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Verticillium wilt poses a severe threat to cotton growth and significantly impacts cotton yield. It is of significant
importance to detect Verticilliumwilt stress in time. In this study, the effects of Verticilliumwilt stress on themi-
crostructure and physiological indicators (SOD, POD, CAT, MDA, Chla, Chlb, Chlab, Car) of cotton leaves were
investigated, and the feasibility of utilizing hyperspectral imaging to estimate physiological indicators of cotton
leaves was explored. The results showed that Verticillium wilt stress-induced alterations in cotton leaf cell mor-
phology, leading to the disruption and decomposition of chloroplasts andmitochondria. In addition, compared to
healthy leaves, infected leaves exhibited significantly higher activities of SOD and POD, along with increased
MDA amounts, while chlorophyll and carotenoid levels were notably reduced. Furthermore, rapid detection
models for cotton physiological indicators were constructed, with the Rp of the optimal models ranging from
0.809 to 0.975. Based on these models, visual distribution maps of the physiological signatures across cotton
leaves were created. These results indicated that the physiological phenotype of cotton leaves could be
effectively detected by hyperspectral imaging, which could provide a solid theoretical basis for the rapid
detection of Verticillium wilt stress.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Verticillium wilt of cotton (Gossypium spp.), caused by the
hemibiotrophic fungal pathogen Verticillium dahliae, represents
devastating disease in cotton production. The pathogen initially invades
the host through the root system, subsequently proliferating and syste-
matically colonizing the plant's vascular tissues. During early infection
stages, Verticillium dahliae displays biotrophic characteristics, maintain-
ing a relatively asymptomatic phase that minimally affects plant
productivity. However, as the infection advances, the pathogen
undergoes a critical transition to necrotrophy, actively degrading host
tissues to obtain nutrients. This phasemanifests as characteristic disease
symptoms including vascular wilting, leaf chlorosis, and premature
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senescence (Zhang et al., 2021a, 2021b). Commonly termed “cotton
cancer”, Verticillium wilt causes severe physiological disruptions that
significantly impair plant growth and development (Ayele et al.,
2020). The disease leads to substantial yield losses andmarked deterio-
ration of fiber quality. Given the current lack of highly resistant cotton
cultivars, early and accurate disease detection becomes paramount for
implementing timely and targeted management strategies. Such pre-
ventive measures are indispensable for containing disease epidemics
and safeguarding cotton production sustainability.

During Verticillium wilt infection, significant alterations in internal
tissue structure and physiological parameters occur prior to the mani-
festation of visible symptoms.When Verticillium dahliae invades, the an-
tioxidant system serving as the internal defense mechanism of the host
is activated and the activity of related enzymes is stimulated to resist
pathogen invasion and maintain normal physiological activities (Kaur
et al., 2022). Superoxide dismutase (SOD), peroxidase (POD), catalase
(CAT) activities, and malondialdehyde (MDA) amounts are important
indicators in the plant antioxidant system (Kaur et al., 2022; Zhu et al.,
unications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://
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2023). SOD, POD, and CAT can eliminate the harmful oxides in plants,
reducing intracellular oxidative stress and damage (Li et al., 2019; Pei
et al., 2019). MDA is a byproduct produced by peroxidation between in-
tracellular reactive oxygen species (ROS) and lipids in plants under
stress (Ali et al., 2022), and its accumulation is often utilized as an indi-
cator of plant stress levels. In addition, the vascular bundles of cotton are
gradually blocked by hyphae and harmful substances as the disease pro-
gresses, making normal water transportation difficult (Song et al., 2020;
Zhang et al., 2022). Consequently, cotton leaves exhibit progressive
wilting initiation, accompanied by interveinal chlorotic lesions that
subsequently develop into generalized leaf yellowing and necrosis.

Through monitoring changes in physiological indicators related to
the antioxidant system and leaf pigment content, researchers can reveal
the interaction mechanism between pathogens and plants and achieve
early detection of disease. This has been used for the analysis of plants
such as tomatoes, pumpkins, and cotton (Kaur et al., 2024; Khalil
et al., 2021; Nafisa Shoaib et al., 2020; Zhang et al., 2021a, 2021b). How-
ever, traditional biochemical detection methods for plant physiological
signatures often require tedious experimental operations. These
methods are invasive to the plants and can only provide data for dis-
crete points, making it impossible to comprehensively investigate
time series and distribution of indicators.

In recent years, hyperspectral imaging has beenwidely used tomon-
itor crop physiological status because of the advantages of integrating
image and spectra information obtained from contactless rapid mea-
surement (Sarić et al., 2022). Liu et al. (2021) applied hyperspectral im-
aging technology to quantify potato nutritional indicators, including
petiole nitrate, whole leaf, and vine total nitrate. Asaari et al. (2022) pro-
posed a non-destructive method based on hyperspectral images for the
characterization of the effective quantum yield of photosystem II, water
potential, transpiration rate, and stomatal conductance of maize under
drought stress.Wu et al. (2023a) utilizedmicroscopic hyperspectral im-
aging technology to dynamically detect CAT activity in tomato leaves.
Wang et al. (2021) developed a prediction model for cotton leaf nitro-
gen concentration by combining the spectral bands sensitive to oxidase
activities and leaf nitrogen concentration.

Critical to hyperspectral analysis is the extraction of characteristic
wavelengths and the development of robust predictionmodels. Various
feature selection methods, including successive projections algorithm
(SPA), random frog (RF), and competitive adaptive reweighted sam-
pling (CARS), have been employed to identify optimal spectral bands
while reducing data dimensionality. These selected features are then
typically incorporated into machine learning models such as partial
least squares regression (PLSR), support vector regression (SVR), and
convolutional neural network regression (CNNR) to establish quantita-
tive relationships between spectral signatures and physiological param-
eters. To the best of our knowledge, however, there are currently few
studies linking hyperspectral imaging to efficiently monitor the physio-
logical signatures of cotton under disease stress, especially the various
enzyme activities of the antioxidant system. Therefore, this study
aimed at dynamic monitoring based on hyperspectral imaging of the
physiological phenotype in cotton leaves under Verticillium wilt stress.
The specific objectiveswere: (1) to analyze the effect of Verticilliumwilt
on themicrostructure, physiological signatures, and spectral reflectivity
of cotton leaves; (2) to extract characteristic wavelengths correlated
with physiological indicators using SPA, RF, and CARS methods and es-
tablish accurate prediction models through PLSR, SVR and CNNR ap-
proaches; (3) to visualize the spatial distribution of physiological
indicators.

2. Materials and methods

2.1. Cotton cultivation and inoculation

Two cultivars of cotton seeds named Xinluzao 45 and Xinluzao 53
(coded as XLZ45 and XLZ53, respectively) were provided by Shihezi
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University, China. Normal-sized and undamaged seeds were sown in
plastic pots in the greenhouse of the Zijingang Campus of Zhejiang Uni-
versity, China. The greenhouse environment was set to a status with a
temperature of 30 °C during the day and 25 °C at night, a photoperiod
of 12 h/12 h, and a relative humidity of 60 %. The cultivated soil was a
mixture of sandy soil, peat soil, and vermiculite in a ratio of 6:2:1. Nor-
mal and consistentwater and fertilizer managementwere carried on all
cotton plants.

The Verticillium dahlia strain H6 used in this study is a deciduous
strainwith high pathogenicity andwas also provided by Shihezi Univer-
sity. The strain was cultured by incubation on potato glucose agar at
28 °C in darkness until the colonies covered the entire petri dish. The
spores were washed from the colonies using sterile water. Then, oscilla-
tion and filtering were conducted to obtain a conidia solution. The con-
centration of the spore suspension was further adjusted to 1 × 107

spores/ml using sterile water.
At the 6–7 true leaves stage, the inoculationwas conducted. The cot-

ton plants were carefully removed and the roots were soaked in the
spore suspension for 1 h. The plants in the control group were placed
in the same volume of sterile water for the same soaking time. After in-
oculation, the cotton plants were replanted in sterile soil. Cotton in the
control and the inoculation groups were cultivated in different pots.
The greenhouse temperature was readjusted to 25 °C throughout the
day to facilitate the onset of the disease. 360 cotton plants were culti-
vated, with 180 plants per cultivar. Half (90 plants) were randomly se-
lected from each cultivar for inoculation, and the other half for control.

2.2. Microstructure imaging of cotton leaves

To investigate the effect of Verticilliumwilt on themicrostructure of
cotton leaves, transmission electron microscopy (TEM) was used to
image the tissues of healthy and different degrees of infected leaves.
The specific sampling location of the infected leaf is shown in Fig. 1.

At the sampling location, the cotton leaves were first sliced to a size
of 3 × 1 mm2. The slices were placed in a 2.5 % glutaraldehyde solution
and overnight at 4 °C. Then, the slices were rinsed three times with
0.1 M, pH = 7.0 phosphate buffer for 15 min each time. Thereafter,
the samples were fixed using 1 % osmium acid solution for 1–2 h in
the fume hood and were rinsed using phosphate buffer as before. The
samples were dehydrated successively with 30 %, 50 %, 70 %, 80 % etha-
nol solutions and 90 %, 95 % acetone solutions. The processing time for
each concentration of solution was 15 min. The samples were further
dehydrated twice with pure acetone for 20 min each time. Finally, the
samples were treated with a mixture of Spurr embedding agent and
acetone, overnight at room temperature, and then further embedded
and heated overnight at 70 °C. The samples were further sliced using
the LEICA EM UC7 ultra-thin slicer to obtain slices with a thickness of
70–90 nm. The slices were sequentially dyed in lead citrate solution
and uranyl acetate 50 % ethanol saturated solution for 5–10min. Finally,
the Hitachi H-7650 transmission electron microscope was used to
observe the microstructure of cotton leaves.

2.3. Hyperspectral image acquisition and spectra extraction

A visible near-infrared hyperspectral imaging system working in
line-scanning mode was adopted to obtain hyperspectral images with
a spectral range was 414–1017 nm of cotton leaves as described in Bai
et al. (2022). Before formal data collection, three system parameters,
namely the movement speed of the conveyor belt, the exposure time
of the camera, and the distance between the cotton leaves and the cam-
era lens, were repeatedly adjusted for clear and undistorted imaging.
These three parameters were finally set to 10 mm/s, 10.5 ms, and
40 cm, respectively. After collecting the hyperspectral images of cotton
leaves, black and white board images were also obtained to correct the
negative effects of unstable intensity of the light source and instrument
dark current on the images in accordance to Bai et al. (2022).
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Fig. 1. The sampling locations of healthy and infected cotton leaf tissues.
Hyperspectral images of 322 cotton leaveswere collected, including 157
infected leaves (79 for XLZ45 and 78 for XZL53) and 165 healthy leaves
(80 for XLZ45 and 85 for XLZ53).

From the corrected hyperspectral images, the band in 778.04 nm
with a significant difference in reflectance between the cotton leaves
and the background was found using the ENVI (ITT Visual Information
Solutions, Boulder, CO, USA) software. Then a simple threshold segmen-
tation combined with morphological operation was performed to
obtain the binary mask of cotton leaves. This mask was applied to seg-
ment images of other bands, and then the regions of cotton leaves on
all band images were obtained. The pixel spectra within these regions
in one hyperspectral image were further extracted and preprocessed
usingwavelet transformwith a wavelet basis of Daubechies 5 and a de-
composition level of 3 to reduce spectral noise. Finally, the average
spectrum of all pixels in one leaf region was calculated to represent
the corresponding leaf sample. To facilitate the subsequent modeling
analysis, the healthy samples of each cultivar were randomly divided
into a training subset and a testing subset at a ratio of 3:1. The same
procedure applies to the infected samples. Then the corresponding sub-
sets of healthy and infected samples of both cultivars were merged to
constitute the ultimate dataset for predicting corresponding physiolog-
ical indicators.

2.4. Physiological indicators detection

In this study, the activity of enzymes related to the antioxidant sys-
tem was determined using the reagent kits from Suzhou Greis Biotech-
nology Co., Ltd., China. For SOD, the assay kit based on WST-8 method
was utilized. WST-8 is a water-soluble tetrazole (WST) salt that can
react with O2- catalyzed by xanthine oxidase, and produces a formazan
dye. This reaction can be inhibited by SOD. Thus, the activity of SOD can
be indirectly calculated through colorimetric analysis of WST-8 prod-
ucts which have a maximum absorption of light at 450 nm. For POD,
the kit is based on its multiple functions of clearing H2O2, phenols, and
amine toxicity. Under its catalysis, phenolic and amine compounds are
oxidized by H2O2. The product of this reaction exhibits distinct light
absorption at 470 nm. The activity of POD can be determined by
measuring the absorbance value at this wavelength. CAT is also a
major enzyme scavenging H2O2. Under its catalysis, H2O2 decomposes
to produce water and oxygen. The remaining H2O2 in the detection
system reacts with 4-Aminoantipyrene which exhibits a characteristic
absorption peak at 510 nm. Hence the activity of CAT can be character-
ized by indirectly calculating the reduction of H2O2 per unit time. For
MDA, the kit is based on the thiobarbituric acid (TBA) method. MDA
can bind with TBA to generate a red complex that exhibits a character-
istic absorption peak at 532 nm, through which MDA content can be
measured reflecting lipid peroxidation.
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In this study, the content of photosynthetic pigments including chlo-
rophyll a, chlorophyll b, total chlorophyll, and carotenoids was deter-
mined using spectrophotometry. Leaf disc samples with a diameter of
0.86 cm were hole-punched to obtain. The leaf disc samples were then
soaked in ethanol with a concentration of 95 % in a dark environment
until the leaves turned white. The absorbances of the extract at the
wavelengths of 470 nm, 649 nm, and 665 nm were measured using a
spectrophotometer (Epoch, BioTek Instruments, Winooski, United
States). The concentration of each pigment could be calculated by refer-
ring to formulas in the literature (Gao et al., 2022; Song et al., 2021) This
operation was repeated three times for each pigment of each sample,
and take the average of themeasured values as the final representation.

2.5. Characteristic wavelengths extraction

Hyperspectral imaging data exhibit high dimensionality, comprising
both physiologically informative features relevant to cotton plant status
and substantial spectral redundancy that compromises computational
efficiency andmodel performance. Feature selectionmethods can select
fingerprintwavelengths related to the target task fromnumerouswave-
lengths, reducing redundant information and facilitating the establish-
ment of spectral analysis models. This study used SPA, RF, and CARS to
screen characteristic wavelengths highly correlated with each physio-
logical indicator. SPA is a forward variable selection algorithm based
on variable projection. It can select thewavelength subsetwith themin-
imum information redundancy by projecting all wavelengths in vector
space (Araújo et al., 2001). RF is an iterative variable selection method.
The core idea is to summarize the most useful features by repeatedly
randomly selecting some features and evaluating their impact on the re-
sults (Li et al., 2012). CARS also selects features through iteration. By
combining Monte-Carlo sampling and adaptive reweighting sampling
method, the feature set is continuously selected and adjusted to estab-
lish the optimal PLSR model (Li et al., 2009).

2.6. Discriminant models construction

To investigate the feasibility of using hyperspectral imaging technol-
ogy for the rapid detection of physiological indicators of cotton leaves
under Verticillium wilt stress, this study introduced traditional PLSR
and SVR algorithms and designed a CNNR model according to the
characteristics of the dataset. Multiple models were constructed for
predicting cotton physiological indicators based on different spectral
information.

PLSR is a multiple linear regression method commonly used for
spectral analysis. Specifically, it extracts the main characteristic vari-
ables of both independent and dependent variables, namely the latent
variables, by optimizing their covariance, and establishes the linear



N. Wu, P. Gao, J. Wu et al. Artificial Intelligence in Agriculture 15 (2025) 757–769
regression model based on the latent variables (Huang et al., 2017).
PLSR can effectively avoid the impact of collinearity between variables
on model performance and is suitable for scenarios with limited
samples. SVR is a support vector machine (SVM) algorithm used for re-
gression tasks, and adept at processing non-linear high-dimensional
data. Unlike SVM, the hyperplane searched by SVR should minimize
the distance between the sample points farthest from the plane,
which helps to minimize the error between the predicted and true
values (Awad et al., 2015). For the nonlinear correlations, SVR also
needs to employ the kernel function to transform nonlinear variables
into a linear space. This study utilized the radial basis function (RBF)
as the kernel of SVR. Five-fold cross-validation and a grid-search strat-
egy were utilized for parameter optimization of PLSR and SVR. The
search range of the penalty coefficient, c, and the parameter of RBF, g,
of SVR were all set to [10−7,107], and the number of the latent variables
of PLSR, nPLSR, was set to [1–30].

The structure of the proposed CNNR is shown in Fig. 2. The input
spectrum first passed through a Batch Normalization layer for speeding
up training by normalizing inputs. Due to the small dataset, we only de-
signed a one-dimensional convolutional layer using ReLU as the activa-
tion function to extract key spectral features. The number of
convolution kernels was set to 32, and the size and the stride were set
to 1 × 3 and 1, respectively. A max pooling layer with a kernel of 1 × 2
and a stride of 2 was then connected for feature dimensionality reduc-
tion and a batch normalization layer was followed to accelerate model
convergence and reduce the risk of overfitting. Finally, two fully
connected layers with 64 and 16 neurons were sequentially used to
achieve the regression task. The popular L2 Loss was adopted as the
loss function of CNNR, while adaptive momentum estimation (Adam)
was introduced as the optimization algorithm. During the training pro-
cess, the initial learning rate of the Adam algorithmwas set to 0.01 and
decreased by 10 times after every 200 epochs until the loss no longer
decreased and remained stable. The batch size was set to 16.

2.7. Visualized analysis

Visualized analysis provides an intuitive channel to better under-
stand the model's performance. In this study, the spectral information
Fig. 2. The architectures of the CNNR model.
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of each pixel in the hyperspectral image was used to predict the physi-
ological indicators at the pixel level, and then the visual distribution
maps of physiological indicators in cotton leaves were established. The
specific steps were as follows. Firstly, the spectral information of each
pixel in the hyperspectral image was extracted, and the same spectral
preprocessing and wavelength screening operations as in the modeling
process were performed. Secondly, the processed pixel spectrum was
input into the optimal detection model for each indicator, and obtain
the predicted value at the pixel position. Thirdly, referring to the coordi-
nates of each pixel, the predicted value of each indicator wasmapped to
the hyperspectral image, and different predicted values were displayed
in different colors. Ultimately, the visual distribution maps of the activ-
ity or content of the physiological indicators in healthy and infected
leaves could be drawn.

3. Results and discussion

3.1. Effect of Verticillium wilt on the microstructure of cotton leaves

Using cultivar XLZ53 as a model system, Fig. 3 displays TEM images
comparing the ultrastructure of mesophyll cells in healthy cotton leaves
and those infected with Verticillium wilt at varying disease severity
levels. Healthy leaf samples (Fig. 3 (a)) exhibited intact cellular architec-
ture characterized by: (1) well-defined cell walls, (2) structurally pre-
served organelles, including spindle-shaped chloroplasts and spherical
mitochondria, and (3) limited presence of starch deposits. Progressive
disease development induced marked ultrastructural alterations (Fig. 3
(b)–(d)), including (1) cellular deformation, (2) organellar degradation,
and (3) significant accumulation of starch granules. These pathological
changes, particularly membrane system disruption and organelle dam-
age, represent characteristic stress responses in plants, consistent with
previous observations in zinc-stressed maize leaves (Jiang et al., 2007).

Fig. 4 further displays the TEM images of the chloroplasts in theme-
sophyll cells with different disease severity levels. In healthymesophyll
cells, the chloroplasts possessed a regular arrangement of thylakoids
and neatly stacked grana (Fig. 4 (a)). No starch granules were observed
in the chloroplast stroma, and the mitochondrial structure was normal.
The morphology of chloroplast in the mesophyll cells with mild infec-
tion began to change (Fig. 4 (b)). Enlarged starch granules appeared in
the chloroplast stroma. The mitochondrial membrane broke down and
began to lyse. As the disease progressed, the tissue damage of cotton
leaves was aggravated (Fig. 4 (c), (d)). The ratio of the long and short
axes of the chloroplasts gradually became imbalanced, resulting in a cir-
cular shape. The number of starch granules increased. No clear mito-
chondria could be observed within the image range.

The appearance and volume enlargement of the starch granules
were the defense response of cotton against Verticillium wilt (Khan
et al., 2021; Liu et al., 2023).With the deepening of the disease, the chlo-
roplast gradually disintegrated. This also explains the chlorosis of cotton
leaves after infectionwith Verticilliumwilt. The chloroplasts are the im-
portant sites for photosynthesis and the synthesis of hormones related
to defense systems (Hasanuzzaman et al., 2020; Lu and Yao, 2018).
Moreover, the chloroplasts also participate in the generation of reactive
oxygen species (ROS) and play an important role in the regulation of
redox homeostasis in plant cells (Kuźniak and Kopczewski, 2020). The
destruction of the chloroplasts in the mesophyll cells reflected that the
photosynthesis and self-defense mechanism of cotton were being neg-
atively affected. This will further affect the optical properties of cotton
leaves.

3.2. Effects of Verticillium wilt on physiological phenotypic information of
cotton leaves

3.2.1. Effects on physiological indicators of antioxidation system
The changes in the measured physiological indicator of the antioxi-

dation system are presented in Table S1. Fig. 5 further summarizes
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Fig. 3. TEM images of mesophyll cells of healthy (a) and infected (b–d) leaf tissues (M: mitochondria; Chl: chloroplast; PG: plastoglobuli; V: vacuoles; CW: cell wall; SG: starch granule).
means, standard deviations, and significant differences (p< 0.05). Both
cultivars exhibited significantly higher SOD activity in infected leaves
compared to healthy leaves. As a critical enzyme in the plant
Fig. 4. TEM images of chloroplasts of healthy leaf tissue (a) and infected tissues (b–d) with inc
granule; Thy: thylakoid).
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antioxidant defense system, elevated SOD activity mitigates oxidative
damage by scavenging ROS (Mansoor et al., 2022; Sahu et al., 2022).
POD activity displayed cultivar-specific responses. While XL45 showed
reasing degree of disease (M: mitochondria; Chl: chloroplast; PG: plastoglobuli; SG: starch
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Fig. 5. Effects on the physiological indicators of the antioxidation system of both cultivars (* denotes that there is a significant difference at p < 0.05).
no significant difference between infected and healthy leaves, XL53 ex-
hibited a 79.5 % increase in POD activity upon infection (p < 0.05). This
divergence may reflect intrinsic differences in disease resistance be-
tween the two cultivars. Consistent with SOD trends, MDA levels were
significantly elevated in infected leaves of both cultivars, indicating
Verticillium wilt caused toxic effects of ROS in cotton mesophyll cells,
as well as peroxidation of membrane lipids, resulting in membrane
damage and increased permeability. This was also consistent with the
phenomenon of changes in the microstructure of cotton mesophyll
cells under the stress of Verticilliumwilt in the previous section. Similar
results were also observed in rice under sheath blight stress (Wu et al.,
2014) and wheat under low-temperature stress (Liu et al., 2013),
reflecting the indicator role of the antioxidant enzyme system in plant
stress. No significant differences in CAT activity were detected between
healthy and infected leaves in either cultivar. This suggests that the an-
tioxidant response primarily involved SOD and PODupregulation, while
CAT played a limited role. The interaction between plants and patho-
gens involves a series of molecular signaling pathways and biochemical
reactions (Kaur et al., 2022; Zhou and Zhang, 2020). Although CAT activ-
ity did not show significant differences, the activity of SOD and POD in-
creased to cope with oxidative stress. In this case, the relative inactivity
of CAT might not have a significant impact on the overall antioxidant
defense. Overall, both cultivars showed activation of their antioxidant
defense system in response to oxidative stress after being infected
with Verticillium wilt.

3.2.2. Effects on photosynthetic pigments
The statistical information of the photosynthetic pigments of two

cultivars is shown in Table S2. Fig. 6 further presents the content distri-
bution of the photosynthetic pigments in healthy and infected leaves of
both cultivars. It could be observed that the content of all pigments in
the infected leaves of both cultivars was significantly reduced when
compared to the healthy leaves, and the relative magnitudes of the re-
duction were similar, indicating that the effects of Verticillium wilt on
the pigment content of the two cultivars were almost identical. Com-
pared to the healthy leaves, the reduced magnitude of pigment content
in the infected leaves could be ranked: chlorophyll-a > chlorophyll-
b > carotenoids. Chlorophyll-a is the main pigment that captures light
energy and converts it into biochemical energy, playing a crucial role
762
in photosynthesis. Its reduction will hurt the photosynthetic efficiency
of plants (Björn et al., 2009). Chlorophyll-b can absorb red and blue
light (Naznin et al., 2019). Its reduction might be due to the inhibition
of photosynthesis in cotton plants under the stress of Verticillium wilt,
which reduced the demand for light energy and thus reduced the syn-
thesis of chlorophyll-b. Carotenoid is an important substance involved
in light protection and antioxidant defense. It can help chlorophyll mol-
ecules absorb and transfer light energy in photosynthesis, while also
neutralizing oxygen free radicals and reducing the damage of oxidative
stress to cells (Peñuelas and Munné-Bosch, 2005; Swapnil et al., 2021).
In addition, it could be seen from the microstructure of mesophyll cells
that disease stress could lead to the destruction of cell structure and the
disintegration of chloroplasts (Fig. 3 and 4). The damage to chloroplast
structure increased oxidative stress, and the inhibition of photosynthe-
sis caused by Verticilliumwilt might all lead to a decrease in the content
of photosynthetic pigments. The degree of reduction of different
photosynthetic pigments also indirectly reflected their roles and rela-
tive importance in this process.

3.3. Spectral characteristic analysis

Fig. 7 presents the average spectral reflectance and standard devia-
tion for healthy and infected leaves of both cultivars. All spectral curves
exhibited consistent fluctuation patterns, characteristic of typical green
plants (Zhao et al., 2016). Notably, infected leaves of both cultivars
showed higher average reflectance than healthy leaves across most
wavelengths, with the maximum difference occurring at the 550 nm
peak. The spectral differences in the visible region primarily resulted
from higher photosynthetic pigment content in healthy leaves, which
absorbed more light and consequently exhibited lower reflectance.
This observation aligns with established knowledge that 550 nm and
670 nm wavelengths correspond to chlorophyll absorption peaks
(Peñuelas and Filella, 1998). In the near-infrared region, spectral varia-
tions were associated with overtone bands of hydrogen-containing
groups (C-H, O-H, and N-H) (Ma et al., 2019). These spectral variations
might originate from pathophysiological alterations: Verticillium dahliae
infection in vascular bundles impaired water transport to leaves, with
reduced water content potentially increasing near-infrared reflectance;
Additionally, the structural damage to mesophyll cells caused by
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Fig. 6. Effects on the content of photosynthetic pigments of both cultivars (* denotes that there is a significant difference at p < 0.05).
bacterial infection affects the scattering and reflection of light, thereby
altering the spectral reflectance (Cordon et al., 2022). The red edge tran-
sition region (680–750 nm), whose position and shape serve as sensi-
tive indicators of plant health status (Filella and Penuelas, 1994; Shafri
andHamdan, 2009), exhibited a slight blue-shift in infected leaves com-
pared to healthy ones (Fig. 7). This shift reflected the stress condition of
the cotton plants.

3.4. Rapid detection of physiological phenotypic information based on full
wavelengths

Table 1 exhibited the detection accuracy and precision of physiolog-
ical indicators of the antioxidation system and photosynthetic pigments
using different models based on full wavelengths. For SOD activity,
CNNR with an Rp of 0.901 and an RMSEP of 0.648 U/mg achieved the
best detection results on the testing set. The results of SVR and PLSR
were also satisfactory, with Rp greater than 0.8. For POD activity, PLSR
performed better than SVR and CNNR, obtaining an Rp of 0.816 and an
RMSEP of 1.035△OD470/min/mg, respectively. In terms of CAT activity,
CNNR performed the best and got an Rp of 0.801 and an RMSEP of
10.264 μmol/min/g, respectively. For MDA content, PLSR stood out
from the three models, with the maximal Rp of 0.804 and the
Fig. 7. Average spectra and standard deviations of the healthy
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minimum RMSEP of 3.221 nmol/g. For Chla content, all three models
achieved satisfactory results with Rp above 0.95. Among them, SVR per-
formed the best with an Rp of 0.974 and an RMSEP of 1.256 μg/cm2,
respectively. In terms of Chlb and Chlab content, SVR still performed
the best. Specifically, SVR achieved an Rp of 0.941 and an RMSEP of
0.584 μg/cm2 for Chlb content and obtained an Rp of 0.945 and an
RMSEP of 2.382 μg/cm2 for Chlab content. In terms of Car content, PLSR
got the best predictive performance, with a Rp of 0.866, and a RMSEP
of 0.259 μg/cm2. On the whole, the detection results of physiological
indicators of the antioxidation system and photosynthetic pigments
based on full wavelengths were satisfactory.

3.5. Characteristic wavelengths extraction

Fig. 8 displays the characteristic wavelengths selected by SPA, RF,
and CARS algorithms, with distinct colors indicating different selection
methods. Table S3 provides a comprehensive summary of the specific
wavelengths extracted through these approaches. The three methods
exhibited varying degrees of dimensionality reduction: SPA retained
4.2–8.5 % of the original spectral features (91.5–95.8 % reduction), RF
preserved 6.3 % (93.7 % reduction), while CARS maintained 6.8–23.6 %
(76.4–93.2 % reduction). Notably, partial overlap occurred among the
and infected leaves of two cultivars (a) XLZ45, (b) XLZ53.
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Table 1
The results of models for physiological indicators in cotton leaves using full wavelengths.

Physiological indicator Model Parameter Training set Testing set

Rc RMSEC Rp RMSEP

PLSR 3 0.936 0.526 0.873 0.729
SVR 0.1,103 0.933 0.538 0.882 0.703
CNNR \ 0.904 0.640 0.901 0.648
PLSR 10 0.826 1.120 0.816 1.035
SVR 1.0, 10 0.690 1.439 0.735 1.214
CNNR \ 0.815 1.152 0.789 1.100
PLSR 16 0.828 8.050 0.788 10.567
SVR 10,102 0.701 10.237 0.720 11.906
CNNR \ 0.799 8.615 0.801 10.264
PLSR 5 0.810 3.578 0.804 3.221
SVR 0.1, 10 0.740 4.104 0.774 3.433
CNNR \ 0.838 3.333 0.795 3.288
PLSR 10 0.954 1.678 0.964 1.479
SVR 0.1, 105 0.968 1.403 0.974 1.256
CNNR \ 0.906 1.574 0.970 1.345
PLSR 20 0.906 0.741 0.901 0.746
SVR 1.0, 102 0.898 0.768 0.941 0.584
CNNR \ 0.894 0.780 0.925 0.654
PLSR 4 0.943 2.419 0.933 2.613
SVR 0.1, 104 0.960 2.041 0.945 2.382
CNNR \ 0.953 2.203 0.943 2.417
PLSR 14 0.868 0.259 0.866 0.259
SVR 0.1, 104 0.892 0.236 0.854 0.270
CNNR \ 0.842 0.282 0.791 0.317

Note: In the parameter column, the parameter of PLSR is the number of the latent vari-
ables, nPLSR, and the parameters of SVR are the regularization parameter c and the kernel
parameter g. The units of RMSEC and RMSEP for SOD are U/mg, for POD are △OD470/
min/mg, for CAT are μmol/min/g, for MDA are nmol/g. The units of Chla, Chlb, Chlab, and
Car are all μg/cm2.
wavelengths selected by different methods, likely attributable to their
distinct variable selection mechanisms. The identified characteristic
wavelengths showed strong correlations with the physiological indica-
tors investigated in this study. Specifically: the 400–500 nm absorption
region corresponded to carotenoid absorption (Zhao et al., 2023); the
red-edge region (670–760 nm) demonstrated sensitivity to chlorophyll
content and leaf cellular structure (Wu et al., 2023b); the 975–990 nm
bands primarily reflected protein-associated N-H stretching second
overtone vibrations (Zhao et al., 2014). However, visual assessment
alone proved insufficient for evaluating the relative effectiveness of
these wavelength selection methods, necessitating further quantitative
analysis through predictive modeling.

3.6. Rapid detection of physiological phenotypic information based on char-
acteristic wavelengths

Prediction models for each physiological indicator were developed
by combining with different characteristic wavelength selection
methods, with results summarized in Tables 2 and 3. For SOD activity
prediction, all models based on characteristic wavelengths achieved Rp
values exceeding 0.8. The RF-selected wavelengths combined with
SVR yielded optimal performance, with an Rp of 0.908 and an RMSEP
of 0.624 U/mg, which was superior to the optimal CNNR based on the
full wavelengths. Notably, the number of characteristic wavelengths se-
lected by RF was only 6.33 % of the full wavelength set, demonstrating
significant practical applicability. For POD activity prediction, model
performance ranged from 0.602 to 0.824 in Rp values. PLSR based on
the 31 CARS-selected wavelengths showed superior predictive capabil-
ity, with an Rp of 0.824 and an RMSEP of 1.103△OD470/min/mg, which
outperformed the optimal full-wavelength PLSR model. In terms of CAT
activity and MDA content, SVR modeling with 10 SPA-selected wave-
lengths exhibited the best performance among all tested approaches,
achieving the Rp of 0.825 and the RMSEP of 9.680 μmol/min/g for CAT
activity and the Rp of 0.809 and the RMSEP of 3.185 nmol/g for MDA
content.
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For photosynthetic pigment prediction, all three models utilizing
characteristic wavelengths demonstrated robust performance.
Regarding Chla content, The SVR model incorporating SPA-selected
wavelengths outperformed all other approaches, including the optimal
full-wavelength SVR model. Moreover, the number of characteristic
wavelengths selected by SPA was only 6.75 % of the full wavelengths.
SPA removedmost of the redundant information and facilitated model-
ing. For Chlb content, allmodels achieved excellent performancewith Rp
exceeding 0.9, and SPA-SVR yielding the best, with the Rp of 0.943 and
the RMSEP of 0.573 μg/cm2. In terms of Chlab content, the overall
performance of SVR was better than that of the PLSR and CNNR. Com-
bined with SPA, SVR achieved the Rp of 0.948 and the RMSEP of
2.323 μg/cm2. In terms of Car content, most models exhibited
satisfactory performance. The SPA-PLSR yielded the best results. The
Rp and RMSEP were 0.851 and 0.272 μg/cm2, respectively, similar to
the results of the optimal PLSR model based on the full wavelengths.

The overall detection performance for photosynthetic pigments was
superior to that for antioxidant system indicators. This might be attrib-
uted to measurement bias stemming from the relative instability of an-
tioxidant indicators, as well as the fact that the spectral range used in
detection was primarily associated with pigments. Additionally, most
models based on selected characteristic wavelengths achieved similar
or better performance compared to those utilizing the full spectral
range. Among the wavelength selection methods, models combined
with SPA generally outperformed those using RF or CARS in most
cases. As illustrated in Fig. 8 and Tables 2–3, SPA selected fewer charac-
teristic wavelengths and eliminated more redundant information,
which was likely beneficial for model performance. This finding was
consistent with previous studies (Luo et al., 2022; Zhang et al., 2024).

Regarding model selection, SVR was generally superior to PLSR and
CNNR. SVR demonstrated strong capabilities in handling both linear
and nonlinear problems, whereas CNNR did not exhibit its advantages
under the relatively small sample size used in this study. Ng et al.
(2020) investigated the impact of training sample size on the perfor-
mance of deep learning and traditional machine learning models for
soil property prediction, recommending a minimum of 2000 samples
for effective spectral modeling using deep learning techniques. Simi-
larly, Hong et al. (2022) reported that CNN performed slightly inferior
to traditional methods when applied to small datasets.

In summary, by selecting fingerprint spectral wavelengths and elim-
inating irrelevant or redundant information, the detectionmodels were
able to more effectively learn features and predict physiological indica-
tors related to disease. These findings also lay the groundwork for the
development of multispectral instruments for future practical field
applications.

3.7. Visual distribution of physiological phenotypic information in cotton
leaves

For each indicator, the best-performingmodelmentioned abovewas
selected for constructing the visual distribution map. Fig. 9 illustrates
the distribution of antioxidant indicators and photosynthetic pigments
in healthy and infected leaves.

For the antioxidant indicators, infected leaves of both cultivars ex-
hibited higher overall SOD and POD activities compared to healthy
leaves. Notably, SOD and POD activities were more pronounced near
the veins than at the leaf edges in infected leaves. Verticillium dahliae in-
vades the xylem vessels through plant roots and produces conidia,
which spread upward along the vascular bundle. In response, the
plant defense mechanism triggers thin-walled cells to produce biomol-
ecules that, together with mycelial growth, block the ducts. This dis-
rupts water and nutrient transport, ultimately leading to disease
development (Zhu et al., 2023). This mechanism likely explained why
oxidative stress responses to wilt stress occur earlier near the veins
than at the leaf edges. For CAT activity, healthy leaves of XLZ45 showed
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Fig. 8. Characteristic wavelengths selected by SPA, RF, and CARS for different physiological indicators.
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Table 2
Results for the indicators of antioxidation system using characteristic wavelengths.

Physiological indicator Extraction method Number of wavelengths Model Parameter Training set Testing set

Rc RMSEC Rp RMSEP

PLSR 5 0.937 0.523 0.869 0.737
SVR 10, 102 0.937 0.525 0.897 0.661
CNNR \ 0.927 0.560 0.897 0.660
PLSR 3 0.873 0.732 0.898 0.655
SVR 1, 103 0.897 0.633 0.908 0.624
CNNR \ 0.922 0.580 0.806 0.883
PLSR 8 0.941 0.505 0.889 0.683
SVR 1, 103 0.930 0.551 0.899 0.652
CNNR \ 0.927 0.562 0.875 0.721
PLSR 3 0.783 1.387 0.799 1.076
SVR 0.1, 106 0.767 1.275 0.774 1.133
CNNR \ 0.787 1.226 0.813 1.042
PLSR 8 0.811 1.163 0.776 1.128
SVR 0.1, 106 0.729 1.360 0.625 1.396
CNNR \ 0.787 1.199 0.602 1.606
PLSR 9 0.809 1.169 0.824 1.013
SVR 0.01, 106 0.720 1.380 0.764 1.155
CNNR \ 0.743 1.331 0.751 1.181
PLSR 5 0.668 10.672 0.742 11.495
SVR 10, 106 0.881 6.786 0.825 9.680
CNNR \ 0.809 8.423 0.765 11.055
PLSR 11 0.787 8.848 0.685 12.493
SVR 10, 106 0.790 8.797 0.729 11.754
CNNR \ 0.678 11.061 0.367 14.192
PLSR 6 0.740 10.119 0.640 11.723
SVR 10, 102 0.697 10.790 0.694 10.989
CNNR \ 0.792 9.180 0.709 10.751
PLSR 5 0.813 3.558 0.806 3.208
SVR 0.01, 106 0.812 3.559 0.809 3.185
CNNR \ 0.826 3.444 0.752 3.576
PLSR 8 0.825 3.452 0.797 3.276
SVR 0.1, 106 0.756 3.993 0.762 3.507
CNNR \ 0.711 4.290 0.783 3.371
PLSR 5 0.799 3.669 0.782 3.381
SVR 0.1, 106 0.738 4.122 0.801 3.248
CNNR \ 0.720 4.236 0.690 3.922

Note: In the parameter column, the parameter of PLSR is the number of the latent variables, nPLSR, and the parameters of SVR are the regularization parameter c and the kernel parameter g.
The units of RMSEC and RMSEP for SOD are U/mg, for POD are △OD470/min/mg, for CAT are μmol/min/g, for MDA are nmol/g.

Table 3
Results for the photosynthetic pigments using characteristic wavelengths.

Physiological indicator Extraction method Number of wavelengths Model Parameter Training set Testing set

Rc RMSEC Rp RMSEP

PLSR 16 0.954 1.677 0.963 1.492
SVR 10, 103 0.969 1.395 0.975 1.230
CNNR \ 0.961 1.557 0.972 1.307
PLSR 11 0.948 1.788 0.966 1.443
SVR 10, 106 0.962 1.529 0.944 1.828
CNNR \ 0.720 3.879 0.744 3.703
PLSR 10 0.953 1.690 0.960 1.551
SVR 1, 105 0.961 1.549 0.974 1.268
CNNR \ 0.957 1.635 0.971 1.340
PLSR 16 0.883 0.819 0.935 0.610
SVR 10, 102 0.898 0.768 0.943 0.573
CNNR \ 0.899 0.764 0.930 0.636
PLSR 6 0.856 0.904 0.931 0.630
SVR 10, 104 0.907 0.734 0.941 0.584
CNNR \ 0.896 0.778 0.922 0.666
PLSR 9 0.880 0.830 0.922 0.667
SVR 10, 105 0.912 0.719 0.917 0.686
CNNR \ 0.866 0.873 0.908 0.723
PLSR 3 0.940 2.476 0.941 2.462
SVR 10, 103 0.964 1.931 0.948 2.323
CNNR \ 0.960 2.020 0.942 2.450
PLSR 11 0.949 2.285 0.930 2.670
SVR 10, 105 0.968 1.814 0.941 2.471
CNNR \ 0.732 4.942 0.653 5.510

CARS 26
PLSR 4 0.939 2.494 0.941 2.458
SVR 1, 105 0.963 1.963 0.946 2.355
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Physiological indicator Extraction method Number of wavelengths Model Parameter Training set Testing set

Rc RMSEC Rp RMSEP

CNNR \ 0.950 2.266 0.929 2.691
PLSR 12 0.869 0.259 0.851 0.272
SVR 1, 105 0.892 0.237 0.847 0.275
CNNR \ 0.861 0.265 0.812 0.303
PLSR 15 0.809 0.307 0.648 0.394
SVR 0.1, 106 0.765 0.336 0.666 0.387
CNNR \ 0.701 0.372 0.490 0.452
PLSR 5 0.819 0.299 0.816 0.300
SVR 10, 102 0.871 0.256 0.849 0.274
CNNR \ 0.833 0.289 0.813 0.301

Note: In the parameter column, the parameter of PLSR is the number of the latent variables, nPLSR, and the parameters of SVR are the regularization parameter c and the kernel parameter g.
The units of Chla, Chlb, Chlab, and Car are all μg/cm2.

Fig. 9. The visual distribution map developed for antioxidant indicators and photosynthetic pigments.
slightly higher values than infected leaves, whereas the difference be-
tween infected and healthy leaves of XLZ53 was minimal—consistent
with qualitative analysis results. Both cultivars exhibited higher MDA
content in infected leaves compared to healthy leaves, with marginally
elevated levels near the veins relative to the edges. The distinct spatial
767
distribution patterns of antioxidant indicators between healthy and in-
fected leaves suggested that ROS homeostasis played a crucial role in
cotton's defense against Verticillium wilt, with vein-proximal regions
responding earlier to disease stress. Photosynthetic pigment content
was significantly higher in healthy leaves of both cultivars than in
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infected leaves, confirming that Verticilliumwilt stress substantially re-
duces photosynthetic capacity.

Overall, the visual distribution maps provide intuitive spatial infor-
mation about disease-related physiological changes in cotton leaves,
demonstrating the strong potential of hyperspectral imaging for moni-
toring plant physiological indicators.
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SOD
 Superoxide dismutase
 RF
 Random frog

POD
 peroxidase
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 Competitive adaptive reweighted
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 Partial least squares regression
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 Root mean square error of calibration

Car
 Carotenoids
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