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Lyme borreliosis and tick-borne encephalitis significantly impact public health in Europe, transmitted 
primarily by endemic tick species. The recent introduction of exotic tick species into northern Europe 
via migratory birds, imported animals, and travelers highlights the urgent need for rapid detection 
and accurate species identification. To address this, the Swedish Veterinary Agency launched a citizen 
science initiative, resulting in the submission of over 15,000 tick images spanning seven species. 
We developed, trained, and evaluated deep learning models incorporating image analysis, object 
detection, and transfer learning to support automated tick classification. The EfficientNetV2M 
model achieved a macro recall of 0.60 and a Matthews Correlation Coefficient (MCC) of 0.55 on 
out-of-distribution, citizen-submitted data. These results demonstrate the feasibility of integrating 
AI with citizen science for large-scale tick monitoring while also highlighting challenges related to 
class imbalance, species similarity, and morphological variability. Rather than robust species-level 
classification, our framework serves as a proof of concept for infrastructure that supports scalable and 
adaptive tick surveillance. This work lays the groundwork for future AI-driven systems in One Health 
contexts, extendable to other arthropod vectors and emerging public health threats.

Tick-borne diseases pose a growing animal and public health threat, particularly in Europe, where the spread 
of zoonotic diseases transmitted by the Ixodidae family of ticks has been exacerbated by climatic changes. 
Rising temperatures and changing environmental conditions have contributed to improved tick survival and 
increased tick abundance, allowing for a broader geographical spread of tick-borne pathogens  1–3. The most 
important vector-borne diseases in Europe, Lyme borreliosis and tick-borne encephalitis (TBE), are transmitted 
by the primary tick vector, Ixodes ricinus. Both Lyme disease and TBE have increased in incidence over the last 
decade, with possible explanations, including the geographic expansion of the ticks involved in transmission and 
improved diagnostic awareness, reducing historical under-reporting 4. Ticks are also responsible for a wide range 
of transmission of other tick-borne pathogens that can cause disease in animals and/or humans. Of particular 
concern is the importation of exotic ticks on migratory birds that could transmit diseases such as Crimean 
Congo Hemorrhagic Fever in areas where the disease has not occurred yet5. These evolving circumstances and 
this increasing risk from tick-borne diseases pose new challenges for public health practice that need to be 
tackled with novel strategies and innovative solutions.

Traditionally, entomologists have collected and compiled tick distribution data for public health purposes. 
One such example is VectorNet, which is a network of medical and veterinary experts and organizations that 
maintain a database on the presence and distribution of vectors and pathogens in vectors across Europe and 
the Mediterranean basin 6. It supports the collection of data on vectors and pathogens in vectors related to both 
animal and human health with the aim to advance preparedness and response for vector-borne diseases. These 
entomological data are integral to the One Health approach that integrates animal, human, and environmental 
health surveillance, which is a more comprehensive approach to tackling the emergence, transmission, and 
dispersion of infectious diseases. Moreover, this One Health strategy can be operationalized across several 
spatial domains (local, national, regional, and global) and temporal scales (tracking historical changes, short-
term predictions, and long-term projections) to elucidate the impact of climate change on emerging infectious 
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diseases. However, the collection of wide-ranging entomological data as a crucial pillar of One Health surveillance 
has proven to be resource, time, and labor-consuming and nonfeasible for larger-scale surveillance, such as for 
a country. To address this gap, citizen science initiatives have emerged as a powerful and cost-effective tool for 
collecting extensive and geographically diverse data on a wider geographical scale and for longer periods.

In Sweden, a recent citizen science project has engaged the general public to contribute to tick surveillance 7. 
In just one year, participants submitted around 18,000 images of ticks, along with metadata about where and 
when ticks were found and information about the host (e.g., domestic or wild animals or humans). Experts at the 
Swedish Veterinary Agency (SVA), Uppsala, Sweden, verified and labeled these contributions, greatly enhancing 
the existing data on both endemic tick species and exotic ones. However, the sheer volume of data renders 
the processing of submissions impractical. Thus, automating the process of tick species identification offers the 
prospect of advancing both efficiency and scalability. Automating tick classification using image-based machine 
learning techniques offers a promising solution. Advances in image classification, particularly through state-of-
the-art models such as convolutional neural networks (CNNs) and transformers, have demonstrated remarkable 
success across various biological applications, including the classification of insects. Recent research has explored 
the application of machine learning to insect identification, highlighting the potential for these models to aid 
in species classification. For instance, neural networks have been used effectively to identify and classify ticks 
and other arthropods in large datasets, with promising results  8–12. These approaches have demonstrated the 
feasibility of using deep learning models to process complex biological images, making them ideal candidates 
for automated tick classification systems.

A critical aspect of deploying machine learning models for tick classification is ensuring the model’s ability to 
generalize to new, unseen data. In-distribution (ID) testing evaluates model performance on data with the same 
distribution as the training set. However, real-world applications often encounter out-of-distribution (OOD) 
data, where the characteristics of the input samples differ from the training data in terms of species, geographical 
locations, or image quality. OOD testing is essential because it assesses how well a model can generalize beyond 
the specific conditions on which it was trained. It makes it crucial for practical, real-world deployments of 
AI systems in fields like tick-borne disease monitoring. Proper evaluation of both ID and OOD performance 
is key to ensuring robust and reliable predictions, especially when handling diverse citizen-submitted data 
sources 13,14. As tick classification models are expected to handle data from various environmental conditions, 
hosts, and camera qualities, incorporating OOD testing helps assess the model’s readiness for practical use in 
variable settings.

Besides morphological differences that exist between different tick species, even within the same tick species, 
the morphological identification can be challenging 15–17. This is because ticks have a complex life cycle, including 
different developmental stages (larva, nymph, male, and female) varying in size and shape. In addition, the same 
developmental stage can greatly differ before and after engorgement. Automating tick classification using image-
based machine learning techniques offers a promising solution.

Here, we build on these novel methods to citizen science data and implement advanced image classification 
techniques for the automated detection and classification of tick species. By leveraging the latest developments in 
AI, the objective was to create a robust and scalable solution that can handle large volumes of data and improve 
accuracy in classifying visually similar species from citizen science. Moreover, integrating explainable AI (XAI) 
methods, such as the Randomized Input Sampling for Explanation (RISE) 18, will help ensure transparency and 
trust in the model’s predictions when applied to citizen science data for tick classification. Technical challenges 
such as data imbalance and species similarity had to be overcome in order to bring these machine learning 
techniques to fruition. By building on previous research and integrating state-of-the-art techniques, this work 
contributes to the development of automated tools that can assist researchers and the public in monitoring and 
responding to the evolving threat of tick-borne diseases in Europe and beyond. .

Materials and methods
Tick species
In this chapter, we begin by describing the morphological features of tick species that are relevant to Sweden 
and are under investigation by SVA. These species are either endemic or have been identified in Sweden (at 
the regional level or in the whole country) or nearby regions (i.e., Northern European countries), indicating a 
potential risk of their spread within the country. Accurate identification of these species is essential for assessing 
and mitigating associated animal and public health risks. The general tick glossary is extracted from the book 
“Ticks”  16 and European Scientific Counsel Companion Animal Parasites (ESCCAP) 15. We want to clarify that 
we are focusing on a select set of prominent morphological features for each species, particularly those that are 
more visually distinct and likely to be more easily detected by a deep learning model. The tick species included 
are as follows:

Carios (C.) vespertilionis (endemic): Commonly referred to as the bat tick, C. vespertilionis is a soft (argasid) 
tick and primarily a bat parasite. Its host-specific behavior makes it relevant in the context of pathogen 
transmission among bat populations, even if its role in the transmission of zoonotic pathogens to humans 
cannot be excluded 19. The morphological analysis of C. vespertilionis reveals distinct body structures (Figure 1) 
characterized by wrinkling patterns in the anterior area and granulation discs, which indicate specialized 
adaptations for bat host attachment. These features facilitate its classification and differentiation from other 
species 20,21.

Dermacentor (D.) spp.(exotic, sporadically reported in Sweden): The Dermacentor genus has over 35 species, 
with both D. reticulatus and its closely related sibling, Dermacentor marginatus, found in Europe 16. Dermacentor 
reticulatus (Figure 2a) known as the ornate cow tick or marsh tick, D. reticulatus is distributed across Europe and 
Asia. It infests a broad range of hosts, including humans, and is a recognized vector for diseases such as babesiosis 
and rickettsiosis. The scutum’s characteristic patterns, coupled with the festoons along the body’s periphery, serve 
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as primary visual markers for identifying this genus 23,24. In June 2024, the first case of Dermacentor marginatus 
was reported to the SVA 25. Due to the rarity of this species and its close similarity to Dermacentor reticulatus, we 
have chosen to focus our data collection efforts solely on Dermacentor reticulatus.

Haemaphysalis (H.)punctata (endemic, regional occurrence in Sweden): Widely distributed across Europe 
and Asia, H. punctata (Figure  2b) demonstrates high host adaptability, feeding on birds, mammals, and 
occasionally humans. This species plays a role in the transmission of multiple pathogens. Key morphological 
features include the absence of eyes, a smooth, rounded body, prominent festoons, and a lateral groove, which 
are critical for species identification 26,27.

Hyalomma spp. includes several species of ticks, two of which, Hyalomma marginatum and Hyalomma rufipes, 
have been sporadically reported in Northern Europe 28,29. Both species are known vectors of the Crimean-Congo 
hemorrhagic fever virus. However, due to limited data availability, we focus only on H. marginatum in this 
study. H. marginatum (Figure 2c) is commonly found in southern Europe, North Africa, and parts of Asia. Its 
adult stages primarily feed on large mammals like horses and livestock. Morphological analysis reveals distinct 
features, including an elongated body, long mouthparts, prominent scapular grooves, and legs adapted for rapid 
movement.

Ixodes (I.) hexagonus (endemic): Commonly known as the hedgehog tick, I. hexagonus parasitizes hedgehogs, 
dogs, and cats and is noted for its potential to spread Lyme disease. Morphological examination highlights a 
small, compact body with fine cervical grooves, essential traits for distinguishing it from other species (Figure 
3a). A key visual indicator of the species is the lighter or whitish coloration, especially in empty adult females, 
which further aids in identification 16,30,31.

Ixodes (I.) persulcatus (endemic, regional occurrence in Sweden): I. persulcatus is a significant vector for 
diseases such as Lyme borreliosis and tick-borne encephalitis, predominantly found in northeastern Europe and 
northern parts of Asia. The species exhibits distinctive lateral grooves and a dark, compact scutum. However, 
it closely resembles Ixodes ricinus, making visual identification with the naked eye challenging. It can be 
challenging even for an expert taxonomist to differentiate this species from I. ricinus, since some of the most 
useful structures (e.g., the marginal groove in the female tick) can disappear as soon as the tick becomes partially 
engorged. Both morphological and molecular identification is usually performed to confirm the identification of 
this species  16,30,32. In our study, we omitted this class since there was no evidence to prove an uploaded image 
in the web application is from this species.

Ixodes (I.) ricinus (endemic): Commonly referred to as the sheep tick or castor bean tick, I. ricinus is the most 
prevalent tick species in Sweden and a major vector of Lyme disease in Europe. It also transmits diseases such as 
anaplasmosis and babesiosis. Morphological analysis reveals a round body with no eyes and distinct punctations 
on the scutum (Figure 3b). However, these features may not be sufficient for distinguishing it from closely related 
species like I. persulcatus 16,30. We also include images of different life stages (Figure 4), as this species is the most 
frequently reported tick in Sweden, warranting a more comprehensive description.

Fig. 2.  This image is provided for research and educational purposes only. The image is protected by copyright 
and may not be reproduced, distributed, or used without explicit permission from ESCCAP UK and Ireland.

 

Fig. 1.  Image of C. vespertilionis taken from article 22.
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Rhipicephalus (R.) sanguineus species group (exotic, sporadic reports in Sweden): Known as the brown dog 
tick, R. sanguineus species group has a global distribution and is commonly associated with dogs. It is a vector for 
several canine diseases, including ehrlichiosis and babesiosis, and can also transmit pathogens like Rickettsiae to 
humans, potentially causing rickettsial diseases such as Mediterranean spotted fever. The species is characterized 
by a long, narrow body with festoons along the edge, as well as unique scutal patterns that aid in its identification 
(Figure 3c). The brown dog tick can complete its lifecycle indoors, making it particularly adept at infesting 
homes and kennels 33,34. Given recent taxonomic developments, we refer to this as the Rhipicephalus sanguineus 
species group rather than a single species 35.

All species have been documented for the development of our classification system, with specific anatomical 
features presented in corresponding images to enhance species identification and facilitate further analysis.

The ixodid ticks life cycle is hemimetabolous and comprises four stages: egg, larva, nymph, and adult. Each 
stage requires a blood meal to progress, with ticks undergoing metamorphosis at each transition 36. Here, we 
briefly describe tick development’s primary stages and appearance. Since there are many variations in the life 
cycle patterns depending on the tick species, we mainly refer to the development of Ixodes spp. ticks in the 
following section.

Egg: Ticks begin their life cycle as eggs, which are laid in large quantities by adult females, usually after 
engorgement is completed and in variable amounts depending on the tick species. After hatching, the larvae 
develop as the first mobile stage.

Larva (six-legged stage): In the larval stage, ticks have six legs, represent the smallest developmental form, 
and lack spiracular openings (stigma). They typically feed on small mammals or birds, which leads the larvae to 
transition into the nymph stage.

Nymph (eight-legged stage): Ticks enter the nymphal stage after molting with two additional legs and the 
appearance of spiracular openings. Nymphs are larger than larvae but smaller than adults. In this stage, ticks 
frequently feed on larger animals and can transmit pathogens, although their forms remain less developed than 
those of adult ticks.

Adult: The adult stage signifies sexual maturity, with noticeable distinctions between males and females, 
including the appearance of the genital opening on the ventral side of the body. Female ticks require a blood 
meal for reproduction, becoming engorged after feeding, which precedes egg production. In contrast, males 
typically do not feed extensively; instead, they remain on the host primarily to locate and mate with females, 
often attaching to the same host for this purpose.

Morphological Variation Across Developmental Stages: The morphology of ticks varies significantly 
throughout their life cycle, complicating identification based on images alone, particularly for AI systems. 
Nymphs, for instance, are small and less morphologically distinct, making them hard to differentiate from 
larvae or adults in images. Additionally, engorgement after feeding can obscure key features, especially in 

Fig. 4.  From left to right, Ixodes ricinus; larva, nymph, unfed adult male, unfed adult female, fully engorged 
adult female (scale mm). This image is provided for research and educational purposes only. The image is 
protected by copyright and may not be reproduced, distributed, or used without explicit permission from 
ESCCAP UK and Ireland.

 

Fig. 3.  These images are provided for research and educational purposes only. They are protected by copyright 
and may not be reproduced, distributed, or used without explicit permission from ESCCAP UK and Ireland.
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larvae, nymphs, and females, which challenges AI-based classification. However, in traditional morphological 
identification methods, these variations are less problematic when directly examining specimens. This highlights 
the difficulty in image-based species identification.

Data sources
In this part, we describe the data sources, their distribution, and the part of the process in which they were used.

Global biodiversity information facility (GBIF)
To access images of invasive tick species, we relied predominantly on online sources, particularly GBIF. We were 
able to obtain images for all seven species from this source37–43. However, we encountered several challenges 
while preprocessing the data, such as mislabeled specimens and poor-quality images. These issues necessitated 
a manual review of each image to verify both its quality and labeling. In cases where we had doubts, the images 
were further validated by experts at SVA. The distribution of this dataset is detailed in Table 1. This data was 
utilized for model training, validation, and in-distribution testing.

Tick photography (TickExpand)
With the support of parasitologists from SVA, we were able to photograph 18 frozen tick specimens from 5 
different species (Dermacentor reticulatus, Haemaphysalis punctata, Hyalomma marginatum, Ixodes hexagonus, 
Rhipicephalus sanguineus) in a laboratory setting. The photography has been done using three different 
smartphones and an external lens. We used mobile phone cameras to reflect the data we would obtain through 
Citizen Science. Several photos were taken from each sample at different angles and lighting, aiming to reproduce 
the lighting effects and position of a Citizen Science sample. This data has only been used to train the model to 
avoid any data leakage. The data frequency distribution is shown in table 1.

We used three smartphone cameras to capture images for the ExpandTick dataset to include a wide variety 
of image qualities and perspectives. The first device was a Google Pixel 3 smartphone with a focal length of 4.44 
mm, providing standard imaging capabilities for our dataset. The second device was a Google Pixel 6 Pro, with 
a focal length of 6.81 mm, offering higher-resolution images and improved imaging performance. Lastly, we 
used an iPhone 14 Pro with a focal length of 6.86 mm. We attached an Apexel 10X Macro Lens (100 mm) to 
its rear camera to enhance the iPhone’s macro photography capabilities. Figures 5b, 5c, and 5ddisplay images 
of a Hyalomma marginatum sample captured using these cameras, in the order mentioned above. We set up 
our system (Fig. 5a) to capture high-resolution, close-up images of ticks with exceptional detail using different 
devices and optical configurations. This dataset includes multiple images per specimen, which may introduce 
sample dependence but improves exposure to intra-sample visual variability. This dataset is used to improve the 
reliability and applicability of our machine learning models.

Fig. 5.  (a) Camera setup. (b-d) Three shots from one sample, Hyalomma marginatum, with different cameras.

 

Species GBIF SVA TickExpand Web application Total

Carios vespertilionis 94 8 0 41 144

Dermacentor reticulatus 1177 0 451 9 1637

Haemaphysalis punctata 37 4 110 10 161

Hyalomma marginatum 133 3 441 9 586

Ixodes hexagonus 77 0 283 52 412

Ixodes ricinus 1003 540 0 15756 17299

Rhipicephalus sanguineus 432 0 927 8 1367

Dataset usage Training/testing Training/testing Training OOD testing

Total 2954 555 2212 15,885 21,606

Table 1.  Distribution of tick species images across different data sources, including total counts per species 
and per source. Multiple images may correspond to the same individual tick.
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Dataset from the Swedish Veterinary Agency (SVA)
The first confirmed instances of adult specimens of Hyalomma marginatum and H. rufipes in Sweden were 
reported between 2018 and 201944. This significant discovery prompted the SVA to initiate an approach to 
monitor the potential spread of these exotic tick species. In 2019, the SVA launched a public awareness campaign 
encouraging individuals to submit images of exotic tick species via email. Togheter with the campaign a website 
at SVA:s homepage was set up with images and information on the tick species that was off high interest. In 
addition to image submissions, physical tick specimens of particular interest were sent to SVA, where experts 
conducted thorough morphological examinations, followed by pathogen analysis.

The dataset resulting from this initiative comprises 555 images, with some images representing the same 
tick sample from different angles or magnifications. The distribution of species within this dataset is depicted 
in table 1. This dataset has been partitioned into training, validation, and in-distribution test sets to support the 
development and evaluation of the machine learning model. The diverse nature of the images, including varying 
perspectives and quality, presents a realistic challenge for model generalization and robustness in identifying 
and classifying tick species.

Web application dataset
As detailed in the introduction, SVA launched a web application, ‘Report Tick,‘ on May 4, 2023, as part of a 
citizen science initiative to monitor tick findings across Sweden 7. This effort resulted in the collection of 15,885 
tick reports, with over 99% of the identified ticks being classified as Ixodes ricinus. All labels were provided by 
experts at SVA. The distribution of the collected data is summarized in Table 1. Although Ixodes persulcatus was 
excluded from the classification task, some samples submitted from northern regions of Sweden may belong to 
this species due to its geographical overlap. These cases are likely misclassified as I. ricinus due to the high visual 
similarity between the two species.

Among the datasets used, TickExpand is the only dataset containing preserved (frozen) specimens. Other 
datasets, including Web App and SVA submissions from the public, contain only fresh samples. While GBIF may 
include preserved specimens, specific preservation details were not systematically recorded.

Table 2 presents the distribution of life stage, sex, and feeding status across species and datasets, including 
data from the Web App, TickExpand, and SVA datasets. Since this information was unavailable for the GBIF 
dataset, it was excluded from the table. Note that the counts reflect individual tick samples, not images—multiple 
images may exist for a single sample, resulting in lower numbers than the total number of images.

Life stage Sex Feeding

Species Dataset L N A Unk. F M Mul Unk. Eng. Non. Unk.

Carios vespertilionis TickExpand N/A N/A N/A

Web App 0 0 18 7 2 15 1 7 1 17 7

SVA N/A 0 0 0 4 0 4 0

Dermacentor reticulatus TickExpand 0 0 3 0 0 3 0 0 0 3 0

Web App 0 0 6 1 6 0 0 1 0 6 1

SVA N/A N/A N/A

Haemaphysalis punctata TickExpand 0 0 1 0 1 0 0 0 0 1 0

Web App 0 0 8 0 6 2 0 0 1 7 0

SVA N/A 1 0 0 0 0 1 0

Hyalomma marginatum TickExpand 0 0 3 0 0 3 0 0 0 3 0

Web App 0 0 5 0 3 2 0 0 2 3 0

SVA N/A 1 1 0 0 0 2 0

Ixodes hexagonus TickExpand 1 3 0 0 2 2 0 0 1 2 0

Web App 1 1 36 0 38 0 0 0 36 1 1

SVA N/A N/A N/A

Ixodes ricinus TickExpand N/A N/A N/A

Web App 13 788 11668 101 10316 1557 562 135 7166 5270 134

SVA N/A 266 29 10 10 145 165 7

Rhipicephalus sanguineus TickExpand 1 6 0 0 3 4 0 0 0 7 0

Web App 0 1 3 0 3 0 0 1 2 2 0

SVA N/A N/A N/A

Table 2.  Distribution of attributes across tick species and datasets. The table reports counts of samples across 
three axes: Life Stage (Larva, Nymph, Adult, and Unknown), Sex (Female, Male, Multiple or Not applicable, 
and Unknown), and Feeding Status (Engorged, Not Engorged, and Unknown). Note that the same tick may 
appear in multiple images. “TickExpand” is a curated dataset; “Web App” contains public submissions; “SVA” is 
a research-grade dataset with limited annotation coverage.
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Preprocessing of the data
To utilize pre-trained deep learning models, we standardized all images to a resolution of 512x512 pixels. Before 
resizing, we employed an object detection model based on the InceptionResNetV2 architecture, which was 
trained on ImageNet and fine-tuned with a Faster R-CNN head on the OpenImages V4 dataset, which contains 
600 classes. This model, available through the TensorFlow Object Detection API 45, was applied to each image 
in the dataset.

For each image, if the object detection model identified any of the following labels: Tick, Insect, Bug, Beetle, 
Invertebrate, Isopod, Centipede, Ladybug, Ant, Spider, or Snail, and the detected object occupied less than 10% 
of the total image area, we cropped the image to the bounding box of the detected object (Fig. 6). We tested this 
approach by conducting a CNN classification with varying thresholds for the object occupation percentage and 
simply no cropping. The results indicated that using a 10% threshold yielded the most significant improvement 
in classification accuracy, validating the effectiveness of this preprocessing step.

To prevent data leakage across training, validation, and in-distribution test sets, we ensured that images from 
the same sample were grouped together and not split across different sets. This was particularly important given 
the presence of multiple images per sample in our datasets. For the limited video data we obtained from the SVA 
and web application datasets, which typically featured short clips with consistent lighting and positioning, we 
randomly selected a single frame from each video to include in the dataset.

After completing these preprocessing steps, we allocated 70% of the GBIF and SVA datasets for training, 10% 
for validation, and 20% for in-distribution testing. Due to the limited number of samples in the TickExpand 
dataset, all of its data was used only for training. As mentioned previously, the web application dataset was 
exclusively reserved for out-of-distribution testing.

Model architectures
Transfer learning is a machine learning technique that involves repurposing a pre-trained model, initially 
developed for one task, as the starting point for a model on a different but related task. This methodology 
leverages the knowledge embedded in the pre-trained model, typically derived from a large-scale dataset, and 
applies it to another dataset that is often smaller or domain-specific. The effectiveness of transfer learning has 
been well-documented in the literature, particularly in the image classification domain, where fine-tuning pre-
trained models on new datasets has been shown to significantly enhance model accuracy and efficiency 46–48. 
In this study, we experimented with three state-of-the-art deep learning architectures: ResNet152V2  49, 
InceptionResNetV2 50, and EfficientNetV2M 51. The choice of these architectures was motivated by their proven 
performance in various computer vision tasks and their ability to leverage transfer learning for improved 
generalization on new datasets effectively.

Out of the three architectures that were tested, EfficientNetV2M showed improvements in classification 
accuracy and generalization, surpassing the other models. This indicates that the architecture’s advanced design, 
scalability, and fine-tuning process make it especially suitable for the task at hand.

Training procedure
Data augmentation 52 is an important technique used in training machine learning models, especially for tasks 
like image classification. This technique involves applying random transformations to the input data, effectively 
increasing the diversity of the training set without requiring additional storage space. Here, we used a variety 
of augmentation strategies, such as rotation, shifting, flipping, zooming, and adjusting brightness. These 
transformations were applied dynamically in real-time during the training process, ensuring that each batch 
presented a unique variation of the data to the model and engaging the model in a dynamic learning process.

This method helps the model to generalize to unseen data by preventing it from becoming overly focused on 
the specific characteristics of the training set. Continuous exposure to varied versions of the data encourages the 
model to learn more robust and generalized features, ultimately leading to improved performance across diverse 
test scenarios.

The training process for our model was conducted in two distinct stages, each designed to optimize different 
aspects of the learning process. In the initial stage, we employed pre-trained models in a “frozen” state, where 
the parameters of the pre-trained layers were kept fixed and untrainable. This stage focused on training a 
custom classification head, which included a GlobalAveragePooling layer, a Dropout layer, and a fully connected 
output layer with seven nodes corresponding to the target classes. The AdamW optimizer 53 was utilized for 
optimization, with an initial learning rate set to 0.001. To address the class imbalance inherent in the dataset, we 
incorporated the Categorical Focal Cross entropy loss function 54, supplemented with label smoothing at 10% 
and an alpha parameter to reflect class weights.

Fig. 6.  Data preprocessing example.
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We have used early stopping and a learning rate reduction strategy to improve training stability and 
prevent overfitting. These techniques are essential for preventing the model from being stuck in local minima 
and ensuring it can perform well beyond the training data. The batch size was fine-tuned to 32, balancing 
computational efficiency and model performance.

After completing the first stage of training, we proceeded to the fine-tuning phase. In this second stage, we 
unfroze the last 40 layers of the pre-trained model, allowing these layers to be trained and fine-tuned to the 
specific features of our target dataset. The fine-tuning stage used the same hyperparameters as the initial stage, 
except for a reduced learning rate set to 0.0001. This lower learning rate was chosen to adjust the pre-trained 
weights without significantly changing the model’s learned representations, thereby enhancing its adaptation to 
the specific characteristics of the new data.

Using data augmentation and a two-stage training process, we created a robust, well-generalized model that 
accurately classifies target classes despite significant data variations. The models and image generation pipelines 
were developed using TensorFlow 2.16.1, an open-source Python package. Each model was retrained three times 
with different initializations, and results are reported as mean ± standard deviation across runs using the same 
test set.

Model evaluation
In the context of public and animal health, failing to identify a tick species (false negative) poses a greater risk 
than a false positive classification. High recall is, therefore, especially critical, as it ensures that rare or exotic 
species are detected—even at the cost of occasional misclassification. This supports the early-warning function 
of our surveillance system and motivates the metrics we prioritize in our evaluation.

To evaluate the performance of our classification models, we used metrics suited to multiclass classification 
tasks with highly imbalanced datasets. Given the extreme class imbalance in our data, relying solely on standard 
accuracy or weighted averages can obscure poor performance in underrepresented classes. Therefore, we adopted 
a multi-perspective evaluation strategy that includes both class-specific and aggregate metrics.

We computed precision, recall, and F1-score for each class to capture detailed, class-level performance. 
Precision quantifies the correctness of positive predictions for a given class, while recall (sensitivity) reflects the 
ability to detect all true instances of that class. The F1-score, being the harmonic mean of precision and recall, 
balances the two — and is particularly valuable in highlighting the trade-offs between false positives and false 
negatives.

To summarize class-level metrics, we computed both macro and weighted averages. Macro-averaged metrics 
treat each class equally and are critical for evaluating fairness and robustness across species. Weighted averages, 
on the other hand, reflect class frequencies and are dominated by the performance of majority classes such as 
Ixodes ricinus, which can be misleading under imbalance.

Given this, we intentionally prioritize macro-averaged recall (equivalent to balanced accuracy), macro F1-
score, and the Matthews Correlation Coefficient (MCC) for our primary evaluations. We deliberately chose not 
to emphasize macro-averaged precision, as it can be heavily skewed by small sample sizes in rare classes, leading 
to unstable or overly optimistic values that do not reflect consistent model behavior. In highly imbalanced 
settings, macro precision may fluctuate significantly due to a few false positives or negatives in underrepresented 
classes and thus offers limited reliability compared to recall-based measures. By focusing on macro recall, macro 
F1, and MCC, we aim to capture a more balanced and class-independent view of performance — particularly 
for rare but ecologically significant species. These metrics provide more reliable indicators of true classification 
ability across all classes. The MCC is well-suited for imbalanced classification tasks, as it integrates information 
from all four confusion matrix components—true and false positives and negatives—into a single performance 
metric ranging from -1 to +1. 55.

Although we report Area Under the ROC Curve (AUC-ROC) for completeness, we recognize that it 
has limitations in multiclass and imbalanced contexts. AUC is based on ranking probabilities, not on hard 
predictions, and may appear high even if a model systematically misclassifies minority classes. Therefore, while 
we include macro AUC, it is not emphasized in our core evaluation.

To provide a clear view of class-specific behavior, we present both the raw (unnormalized) and row-
normalized confusion matrices. The unnormalized version shows absolute classification counts, while the 
normalized version makes it easier to interpret per-class recall, as each row is scaled to sum to one. This dual 
presentation helps interpret whether performance issues arise from false positives, false negatives, or both — 
particularly for rare classes where raw counts may be misleading.

To robustly assess the statistical reliability of these metrics, particularly given the small sample sizes in some 
classes, we calculated 95% confidence intervals using non-parametric bootstrapping. Specifically, we resampled 
test data with replacement for 1000 iterations, generating distributions for precision, recall, F1-score, and MCC. 
These distributions enabled us to estimate the variability and uncertainty in performance metrics. Classes with 
fewer than 10 test samples are flagged explicitly, as their wide confidence intervals indicate high uncertainty, 
cautioning against strong interpretations of performance in these cases.

In summary, our evaluation framework is designed to avoid being biased by class frequencies and instead 
highlight the true strengths and weaknesses of the model across all tick species.

Results
In-distribution test results
Here, we present the performance of these models on the in-distribution test data, as outlined in the Subsection 
Data Sources. The results for three selected models—ResNet152V2, InceptionResNetV2, and EfficientNetV2M—
are shown in Table 3, which summarizes their macro recall, F1-score, AUC and MCC metrics.
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From Table  3, we observe that the three models exhibit very close performance, with EfficientNetV2M 
slightly outperforming the others, particularly regarding recall. This is an important metric for our study, where 
correctly identifying true positives is critical. The higher AUC score of EfficientNetV2M further highlights its 
ability to distinguish between classes effectively. To ensure the robustness of our results, we retrain each model 
three times using the same dataset but with different random initializations. The reported values in the results 
tables represent the mean performance across these runs, while the ± values indicate the standard deviation.

To gain a more detailed understanding of the EfficientNetV2M model’s performance, we have included 
the confusion matrix in Fig. 8 and per-class precision, recall, F1-score, and MCC along with their confidence 
intervals in Fig. 7. Two species, Ixodes hexagonus and Rhipicephalus sanguineus, show notably poor performance 
with wide confidence intervals, indicating high uncertainty and frequent misclassification. In the case of 
Ixodes hexagonus, many samples are misclassified as Ixodes ricinus (50%), suggesting that the model struggles 

Fig. 8.  In distribution test confusion matrix from EfficientNetV2M.

 

Fig. 7.  Per-class precision, recall, F1-score, and MCC on the in-distribution test set. Points represent means, 
horizontal bars denote 95% bootstrap confidence intervals (1000 resamples), and parentheses indicate the 
number of test samples per class.

 

Model Macro recall Macro F1-score Macro AUC MCC

ResNet152V2 0.68 ± 0.2 0.66 ± 0.1 0.82 ± 0.1 0.64 ± 0.1

InceptionResNetV2 0.67 ± 0.3 0.68 ± 0.3 0.84± 0.2 0.67 ± 0.2

EfficientNetV2M 0.72 ± 0.3 0.67 ± 0.1 0.85 ± 0.1 0.71 ± 0.1

Table 3.  In-distribution test results for three models. Significant values are in bold.
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to distinguish between these species, likely due to imbalance of the training datasets. Similarly, Rhipicephalus 
sanguineus exhibits lower recall (47%) with many misclassifications across various species. These factors, along 
with the impact of this species’ appearance on the prediction outcomes, will be further explored in the discussion 
section.

Overall, EfficientNetV2M demonstrates better results across most species, with higher overall MCC and 
AUC, making it a promising approach for large-scale tick classification.

Out-of-distribution test results
The web application dataset, which consists of purely out-of-distribution (OOD) data, was used for the final 
testing to evaluate the model’s generalizability. The results for each of the models are shown in Table 4, which 
presents macro recall, F1-score and AUC, and MCC for each model.

EfficientNetV2M showed relatively strong performance in terms of recall and F1-score on the OOD data, 
indicating a promising ability to generalize to novel distributions. Additionally, EfficientNetV2M obtained the 
highest MCC, suggesting a better overall agreement between predicted and true labels compared to the other 
models, even in out-of-distribution scenarios.

The confusion matrix for EfficientNetV2M on OOD data is displayed in Fig. 9. The model shows variability 
in its predictions, with some species being more difficult to classify.

Table 5 reports the class-wise performance of the EfficientNetV2M model on the out-of-distribution (OOD) 
test set. The table includes precision, recall, F1-score, and support for each class, as well as overall accuracy, 
macro-averaged, and weighted-averaged metrics. Performance varies across classes, reflecting the distribution 
and characteristics of the test data.

Evaluation with average probabilities for each sample
In the web application dataset, some samples consist of multiple images. To make use of all available information, 
the model predictions were averaged across all images belonging to the same sample. This technique was applied 
in order to improve the prediction consistency across multiple images of the same tick sample. The sample 
distribution before and after filtering for unique samples is shown in Table 6.

Applying average probabilities across multiple images per sample improved recall and MCC, suggesting 
enhanced consistency in predictions when more contextual views are available. The EfficientNetV2M model, 
in particular, achieved a recall of 0.60 and an MCC of 0.55, both of which represent improvements compared to 
the previous results (Table 7).

The confusion matrix after averaging probabilities for each sample is shown in Figure  10. The averaging 
approach reduces misclassification by improving the model’s ability to make more accurate predictions when 
multiple images of the same sample are provided.

Fig. 9.  Confusion matrix for EfficientNetV2M on out-of-distribution test data.

 

Model Macro recall Macro F1-score Macro AUC MCC

ResNet152V2 0.42 ± 0.2 0.20 ± 0.1 0.71 ± 0.2 0.33 ± 0.3

InceptionResNetV2 0.49 ± 0.3 0.25 ± 0.2 0.72 ± 0.2 0.425 ± 0.3

EfficientNetV2M 0.55 ± 0.3 0.27 ± 0.2 0.75 ± 0.2 0.49 ± 0.2

Table 4.  OOD test results for three models. The results are reported as the mean and standard deviation over 
three runs. Significant values are in bold.
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Fig. 10.  Confusion matrix for OOD test data with average probability for each sample on the trained 
EfficientNetV2M.

 

Model Macro Recall Macro F1-score Macro AUC MCC

ResNet152V2 0.43 ± 0.3 0.21 ± 0.1 0.73 ± 0.2 0.34 ± 0.2

InceptionResNetV2 0.48 ± 0.3 0.23 ± 0.2 0.76 ± 0.2 0.43 ± 0.1

EfficientNetV2M 0.60 ± 0.3 0.26 ± 0.2 0.78 ± 0.2 0.55 ± 0.1

Table 7.  OOD test results with average probability for each sample.

 

Species Original Distribution Unique samples

Carios vespertilionis 41 25

Dermacentor reticulatus 9 7

Haemaphysalis punctata 10 8

Hyalomma marginatum 9 5

Ixodes hexagonus 52 38

Ixodes ricinus 15756 12570

Rhipicephalus sanguineus 8 4

Table 6.  Sample distribution before and after filtering unique samples.

 

Class Precision Recall F1-score Support

Carios vespertilionis 0.39 0.95 0.55 41

Dermacentor reticulatus 0.10 0.56 0.16 9

Haemaphysalis punctata 0.06 0.10 0.08 10

Hyalomma marginatum 0.03 0.56 0.05 9

Ixodes hexagonus 0.04 0.12 0.06 52

Ixodes ricinus 1.00 0.92 0.96 15756

Rhipicephalus sanguineus 0.01 0.62 0.01 8

Accuracy 0.92 15885

Macro average 0.23 0.55 0.27 15885

Weighted average 0.99 0.92 0.95 15885

Table 5.  Detailed classification metrics per class on the real-world, out-of-distribution test set evaluated with 
the EfficientNetV2M model.
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The confidence intervals (CIs) shown in Figure 11 further illustrate the model’s uncertainty in predicting rare 
species in the out-of-distribution (OOD) dataset. While Ixodes ricinus maintains stable and reliable performance 
(narrow CIs), classes like Ixodes hexagonus, Rhipicephalus sanguineus, and Hyalomma marginatum show notably 
wide intervals, particularly for recall and MCC. This wide uncertainty highlights significant challenges in reliably 
classifying underrepresented species and underscores the importance of interpreting these results cautiously.

We present sample-level predictions in the context of both correctly classified and misclassified examples. 
For each sample, the top three predicted probabilities were used to provide insights into the model’s decision-
making process.

Figure 12 highlights some instances of correctly classified and misclassified samples. Each subfigure shows a 
correctly or misclassified tick image along with its top three predicted probabilities. For example, Fig. 12adisplays 
a correctly classified Hyalomma marginatum sample, while Fig. 12bshows a misclassified example of the same 
species.

These visualizations provide insight into the model’s classification process and can guide future improvements.

Fig. 12.  Examples of correctly classified and misclassified samples, showing the top three predicted 
probabilities.

 

Fig. 11.  Per-class precision, recall, F1-score, and MCC on the out-of-distribution test set using averaged 
probabilities per sample. Points represent means, bars denote 95% bootstrap confidence intervals (1000 
resamples), and parentheses indicate the number of unique test samples per class.
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Evaluating model interpretability through explainable AI
We integrated Explainable AI (XAI) techniques into our evaluation framework. Specifically, we employed the 
Randomized Input Sampling for Explanation (RISE) method  18, which is designed to provide a visual and 
intuitive understanding of the model’s predictions. RISE generates saliency maps highlighting the most critical 
regions of the input image that influenced the model’s final classification. These maps provide insights into which 
parts of the image the model “looked at” when making its decision, thereby making the deep learning model 
more interpretable.

RISE operates by applying random masks to the input image and observing the changes in the model’s 
prediction. By aggregating these results over many trials, RISE constructs a saliency map that assigns higher 
importance to regions that consistently contribute to the model’s prediction. This process allows us to visualize 
the decision-making patterns of the EfficientNetV2M model, revealing whether the model relies on meaningful 
features such as specific morphological traits of the ticks or irrelevant background information.

The RISE Insertion Score reflects the model’s reliance on specific image regions by gradually inserting the 
most important pixels back into the image and measuring the corresponding increase in the model’s confidence. 
Higher insertion scores indicate that the model is correctly focusing on the relevant features when making 
predictions.

In Fig. 13, we provide examples of saliency maps generated by the RISE method for various classifications 
by the EfficientNetV2M model. The figure includes instances of both correctly and incorrectly classified species, 
highlighting the difference in model focus between successful and failed predictions.

In the analysis of the saliency maps generated by the RISE method, the results demonstrate varied model 
performance across different classifications. For instance, in the case of Hyalomma marginatum, the model 
correctly classified the species in one instance with a high RISE Insertion score of 0.688. The corresponding 
saliency map highlighted regions containing critical morphological features of the species, indicating that 
biologically relevant traits influenced the model’s decision. On the other hand, in a different case, the model 
incorrectly identified Hyalomma marginatum and received a lower RISE Insertion score of 0.182. The saliency 
map showed that the model’s focus was spread across irrelevant areas of the image, which probably led to the 
wrong classification.

Discussion
In machine learning, particularly in high-stakes applications such as medical diagnostics, environmental 
monitoring, and wildlife classification, the transparency and interpretability of model predictions are paramount. 
While state-of-the-art models, such as deep neural networks, achieve high accuracy, they often operate as 
black boxes, making it difficult to understand how predictions are made. This lack of interpretability can be 
problematic, especially in scenarios where trust and validation of the model’s decision-making process are 

Fig. 13.  Examples of saliency maps generated by the RISE method for tick species classification using the 
EfficientNetV2M model.
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crucial. Our findings suggest that model attention plays an important role in accurate classification, especially 
when dealing with species that show small morphological differences. All presented findings and challenges 
highly contribute to the development of automated tools that can assist researchers and the animal and public 
health sector in monitoring and responding to the evolving threat of tick-borne diseases.

The performance of the trained models in both in-distribution and OOD scenarios reveals several key 
challenges in deploying AI for tick classification. While EfficientNetV2M achieved higher overall performance 
primarily due to Ixodes ricinus, it showed limited performance across most other species in the OOD set, 
highlighting the challenges of generalization under extreme class imbalance. This is likely due to the species 
similarity challenge, where small morphological differences between species make accurate classification 
difficult, even for models trained on large datasets.

One of the major challenges we faced was the lack of data, especially for species such as Haemaphysalis 
punctata and Carios vespertilionis, for which fewer samples were available for training. This unequal data 
distribution resulted in models biased towards the majority species, Ixodes ricinus. In order to counter this, 
we used the data augmentation technique and categorical focal loss with class weights for the model training 
process. However, the limited number of samples for rare species still prevents the model from generalize well. 
We also experimented with several versions of Data-efficient Image Transformers 56 and ConvNeXT 57, which 
leverage transformer-based architectures but likely due to the extremely small sample size of certain species; 
these models did not yield satisfactory results. To address this issue, additional data collection is necessary, 
particularly for underrepresented species and for engorged ticks, which were not well-represented in the dataset.

Beyond data scarcity, we observed specific overfitting to Carios vespertilionis, likely driven by limited 
variability in training samples. This overfitting was reflected in the confusion matrix, where the model 
showed unusually high recall in classifying Carios vespertilionis. This likely resulted from the species’ distinct 
morphological features and the fact that all the images in the dataset represented adult stages, leading to a lack 
of variability. The uniformity in the images, combined with its unique appearance, may have made it easier 
for the model to recognize, resulting in almost perfect recall. However, this suggests that the model might be 
relying too heavily on the specific visual traits of adult ticks and may struggle with generalizing to other life 
stages or similar-looking species, indicating the need for a more diverse dataset to improve robustness. The 
supplementary information includes a saliency map example for Carios vespertilionis.

Exact species identification is not a realistic goal at this point, especially in cases where two tick species 
from the same genus are extremely similar (e.g., I. ricinus and I. persulcatus; H. marginatum and H. rufipes; D. 
reticulatus and D. marginatus). For these species, we can often only identify up to the genus level. However, this 
level of identification may be sufficient to support monitoring of endemic tick spread and the detection of exotic 
species in Sweden, although further validation is needed to confirm its practical utility in real-world surveillance. 
Particularly for exotic ticks, reporters have the opportunity to send specimens to SVA for further morphological 
identification and pathogen analysis. On the other hand, species with more similar morphological traits, such 
as Ixodes hexagonus and Rhipicephalus sanguineus, exhibited higher misclassification rates, highlighting the 
challenge of distinguishing visually similar species. This misclassification is particularly evident in the case of 
Ixodes hexagonus, where nearly 50% of samples are predicted as I. ricinus in the OOD test set (Figure 10). Since 36 
out of 38 I. hexagonus samples are labeled as engorged adults (Table 2), and the stratified results (Supplementary 
Table S2 and S3) show very low recall for this class under the engorged condition, it is likely that feeding status 
contributes substantially to this confusion. Morphological distortion caused by engorgement may obscure key 
species-specific traits, especially between closely related taxa like I. ricinus and I. hexagonus. This reinforces the 
need for a hierarchical classification approach, where engorgement status is first predicted as a separate step, 
followed by species-level identification within each morphological state, as proposed in our future work, which 
is further detailed below. This suggests that when visual differences between species are sufficiently distinct and 
preserved across conditions, the model can generalize well even with limited training data. However, for visually 
similar species, particularly when morphological features are obscured by factors like engorgement, the model 
may require more diverse and abundant examples to achieve reliable discrimination.

Intra-species variability across life stages further complicated classification. As seen in Figure  4, the 
morphological characteristics of ticks vary significantly between their larval, nymphal, and adult stages, as well 
as between engorged and non-engorged individuals. This morphological diversity often caused the models to 
confuse ticks in one stage with those in another, particularly when the model had limited exposure to examples 
from all life stages during training. Specifically, the dataset for Haemaphysalis punctata is largely dominated by 
images derived from a single individual (110 of 161 images), collected through the TickExpand dataset. This 
lack of variability clearly contributed to the poor recall (10%) observed for this species in the out-of-distribution 
evaluation. While this overrepresentation limits morphological diversity and generalization, training on 
duplicated individuals also has advantages. The TickExpand dataset provides high-quality, standardized images 
across varying angles and lighting, simulating the heterogeneity seen in citizen submissions. This may help 
stabilize feature extraction in early training and compensate for class scarcity where field data are unavailable. 
Neverdeless, future efforts should focus on expanding the dataset to include more diverse representations of each 
species across their life stages.

Another critical challenge we identified was the impact of tick engorgement on classification accuracy. 
Engorged ticks exhibit dramatically altered morphological characteristics compared to non-engorged ticks, often 
obscuring key species-specific features and consequently leading to misclassifications. An optimal solution could 
involve adopting an eight-class classification approach, comprising the seven species plus an additional separate 
class specifically for engorged ticks, or even employing a hierarchical classification model. Such a hierarchical 
model would first classify ticks based on their engorgement status, followed by a species-level classification 
within each category. However, due to the lack of labeled engorgement status in a significant portion of our 
training dataset, implementing this method has not been feasible in the current study. While Table 2 summarizes 
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feeding status annotations from curated datasets, it does not include the GBIF dataset, where feeding status was 
not labeled by experts. Nevertheless, visual inspection indicates that engorged individuals are likely present 
across most species in GBIF. These images were retained in the training process to preserve class diversity, 
especially for underrepresented species, though the lack of explicit annotations limited our ability to stratify 
or control for engorgement effects during model development. Nonetheless, as the citizen science initiative is 
ongoing, we have received additional datasets from subsequent data collection phases through the web-based 
platform, where the engorgement status has been systematically labeled by experts. Our future plan involves 
leveraging this labeled dataset from the first and second years of citizen science participation to train a dedicated 
engorgement detection model. We anticipate that this separation and initial identification of engorgement status 
will significantly enhance the overall accuracy and reliability of species classification, dramatically improving 
model predictions in real-world scenarios.

Another challenge is posed by the fact that juvenile stages lack some species-specific morphological characters/
features, complicating identification at the genus or species level. Direct examination under a stereomicroscope 
and/or high-quality images (which average citizens cannot typically produce in field conditions) is currently 
required for juvenile identification. Moreover, molecular identification is sometimes necessary. Since most 
citizen science data consist of adult and engorged stages, with very few nymphs and almost no larvae, it is 
currently more practical to focus on identifying adult stages at the genus or species level. For this reason, the goal 
for AI-based identification of juveniles should be set at the developmental stage level (i.e., larva and nymph). A 
similar challenge arises with the engorgement of different developmental stages, which can obscure key features 
necessary for species identification. In this case, a realistic goal could be to classify such specimens simply as 
“engorged ticks.”

Since the size of the specimen is also a critical feature that enables a correct identification, in the future 
development of the proposed technique, we have to face this challenge. For example, AI-based techniques 
that already became commercially available for the identification of helminth eggs (e.g., Ovacyte - Telenostic, 
Imagyst-Zoetis, Micron kit from Micron Agritech) did not have to face this problem. In these systems, the 
camera capturing the microscopic images is also able to measure the object size.

The OOD test results provide valuable insights into the model’s ability to generalize to unseen data, which is 
critical for real-world applications where citizen-submitted data varies significantly in quality and conditions. The 
model’s performance on the OOD data notably decreased compared to the in-distribution results, particularly 
affecting macro F1-score and precision. Averaging predictions over multiple images per sample did help mitigate 
some misclassification, improving the MCC and macro recall. Nevertheless, the model’s robustness was tested by 
the wide range of images submitted by citizens, with quality from high-resolution, well-lit professional images to 
low-resolution and inconsistent submitted photos, which emphasized the need for further fine-tuning based on 
specific data qualities to handle diverse data sources effectively. The statistical reliability of model performance 
for certain species, notably Dermacentor reticulatus, Hyalomma marginatum, and Rhipicephalus sanguineus, 
is limited due to small sample sizes in the test dataset. For these species, the limited sample sizes (e.g., nine 
for Dermacentor reticulatus) produce wide confidence intervals, resulting in substantial uncertainty regarding 
performance metrics. To transparently illustrate this uncertainty, we computed 95% confidence intervals 
using non-parametric bootstrapping (see Figure 11), clearly highlighting the limited interpretability of these 
results. Additionally, the underlying dataset constraints, including severe class imbalance, overrepresentation 
of individual ticks (as seen in Haemaphysalis punctata), and variability due to feeding status, significantly 
undermine the model’s generalization capability. Addressing these dataset limitations through increased sample 
diversity and stratified evaluations will be critical for improving future model performance and reliability.

The quality of tick samples can cause complications for classification. Samples that have been frozen, preserved 
in alcohol, or physically manipulated during removal from their hosts can be damaged or deformed. This makes 
it difficult for AI to correctly classify species because images taken from these compromised samples often lose 
key distinguishing features. Therefore, integrating these images into the classification process requires careful 
consideration and may require specific preprocessing techniques to minimize the impact of these distortions on 
model performance.

Data leakage, a common issue in machine learning, occurs when information from the test set inadvertently 
influences the training process, leading to artificially inflated performance metrics. This can significantly 
compromise the generalization ability of the model in real-world situations. To mitigate this, we ensured that the 
TickExpand dataset was only used for training, with no overlap in the test sets. Additionally, we meticulously 
tracked the samples from the GBIF and SVA datasets, ensuring that repeated occurrences of the same samples 
were either entirely within the training or testing sets but never across both. This careful management of data 
sources helped prevent leakage and ensured the integrity of our evaluation process.

We have built on and extended previous work by implementing advanced image classification techniques to 
automate the detection and classification of tick species from citizen-submitted images. Despite the promising 
results, it is important to note that expert verification remains a critical step in the tick classification process. 
Given the variability in data quality and the potential for misclassification, the model’s predictions should be 
viewed as supportive tools rather than definitive results. Consistent communication with domain experts during 
the data collection process is also essential. For instance, the data collection efforts from GBIF were delayed due 
to the outdated taxonomy of Carios vespertilionis, previously known as Argas vespertilionis. This issue was further 
complicated by specific sources, such as iNaturalist, which still used the outdated name, leading to data retrieval 
and classification discrepancies. However, new findings from the present study will significantly contribute when 
working with large data sets from the ongoing citizen science project, both by saving time for the experts labeling 
and controlling the incoming images and by giving the reporter quick feedback. The latter will, in turn, hopefully 
increase the will to report a new finding. In this way, citizen science can generate detailed real-time data on 
species introduction and spread. Larger datasets enhance AI algorithms, leading to more effective strategies 
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ranging from sampling techniques to mitigation efforts. More importantly, this process engages and educates the 
general public, fostering meaningful relationships between citizens and the scientific community.

The use of explainable AI (XAI) techniques, like the RISE method, has been proven practical in enhancing 
the transparency of the model’s decision-making process. By creating saliency maps, we can visualize the areas of 
the input images that had the most impact on the model’s predictions, thus increasing confidence in the system’s 
results. However, there are still challenges in ensuring that these saliency maps focus on biologically relevant 
features rather than background noise. The insertion metric applied in this study quantified the fidelity of the 
explanations, revealing that correctly classified instances showed a significant increase in prediction confidence 
when the most important pixels were added back into the image. There is an urgent need for further refinements 
to the XAI techniques to help increase trust and reliability in the model’s predictions, especially when used by 
non-expert end-users in citizen science initiatives.

Technological limitations related to the hardware and software used for capturing tick images also posed 
challenges. Ensuring that models are trained and validated on data representing the full diversity of tick images 
captured under various conditions is crucial for generalization. Moreover, ensuring the privacy and ethical 
considerations of citizen-submitted data is critical, especially as tick images may include sensitive metadata or 
identifiable features.

Additionally, the computational demands for optimizing these models, especially during extensive 
hyperparameter tuning, were considerable. Each combination of model structure and hyperparameters required 
high-performance computing resources, with extensive GPUs or TPUs access to efficiently process the large 
datasets and conduct multiple training runs.

In conclusion, the results demonstrate the potential of AI for tick classification. However, challenges such as 
data scarcity, species similarity, and image quality variability remain. Future work should prioritize expanding 
the dataset, particularly for rare species and life stages, improving model interpretability through XAI, and 
addressing the practical concerns of deploying AI in real-world situations. Rather than presenting this work as 
achieving robust classification across all species, we frame it as a proof-of-concept infrastructure for integrating 
AI with citizen science to support scalable, real-world tick surveillance. Continued integration with expert 
verification and feedback from citizen science initiatives will be crucial for ensuring the long-term success and 
reliability of these AI systems.

Data availibility
Data will be made available upon request. For access, please contact Anna Omazic (anna.omazic@sva.se) or 
Stefan Widgren (stefan.widgren@sva.se).
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