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A B S T R A C T

The structure of cubicles can hinder cows’ movements when transitioning between postures, leading to atypical 
motion patterns. Assessing posture transitions relies on visual observations. This study presents a framework for 
complementing these assessments with kinematic measurements using 3D pose estimation. A total 809 rising and 
791 lying down posture transitions were recorded over 12 cubicles by 7 synchronized cameras and processed 
with 3D pose estimation locating the position of the poll, withers, T13 and sacrum. First, the displacement of the 
keypoints was used to detect phases of the posture transitions. This detection was compared with visual ob
servations of 200 recordings. The average mean absolute difference in detected timestamps between human and 
machine across all phases was 0.5 s (average σ = 0.7) and was under 0.9 s for all phases. Second, indicators were 
scored based on spatial use and duration, and their distribution compared to existing thresholds. We observed 
that 59.9 % of rising bouts and 29.1 % of lying down bouts exceeded at least one threshold. Rising delay occurred 
in 2.8 % of rising bouts and backwards crawling in 59.2 %. Lying down duration exceeded the threshold in 28.9 
% of bouts, and rear limbs shifting duration in 8.3 %. Side lunge had a binary threshold which was not adapted to 
continuous sensor data. Finally, we investigated the association between indicators and found distinct di
mensions for head lunge and crawling. We conclude that 3D pose is useful to score posture transition indicators, 
and that several indicators should be used together to capture distinct dimensions.

1. Introduction

Free stall cubicles are designed to encourage cows to lie down rather 
than stand, and to defecate outside of the bed. Balancing design ele
ments involves a trade-off at the expense of movement opportunities. 
For instance, neck rails improve hygiene but increase the incidence of 
abnormal movements [1]. The ability for cows to comfortably transition 
between postures is an important parameter of cow comfort in stalls [2,
3].

The ability to perform unhindered posture transitions, such as get
ting up and lying down, is recognized as a critical component of cow 
welfare and resting [4,5]. Sufficient space and stable footing are needed 
to perform these transitions smoothly [6]. It has been hypothesised that 
the ability to comfortably transition between postures promotes the 
occurrence of lying behaviour [7]. Adequate rest – in terms of duration, 

frequency and comfort – is important to dairy cows, studies having 
shown that cows will work to access resting spots [8]. Brouwers et al. [4] 
found that in cubicles with flexible dividers, which allow for a more 
ample movements, cows lied down more frequently and that daily lying 
duration was higher, suggesting that the ability to lie down without 
obstruction promotes resting behaviour.

Comfortably transitioning between postures extends beyond phys
ical health, these movements are linked with behavioural expressions of 
comfort and well-being [5]. Cows that struggle with these transitions 
may experience increased stress and discomfort, which can affect their 
overall behaviour and productivity. Providing an environment that fa
cilitates posture transitions can lead to increased resting, and to 
improved welfare outcomes [9,10]. The quality of posture transition 
movements is used as a welfare assessment indicator, reflecting the 
comfort offered by the stall [6,11,12].
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In practice, the assessment of posture transition comfort is typically 
performed visually by a trained assessor, scoring indicators associated 
with adverse welfare outcomes, such as bumping the head on the cubicle 
bars [12]. The Welfare Quality assessment framework contains 2 criteria 
which are the duration of standing-to-lying (STL) posture transitions and 
collisions with equipment [11]. The Swedish framework Fråga Kon 
(Växa, Stockholm, Sweden), which is meant as a practical on-farm 
assessment of welfare through animal-based measures, assesses the 
quality of lying-to-standing (LTS). Visual evaluation has limitations, 
mainly low observation frequency, the inability to re-evaluate when 
scoring live, and the need for the observer to note various behaviours 
which may occur simultaneously. Observer disagreement does not seem 
to be a major risk however; for instance Zambelis et al. [12] reported a 
Kappa of 0.93 at its lowest when assessing abnormal posture transition 
indicators. The assessment frameworks presented earlier rely on few or 
single quantitative indicators for each posture transition.

Precision livestock farming (PLF) technology offers an opportunity to 
monitor posture transition movements continuously, simultaneously 
and objectively, and to automatically detect abnormalities in posture 
transitions.

Sensors have already been used to assess posture transitions. Motion 
capture has been applied to measuring head lunge (the forward 
displacement of the head) and showed that cows in open packs lunged 
further when lying down by a mean of 6 cm while using the same total 
longitudinal space [13]. Motion capture is a gold standard for kinematic 
measurements of animals [14] but remains impractical in production 
settings, which may explain the low sample size (n = 5) in the former 
study [13]. Brouwers et al. [15] developed a machine learning model to 
detect abnormal lunge movements from accelerometer data. They used 
annotations by trained observers of the occurrence of abnormal lunges 
as labels and tri-dimensional acceleration features as input. The accu
racy of their model reached up to 74 %, with the class having the highest 
accuracy being backwards crawling. This metric is encouraging but 
needs refining for practical implementation. It is important to note that 
this result is unlikely due to limitations in the model. Rather, the training 
labels were annotated using ethograms developed for visual observa
tions, in which the same behaviour class can be reflected by vastly 
different motion patterns [15].

A possible technology to assess kinematic features during posture 
transitions is pose estimation [16]. A widespread example of applica
tions of pose estimation in detecting bovine kinematic abnormalities is 
lameness assessment [17,18]. Pose estimation will track the displace
ment of key anatomical features to quantify indicators of abnormal 
locomotion [19]. Kinematic assessment with 2D pose estimation, as is 
commonly done to assess lameness [19–21] relies on straight walks 
along an assigned path, perpendicular to the camera’s line of sight [17]. 
Such setup with a fixed orientation of the camera is not feasible for 
assessing posture transitions of several animals in a production setting. 
The challenge is that the angle between a single camera’s field of view 
and each stall varies with the stall location, distorting joint angles and 
perspectives. Pose estimation fusion in 3D from multi-view computer 
vision however is invariant to camera placement [22] and thus offers 
more flexibility, when sensor placement is constrained by the existing 
barn design. Importantly for practical application, pose estimation does 
not rely on markers (unlike motion capture) and applies to all subjects in 
the scene (all cows in the cubicles being filmed).

From the state-of-the art in visual assessment there are two chal
lenges that sensor-based posture transition assessment could overcome; 
the difficulty in scoring multiple indicators in a single event and the time 
needed to assess regularly. We thus propose a method to identify the 
phases of posture transitions using multi-view fusion of pose estimation 
in 3D, and detect the occurrences of abnormalities.

The aim of the study was (i) to develop a method to detect successive 
phases of cows’ posture transitions from 3D poses and score comfort 
indicators during these phases, (ii) to validate the detection against the 
human eye and assess its robustness to noisy data and (iii) to study the 

distribution and possible association of posture transition indicators. To 
do so, we used a Sony multi-camera system (Sony Sweden, Lund, Swe
den) to generate 3D poses of dairy cows in a free stall barn during both 
posture transitions. Using the 3D pose, we detected the different phases 
of the posture transitions using change-point detection and supervised 
learning to then compare the detected timestamps to those annotated by 
human observers. Then, we measured the duration of each phase as well 
as kinematic features to identify bouts with indicators exceeding 
thresholds for comfortable movements. Finally, we investigated whether 
there existed an association between indicators.

2. Materials and methods

In this study, we use 3D pose to measure indicators of posture 
transition quality. Here is a general overview: video sequences showing 
posture transition bouts were recorded with synchronized cameras with 
overlapping fields of view. The multi-camera system was calibrated to 
determine intersecting lines of sight. The 3D pose of cows was inferred 
from 2D poses estimated on synchronized frames across several cameras. 
The displacement of anatomical features of cows was tracked 
throughout bouts and the timestamp of specific phases was detected and 
compared with manual annotations. Finally, kinematic indicators of 
posture transition were measured and compared to existing thresholds.

2.1. Location and animals

2.1.1. Study area
Video recordings from 7 cameras (G3 Bullet, Ubiquiti) were collected 

on 30 separate days between 2021 and 12–08 and 2022–04–28 at all 
times of day and night. The cameras were placed around an area of a 
free-stall barn covering 12 stalls (Cubicle divider cc1800 with rigid head 
bar, Delaval International, Tumba, Sweden) located next the sorting 
gate of the automatic milking system (VMS 300, DeLaval International, 
Tumba, Sweden). The cameras were installed around the rows of stalls, 
between 2.8 and 3.6 m high, and oriented towards the rows of cubicles 
so that all cubicles in the study ward, including forward lunge room 
defined as the 60 cm beyond the head rail, were visible by at least 2 
cameras. All recordings were obtained at the Swedish Livestock 
Research Centre’s dairy barn (Uppsala, Sweden).

2.1.2. Animals
The herd comprises Swedish Holstein and Swedish Red cattle housed 

indoors during the study period but with pasture access between May 
and September. On average, 51 lactating cows were present simulta
neously in the pen, with individuals being added and removed 
throughout, for a total of 183 different individuals having visited the pen 
during the study period. The average parity of the animals at the start of 
data collection was 2 with a mode of 1. Days since calving ranged from 6 
to 447 with an average of 149. 7 animals were diagnosed with non- 
reproductive health disorders during the study. Specifically, 3 cows 
were treated for mastitis, 1 cow was identified with severe lameness, 1 
cow with a hoof inflammation, and 2 cows were diagnosed with paresis. 
Average individual body condition score as measured by the BCS camera 
(BCS, DeLaval International, Tumba, Sweden) during the trial was 3.4 ±
0.33 (µ±σ).

Cows are milked robotically with voluntary access up to 12 h until 
which they are brought to milking if they have not gone voluntarily. 
Passage through the milking robot’s sorting gate is necessary to access 
feed. Cows underwent claw health inspection and trimming every 6 
months

2.2. 3D pose estimation

This study employs a synchronized multi-camera system (Sony 
Sweden) with known intersecting lines of sight to reconstruct 3D poses 
from 2D key-point estimates. Each pose comprises the coordinates of 
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anatomical landmarks (head at the poll, highest point of the withers, 
T13, and sacrum at the uppermost point of the ilium) in an arbitrary 
coordinate system at a given timestamp. HRNET [23] is used to estimate 
key-points in 2D for each frame. These poses are then fused to obtain 3D 
key-points.

Frames are synchronized by reading the frame timestamp in the 
metadata and using the first frame with a common full second transition 
as frame 0. Synchronization is maintained throughout the recording of 
up to 35 s by reading the frame order of arrival in the processing buffer 
for each camera, recording at the same framerate. The 3D fusion of poses 
is robust to misalignments of up to 0.5 s for movements corresponding to 
the velocity of a human walking.

Intrinsic calibration parameters are determined using structure- 
from-motion algorithm [24]. This step determines the cameras’ distor
tion parameters and ensures alignment of all cameras’ origin and axes 
with world coordinates [25]. Then, the system was extrinsically cali
brated to determine intersecting lines of sight between cameras using 
the technique described by Moliner et al. [26]. A single human is tracked 
by the pose estimator through the area of interest (twelve cubicles and 
they alley between them or a surface area of 7.5 × 6.4 m). A preliminary 
3D pose of the human is determined by triangulating each unique 
key-point across 2D poses. The system refines the calibration data 
through an optimization process that minimizes a reprojection errors 
function [26]. Reprojection error measures the difference between the 
observed 2D key-points in the images and the projected 2D locations of 
the 3D points calculated using the current calibration data. Pose quality 
assesses the plausibility of the calculated poses based on expected ori
entations and distances between key-points which have a defined range 
based on biological constraints (relative position of anatomical 
key-points to each other). The calibration parameters are then refined 
iteratively to reduce the reprojection error [26]. The system is robust to 
temporary occlusions and outliers by using temporal consistency checks.

The system outputs coordinates of the key-points in a 3D space for all 
objects present in the scene, and associates each keypoint to an object, 
differentiable by their track number consistent over frames, and a con
fidence metric (average 2D confidence from HRNET estimation over all 
2D poses used to generate the 3D pose). The number of objects is 
determined by the number of unique key-points. To maintain tracking 
consistency in assigning key-points to the correct object across time
stamps, the system employs a combination of spatial-temporal conti
nuity and trajectory analysis. Once key-points are identified in each 
frame, the system tracks these points over time by assuming smooth and 
continuous motion, thereby associating key-points in one frame with 
their corresponding points in subsequent frames. This process creates 
trajectories for each keypoint, which are then used to distinguish be
tween different objects based on their unique movement patterns. 
Additionally, the system incorporates a smooth motion error function 

during optimization, which penalizes non-uniform acceleration of key- 
points between frames, further ensuring spatio-temporal consistency. 
Fig. 1 exemplifies the 3D pose in two separate events by showing the 
vertical coordinate of key-points during STL for each track.

The pose estimator expresses coordinates in an approximation of the 
meter. It is important to note that while the scale of units expressed by 
the 3D key-points is consistent across locations, its exact resolution is 
unknown. This means that all values given in meters should be consid
ered as m ± ∁ where ∁ is an unknown constant. The implications of this 
limitation is that great caution should be exercised when comparing 
absolute values to other studies but that analysis of association and 
change rates are unaffected.

2.3. Video sequence selection

Initially, 979 videos showing a lying-to-standing bout and 1015 
showing standing-to-lying were visually identified for development 
purposes [27] and reused for this study. We applied a simple event de
tector calculating the difference in average withers Z position (height) 
across 10 frames (0.3 s) between the start and end of the sequence. An 
absolute difference above 0.4 m was considered to be a posture transi
tion, and the direction of change (downwards for STL and inversely) 
informed on the type. This is visible in Fig. 1 where the withers go from a 
height of about 1.7 m to 1 m.

After detecting events, 814 and 798 sequences were classified as 
lying to standing and standing to lying respectively. This corresponds to 
respective false negative rates of 16.9 % and 21.4 %. After visually 
inspecting the key-point series for each sequence, 5 and 26 sequences 
were noticed to have been misclassified as LTS and STL and subse
quently removed, giving false positive rates of under 1 % and 3.2 %. The 
sequences contained the 30 to 35 s video recorded by 7 synchronized 
cameras and show cows transitioning between postures in a cubicle. 
Removal of false positives left 809 and 791 LTS and STL sequences 
respectively.

2.4. Signal processing of 3D pose time series

2.4.1. Filtering
A low-pass filter with a cut-off frequency of 10 Hz was applied to 

each key-point and its corresponding X, Y and Z coordinates’ time series 
individually. This approach is based on recommendation by Hamäläinen 
et al. [28] and by Riaboff et al. [29] for noise removal on animal motion 
data (originally intended for accelerometer data). The filter was 
implemented in Python 3.9 using the function “butter” from the SciPy 
package [30].

Fig. 1. Vertical coordinate of 3 key-points during two lying down motions, comparing slow with swift posture transitions. Dashed lines correspond to the detection of 
the initial leg bend, thoracic limbs on ground, sacrum descent and completion. On the right pane, the rapid sacrum descent initiates just before the front limbs touch 
the ground. These examples were cherry-picked for clarity.
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2.4.2. Stitching discontinuous tracks
Object tracking could be interrupted by factors such as noise peaks or 

temporary occlusions, leading to instances where successive detections 
of the same animal were split between multiple tracks. To address this 
issue, we implemented a post-processing track-stitching algorithm that 
merges fragmented tracks corresponding to the same animal into a 
single continuous track, based on spatial continuity of the smoothened 
key-point coordinates. The track-stitching algorithm operates by first 
identifying all tracks within a given sequence and calculating the time 
and position at which each track ends. The algorithm then searches for 
subsequent tracks that begin within a temporal window of 1 s and spatial 
proximity of 0.3 (in the pose estimator’s coordinate system, corre
sponding approximately to 30 cm). Candidate tracks that start shortly 
after the end of the previous track are evaluated based on their 
Euclidean distance in the 3D space, using the wither key-point’s coor
dinate. The algorithm prioritizes merging tracks that are closest in space. 
Tracks are iteratively processed until no further stitching opportunities 
are detected. This method resulted in the inclusion of 305 LTS and 301 
STL posture transitions sequences, representing 37.7 % and 38.1 % 
respectively of the total sequences used.

2.4.3. Interpolating missing poses
The tracking algorithm has a tolerance to punctual missing de

tections and stitched tracks had a gap up to 1 s. This resulted in instances 
where consecutive 3D poses were separated by more than the expected 
interval of 0.033 s. To ensure consistency, poses were interpolated for 
missing frames, thereby standardizing the time intervals between 
consecutive poses. First, gaps were identified based on the timestamp 
difference between consecutive poses, and the number of missing frames 
was calculated. We estimated missing poses using 3D cubic spline 
interpolation — a method Ren et al. [31] found to be highly faithful for 
interpolating missing positions in cow movement data—thereby 
achieving uniform temporal resolution across sequences and facilitating 
further calculations.

2.5. Indicators of posture transition quality

Indicators relevant to assessing the quality of the posture transition 
were retrieved from the literature and are listed in Table 1. This study 
focuses on the movement opportunities offered by the cubicles, and the 
occurrence of atypical motions. For this reason, inclusion criteria for 
indicators were (i) measurable during the posture transition movement 
and (ii) measurable through kinematic features at a specific phase of the 
posture transition. The start and end of the posture transition move
ments are described in Table 1. Atypical motions such as dog sitting and 
horse-like rising were initially selected but did not occur. The selected 
indicators, their definition and corresponding phase, as well as existing 
thresholds beyond which the motion is considered abnormal are gath
ered in Table 1.

Out of the selected indicators, lying down duration, hind quarters 
shifting, delayed rising, backwards crawling and head lunge space had 
quantified thresholds found in the literature. Side lunge was described as 
yes or no in the ethograms found in Brouwers et al. [15] and in Dirksen 
et al. [32].

2.6. Event detection during posture transition and indicator calculations

To measure the indicators of comfortable posture transition it was 
necessary to accurately detect the occurrence of specific phases during 
the motion using the key-points’ displacement. These phases are listed in 
the third column of Table 1.

The main method here is change-point detection in the key-point 
coordinates, specifically the Y (perpendicular to the stall) and Z (verti
cal) coordinates of the withers. Change-point detection involves iden
tifying indices in a time series where there is a shift in the series’ 
statistical properties, such as mean or variance. In the case of the key- 

points 3D coordinates time series, change-points represent movements 
from one posture to another. The detection process involves segmenting 
the time series into distinct windows where the statistical properties are 
consistent within each segment but differ between segments. The 
change-points are the boundaries of these segments. Linearly penalized 
segmentation (Pelt) used here [33] optimizes the segmentation by 
balancing the number of change points against the fit to the data, using a 
penalty parameter to control the trade-off. The Pelt algorithm is 
implemented in the Python library Ruptures [34]. Parameters for 
change-point detection were optimized through a grid search testing the 
penalties of 3, 5 and 10 with any combination of the x and y coordinates 
of the withers or sacrum, and their movement velocity. For each com
bination, the mean absolute difference (MAD) was calculated between 
the annotated timestamp for that phase and the timestamp 

Table 1 
Selected indicators of posture transition comfort.

Indicator Definition Corresponding 
phases

Threshold for 
acceptable 
comfort

Rising ​ ​ ​
Duration of 

rising motion
Start of the motion: 
the cow gathers its 
front limbs under the 
body causing a visible 
rise in the withers’ 
position [27] 
End of the motion: the 
cow is fully up with all 
limbs extended [6]

Rising on 
breastbone, 
Standing

​

Backwards 
crawling on 
carpal joints

When resting on 
carpal joints, the cow 
moves its front leg 
backwards before the 
lunge motion [12]

Rising on 
breastbone, lunge

None/0 m [12]

Delayed rising The cow rests on its 
carpal joints before 
lunging.

Rising on 
breastbone, lunge

< 10 s [12]

Head lunge 
distance

Euclidian distance 
projected in 2D above 
the bed, measured 
between the point of 
furthest extension of 
the head and the 
position of the withers 
just before the lunge 
(after possible 
backwards 
movements)

Lunge, head 
baseline location

> 0.6 m 
beyond the end 
of the cubicle 
[22]

Side lunge Maximum angle 
formed between the 
lines joining the poll to 
the neck and the neck 
to the t13 during the 
lunge [27].

Lunge No side lunge 
[15,32]

Lying down ​ ​ ​
Duration of 

lying-down 
motion

Start of the motion: 
one carpal joint is bent 
and lowered [11]. 
End of motion: the 
cow is fully lying 
down and the body is 
stable [12]

Initial leg bend, 
recumbent 
position

< 6.3 s [11]

Hind quarter 
shifting

Duration between the 
moment both carpal 
joints touch the 
ground and the rapid 
descent of the sacrum.

Thoracic limbs 
touchdown, 
sacrum descent

< 3 s [12]

Head 
displacement

Length of the 
horizontal vector 
between the head at 
start of the movement 
and its point of 
furthest forward 
displacement

Head maximum 
extension

0.59 m (mean 
maximum in 
open pen) [13]

A. Kroese et al.                                                                                                                                                                                                                                  Smart Agricultural Technology 12 (2025) 101205 

4 



corresponding to the nearest change-point. The variables and penalty 
creating a change point closest to the annotation are reported in the 
respective sub-section for each phase.

This method outputs several change-points in each sequence, cor
responding to the different phases, as well as other events and also 
possibly noise. Thus it was necessary to select the right change point 
corresponding to the phase of interest amongst the various change- 
points detected.

The velocity of the withers and sacrum display specific patterns in 
between each phase as the cow moves parts of its body in succession. 
Thresholds in velocity peaks were used to constrain time windows for 
each phase and thus select the correct change-point. Rules and thresh
olds for change-point selection are described in Table 2 and in the 
subsections dealing with the detection of specific phase. It was not 
possible to detect all events in all sequences, and the final sample sizes 
used to calculate each indicator are found as labels on 3 and Fig. 5
respectively in the results section.

Fig. 1 Illustrates two STL sequences on which the timestamps 
detected for the phases have been marked by dashed vertical lines. On 
the left panel, the initial drop of the withers (orange curve), corre
sponding to the leg bend, was detected to have occurred at 9.6 s (first 
vertical dashed line). This is followed by readjustment movements of the 
hind quarters while the cow is standing on its thoracic limbs between the 
11.8 s and 14.1 s timestamps. This characterised by a plateau of the 
withers height, as the cow rests on its anterior limbs during the posterior 
readjustment movements. On the example on the right, the motion is a 
lot swifter, with only a brief deceleration of the withers’ descents, as 
both anterior limbs reach the ground at 15.2 s.

The methods to detect most phases are listed in Table 2. Other phases 
as well as kinematic indicators have a dedicated sub-section.

2.6.1. Backwards crawling
Before lunging, when forward space is perceived as insufficient the 

cow moves its front limbs backwards [12]. Identifying this movement 
enables to quantify the crawling distance but also enables the estab
lishment of a consistent baseline position of the withers immediately 
prior to the head lunge, which is crucial for calculating the displacement 
of the head during the lunge. Backwards crawling was defined as the 
total backwards displacement of the withers key-point’s coordinate 
along the x axis, between the start of the rising motion and the head 

lunge.

2.6.2. Head displacement and angle
For the analysis of head lunge, sequences were only used if the head 

key-point maintained a confidence level above 0.77 during lunge. The 
confidence threshold was decided by plotting the distribution of confi
dence values of the head around the predicted lunge timestamp, and 
visually identifying an elbow in the plot.

The withers baseline position was defined as the X coordinate of the 
withers after backwards crawling, also corresponding to the minimum X 
coordinate between start of the rising motion and lunge when crawling 
was not detected to have occurred. Lunge distance was defined as the 
distance on the x axis between the head at lunge and the withers baseline 
location, to which was subtracted the distance between the head and the 
withers at lunge. The rationale behind this calculation was to determine 
how far forward the head was able to lunge, not compared to the cubicle, 
but to the initial placement of the cow before lunging.

Head lunge angle was calculated as the 2D projected angle over the 
horizontal plane, formed by the line of the back (joining the withers to 
the sacrum) and the neck (joining the withers to head keypoint) at the 
moment of furthest extension. An angle of 180◦ represents straight 
lunge, where the head is exactly aligned with the back. A lower angle 
represents a sideways neck, independent of lunge side. (Fig. 2)

For the head displacement when lying down, the maximum filtered 
coordinate of the head on the X axis (parallel to the stalls) was sub
tracted to the head’s position on the X axis at the time of initial leg bend.

2.6.3. Thoracic limb touchdown
This refers to the earliest point at which both anterior limbs are 

folded and the cow touches the bed with both carpal joints. The withers’ 
coordinate was normalized and their vertical velocity was computed. 
Change-point detection with a penalty of 3 was applied to the withers Z 
coordinate series. Peaks in the wither’s vertical displacement above 0.2 
normalized distance units per second were detected, with a minimum 
distance between peaks of 40 points or 1.33 s. We selected the first 
change-point following the peak first.

2.6.7. Sacrum descent
The change-point method failed to produce detections corresponding 

to the sacrum descent timestamp. Instead, the following methods were 
tried: recurrent neural network with dropout and one of each 1 
dimension convolutional, bi-directional long-short-term-memory and 
dense layers, against a random forest with 50 estimators predicting the 
index of the event. The RNN produced a MAE on unseen data between 
detections and annotations of 0.81 s at the stabilisation of the loss term 
after 12 epochs while the random forest produced a MAE of 0.41 s and 
was thus chosen. Since the sequences were of varying length and usually 
centred on the posture transition, and to avoid overfitting the model to a 
specific location in the sequence, the key-point series were randomly 
padded before training the models. Padding was added at the beginning 
and end of each series, for a total length of 1147 (arbitrary value above 
the length of the longest series) according to the following equations:

Lpads is the total padding length for sequence s: Lpads = 1100 − Ls 

with Ls being the length of sequence S.
Lstarts is the padding length at the start of sequence s: Lstarts ∼

Uniform
(
0, Lpads

)

Lends is the padding length at the end: Lends = Lpads − Lstarts . The 
padding values are calculated as follows: 

Ppos, k, x = coordpos,k,x ⊗ ILpos∗1 + N (1) 

where P is the matrix of padding values of size 6 ∗ Lpos with pos taking 
values start or end, coord being the first or last value in the series for 
coordinate x = X or Z and key-point k = withers or sacrum. N ∼

Uniform(0, 0.05) is a vector of random noise. Considering S, the original 
sequence of key-point positions, the padded sequence used as input in 

Table 2 
Posture transition phases and methods for detection.

Posture 
transition 
phase

Penalty Variables for 
change-point 
detection

Threshold for selecting a cv- 
hange-point

Rising (LTS) ​ ​ ​
Start of rising 

motion
10 Withers Y, 

Withers Z
First change point where the 
median Z withers in the 
following 1 s window > median 
Z withers in the initial 1 s of the 
sequence

Head lunge Maximum Head X coordinate
Standing 5 Withers velocity First change point after the last 

velocity peak of 0.18 
(normalized units)

Lying down 
(STL)

​ ​ ​

Initial leg bend 10 Withers vertical 
velocity

Last change point before the first 
peak in withers velocity above 
0.2 (normalized units)

Thoracic limbs 
touchdown

3 Withers Z First change-point immediately 
after the first peak above 0.2

Sacrum descent Random forest
Recumbent 

position
10 Withers Y, 

Withers Z
Last change point where the 
median Z withers in the 
following 1 s window < median 
Z withers in the final 1 s of the 
sequence
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the random forest is: 
⎡

⎣
Pstart

S
Pend

⎤

⎦

2.7. Validation

2.7.1. Agreement between observers and with event detection
To validate the accuracy of the detection of the various phases, video 

sequences showing posture transitions by a single cow were annotated 
by 3 observers. The observers annotated the timestamps for each event 
listed in column 3 of Table 1. Observers first trained on 10 sequences for 
each posture transition and agreed on the timestamps to annotate. Then, 
each observer was provided with a total of 100 video sequences for each 
posture transition, which were randomly assigned, shuffled and blinded. 
The 100 sequences contained 55 videos which were common to all ob
servers. This overlap was to score inter-observer agreement. The 100 
videos also contained 30 sequences which were unique to each observer. 
Among the resulting 85, 15 were randomly resampled to assess intra- 
observer agreement. For each sequence to be annotated, the material 
provided to the observers contained the synchronized video from all 7 
cameras. Observers were free to choose the camera offering the best 
view of the cow performing the posture transition.

Agreement was measured as MAD between annotated and detected 
timestamps. MAD(i,m) = 1

300
∑300

s=1
⃒
⃒Δs,(o,m)

⃒
⃒ where Δs,(o,m) =

⃒
⃒ts,i − ts,m

⃒
⃒

with m being the automated detection and ts,i the time stamp of the s:th 
sequence by o:th observer.

2.7.2. Agreement depending on interruptions in the poses
Sequences contained 637 to 1013 consecutive poses, including se

quences stitched from spatio-temporally continuous tracks. We ran a 
regression to analyse the effect of the presence of a stitch in a ± 1.7 s 
window around the annotation, as well as the duration of interpolated 
poses on the agreement between annotations and detections. The model 
is described as follows: 

Toe = β1 + β2M + β3S + β4I+ 1|sequence+ ε (2) 

where T is the observed timestamp, either annotated or detected. e is the 
event (taking values of all 7 events in both posture transitions). M is the 
observer type indicating whether the timestamp was annotated by a 

human or detected by the model. S is a dichotomous variable repre
senting the presence of a track-stitch in the 3D pose sequence. It always 
takes the value of 0 in the case of human annotation (because stitches in 
the 3D pose have no meaningful effect on human annotations performed 
on the video), and 1 or 0 in the case of model detections, depending on 
the presence of a stitch in the ±1.7 s window around the mean human 
annotation. The value of 1.7 s corresponds to the 95th percentile of 
differences between human and machine. Similarly, I is the interpolated 
duration in case of detections and 0 in the case of annotations. Finally, 
1|sequence represents a random intercept for the sequence number, as 
the predicted timestamp in each sequence has no tangible meaning and 
is relative to the start of the video but should theoretically be equal for 
all annotations in the same sequence. We report the value and the sig
nificance of β2, β3 and β4. β2 represents the difference in predicted event 
timestamp if the observation was done by the model compared to a 
human, β3 the change in predicted timestamp if the observation was 
done by the model and a stitch was present in the ±1.7 s window and β4 
the change in predicted timestamp for 1 s of interpolated poses in the 
window. Significance is accepted at a risk of α = 0.05.

2.8. Exclusion criteria

Sequences were first included if a posture transition was detected 
from the key-point data. This produced 809 sequences in which the 
occurrence of a LTS posture transition was visually identified, and 791 
STL. Regarding annotations, 145 sequences of each posture transition 
were originally annotated. 4 annotated STL sequences were discarded as 
well as 4 LTS sequences because of data quality issues.

After the events of interest were detected using the methods 
described above for the entirety of the sequences, including all se
quences which had not been annotated, the validity of the detection was 
visually assessed using the vertical displacement graphs, of which Fig. 1
shows an example for two different sequences. The time-series of the key 
points’ vertical coordinate were plotted for all sequences, and the 
detected timestamps were added to the plots. Sequences were excluded 
based on visual assessment if any of the detected timestamps did not 
match the kinematic pattern corresponding to the event. 84 LTS and 87 
STL sequences were excluded, the number of events that were inaccu
rately detected is listed in Table 3.

Fig. 2. 3D pose of cows with one cow rising (blue pose) taken at furthest head extension (lunge). Head lunge angle is defined as the angle between the segments in 
yellow on pane A, joining the head, withers and sacrum (highlighted). A: top down view of all 3D poses in the row of cubicles. B: side view 3D pose of the cow rising. 
C: corresponding frame.
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2.9. Statistical analysis of indicator scores

To explore the association between indicators, Spearman’s correla
tion was calculated between indicators in the same posture transition 
sequence. A principal component analysis (PCA) was conducted to 
identify more complex correlations between indicators in LTS transi
tions using PCA function from SciKit-Learn [35].

3. Results

The purpose of this study was to evaluate the accuracy in the 
detection of the successive stages in the posture transitions, to detect the 
occurrence of indicators exceeding thresholds for comfortable posture 
transition and to explore possible indicator association.

3.1. Comfort indicators exceeding thresholds

In the stalls used for this study, and regarding duration, we found 
that 2.8 % of LTS posture transitions exceeded the threshold for indi
cator ‘Rising delay’. If we use the 5 s threshold used in Fråga Kon, 
instead of 10 s found by Zambelis et al. [12], 30.2 % of LTS bouts would 
exceed the threshold. Crawling backwards occurred in 59.2 % of LTS 
transitions. 28.9 % of STL exceeded the threshold for total duration and 
8.3 % for shifting duration. Altogether, 59.9 % of LTS and 29.1 % of STL 
exceeded thresholds for at least one indicator.

3.2. Agreement on phase detection and robustness to interrupted poses

The results in Table 4 show agreement under half a second for most 
events. The first phase of the rising movement showed the most 
disagreement between observers. (Table 5)

When missing positions were interpolated, the average interpolated 
duration was 0.5 s ± 0.5 (µ±σ) or 31 % of frames in the window around 
the event for LTS and 0.7 ± 0.7 or 43 % of frames for STL. For both rising 
and lying down transitions, interpolating poses on missing frames did 
not have a significant effect on the timestamp prediction by the model. 
Only for the rising on breastbone and the thoracic limbs touchdown 
phases did the presence of a stitch have a significant effect on the dif
ference between annotated and detected timestamps (at α = 0.05). The 
observed timestamp being detected by the model rather than a human 
observer was only significant for the thoracic limbs touchdown.

3.3. Distribution and association of posture transition comfort indicators

The analysis of association between indicators was aimed at under
standing whether there existed a combination of indicators which by 
themselves offer a summary of the posture transition quality, or rather if 
indicators showed no association and that there was thus no relation 
between the qualities of the different phases. Both posture transitions 
were analysed separately.

3.3.1. Lying to standing
Rising duration had a median of 8.3s±2.8 (median ± Standard de

viation) and a skewness of 1.4. Total duration does not have a threshold 
on Fig. 3 since no recommendations were found. For rising delay, it was 
4.0s±2.4 with a skewness of 1.4. Crawling distance had a median of 0.1 
± 0.1 and a skewness of 1.1. Lunge distance showed an important range 
from 0.3 to 1.5. Its median was 0.66±0.33 and its skewness 0.44. Lunge 
angle had a median of 159.7◦± 11 and its distribution was skewed to the 
left (skewness − 0.6).

Spearman’s pairwise correlations, shown as labels on Fig. 3 revealed 
a set of moderately to strongly correlated variables (p < 0.001): dura
tion, crawling distance and rising delay. Lunge angle and distance had a 
negligible yet significant correlation (p = 0.005), the significance driven 
by the high sample size (n = 548). (Fig. 4, Fig. 5)

The principal component analysis aimed at exploring whether the 
indicators could be combined into subsets that better explain the 
movement patterns. The first 4 components were retained, explaining 98 
% of the variance in the dataset.

The first component (PC1) explains 45 % of variance. Variables with 
the highest loading on PC1 were delay, crawling and duration. The 
second component (PC2) explains 23 % of the variance and is loaded by 
head lunge distance and angle.

Table 3 
Count and frequency of detection errors per event. Note that the total errors 
amount to more than the total, as several events could be off in the same 
sequence.

Event Errors Frequency

Rising (LTS) ​ ​
Rise on breastbone 22 2.7 %
Lunge 34 4.2 %
Standing 37 4.6 %
Any 84 10.4 %
Lying down (STL) ​ ​
Initial leg bend 17 2.2 %
Thoracic limbs touchdown 29 3.7 %
Sacrum descent 36 4.6 %
Recumbent position 13 1.6 %
Any 87 11.0 %

Table 4 
Mean absolute difference (in seconds, ± standard deviation) in annotated or 
detected timestamps for each pair of observers and with the automated 
detection.

Observer pair

Feature Obs 1 - 2 Obs 1 - 3 Obs 2 - 3 Observers – 
machine

Rising (LTS) ​ ​ ​ ​
Rise on breastbone 1.1 ±

1.4
1.8 ±
1.6

1.0 ±
1.3

0.9 ± 1.1

Head lunge 0.2 ±
0.3

0.2 ±
0.4

0.2 ±
0.4

0.3 ± 0.6

Standing 0.5 ±
1.1

0.6 ±
1.1

0.4 ±
0.4

0.7 ± 0.9

Lying down (STL) ​ ​ ​ ​
Leg bend descent 0.3 ±

0.2
0.2 ±
0.2

0.2 ±
0.2

0.4 ± 0.7

thoracic limbs 
touchdown

0.2 ±
0.1

0.2 ±
0.1

0.2 ±
0.1

0.4 ± 0.6

Sacrum descent 0.4 ±
0.4

0.4 ±
0.4

0.3 ±
0.4

0.4 ± 0.5

Recumbent position 0.8 ±
0.4

0.5 ±
0.5

0.5 ±
0.6

0.4 ± 0.7

Table 5 
Coefficients for the effect of the processing method and event detection on the 
predicted timestamp based on Eq. (2). Significant coefficients are bolded.

Coefficient for the effect on predicted timestamp 
(seconds) 
(n sequences with processing method)

Feature Presence of 
stitch

Duration of 
interpolation

Model 
detection

ICC

Rising (LTS) ​ ​ ​ ​
Rise on breastbone ¡1.4 (7) 0.0 (27) − 0.1 0.83
Head lunge − 0.4 (10) 0.1 (72) − 0.0 0.87
Standing 0.3 (14) 0.4 (32) − 0.1 0.78
Lying down (STL) ​ ​ ​ ​
Leg bend descent − 0.0 (9) − 0.3 (38) − 0.1 0.91
thoracic limbs 

touchdown
¡0.5 (18) 0.1 (91) ¡0.4 0.95

Sacrum descent − 0.1 (29) 0.0 (14) − 0.0 0.94
Recumbent 

position
0.2 (7) 0.3 (30) − 0.0 0.83
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Components 3 and 4 explained 17 and 13 % of variance respectively. 
Component 3 had lunge angle and distance load with opposing signs. 
Component 4 showed opposed loading signs between duration and 
crawling distance.

3.3.2. Standing to lying
The Spearman correlation between shifting duration and lying down 

duration is 0.66 (p < 0.001). Lying down duration had a median of 5.6 ±
1.7 and a skewness of 2.2 while shifting duration had a median of 1.4 ±
1.2 and skewness of 2.4. The distribution of shifting duration is unbal
anced, with a high frequency at 0 because of bouts not displaying a 
window for hind quarter shifting.

4. Discussion

The study comprises several final and intermediate results, which all 
have implications for dairy cow comfort monitoring in free stalls using 

pose estimation in 3D This discussion will first offer a summary of key 
findings regarding both validation of the method and indicator scores, it 
will then compare them with earlier research and discuss limitations and 
implications for future cattle welfare monitoring.

4.1. Validation and agreement with human observation

The results confirmed a high agreement between human and algo
rithmic detection of posture transition phases. The agreement between 
human and machine in detecting the timestamp of specific events has 
two implications. The first one is that we can use the system to measure 
the duration of the successive phases of the posture transition, which is a 
comfort indicator. The second implication is that the 3D capture system 
properly captures the kinematics of events of interest since what is seen 
on the video matches change points in the 3D coordinates. We note that 
the development was done with a single cubicle design and that the 
algorithm may not perform equally well in other systems. Supervised 

Fig. 3. Distribution with kernel density estimation and pairwise scatterplots of lying to standing posture transition indicators. Cut-offs for comfort assessment are 
indicated by a dashed red line on the histograms when found in the literature. The sample size for each indicator is reported with the histograms and the correlation 
(p-value) on the scatterplots.
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learning methods for event detection using diverse sequences can likely 
address this limitation. The failure rate of up to 11 % does mean that 
human supervision is required before making meaningful conclusions.

4.2. Comparison of the results with previous studies

Most STL sequences (71 %) were within the accepted duration, 
however backwards crawling during LTS was highly prevalent. This 
prevalence comes in stark contrast to results by Brouwers et al. [36] who 
found a probability of backwards crawling no higher than 5 % in 
different cubicles. These differences are likely imputable to different 
stall designs. Zambelis et al. [12] did not find backwards crawling to be 
associated with characteristics of the cow, nor with adverse welfare 
outcomes. We still found the indicator be included in the Fråga Kon 
manual. Combined with the fact that it is rarely observed in unrestricted 
environments [6], lead us to advocate for its inclusion when evaluating 
cubicle designs.

Delayed rising; or a pause before the swift head lunge movement, 
above the suggested threshold had a low prevalence in our study (2.8 
%), compared with the 19.5 % reported by Zambelis et al. [12], hinting 
again at the fact that indicator distributions vary greatly with stall 
design and thus that the results presented here should not be extrapo
lated to other farm settings.

The range of forward head displacement shows that even if forward 
lunge space is offered, cows use this space very differently. We observed 
on the video that some cows had slow and hesitant movements, with the 
head not extending beyond the head rail, while others would lunge far 
forward, potentially explaining the measured variability. Thresholds 
exist for lunge room, for example 0.9m according to Cook [3]. The 3D 
coordinates in the system used here however were not precisely 

expressed in meters. Although the system approximates the meter by 
design in the calibration phase, caution is warranted when comparing 
displacement measurements to previous results.

Rising duration is dependent on the identification of the start of the 
rising motion, which is the phase with the highest ambiguity to ob
servers (over 1 s average difference). Rising duration was positively 
associated with cow width in the study by Zambelis et al. [12], while 
delayed rising was not. Delayed rising was a binary indicator in the latter 
study [12]. Larger cows were predicted to lunge further in an earlier 
study [37]. A possible explanation for both these results is that larger 
cows are more hesitant throughout the bout but not specifically before 
lunge. In the Fråga Kon framework, the threshold for delayed rising was 
5 s instead of 10, which would lead to a different observed prevalence.

4.3. Assessing comfort with a combination of indicators and 3D pose

In the Welfare Quality framework, posture transitions are assessed 
using two indicators; duration and collisions [11]. In their “Flowchart 
for Evaluating Free Stalls”, Nordlund [38] assesses posture transitions 
through lunge and “bob” spaces, and rising room (measured as the 
absence of collisions). The manual for Fråga Kon uses the duration of the 
pause on the front limbs as main indicator. It exemplifies abnormal 
rising with backwards crawling, dog sitting and difficulty to rise (as
sessors have also stated looking at side lunge), and gives the expert 
assessor the discretion to judge, looking at a more complete picture of 
the cow. Taken separately, indicators provide a simplified view, which is 
practical for on-farm applications but may not capture the full 
complexity of the posture transition process.

According to the PCA, there are several uncorrelated patterns of 
rising motions. PC1 is interpreted as corresponding to hesitation, 

Fig. 4. PCA biplot for lying to standing indicators showing variable loadings and individual scores on 4 components.
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creating pauses in the rising motion. This is because the variables 
loading the highest on PC1 are delay, crawling distance and total 
duration. These variables are correlated, which is sensible since the 
further a cow will crawl, the more time it needs to do so, which increases 
delay and total duration directly. PC2 represents straight lunge, which is 
a desirable pattern. Lunge distance and angle had a low correlation, but 
they loaded similarly on PC2, suggesting that they measure distinct but 
complementary aspects of lunge behaviour. There is seemingly an upper 
diagonal bound on the scatterplot for these two variables (Fig. 3) which 
would indicate that angled lunges rarely are associated with longer 
distance. Components 3 and 4 seem to show exceptions from the most 
common motion patterns; component 3 had lunge angle and distance 
load with opposing signs, representing both lateral and longitudinal 
spatial use while bouts scoring high on PC 4 would represent cows 
crawling an important distance but quickly.

Principal components being uncorrelated implies that crawling 
(PC1) is not associated with straight lunge (PC2), contrary to what we 
had previously hypothesized (the rationale being that crawling back
wards offered more forward space to then lunge straight). We know that 
the stall design in the study farm promotes backwards crawling, which 
tends to increase delayed rising through readjustments as is reflected in 
PC1. Loadings on PC4 however show an opposite pattern where cows do 

crawl but swiftly. Taken together, PC1 and PC4 imply that duration is 
not systematically an indication of crawling. The first component sug
gests that the proxy indicator found in Welfare Quality or Fråga Kon are 
sound summarisation of the parameters explaining the most variability, 
but the other components suggest that there are additional dimensions 
to the quality of posture transitions which we should not summarise into 
a single indicator.

4.4. Defining thresholds based on existing variability and quantitative 
measurements

The distribution of indicator values presented in the results high
lights that the range of posture transition movements, and the duration 
of the different phases exist on a continuum. This comes in stark contrast 
with the rigid thresholds found in the literature which may not be 
adapted to assessment using sensor data, of which lunge angle is a clear 
example. In a similar development, Brouwers et al. [15] found moderate 
accuracy (60 %) in detecting the occurrence of side lunge using accel
erometer data. While the class for side lunge was yes or no, there seems 
to exist a continuum of lunge angles as shown on the first density plot of 
Fig. 3. It is worth exploring if misclassifications happen more consis
tently when the head lunge is at a slight angle. This would mean that the 
challenge in classifying side lunge in the latter study is not a short
coming in the algorithm but rather a limitation in the ethogram used in 
annotations which is not adapted to continuous data [15]. This might 
lead to misalignments between the sensor output and the annotation, 
especially in the range of neck angles that represent the borderline be
tween normal and abnormal lunge angle. Bewley et al. [39] describe 
side lunge as that performed in cubicles designed specifically to allow 
for cows to lunge their head side, instead of forward (because the cow 
could be impeded by a wall or another cow). We saw accordingly, in 
studies assessing posture transitions, that side lunge was a yes/no in
dicator [12,15]. In the study presented here, the cubicles were designed 
for forward lunge. However, we did both observe and record bouts in 
which the neck was at an angle compared to the head. It is important to 
define whether this form of angled forward lunge classifies as side lunge, 
if it is another form of abnormal lunge, or if rather it should not be 
considered abnormal but an individual preference. Anecdotally expert 
assessors judged some of the lunges in our study as being sideways, yet 
we found no apparent cut-off in the distribution of lunge angles. This 
hints to the fact that side lunge is more complex than forward versus 
sideways, but that there also may not be a universal threshold for what 
angle constitutes side lunge. This trend towards not observing clear 
cut-offs from the distribution is visible in all the indicators measured 
here. We propose that assessment of posture transitions using sensor 
data should not be done against a rigid threshold. This technology paired 
with individual recognition could quantify the variability within the 
herd and individuals, help understand individual motion patterns and 
tailor the benchmarks to each cow.

4.5. Limitations and necessary improvements for practical 
implementation

In our previous study, validating a data processing method to detect 
the start of the rising motion, using the same key-points, we had 
excluded sequences for which the rising motion was split into several 
tracks [27]. In real world settings, data generation mechanisms will 
inevitably produce gaps. In order to move towards implementing such 
tools in practice, it was important to test whether interrupted sequences 
could still provide an accurate detection of the posture transition phases. 
The results were encouraging and showed that stitching tracks and 
interpolating poses had little effect on the accuracy of the event 
detection.

Improvements should be made in the system to obtain coordinates in 
meters, which would allow comparing lunge room with earlier studies 
[6,13,40]. This would also help provide recommendations regarding 

Fig. 5. Distribution with kernel density estimation and scatterplot of standing 
to lying posture transition indicators. Cut-off for shifting duration is indicated 
by a dashed red line on the lower histogram. The sample sizes for both in
dicators are reported with the histograms and the correlation (p-value) on the 
scatterplot.
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cubicle dimensions based on spatial use [2].
Challenges remain for practical application, namely dealing with 

inaccuracies in event detection and the high false negative rate. The 
current detection method was a rule-based approach, which relies on the 
high interpretability of 3D pose estimation, reflecting the actual move
ment amplitude and location of the anatomical features. This high 
interpretability can reduces the amount of annotated data needed for 
event detection and can be relied upon to verify the validity of the de
tections by setting numerical constraints based on the assumed relative 
location of the key-points, to each other and to their previous location. 
Once we identify the kinematic pattern of a phase, we can split longer 
key-point time series into windows and find matching patterns.

For the head lunge space threshold, we used an average forward 
displacement of 0.6 m reported by [6]. It is consistent with the findings 
of [13] who reported a mean maximum displacement of 0.59 m when 
lying down. This however remains an average and quantifying the 
variability within the herd is instrumental in designing stall elements 
which can accommodate all cows.

More posture transition indicators exist than were used in this study. 
A detailed list can be found in Zambelis et al., [12]. This study was, 
limited to kinematic indicators.

5. Conclusion

This study showed that 3D fusion of pose estimation is a possible 
sensor technology to complement posture transition assessment with 
kinematic measurements. It shows good accuracy on detecting events, 
with disagreements with human-made visual observations being under 
0.5 s for most phases and 0.9 s at most. Human oversight is needed for 
final evaluation since up to 11 % of sequences had at least one incorrect 
detection.

Measuring posture transition indicators showed that over half of 
rising events and under a third of lying down events were considered 
abnormal. Backwards crawling before rising was particularly prevalent 
in the farm and cubicles studied.

Analysing the association of indicators with a PCA showed that the 
dimensions of lunge, hesitation and spatial use were uncorrelated. 
Backwards crawling, delay, and head lunge should be assessed through 
specific indicators to cover these distinct dimensions separately. In 
practice, this is challenging to perform visually, and pose estimation 
offers a method to increase the information available to assessors.
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