
basis will allow for a flexible and robust response to environ-
mental changes operating at various levels, while still maximiz-
ing nutrient uptake (Baxter et al. 2010; Kellermeier et al. 2013).

Such a response should involve several phenotypic traits. For in-
stance, root architecture (i.e., root length, growth and branching 
patterns, and hair density), which secures nutrient supply, and 
plant anchorage and support (Maurel and Nacry 2020), or the 
presence of mycorrhizae, which enhances nutrient uptake and 
plant resistance to drought (Revillini et al. 2016). However, the 
genomic architecture of virtually all the phenotypic traits that 
could be involved in soil adaptation is unknown, especially be-
cause of the intrinsic difficulties of root phenotyping. Indeed, the 
functional genomics of root architecture has only been explored 
in model plants, like Arabidopsis or maize (e.g., Iyer- Pascuzzi 
et al. 2009; Hochholdinger et al. 2018), and the composition of 
mycorrhizal communities has only begun to be recurrently in-
vestigated with the onset of metabarcoding and metagenomics 
(e.g., Argüelles- Moyao and Garibay- Orijel 2018). Thus, we urge 
researchers to combine the study of edaphic adaptation with 
root phenomics and mycorrhizae metabarcoding, and consider 
the interaction between tree genotype, soil microbiota, and nu-
trient availability. Such a combination will surely translate into 
better forest management, conservation, and assisted migration 
plans (Li et al. 2022; Roux et al. 2023).

4.3   |   The Putative Role of Chemical Soil Properties 
in Fir Adaptation

The soil traits that were recurrently associated with genomic 
variation at the range- wide level in A. religiosa (i.e., pH, EC, and 
Ca2+; Table 2; Figure 4A; and Table S5) could be indicative of 
population differentiation in cation exchange capacity, nutrient 
fixation, and response to soil acidity (Zancarini et al. 2012; Xue 
et al. 2017). Indeed, the complex relationship between pH and EC 
(and thus cation exchange capacity) is here evidenced through 
an edaphic differentiation gradient, with the south- central 
sacred fir populations growing on more acidic soils than the 
eastern and western stands (Figure 4). pH is known to directly 
affect nitrogen and phosphorus availability (Lu et  al.  2012), 
and it also modifies the solubility of nutrients that are neces-
sary for root physiological activities (i.e., Al, Fe2+, Mg2+, and K+; 

Cakmak 2013; Wang et al. 2013), but which are toxic when in 
excess (Wu et al. 2019; Zhang et al. 2018).

Ca2+ also seems to be a major driver of edaphic adaptation 
in this species. This ion is essential for cell reproduction and 
root development, and it also limits mycorrhizal formation, 
which may affect nutrient uptake and tree survival (Lehto and 
Grace 1994; Børja and Nilsen 2009). The distribution of tropi-
cal ectomycorrhizal trees is, however, independent of the soil 
chemical composition (Medina- Vega et al. 2024), and sacred fir 
populations from central Mexico (all from our genetic cluster 
III) apparently do not differ in their mycorrhizal composition 
(Argüelles- Moyao and Garibay- Orijel  2018). It is thus neces-
sary to expand mycorrhiza studies to other A. religiosa stands, 
particularly those from other genetic clusters, which have par-
ticularly low Ca2+ concentration (e. g. cluster I). It is also neces-
sary to start developing common garden or reciprocal transfer 
studies to explore the interaction between genetic composition 
and edaphic variation. This will not only help to elucidate the 
edaphic adaptive mechanisms but will also be key for develop-
ing effective forest conservation strategies, including assisted 
migration, in the context of current environmental degradation 
(Argüelles- Moyao and Garibay- Orijel 2018).

4.4   |   Functional Annotation 
of Soil- Associated Genes

The genes identified in the present study had little overlap be-
tween methods and likely represent a small subsample of those 
that may be involved in edaphic adaptation in firs (not to men-
tion that some of them may be false positives). However, they do 
show common trends, both in the traits they are associated with 
and the annotation we were able to perform. Such annotations 
mostly included genes involved in gene regulation, signaling, 
and stress response.

Some notable examples include Locus636335, which contained 
a SNP that was detected at both the range- wide and local 
scales, and loci 422,516 and 371,068, both of which harbored 
variants that were correlated with more than one edaphic trait 
at the range- wide scale (Table  2). The first locus is similar to 
a L23/L15e family ribosomal protein, whose members are in-
volved in translation activities and have been associated with 
plant growth and flowering (Dai et al. 2017). The second locus, 
422,516, is similar to a nuclear RNA polymerase C2 gene. Genes 
within this family are involved in gene expression activities, 
particularly transcription termination (Lin et al. 2004) and have 
been associated with seed formation and drought resistance in 
angiosperms (e.g., Li et al. 2019; Thiruppathi 2020). The third 
locus, 371,068, was annotated as a non- intrinsic ABC protein 6. 
This large family of protein transporters is involved in various 
homeostatic processes, including metal detoxification and nutri-
ent movement (Kang et al. 2011).

It is worth noting that SNPs within the above- mentioned genes, 
together with those from three more contigs, were associated 
with Ca2+ (Table  2). Two of these additional contigs showed 
similarities with genes involved in gene regulation (i.e., loci 
420,015 was annotated as a ubiquitin transferase, and 520,649 
as a DNAse I- like gene). The third locus, Locus107661, is perhaps 
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the most noticeable, as it was annotated as a calcium- dependent 
lipid- binding family protein (CaLB domain). These proteins have 
a fundamental role in signaling and response to stress (Tuteja 
and Mahajan  2007; Kim et  al.  2009; Atif et  al.  2019), some of 
which are strongly upregulated by low temperature in Picea and 
Populus (Holliday et al. 2008; Estravis- Barcala et al. 2020). They 
include calcium- dependent protein kinases (CDPKs), which are 
further involved in drought and cold tolerance in various plants 
(Chen et al. 2013; Xiao et al. 2022). Genes containing CaLB do-
mains are thus good candidates for understanding how calcium 
signaling is involved in edaphic adaptation in firs and other 
plants.

Finally, two candidate loci were annotated as members of the 
pentatricopeptide repeat (PPR) protein superfamily, 494,058 at 
the range- wide scale, and 338,088 at the local scale (Table  2). 
Members of this family are known to play a key role in abiotic 
stress response, particularly drought and salinity (Miranda 
et al. 2018). These proteins further participate in RNA metab-
olism and are involved in the protection of membrane integrity 
and ion transport (Barkan and Small  2014); all of which are 
functions that could be related to edaphic adaptation in plants. 
Additional studies with controlled conditions are thus necessary 
to prove causality and show that these genes are also playing 
similar roles in conifers (including A. religiosa).

5   |   Conclusions and Perspectives

Edaphic pressures operating at various geographic scales are 
main drivers of local adaptation in sacred fir (Abies religiosa). 
Soil chemical variation should be thus integrated into forest 
management and biological conservation strategies for this, and 
probably most forest tree species. Genetic clusters and soil vari-
ables identified in this study can indeed inform current man-
agement programs. For instance, assisted migration strategies, 
such as those proposed by Sáenz- Romero et al. (2024), could be 
refined if they include the soil chemical properties of the receiv-
ing localities.

Future studies could also build on the hypotheses discussed 
here; for instance, by focusing on root phenomics and metag-
enomic analyses of both soil microbial communities and my-
corrhiza (Hirte et al. 2018; Zhou et al. 2023). Root phenomics 
could be facilitated by 3D imaging and modeling techniques 
(i.e., Takahashi and Pradal  2021), which could help disentan-
gle the different aspects that contribute to root architecture (Li 
et al. 2022). This could be complemented by functional genomic 
analyses in seedlings, as has been performed in Arabidopsis 
and maize (Li et al. 2019; Thiruppathi 2020) or in combination 
with rooted cuttings (e.g., Rioux et al. 2007). The use of these 
techniques may further help select tree genotypes that are bet-
ter adapted to specific soil and climate conditions (Ritchie 1991; 
Koskela et al. 2014). This genotype selection could also be based 
on advanced sequencing technologies and machine learning 
analysis that incorporate highly polygenic models and include 
various components involved in edaphic adaptation (and its 
interaction with climate). Finally, soil traits and mycorrhiza 
composition should play a capital role in conservation plans, as 
demonstrated in previous transplant experiments in A. religiosa 
(Ortiz- Bibian et  al.  2017; Argüelles- Moyao and Galicia  2024). 

However, while sacred fir is a good model to perform such studies 
because of its distribution in heterogeneous edaphic landscapes, 
tree species with more developed genomic tools and common 
garden experiments must also be considered to perform such ex-
periments (Plomion et al. 2016; Guerrero et al. 2018).
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