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SUMMARY

Crop pests and diseases increasingly challenge the global food system. To prepare for and detect outbreaks, 

surveillance plays an important role. Traditional monitoring methods are often organism-specific, making 

large-scale monitoring of crop pathogens and pests impractical. We here investigate the potential for using 

shotgun sequencing of airborne eDNA for large-scale surveillance of crop pathogens and pests. We show 

that it is possible to detect DNA from all types of organisms in air, and that DNA can be classified down to 

species level. However, the accuracy of the identification is highly dependent on the quality of reference ge-

nomes of both the pathogens or pests, and their close relatives present in the region. Finally, we find that 

observed degree of crop damages correlate with amount of DNA from crop pathogens and pests in air, 

showing the promise of this approach for surveillance of all types of crop pathogens and pests.

INTRODUCTION

Plant diseases and pests reduce crop yields by 20%–30% glob-

ally, despite protection efforts.1,2 Monitoring plays an important 

role for understanding and predicting dispersal of pests and 

pathogens.3 For example, early detection of crop pathogens 

and pests is crucial to reduce the risk for outbreaks and allow 

for proactive prevention based on predictive models and 

forecasts.4

Monitoring aims to detect, diagnose, and quantify pests and 

diseases and is usually carried out by personnel who identify 

pests and diseases during field surveys or receive samples 

brought to a laboratory.5 To support diagnosis based on symp-

toms or organism characterization, molecular diagnostics has 

revolutionized the identification of pathogens and pests in recent 

decades.6 Furthermore, recent technological innovations allow 

us to monitor pathogens and pests through remote sensing 

(smart phone) image analysis,7–10 field sensors detecting volatile 

compounds,11,12 and a range of nucleic acid-based detection 

methods, including DNA sequencing technologies.6,13–15 For 

example, DNA sampled from the environment (eDNA) has been 

shown to have potential for monitoring of plant pathogens and 

pests as reviewed in Kestel et al.16

Using eDNA for monitoring purposes has been shown to have 

several advantages over traditional monitoring methods. For 

example, eDNA can speed up identification of insects17 and vi-

ruses,18 be used for early detection of invasive species,19 and 

used to identify crop pathogens on secondary plant hosts where 

they might otherwise have been overlooked.20

Previous studies investigating applications for eDNA in agri-

culture have mainly focused on DNA collected from soil and plant 

substrates.16 However, airborne DNA is a source of eDNA that 

has high potential for being used for monitoring purposes. For 

pathogen detection, airborne DNA has mainly been used to 

detect fungi and bacteria.21–26 But it has also been shown that 

air contains DNA from a wide range of other organisms such 

as insects, mammals, amphibians, and other vertebrates.27–33

Furthermore, it has been demonstrated that DNA abundance in 

air correlate well with observed abundances of birds.32 This dis-

plays the potential for using airborne eDNA for surveillance of 

wide ranges of organisms affecting crop health.

Most previous studies using airborne DNA for monitoring of crop 

pathogens and pests have used metabarcoding.22,25,26,33,34 A lim-

itation with metabarcoding is that it targets specific taxa, meaning 

that protocols need to be adapted depending on the organism 

group. Thus, monitoring the wide range of pathogens and pests 

affecting crops quickly become unfeasible. If shotgun sequencing 

of eDNA can be used for surveillance purposes, it would allow for 

surveillance of all types of pathogens and pests. Indeed, it has 

been shown that it is possible to identify a number of pathogens 

and pests when shotgun sequencing DNA sampled from relatively 

small amounts of air (∼10 m3) in a crop field.35 Here we shotgun 

sequence DNA from air filters that filters approximately four orders 

of magnitude more air, and thus allow for detection of DNA 
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originating from larger source areas.32 This is done to further inves-

tigate the potential for using shotgun sequencing of airborne DNA 

for monitoring of all types of crop pathogens and pests at a regional 

scale. We here show that DNA from a wide range of taxonomic 

groups containing pathogens and pests can be detected using 

shotgun-sequenced DNA from air filters collected in an agricultural 

area in southern Sweden. Furthermore, we investigate the condi-

tions necessary for accurate species level classification and 

show that the observed eDNA abundance correlate to observed 

degrees of abundance or damage of pests and diseases in crops 

in the area.

RESULTS

Air sampling

We used air filters from a continuously operating filter station 

(Figure S1) located in Ljungbyhed, Sweden (lat 56.08◦, long 

13.23◦).36 The filters are part of a larger collection that the Swed-

ish Defense Research Agency (FOI) has gathered weekly since 

1974 to monitor radioisotopes. Ljungbyhed is in the temperate 

(nemoral) zone in the county Skåne (Figure 1A). The land cover 

within 30 km radius from the air filter (Figure 1B) is dominated 

by arable land (36.8%), followed by deciduous forest (18.2%; 

with Fagus sylvatica dominant), vegetated other open land 

(11.7%; mainly grazing land), and coniferous forest (11.4%; 

mainly planted Picea abies). The landcover within 1 km from 

the air filter is dominated by vegetated other open land (65.4%) 

and artificial areas (19.2%; Figure 1C). Arable land is scarce 

within 1 km from the air filter (2.0%) but increases steeply up 

to 2 km (26.9%). The proportion of arable land decreases to 

20.9% at ∼10 km distance and then gradually increases up to 

30 km, whereas forests decrease.

Air filters were changed weekly, and they filter more than 

100,000 m3 of air each. In total, nine air filters from 2007 were 

sequenced in this study. In a previous study, we have shown 

that these filters preserve DNA well over at least 50 years.32

The filters were collected during the cropping season when ma-

jor crop pathogens and pests are expected to be present in the 

region. From each air filter, between 182 and 294 million paired- 

end reads (average: 212 million reads) were obtained. The num-

ber of sequenced reads from each week can be found in 

Data S1.

A wide variety of pathogens and pests can be detected 

using airborne eDNA

To know what pathogens and pests could be of interest to 

detect in the air filters, we first compiled a list of current 

and potential European pathogens and pests by combining ex-

isting lists of pathogens and pests from the European and Med-

iterranean Plant Protection Organization (EPPO),37–39 the 

Swedish Board of Agriculture,40 the Northern Tubers of Potato 

Network,41 and Berlin et al.42 The compiled list consisted of 

A

C

B

Figure 1. Geographical position of the air filter station and land cover within a 30 km radius 

(A) Map of Europe showing the location of Ljungbyhed in southernmost Sweden where eDNA was collected. 

(B) Map of ten land cover classes within a 30 km radius from the air filter station. 

(C) Percent land cover within circular buffers from 0.1 to 30 km distance around the air filter station.
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264 species with available reference genomes (in GenBank, 

NCBI, retrieved August 2022).43 The full list of species can be 

found in Data S1.

An initial analysis of what types of crop pathogens and pests 

could be detected in the eDNA dataset was performed using 

Kraken244 with a custom reference database (see STAR 

Methods for details). From the combined classification results 

of all sequenced air filters, we detected a signal from most fam-

ilies known to contain pathogens or pests (Figure 2). This shows 

that many organism groups containing pathogens or pests shed 

DNA into the environment, and that this DNA can be detected in 

air. Notably, there is a lower proportion of nematode families de-

tected, compared to other types of organisms. This could be due 

to a number of reasons (see below).

In the county where the air filters were collected, the Swedish 

Board of Agriculture reported presence or crop damage in 2007 

from 13 species of pathogens and pests with a sequenced 

genome.45 Consequently, we analyzed if DNA from the reported 

species could be detected in the air filter data. To reduce the 

number of false classifications, we used the stringency parame-

ters described in Sullivan et al.32 After pooling all sequenced 

reads from all air filters, we detected a signal from 11 out of 

the 13 species, and more than 1,000 reads from 6 of these spe-

cies (Table 1).

The varying degree of signal strength for the different species 

is likely due to a variety of reasons. For example, all species were 

not observed in equal frequency and intensity (Table 1). Different 

types of organisms might also shed different amounts of DNA 

into the environment and this DNA may vary in stability and 

dispersal in air. Database limitations is, however, likely the 

main factor causing weak signals for all species with less than 

100 assigned reads (5 species).

If reads are generated in silico from the reference genomes of 

these five species with less than 100 reads, less than 1% of the 

generated reads are correctly classified using Kraken2 and our 

custom database (Figures S2–S14). This is potentially due to 

contaminated genomes and poor assemblies being included in 

the database. For example, reads generated from the reference 

genome of Puccinia coronata were misclassified to the mite Me-

dioppia subpectinata. When these misclassified reads were 

mapped to the reference genome of M. subpectinata, we found 

that many regions where the generated reads mapped share 

high similarity with bacteria and fungi (using MegaBLAST46). 

This suggests that the genome for M. subpectinata is contami-

nated. Such contamination strongly interferes with Kraken2’s 

ability to classify reads since the software is dependent on cor-

rect taxonomic assignation of the reference DNA sequences.

Detection sensitivity depends on database quality

Using Kraken2 to classify DNA from the air filters, we noted that 

seven species observed in crop fields had less than 1,000 de-

tected reads in total. If these species were not detected due 

to database limitations, DNA from them could still be present 

in the air filters. To evaluate this possibility, we mapped all 

sequenced air filter reads to the individual reference genomes 

of each species with weak signal and evaluated the evenness 

of coverage. If DNA from a species is present in the air filters, 

we expect the DNA to have originated approximately randomly 

from across its genome. Consequently, we expect the mapped 

reads to be evenly distributed across the genome. This further 

means that the number of reads mapped to each scaffold 

should be strongly correlated to the scaffold length. To deter-

mine how strong this correlation must be for it to be likely that 

DNA from the species is present in the air filters, we compared 

it to the correlations produced by mapping in silico-generated 

reads from closely related species (same genera) to the same 

genome of interest. Doing this, we found that DNA from all spe-

cies except Sitobion avenae likely is present in the air filters, 

since the air filter reads produced stronger correlations than 

the reads generated from close relatives (Figure S15). This 

shows that DNA from many of the species with weak signal 

likely is present in the air, but it is not possible to correctly clas-

sify the DNA using a general classifier such as Kraken2 and the 

current database.

High quality databases enable accurate identification of 

pathogens and pests

For sequencing of air filters to be useful for monitoring purposes, 

it is not only important to detect signal from crop pathogens and 

pests. The detected signal also needs to be accurate. We there-

fore investigated the accuracy of the taxonomic classifications 

for the six pathogens and pests with more than 1,000 assigned 

reads (see Table 1). To do this, we evaluated how the classified 

reads for each species were distributed over what we define as 

classifiable regions of the genome. Classifiable regions are the 

unique regions of a genome that are not shared with other spe-

cies in the reference database and, thus, from which it is possible 

to classify reads using Kraken2. If the classified DNA fragments 

Figure 2. Number of detected taxonomic families containing path-

ogens or pests 

Detected taxonomic families containing pathogens or pests. Colors distin-

guish taxonomic groups. For each taxonomic group, the left bar represents the 

number of families in the taxonomic group that contain a species on our list of 

European pathogens and pests. The right bar represents the number of those 

families that were detected in the air filters. A family is considered detected if at 

least 1,000 reads is classified to the family from sequenced reads pooled from 

all air filters.
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originate from the correct species, we expected reads to be 

evenly distributed over the classifiable regions. We should thus 

see a strong correlation between the number of mapped reads 

per classifiable region and the length of the classifiable region.

Using this approach, we noted that classification quality 

varies depending on species. Pyrenophora tritici-repentis, Acyr-

thosiphon pisum, and Puccinia striiformis likely have poor classi-

fication quality since we observed poor correlation values 

(Figure 3). This indicates that the classified reads contain mis-

classifications, possibly from related but not yet sequenced spe-

cies containing highly similar genomic regions. Alternatively, 

these issues could be caused by contaminated genomes, low 

quality genomes, or DNA with incorrect taxonomic assignment 

being included in the used Kraken2 database. When reads 

were generated from the species of crop pathogens and pests 

with weak signal, it was noted that reads from other Puccinia 

spp. were misclassified as Puccinia striiformis. Reads from other 

aphids were also misclassified as Acyrthosiphon pisum 

(Figures S2–S14). These examples again illustrate the need of 

a highly accurate and curated database to avoid these misclas-

sification issues.

For Pyrenophora teres, Blumeria graminis, and Zymoseptoria 

tritici, there is a strong correlation between the number of reads 

mapped to the classifiable regions and the length of the regions, 

showing that a large part of the reads is likely correctly classified. 

This shows that this type of classification can be done accurately 

for species for which previously mentioned database limitations 

can be avoided.

Peak observation values coincide with increased air 

filter signal

By plotting average degree of observed abundance or damage 

caused by crop pathogens and pests together with detected 

signal strength, we found that the measurements correlate. For 

all the species with high confidence classifications, peak obser-

vation values coincide with increased signal strength (Figure 4). 

Furthermore, correlation between the values can also be seen 

for species with lower classification quality.

For B. graminis, air filter signal increases before peak observa-

tion values, indicating that air filters could be used to detect the 

pathogen before disease symptoms are observed in crop fields. 

For A. pisum, increased signal strength in the air filters is 

observed after peak observation values, indicating that aphid 

signal is strongest when crop damage have occurred and 

winged aphids leave the crop.47

This analysis further show that it is possible to use airborne 

DNA to monitor crop pathogens and pests, since air filter signal 

coincide with observation values or agree with the biology of the 

species. However, sequencing of additional weeks, preferably 

across several seasons, is necessary to evaluate the true corre-

lation between observed abundance or damage by pathogens 

and pests to crops and the levels of their DNA in air.

DISCUSSION

We have shown that DNA from crop pathogens and pests is pre-

sent in air and that the DNA obtained using non-targeted shotgun 

Table 1. Summary of crop pathogens and pests observed by the Swedish Board of Agriculture in the county Skåne 2007 in relation to 

number of assigned DNA sequence reads

Species Common name

Taxonomic 

group Host

Total number 

of detections 

(no. field visits)

Average 

observation value

Number of 

reads

Fraction 

of total 

reads 

(1.9 × 109)

Pyrenophora teres net blotch Fungi Poaceae 313 (543) 18% affected leaves 174,190 9.3 × 10− 5

Blumeria graminis powdery mildew Fungi Poaceae 699 (1758) 24% affected leaves 145,829 7.7 × 10− 5

Zymoseptoria tritici septoria tritici 

blotch

Fungi Poaceae 770 (872) 25% affected leaves 33,415 1.8 × 10− 5

Pyrenophora 

tritici-repentis

tan spot Fungi Poaceae 82 (857) 7% affected leaves 12,671 6.7 × 10− 6

Acyrthosiphon pisum pea aphid Arthropoda Fabaceae 28 (56) 5 per top shoot 9,744 5.2 × 10− 6

Puccinia striiformis yellow rust Fungi Poaceae 121 (943) 15% affected leaves 2,833 1.5 × 10− 6

Brassicogethes aeneus common pollen 

beetle

Arthropoda Brassicaceae 30 (49) 1 per plant 770 4.1 × 10− 7

Phytophthora infestans late blight Oomycetes Solanaceae 18 (54) 20% leaf surface 147 7.8 × 10− 8

Puccinia coronata crown rust Fungi Poaceae 2 (137) 2% affected leaves 72 3.8 × 10− 8

Puccinia hordei barley brown rust Fungi Poaceae 219 (543) 26% affected leaves 12 6.4 × 10− 9

Rhopalosiphum padi bird cherry-oat 

aphid

Arthropoda Poaceae 160 (1,287) 0,2 per straw 5 2.7 × 10− 9

Metopolophium 

dirhodum

rose-grass aphid Arthropoda Poaceae 33 (1282) 0,2 per straw 0 0

Sitobion avenae grain aphid Arthropoda Poaceae 257 (1286) 0,3 per straw 0 0

The species are sorted based on total number of reads classified to the species using Kraken2 and our custom database (reads from all sequenced 

weeks were pooled). Total number of detections refers to the total number of times a non-zero value was reported for the pathogen or pest, with the 

total number of times sampled for within parenthesis. Average observation value refers to the average nonzero field observation value.
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sequencing can be classified to species level, which was also 

recently shown by Giolai et al.35 The accuracy of the identifica-

tion is highly dependent on the quality of the reference genomes 

of both the target species and their close relatives in the area. 

Poorly assembled and contaminated genomes severely impact 

our ability to link DNA signal to the correct species. However, de-

tected eDNA signal strength is consistent with the biology of the 

pathogens and pests and correlates with the observed level of 

abundance or damage reported from crop fields in the area at 

the corresponding time of air sampling.

Of the six highly abundant pathogens and pests in air filters 

that were observed in crop fields in the area, five are pathogens 

causing economically important diseases in cereals, while the 

aphid pest A. pisum primarily causes damage in peas. All highly 

abundant pathogens are primarily wind-dispersed.48 For 

example, powdery mildew caused by B. graminis is mainly 

spread by wind-borne spores in early spring from winter wheat 

or volunteer plants to wheat crops. The disease develops during 

the growing season, when there is a peak in the air filter signal 

(Figure 3). After harvest, the pathogen survives on wheat volun-

teers and is spread by wind to new fields when autumn-sown 

wheat emerges.48 The pathogens causing leaf blotch disease 

in spring barley (P. teres) and wheat (P. tritici-repens and 

Z. tritici) are economically important and often sprayed with fun-

gicides in the Nordic-Baltic countries.49 While prognosis models 

based on precipitation or humidity are available for leaf blotch 

diseases in cereals, these are not fully reliable.50,51 The cereal 

rust diseases, including yellow rust caused by P. striiformis, 

may cause severe yield losses in epidemic years. The rust dis-

eases are transmitted by airborne spores and can disperse 

over long distances.52 Consequently, the sources of inoculum 

causing epidemics may be situated far from infected fields.53

As pest or disease occurrence in fields regionally matched with 

signal strength for pathogens and pests in the air filter, analysis 

of airborne eDNA represents a novel opportunity for surveillance 

of pests and diseases. Interestingly, eDNA abundance and the 

degree of damage or abundance in the crop fields seem to corre-

late even for the pathogens and pests where the classification 

quality was lower, possibly because the misclassified reads 

reflect closely related pests or pathogens with similar biology 

and phenology.

Using shotgun sequencing for surveillance allow for untargeted 

detection of a wide range of pests. Using this technique on air fil-

ters with high airflow enabling large catchment areas,32 could 

therefore be useful for large-scale surveillance of invasive species 

and emerging threats, such as quarantine plant pests. However, 

shotgun sequencing has certain disadvantages such as being 

more expensive and potentially less sensitive than PCR-based 

detection methods. After detection of threats, it could thus be 

more suitable to use local cheaper monitoring methods. For 

Figure 3. Classification quality vary depending on species 

Classifiable region length plotted against the number of air filter reads mapping to the region for all observed species with more than 1,000 assigned reads in DNA 

pooled from all sequenced air filters. Yellow species are fungi and red are arthropods. Classifiable regions were obtained by generating reads in silico from the 

species reference genome, classifying the generated reads, and then mapping the correctly classified reads back to the reference genome. Classifiable regions 

were then defined as regions of the reference genome with any coverage. The mapped reads consist of reads classified to the species using Kraken2 and our 

custom database; these reads were then mapped to the species reference genome. Strong correlations (PCC, Pearson Correlation Coefficient) indicate that most 

air filter reads were correctly classified, since the number of reads that aligns matches the expected number based on the length of the region, i.e., the reads are 

evenly distributed across the genome. Weak correlations point to lower classification accuracy since an uneven distribution across the genome indicate that 

some reads originate from, for example, mis-classifications or conserved regions of a closely related species that is missing from the database.
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example, PCR-based monitoring methods that utilize air filters 

from filter stations with smaller throughput of air. Such a setup 

could take advantage of the strengths of both untargeted shotgun 

sequencing and targeted PCR-based methods.

The air filters examined here are from an archive of weekly fil-

ters, going back to the 1960s. If long time series are produced by 

sequencing more of these filters, information on emergence, 

seasonal patterns, and trends for crop pathogens and pests 

could be obtained, similar to those obtained for biodiversity 

monitoring in Sullivan et al.32 Furthermore, there are also other 

archives that could be sequenced, meaning that historic infor-

mation on presence and dispersal of, for example, invasive spe-

cies could be obtained from further sequencing efforts.32,54 Such 

data could be used for training of predictive models,55 which 

could be valuable tools used to strengthen food security. How-

ever, further research is needed to determine the catchment 

area when sampling airborne eDNA, since it will likely depend 

on, for example, the type of organism, weather conditions, the 

height of collection above the ground, and the volume of air 

sampled.

Taken together, we believe that it is valuable to continue 

research and development of DNA sequencing and subsequent 

classification of airborne DNA for surveillance and monitoring of 

crop pathogens and pests. Implementations of such technology 

would increase food security by improving our ability to monitor 

and predict abundance of crop pathogens and pests.

Limitations of the study

The main limitation of this study is the limited number of samples 

(9 weeks from one year). Analysis of consecutive weeks, spanning 

multiple years would be necessary to further validate our 

observed correlation with observed crop damages. In addition, 

the available observational data on crop damages only partially 

overlap with our sampling period. A major limitation for the accu-

racy of assigning reads to the correct species is, as we here show, 

the quality of reference databases. With poor quality genomes 

and lack of reference genomes for closely related species present 

in the area, reads will be incorrectly classified. When more and 

better reference genomes become available, our data can easily 

be reclassified to improve accuracy and coverage of species.

Figure 4. Observed abundance or damage caused by crop pathogens and pests correlate with air filter signal strength 

Plot of average observed abundance or observed damage caused by crop pathogens and pests (observation values) at different distance from the location of the 

air filter sampling station (colored by distance), and air filter signal strength (black bars). Crop pathogen and pest observation values from 2007 were obtained 

from the Swedish Board of Agriculture, and the reported unit varies depending on species (the same unit as the species average observation value in Table 1). Air 

filter signal strength for each species is represented by a logarithm ratio (pivot coordinate) to account for the inherent compositionality of the data. Both 

observation values and pivot coordinates were min-max normalized prior to visualization to make the largest value for each species equal to one. Gray areas show 

periods of time when no observation attempts were done. 

See also Figure S16.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Per Stenberg (per. 

stenberg@umu.se).

Materials availability

This study did not generate new unique reagents.

Data and code availability

• Pre-processed shotgun sequence data from 9 air filters can be ac-

cessed from the Sequence Read Archive: PRJNA1173971.

• Code used for the analysis can be found in the Github repository: https:// 

github.com/amandamikko/Sequencing-airborne-DNA-to-monitor-crop- 

pathogens-and-pests.

• Any additional information required to reanalyze the data reported in this 

paper is available from the lead contact upon request.
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STAR★METHODS

KEY RESOURCES TABLE

METHOD DETAILS

Land cover

Land cover data were extracted from the Swedish National Land Cover Database,65 mapped in 2017–2019 and with a pixel size of 

10 m × 10 m. We extracted percent land cover in ten thematic classes within circular buffers of 0.1 km–30 km distance from the air 

filter station using Arc GIS Pro 3.3.0 (Esri). Forests outside and on wetlands were not separated.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

9 air filter samples. Ljungbyhed 

(Sweden, lat 56.08◦ long 13.23◦)

This paper N/A

Chemicals, peptides, and recombinant proteins

MoBio PowerWater kit MoBio Laboratories, Carlsbad, CA, USA N/A

DNA Clean & Concentrator-5 Zymo Research, Irvine, USA D4013

Deposited data

Pre-processed shotgun sequence 

data from 9 air filters

This paper Sequence Read Archive: PRJNA1173971

Software and algorithms

ArcGIS Pro 3.3.0 Esri 

https://pro.arcgis.com/en/pro-app/ 

3.3/tool-reference/main/arcgis- 

pro-tool-reference.htm

N/A

fastp 0.22.0 Chen et al.56

https://github.com/OpenGene/fastp

RRID:SCR_016962

BBMap 38.84 Bushnell et al.57

https://sourceforge.net/projects/bbmap/

RRID:SCR_016965

Kraken 2.1.2 Wood et al.44

https://github.com/DerrickWood/kraken2

RRID:SCR_026838

NEAT 3.3 Stephens et al.58

https://github.com/zstephens/neat-genreads

N/A

KronaTools 2.8 Ondov et al.59

https://github.com/marbl/Krona

N/A

Sankey 0.2 Breitwieser et al.60 https://github.com/d3/d3-sankey N/A

SAMtools 1.18 Li et al.61

https://github.com/samtools/samtools

RRID:SCR_002105

Picard 2.27.5 Picard Toolkit62

https://github.com/broadinstitute/picard

RRID:SCR_006525

zCompositions 1.4.0–1 Palarea-Albaladejo et al.63

https://cran.r-project.org/web/packages/ 

zCompositions/index.html

N/A

R 4.2.1 R Core Team64

https://www.r-project.org

RRID:SCR_001905

Other

Code used for the analysis This paper. 

https://github.com/amandamikko/ 

Sequencing-airborne-DNA-to-monitor- 

crop-pathogens-and-pests

N/A
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DNA sequencing

Air filters were collected in Ljungbyhed (Sweden, lat 56.08◦ long 13.23◦) in the county Skåne, southernmost Sweden. The filters are 

part of a larger collection that the Swedish Defense Research Agency (FOI) has gathered weekly since 1960’s to monitor radioiso-

topes (Figure S1). Filters are made of glass fiber with a pore size of 0.2 μm and filters air at a rate of 10L/min, meaning that more than 

100,000 m3 of air is filtered through each filter (Camfil type CS 5.0, Camfil Svenska AB).36 In total nine air filters from 2007, processed 

in Karlsson et al.,22 were selected and sequenced. Filters were collected during the weeks described in the table below (Air Filter 

Collection, 2007, Ljungbyhed). The weeks were chosen to reflect key crop stages in the region. Weeks 15 and 19 correspond 

with the start of the growing season, when winter crops begin to grow and spring crops are sown. Weeks 23, 27 and 29 are during 

critical crop development stages; if a pest occurs at this time, direct control is required to ensure a high yield of good quality. Weeks 

37 and 39 are when winter crops are sown and finally weeks 41 and 45 are in the autumn when winter crops have emerged and reflect 

pest pressure before winter dormancy.

DNA extraction was previously performed by Karlsson et al.22 using a modified MoBio PowerWater kit (MoBio Laboratories, Carls-

bad, CA, USA) and blank filters as negative controls. In brief, three ∅8 mm punches (Integra Miltex, Plainsboro, NJ, USA) were taken 

from each filter and placed in 2mL tubes with a mix of zirconia/silica beads. After adding 1 mL preheated PW1 solution, samples were 

incubated at 65◦C for 10min, agitated in FastPrep-24 (Mp Biomedicals, Santa Ana, CA, USA), and centrifuged. The supernatant was 

then transferred into a new tube. This process was repeated twice to yield three supernatants per filter piece. DNA was isolated 

following the manufacturers’ protocol, with pooled supernatants loaded onto a single spin filter. Finally, DNA from the three filter 

pieces were combined and concentrated into 75 μL elution buffer using a DNA Clean & Concentrsatior-5 kit (Zymo Research, Irvine, 

CA, USA). DNA samples were then sent for sequencing at the SNP&SEQ Technology Platform (SciLifeLab, Uppsala, Sweden) using 

the TruSeq Nano DNA library Prep kit with 100 ng input DNA and the HiSeq 2500 sequencing platform (150bp, paired-end) (Illumina, 

San Diego, CA, USA). Blank filter controls were not sequenced due to insufficient DNA concentration.

Air filter collection, 2007, Ljungbyhed

Information on when air filters were collected. Each row describes during what period each air filter was installed and filtering air 2007 

in Ljungbyhed, Sweden (lat 56.08◦ long 13.23◦).

Read preprocessing and filtering

Adapters were removed from the sequenced reads, using fastp 0.22.056 with the –detect_adapter_for_pe option. After removing 

adapters, all reads shorter than 50 base pairs were discarded. Furthermore, air filters were changed manually at the air filter stations. 

Therefore, we discarded all reads that mapped to the human reference genome hg19. Mapping was done using BBMap 38.8457 with 

the following parameters: minid: 0.95, maxindel: 3, minhits: 2, bandwidthratio: 0.16, bandwidth: 12, qtrim: ‘‘rl’’, trimq: 10, quickmatch: 

‘‘quickmatch’’, fast: ‘‘fast’’, untrim: ‘‘untrim’’.

List of crop pathogens and pests

To obtain information about what organisms could be of interest to detect signal from in the air filters, a list of current and potential 

European pathogens and pests was compiled. This list was created from lists published by EPPO,37–39 lists from the Swedish Board 

of Agriculture,40 lists on potato pathogens and pests put together by experts associated with the NKJ network, Northern Tubers of 

potatoes (N’TOP),41 and a list of the most common pathogens and pests targeting field grown crops published by Berlin et al.42 The 

full list of pathogens and pests is presented in Data S1.

ISO week number From To

15 April 9 April 15

19 May 7 May 13

23 June 4 June 10

27 July 2 July 8

29 July 16 July 22

35 August 27 September 2

37 September 10 September 16

41 October 8 October 14

45 November 5 November 11
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QUANTIFICATION AND STATISTICAL ANALYSIS

Database creation and classification

Before subsequent analysis could be performed, the pre-processed reads needed to be classified to the organism they originate 

from. To do this a custom Kraken244 database was created. Based on the created list of pathogens and pests, the database was 

created from sequenced species originating from the same taxonomic family as a sequenced crop pathogen or pest. This was 

done to distinguish DNA of pathogens and pests from that of other closely related species. All genomes available in GenBank 

were used to create the database for non-bacterial species. For bacteria, only the reference genomes were used for all species 

due to the large number of published genomes. This was done to keep the database smaller in size. All genomes used to create 

the database are found in Data S1. Furthermore, all DNA sequences included in the nt database provided by the National Library 

of Medicine66 2022-12-20 was used to create the database. The nt database was used since it contains a wide variety of nucleotide 

sequences and can thus be used to increase the database’s general classification capability.

From all the mentioned DNA sequences, a database was built using Kraken 2.1.2 and the fast-build option. Minimizer and k-mer 

size settings were kept at their default values. This resulted in an 805 GB database. All reads were classified using the custom data-

base with a confidence score of 0.1 and 10 minimum minimizer hit groups. These are the settings used by Sullivan et al.32 for genus 

level classification of reads sequenced from the same type of air filters sampled from Kiruna (Sweden, Lat.: 67.83650◦ Long.: 

20.41582◦). The parameter values were chosen since they provided the best trade-off between error rate and the number of classified 

reads.

Comparison to observation data

After classification, we investigated if a signal can be detected from pathogen and pest species that were observed in Skåne 2007. 

Information about what pests and diseases were observed in Skåne, were obtained from the Swedish Board of Agriculture.45 The 

reported data are based on weekly field inspections of untreated plots within commercial fields conducted by the staff of the Plant 

Protection Centers at the Swedish Board of Agriculture. The objective of these surveys is to provide farmers with information 

regarding the necessity of protecting their crops from pests and diseases using pesticides. Consequently, field surveys are conduct-

ed from crop emergence in May until the end of June, which corresponds with the main crop growth period and when pesticide treat-

ments in crops are allowed.

Evaluation of classification potential

To evaluate our ability to classify reads from all observed species, we generated reads from the species reference genomes and at-

tempted to classify the generated reads using our Kraken2 database. Used reference genomes is found in Data S1. For all species, 

10x coverage was generated using NEAT (3.3)58 and the parameters: R: 126, c: 10, E: 0, pe, –force-coverage, average insert size 300, 

and standard deviation 30. Reads were then classified using our custom Kraken2 database with a confidence score of 0.1 and 10 min-

imum minimizer hit groups. Classification distribution were visualized using KronaTools (2.8)59 and Sankey (0.2).60

Mapping to determine if DNA from low-abundance species is present in the air filters

If DNA from a species is present in the air filters, we expect this DNA to originate approximately randomly from the genome. When 

mapping the air filter reads to the species genome, we would thus expect to see an even coverage across the genome. By evaluating 

coverage evenness, we should thus be able to determine if a species is likely present in the environment or not. However, coverage 

can be expected to be very low in our data, making it hard to evaluate directly. Due to this we instead evaluate the correlation between 

number of mapped reads per scaffold and scaffold length as a measurement for coverage evenness.

To determine if DNA from the low-abundance species is present in the air filters, we map all reads from all air filters to the reference 

genome of the species using BBMap (38.84) with the following parameters: minid: 0.97, ambigious: ‘‘toss’’, pairedonly: ‘‘t’’. We arbi-

trarily consider all species with less than a total of 1000 classified reads as low-abundant species. To avoid PCR duplicates and reads 

from genomic regions that are conserved between many species, we only consider reads that are overlapping with a maximum of one 

more read. From these reads, the Pearson correlation between number of mapped reads per scaffold and scaffold length was calcu-

lated. To determine how strong this correlation should be before DNA from a species can be regarded as present in the air filters, we 

generate reads from other sequenced species from the same taxonomic genus as the evaluated species. To generate these reads we 

use NEAT (3.3) with parameters: R: 126, c: 10, E: 0, pe, –force-coverage. Average insert size and standard deviation was estimated 

using SAMtools (1.18)61 on the air filter reads that mapped to the evaluated species. The generated reads were finally mapped using 

BBMap (38.84) and the same parameters used to map the sequenced air filter reads.

From the mapped generated reads, we then subsample the number of reads corresponding to the mapped air filter reads coverage 

of the evaluated species. Correlation between number of mapped reads per scaffold and scaffold length was then calculated and 

compared to the same correlation produced by the air filter reads. If the correlation produced by the air filter reads were stronger 

than the correlation produced by reads generated from all closely related species, DNA from the species was regarded as present 

in the air filters.
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Evaluation of classification quality

To evaluate classification quality, we used a mapping approach where coverage evenness was evaluated. First, we mapped all reads 

from all air filters that were classified to a species to that species reference genome using BBMap (38.84) with the following param-

eters: minid: 0.97, ambiguous: ‘‘toss’’, pairedonly: ‘‘t’’. We then used Picard (2.27.5)62 to remove PCR duplicates from the mapped 

reads.

Not all regions of the genome can be classified using the Kraken2 database since only regions containing k-mers unique to the 

species can be used for classification. Because of this, we did not use coverage directly to evaluate how evenly reads map to the 

reference genomes. Instead, we first extracted the classifiable genomic regions containing species unique k-mers and then 

compared the length of these regions to the number of reads mapping to the region.

To find regions containing species unique k-mers, reads were first generated from the species reference genome. These reads 

were generated using NEAT (3.3) with parameters: R: 126, c: 10, E: 0, pe, and –force-coverage. Average insert size and standard 

deviation was approximated using SAMtools (1.18) on the mapped air filter reads that were classified to the species. The generated 

reads were then classified using Kraken (2.1.2) and our custom database, using the same parameters as when classifying air filter 

reads. To find the classifiable regions, the correctly classified reads were mapped to the reference genome from which they were 

generated. Mapping was done using BBMap (38.84) with the same parameters used to map the air filter reads. After mapping, 

the length of all regions with any coverage was extracted and considered to be classifiable genomic regions. The length of these re-

gions was plotted against the number of air filter reads mapping to them, and the correlation between the two values was used to 

evaluate classification quality.

Correlation between observed abundance or damage and air filter abundance

Average reported abundance or damage for each species at different distances from the air filter station were plotted together with 

observed signal strength in the air filters to visualize how well the values correlated. Pivot coordinates (a type of logarithm ratio) were 

used to display air filter signal strength, to account for the inherent compositionality of the data.67 To calculate pivot coordinates, 

weekly number of air filter reads assigned to all species was used. Zero inflated taxa with more than ≥ 66.7% zero values were 

removed, zero replacement was then performed using geometric Bayesian multiplicative replacement68 as implemented in the cmul-

tRepl function in the ‘‘zCompositions’’ R package.63,64 Pivot coordinates were finally obtained by calculating the first isomeric log 

ratio (ilr) coordinate for each x = (x1;…; xD) using the formula:

ilr(x) = z = (z1; :::; zD − 1)

zj =
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; for j = 1;…;D − 1 

Where D is the number of parts in the composition.

Prior to visualization, all values were min-max normalized.
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