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Towards assessing indirect genetic effects 
in dairy cattle
Ida Hansson1*   , Piter Bijma2, Freddy Fikse3,6 and Lars Rönnegård1,4,5 

Abstract 

Background  Social interactions in a dairy herd may impact an individual’s production, e.g., milk yield. These interac-
tions can have a genetic component, so-called indirect genetic effects (IGE). IGEs contribute to heritable variation 
in other species, but studies on IGEs in cows are limited. Knowledge is needed on appropriate methods to moni-
tor social interactions in cows. We evaluated with simulations whether we can estimate IGEs in cows. We used milk 
yield as an example trait, and we assessed how herd size, direct and indirect genetic correlations, and magnitude 
of IGE affected the variance component estimations and breeding value accuracies. We investigated the importance 
of knowing the contact intensity and direction by either including or ignoring them in the estimation model. Addi-
tionally, we investigated how random noise added to the intensities would affect the estimates and breeding values.

Results  The estimated variance components were unbiased and precise for scenarios with different herd sizes of 50, 
100, or 200 cows and direct and indirect genetic correlations of either − 0.6, 0, or 0.6. The IGE breeding value accura-
cies were 0.55–0.65 for cows when the IGE explained 30% of the phenotypic variance. When the magnitude of the IGE 
became smaller, the precision of the estimated variances became lower. The IGE breeding value accuracies were 0.16–
0.52 for cows when the IGE explained 1.5–15% of the phenotypic variance. Using imprecise intensities or ignoring 
the contact direction underestimated the variance of the indirect effects, and the breeding value accuracies became 
lower. Ignoring the variation in intensities in the model led to unbiased variance component estimates but a larger 
residual variance and lower breeding value accuracies than if we used imprecise intensities.

Conclusions  We could estimate IGE in dairy cattle with high accuracy and precision in a simulated population 
of 10,000 phenotyped cows distributed over 50–200 herds. A smaller IGE variance led to less precise estimates 
and lower breeding value accuracies. Ignoring information about the intensity of contact in the model would be 
worse than using imprecise intensities, and using technology that also monitors the direction of contact may be ben-
eficial to estimate variance components of IGE.
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Background
Social interactions among individuals are essential for 
animals living in a group. In dairy cattle, affiliative and 
aggressive interactions help to structure the herd and cre-
ate balance [1]. Depending on the nature of these interac-
tions, they can cause both positive and negative effects 
on an individual’s health, welfare, and productivity. For 
instance, a dominant cow could displace other cows at 
the feeding table, depressing their feed intake and, indi-
rectly, their milk yield. Other interactions, such as allog-
rooming and spatial proximity, are positive [2] and might 
increase welfare and milk yield. Hence, social interac-
tions may influence phenotypes related to health, welfare, 
and productivity, and the phenotype of an individual is 
therefore not only influenced by its own genotype (i.e., 
direct genetic effect, DGE) but also by the genotypes of 
its social partners [3, 4]. These indirect genetic effects 
(IGEs) can be modelled and integrated into the classical 
quantitative genetic model in, e.g., a variance-component 
model proposed by Griffing [3] and developed by several 
authors [5–7]. These variance component models are 
typically applied to populations consisting of many small 
groups of individuals, in which there is no need to specify 
the specific social interaction trait. Instead, the model 
captures the overall effect of all the interactions between 
individuals on the recipient’s main trait of interest and 
assesses the interaction’s consequence.

In animal breeding, IGEs are essential to consider since 
they can influence the response to selection [3, 5]. The 
genetic covariance between the direct and indirect effects 
provides information about competition or cooperation 
among individuals. A negative covariance indicates a her-
itable competition, where animals that have a positive 
direct breeding value for their own phenotype on aver-
age have a negative heritable effect on the phenotypes of 
their social partners [8]. Oppositely, a positive covariance 
indicates heritable cooperation [6]. Several studies have 
shown that IGE from social interactions can increase or 
decrease the total heritable variation, where the latter 
may occur when the correlation between DGE and IGE 
is negative.

Improving animal welfare and production traits 
might be possible by accounting also for IGE in selec-
tion decisions in livestock [9]. In laying hens, for exam-
ple, mortality is expected to be reduced by targeting 
both direct and indirect effects in genetic selection, 
thereby enhancing animal welfare [10]. Other examples 
of studies include growth in pigs [11], traits related to 
aggressive behaviour in mink [12], and growth in rab-
bits [13]. In a recent review and meta-analysis of 47 
studies with estimates of IGEs across 21 animal species 
[14], the authors found that IGEs could substantially 
increase the evolutionary potential of behavioural and 

reproduction traits in particular. Yet, the importance 
of social interactions for the evolution of traits such as 
body size and physiology was shown to be less. Most 
of these studies are based on animals housed in many 
small cages or pens of fixed group sizes, where the 
social effect of the group mates is assumed to be uni-
form. Extensions have also been made, for instance, for 
forest trees [7, 15, 16], where the intensity of competi-
tion is considered by quantifying the distance to neigh-
bouring trees. Distance is used as a weighting factor to 
describe how intense the interaction is between two 
individuals. Including the intensity of social interac-
tions when modelling IGEs has also been applied to 
group-housed pigs [17].

Studies on IGEs in dairy cows are scarce, and the size 
and importance of these effects remain to be discov-
ered. Dairy cattle are housed in large herds with dynamic 
groups where cows enter and leave the group depending 
on calving and drying-off events. It makes it more unclear 
who interacts with whom compared to animals living 
together in small groups. To attempt to estimate IGEs in 
dairy cattle, the key will be to identify the cows interact-
ing with each other [9], and the combination of social 
network analysis and IGE models would be a promising 
opportunity to study these social effects [18]. Precision 
Livestock Farming (PLF) technologies, such as proximity 
sensors, computer vision, and ultra-wideband position-
ing systems that can be used to trace the animals in the 
farm, may solve this issue. Automatic tracking of animal 
movement and studies on social interactions in conven-
tional dairy production with the help of sensor data have 
been developed in the last decade [19–21]. The position 
of a cow within the farm and the time it spends in prox-
imity to other cows can, for example, be captured by a 
real-time location system and be used to construct social 
networks [20, 22, 23]. Further, the total duration of time 
in proximity can be used as a measure for the intensity of 
contact between individuals [21, 22]. Identifying the cor-
rect intensities of contact between all individuals within 
the social network has been presented in a simulation 
study as having higher priority than identifying all net-
work members when estimating IGEs [24]. However, it is 
still uncertain if we are capturing true social interactions 
with these proximity networks. Additionally, there is no 
evidence that these positioning systems can capture the 
direction of contacts, i.e., which contacts are the incom-
ing and outgoing contacts of a cow. More information 
is needed on the most appropriate method to monitor 
social interactions in dairy cows living in loose housing 
systems to estimate IGEs.

Here, we use a simulation study to assess whether we 
can estimate IGEs in cows based on the social contact 
structure assessed with positioning data in dairy herds. 
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Our objectives are to investigate how herd size, correla-
tions between DGE and IGE, and the size of IGE affect 
the variance component estimations and breeding value 
accuracies, using milk yield as an example trait. In addi-
tion, we want to assess the importance of knowing the 
intensity and direction of contacts and explore the dif-
ference between ignoring intensities and using imprecise 
intensities to  provide guidance on  the necessary moni-
toring strategy of social interactions between cows. This 
study will be a step forward in understanding how to 
assess IGEs in dairy cattle.

Methods
Theory
This section introduces the reader to the theory of mod-
elling IGEs with a variance component-model and the 
consequences for the total heritable variation. When 
modelling IGEs with a variance-component model, the 
phenotype of recipient i (Pi) can be modelled by the 
equation [3, 6]:

where aD,i is the DGE of the recipient i , aI ,j is the IGE 
of group mate j , eI ,j is the indirect environmental effect 
(IEE) of group mate j , eD,i is the direct environmen-
tal effect (DEE) of the recipient i and 

∑ n−1
i �=j  is the sum 

over the n−1 group mates of recipient i . In groups of n 
members, each individual expresses its IGE to each of its 
n−1 group mates. Consequently, the total breeding value 
(TBV) of an individual, representing its heritable effect 
on the mean trait value of the population, is [5]:

The variation in TBVs among individuals corresponds 
to the total heritable variation, σ 2

TBV  , that is available for 
response to selection [5]:

where σ 2
aD

 is the direct genetic variance, σ 2
aI

 is the indi-
rect genetic variance, σaDI is the direct–indirect genetic 
covariance. With large group sizes, the social genetic 
effects could considerably increase the total heritable 
variation. However, this is not necessarily the case, as the 
magnitude of IGE, measured by σ 2

aI
 , could be smaller in 

larger groups [25, 26]. This could be modelled as a dilu-
tion of σ 2

aI
 with n and is particularly relevant when group 

sizes vary [26, 27], but it was not examined as part of this 
research. The total heritable variation can be expressed 
relative to the phenotypic variation by [28]:

(1)Pi = aD,i +

n−1
∑

i �=j

aI ,j +

n−1
∑

i �=j

eI ,j + eD,i,

(2)TBV = aD,i + (n− 1)aI ,i.

(3)σ 2
TBV = σ 2

aD
+ 2(n− 1)σaDI + (n− 1)2σ 2

aI
,

Comparing T 2 to the classical heritability, h2 , reveals 
the contribution of IGEs to heritable variation.

Scenarios
We simulated a basic scenario and 21 alternative sce-
narios to investigate how herd size, the correlation 
between DGE and IGE, the size of IGE, and the impor-
tance of information about intensity and direction of 
contact affect the estimation of IGE. We assessed the 
accuracy and precision of the variance component esti-
mates by looking at the means and standard deviations 
of the estimates. We also evaluated the correlation of 
estimated breeding values (EBV) with the true breed-
ing values (EBV accuracy) and the regression of the 
true breeding values on the EBV (EBV bias). Addition-
ally, we interpreted the magnitude of the variance of 
the IGE, its contribution to the phenotypic variance 
and the consequences for the total heritable variation. 
All simulations were performed in R statistical software 
version 4.0.3 [29], with 100 replicates for each scenario.

Basic scenario
Population structure
An offspring population of 10,000 cows was simulated 
and distributed in 100 herds, with 100 cows in each 
herd. A parent population of unrelated dams and sires 
was generated with 10,000 cows and 100 sires. On aver-
age, nine sires were randomly sampled with replace-
ment as sires to the offspring in each herd. The number 
of offspring per sire was then randomly sampled with 
replacement to avoid all sires having an equal number 
of records. Each dam in the parent population had one 
offspring in the offspring population.

We simulated true breeding values (BVs) for the 
DGE and the IGE for the parent population with the 
mvrnorm function from the MASS package in R [30]. 
The direct and indirect genetic effects were assumed to 
follow a multivariate normal distribution:

The true BVs for cows in the offspring population were 
calculated as [27]: aDi =

1
2aDsirei +

1
2aDdami

+MSDi and 
aIi =

1
2aI sirei +

1
2aI dami

+MSIi , where MSDi and MSIi 
are the components of the direct and indirect Mende-
lian sampling of cow i, sampled from

(4)T 2 =
σ 2
TBV

σ 2
P

.

MVN

([

0

0

][

σ 2
aD

σaDI
σaDI σ 2

aI

])

.
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and where aDsirei and aI sirei are the DGE and IGE of the 
sire of cow i, aDdami

 and aI dami
 are the DGE and IGE of 

the dam of cow i. The DEE and IEE values for the off-
spring population were also sampled using the mvrnorm 
function. For both populations, the direct and indirect 
environmental effects were assumed to follow a multivar-
iate normal distribution

where σ 2
eI

 is the indirect environmental variance and σ 2
e  

is the residual variance (corresponding to the direct envi-
ronmental variance). Hence, we assumed a zero correla-
tion between direct and indirect environmental effects.

Social network
Phenotypes of milk yield were simulated for cows in the 
offspring population, accounting for the indirect effects of 
their social contacts, using Eq.  (5). The number of social 
contacts for the ith cow, ni, was randomly drawn  from 
a Poisson distribution with a mean of 30, using the rpois 
function from the stats package [29]. A mean of 30 

MVN

([

0

0

]

,
1

2

[

σ 2
aD

σaDI
σaDI σ 2

aI

])

MVN

([

0

0

][

σ 2
e 0

0 σ 2
eI

])

contacts corresponds to the number of distinct individuals 
a cow has contact with in a social network of herds with 
approximately 100 dairy cows, reported in [20, 23]. Social 
networks within each herd were then generated with the 
sample_degseq function from the igraph package [31] with 
the given number of contacts. To simplify the analyses, we 
defined a maximum number of contacts per cow equal to 
the 99% quantile of the Poisson distribution, which equals 
a maximum of 43 contacts. Phenotypes were simulated for 
each individual in the offspring population using the follow-
ing equation:

where yi is the simulated milk yield for recipient i , herdi 
is the effect of the herd of recipient i , aD,i is the DGE of 
recipient i , aI ,j is the IGE of herd mate j , eI ,j is the IEE of 
herd mate j , eD,i is the DEE of recipient i , and ni is the 
number of herd mates recipient i has contact with. Ran-
dom samples for the herd effect were generated for all 
herds using the runif function from the stats package [29] 
with a uniform distribution with min = 8000  kg energy 
corrected milk (ECM) and max = 13,000  kg ECM, i.e., 
with a mean of 10,500 kg ECM.

(5)yi = herdi + aD,i +

ni
∑

i �=j

aI ,j +

ni
∑

i �=j

eI ,j + eD,i,

Table 1  Simulated values for scenarios 1–17

σ 2
aI

 , indirect genetic variance; σ 2
eI

 , indirect environmental variance; σ 2
e  , residual variance; rg , direct–indirect genetic correlation. All scenarios had a simulated value 

of σ 2
aD

= 192,000 . Phenotypes were simulated with the following equation: yi = herdi + aD,i +
∑ni

i �=j aI,j +
∑ni

i �=j eI,j + eD,i , where yi is the simulated milk yield for 
recipient i, herdi is the fixed herd effect of recipient i, aD,i is the DGE of recipient i, aI,j is the IGE of herd mate j, eI,j is the IEE of herd mate j, eD,i is the DEE of recipient i, ni 
is the number of herd mates recipient i has contact with

Scenario umber Herd size (n Cows) Herds (n) σ
2
aI

σ
2
eI

σ
2
e

rg Magnitude of 
σ
2
aI

 (% of σ 2

P
 ) 

(%)

1 100 100 6400 6400 64,000 0.0 30

2 100 100 6400 6400 64,000 − 0.6 30

3 100 100 6400 6400 64,000 0.6 30

4 50 200 6400 6400 64,000 0.0 30

5 200 50 6400 6400 64,000 0.0 30

6 100 100 3200 3200 256,000 0.0 15

7 50 200 3200 3200 256,000 0.0 15

8 200 50 3200 3200 256,000 0.0 15

9 100 100 1024 1024 386,560 0.0 5

10 50 200 1024 1024 386,560 0.0 5

11 200 50 1024 1024 386,560 0.0 5

12 100 100 640 640 409,600 0.0 3

13 50 200 640 640 409,600 0.0 3

14 200 50 640 640 409,600 0.0 3

15 100 100 320 320 428,800 0.0 1.5

16 50 200 320 320 428,800 0.0 1.5

17 200 50 320 320 428,800 0.0 1.5
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To choose input values for the simulation, we defined 
the phenotypic variance for an individual with the aver-
age number of contacts (n = 30) as:

We used a phenotypic standard deviation, σP , of 800 kg 

ECM and a direct heritability, h2D , of 0.3. Since h2D =
σ 2
aD

σ 2
P

 , 

this resulted in σ 2
aD

= 192,000 . In the basic scenario (sce-

nario 1), we used σ 2
aI

=
σ 2
aD
n  , so that the DGE and the sum 

of the IGE that an individual receives contribute equally 
to the phenotypic variance. This resulted in σ 2

aI
= 6400 , 

and σ 2
aI

 explains 30% of the σ 2
P [since Eq.  (6) gives 

nσ 2
aI

σ 2
P

= 0.3 ], which means that 30% of the phenotypic var-
iance for an individual is explained by the variation of 
IGE from its social contacts (Tables  1, 3). The genetic 
covariance of DGE and IGE was assumed to be zero in 
scenario 1. In all scenarios, we assumed that σ 2

eI
= σ 2

aI
 , 

With these inputs, we ended up with σ 2
e = 64,000 in sce-

nario 1.

Estimation of variance components
Variance and covariance components were estimated 
in DMU [32] with the following classical animal model 
extended with indirect genetic and environmental effects:

where y is the vector of phenotypic records of milk yield, 
X is the design matrix relating the records of y to the fixed 
herd effect given in vector b,ZD is the incidence matrix 
relating the records of y to the DGE of each recipient cow 
given in vector aD , ZI is the incidence matrix relating the 
records of y to the IGE and IEE of the herd mates of each 
recipient cow,aI is the vector of IGE of each herd mate of 
the recipient, eI is the vector of indirect environmental 
effects of each herd mate of the recipient, e is the vector 
of residuals which accounts for the direct environmen-
tal effect of each recipient. Though our interest was not 
in eI , we included this term because individuals interact 
with multiple others, so repeatedly expressing their IEE. 
Hence, eI represents a permanent indirect effect, which 
could affect the estimates of aI when not including eI in 
the model.

The direct and indirect genetic effects were assumed to 
follow a multivariate normal distribution:

(6)σ 2
P = σ 2

aD
+ n

(

σ 2
aI
+ σ 2

eI

)

+ σ 2
e

(7)y = Xb+ ZDaD + ZIaI + ZIeI + e,

⊗ indicates the Kronecker product of matrices and A 
is the numerator relationship matrix calculated from 
the pedigree. The direct and indirect environmental 
effects were assumed to follow a multivariate normal 
distribution:

and where σ 2
e  is the residual variance, σ 2

eI
 is the indirect 

environmental variance and I is the identity matrix. For 
simplicity, the covariance was assumed to be zero.

Other scenarios
Genetic correlation, herd size, and size of IGE
To investigate how the genetic correlation between DGE 
and IGE affects the estimation of the variance com-
ponents and the accuracy of the EBVs, we simulated 
two scenarios where we set the genetic correlation, rg , 
between DGE and IGE to 0.6 or − 0.6 (scenarios 2 and 
3; Table  1). We also simulated two scenarios where we 
altered the herd size to either 50 cows in 200 herds or 
200 cows in 50 herds to investigate how it would affect 
the estimates (scenarios 4 and 5). Finally, we simulated 
different scenarios (scenarios 6–17) for the size of σ 2

aI
 , 

explaining 15, 5, 3, or 1.5% of the σ 2
P for each of the three 

herd sizes (50, 100, or 200 cows), keeping σ 2
eI
= σ 2

aI
 in all 

scenarios.

Intensity of contact
Some individuals may interact more with each other than 
others, and the intensity of interaction can measure this. 
To assess the importance of including information on the 
intensity of contact when estimating IGE and explore the 
difference between ignoring intensities and using impre-
cise information on intensities in the genetic analysis, we 
sampled the intensity for each contact from a gamma dis-
tribution with shape = 1 and rate = 2, using the rgamma 
function from the stats package [29]. Hence, the resulting 
intensity of contact had a mean of 0.5, a standard devia-
tion of 0.5, and was skewed to the right. This distribution 
was chosen since it corresponds well with the distribu-
tion of the total duration of contacts between dyads of 
cows in the study of Hansson et  al. [22] (unpublished 
results). To get the variance components on a comparable 
scale with the model in the basic scenario (scenario 1), 
we standardized the intensities by dividing them by 0.5 

[

aD

aI

]

∼ MVN (0,G⊗ A), where G =

[

σ 2
aD

σaDI
σaDI σ 2

aI

]

,

[

e

eI

]

∼ MVN(0,C⊗ I), where C =

[

σ 2
e 0

0 σ 2
eI

]
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before simulating the phenotypes. The resulting inten-
sity of contact then had a mean of 1 and a variance of 1. 
Hence, the “average cow” has fij = 1 , and the simulation 
model reduces to Eq.  (5) for this “average cow”. Pheno-
types were simulated for each individual in the offspring 
population, accounting for the intensity of contact, using

where fij is the intensity of contact between animal i and 
j . We kept the same variance for σ 2

aD
, σ 2

aI
, σ 2

eI
 and σ 2

e  as in 
scenario 1, and the total phenotypic variance will there-
fore be larger than scenario 1 due to the variation in 
intensities.

We investigated three scenarios to assess the impor-
tance of knowing the contact intensities between cows 
and explore the difference between ignoring intensi-
ties and using imprecise intensities (scenarios 18–20; 
Table  2). In scenario 18, we simulated the phenotypes 
with intensities and estimated the variance compo-
nents with these known intensities, included as the 
elements of ZI . In scenario 19, we simulated the pheno-
types with intensities but estimated the variance com-
ponents, assuming there was no variation in intensity, 
with the elements of ZI only representing a contact (1) 
or no contact (0). To evaluate possible errors in measur-
ing intensities, we also simulated the phenotypes with 
intensities and, prior to fitting the model, added random 
noise (~ N(0,0.16)), with these noisy intensities included 
as input to DMU (i.e., in the elements of ZI ) (scenario 20).

(8)yi = herdi + aDi +

ni
∑

i �=j

fijaIj +

ni
∑

i �=j

fijeIj + eDi ,

Direction of contact
In scenarios 1–20, we have simulated undirected social 
networks, where we only had information about whether 
or not two individuals had contact. The contacts were 
assumed to be reciprocal: all the herd mates a cow had 
contacts with were assumed to express their IGE in 
the phenotype of this cow, and the IGE of the cow was 
expressed in the phenotype of its herd mates. However, 
some of these contacts can be outgoing contacts of the 
cow, and some can be interactions the cow receives from 
its herd mates. For example, a herd mate can perform 
allogrooming on or displace the focal cow, but the focal 
cow does not perform these behaviours on its herd mate. 
Thus, interactions are not necessarily reciprocal [33]. 
Therefore, we also simulated two scenarios with directed 
networks (scenarios 21–22; Table 2).

In the context of directed networks, we use the term 
‘focal cow’, which can both perform and receive con-
tacts. Here, we assume the same number of contacts 
with a mean of 30 and a maximum of 43 and half of these 
contacts are outgoing contacts by the focal cow, i.e., the 
out-degree, and the other half of the contacts are incom-
ing contacts for the focal cow, i.e., the in-degree. In this 
directional network, an outgoing contact means that the 
focal cow influences the phenotype of the herd-mate, 
while an incoming contact means that the herd-mate 
influences the phenotype of the focal cow. The inter-
actions can be reciprocal but are no longer implied to 
be reciprocal as in the undirected graphs used so far; 
only for outgoing contacts the IGE of the focal cow is 
expressed in the herd mate. Directed networks within 
each herd were generated with the sample_degseq func-
tion from the igraph package [31] with the given in- and 

Table 2  Description of scenarios assessing the intensity and direction of contact (scenarios 18–22)

The simulated values used for these scenarios are the same as in the basic scenario (scenario 1): direct genetic variance,σ 2
aD

 = 192,000, indirect genetic variance, 
σ 2
aI
= 6400, direct–indirect genetic covariance,σaDI = 0, indirect environmental variance, σ 2

eI
 = 6400, residual variance, σ 2

e  = 64,000, direct–indirect genetic correlation, 
rg = 0, herd size = 100, number of herds = 100
a  Phenotypes were simulated with the following equation: yi = herdi + aDi +

∑ni
i �=j fijaIj +

∑ni
i �=j fij eIj + eDi

b  Phenotypes were simulated with the following equation: yi = herdi + aD,i +
∑ni

i �=j aI,j +
∑ni

i �=j eI,j + eD,i , where yi is the simulated milk yield for recipient i, herdi is the 
fixed herd effect of recipient i, aD,i is the DGE of recipient i, aI,j is the IGE of herd mate j, eI,j is the IEE of herd mate j, eD,i is the DEE of recipient i, ni is the number of herd 
mates recipient i has contact with, fij is the intensity of contact between animal i and j

Scenario 
number

Name Simulation model Genetic analysis model

18 With intensities Phenotypesa were generated with intensities Variance components were estimated with these known 
intensities

19 Without intensities Phenotypesa were generated with intensities Variance components were estimated, assuming there 
were no intensities

20 Imprecise intensities Phenotypesa were generated with intensities and ran-
dom noise (~ N(0,0.16)) was added to the true intensities

Variance components were estimated with imprecise 
intensities

21 With direction Phenotypesb were generated by including only 
the incoming contacts (a mean of 15 contacts),

Variance components were estimated knowing the direc-
tion

22 Without direction Phenotypesb were generated by including only 
the incoming contacts (a mean of 15 contacts)

Variance components were estimated with the undirected 
network (a mean of 30 contacts), i.e., by including both 
the incoming and outgoing contacts
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out-degrees, with a mean in-degree of 15 contacts and a 
mean out-degree of 15 contacts. The maximum in-degree 
and out-degree were 22 and 21 contacts, respectively, 
which sum up to the maximum number of contacts in 
the undirected network.

We investigated two scenarios to assess the importance 
of knowing the direction of contacts in the genetic analy-
sis of the simulated data. First, we estimated the vari-
ance components knowing this direction (scenario 21) by 
adjusting ZI accordingly. Next, we estimated the variance 
components with the undirected graph, i.e., including 
both the in and out-degree (a mean of 30 contacts) (sce-
nario 22).

Evaluation
The means and the standard deviations of estimated vari-
ance components, and rg , across the 100 replicates were 
summarised for each scenario. Estimates of VC and rg , 

were considered unbiased if the true value was within the 
95% confidence interval for the mean across 100 repli-
cates. The accuracy of the EBVs, for both DGE and IGE, 
was calculated for the sires and cows with phenotypes 
using the Pearson correlation coefficient between the 
simulated true breeding values, BVs, and the EBVs. The 
regression coefficient of BV on EBV was also calculated 
for the sires and cows with phenotypes to check for the 
dispersion of EBV for both traits, referred to as “bias”. 
A regression coefficient smaller than 1 indicates over-
dispersion, meaning that EBVs of top-ranking animals 
overestimate the true BVs of these animals. A regression 
coefficient greater than 1 indicates underdispersion.

We also interpreted the magnitude of the variance of 
IGEs and assessed its contribution to the phenotypic var-
iance and the total heritable variance. We used the simu-
lated values as inputs to calculate the total heritable 
variation, σ 2

TBV  , relative to the σ 2
P , by T 2 =

σ 2
TBV

σ 2
P

 for the 

Table 3  Contribution of the indirect effects to the total heritable and phenotypic variance at different magnitude

For the calculations, the following initial values were used: h2D = 0.3 (direct heritability of milk yield), σ 2
P = 640,000 (phenotypic variance, 

σ 2
P = σ 2

aD
+ n(σ 2

aI
+ σ 2

eI
)+ σ 2

e  ), σ 2
aD

 = 192,000 (direct genetic variance), n = 30 (mean number of social contacts). σ 2
aI

 = indirect genetic variance, σ 2
eI

 = indirect 
environmental variance, σ 2

e  = residual variance, σ 2
TBV = total heritable variance, T2 = total heritable variance relative to the phenotypic variance (T2 = σ 2

TBV /σ
2
P ) , 

I2P = indirect genetic variance relative to the phenotypic variance ( I2
P
= (nσ 2

aI
)/σ 2

P
 ), S2P = the total social indirect variance (genetic + environmental) relative to the 

phenotypic variance ( S2
P
= (nσ 2

aI
+ nσ 2

eI
)/σ 2

P
) , I2TBV = Indirect genetic variance relative to the total heritable variance ( I2TBV = (n2σ 2

aI
)/σ 2

TBV
)

Scenario number σ
2
aI

σ
2
eI

σ
2
e σ

2

TBV
T2 I2

P
S2
P

I2
TBV

1,4,5,18–22 6400 6400 64,000 5,952,000 9.3 0.3 0.6 0.97

6–8 3200 3200 256,000 3,072,000 4.8 0.15 0.3 0.94

9–11 1024 1024 386,560 1,113,600 1.7 0.05 0.1 0.83

12–14 640 640 409,600 768,000 1.2 0.03 0.06 0.75

15–17 320 320 428,800 480,000 0.75 0.015 0.03 0.60

Table 4  Variance component estimates for the basic scenario and scenarios with altered correlation and herd size

The means across the 100 replicates in each scenario with the standard deviation in brackets. σ 2
aD

 = direct genetic variance, σ 2
aI

 = indirect genetic variance, σaDI = direct–
indirect genetic covariance, σ 2

eI
 = indirect environmental variance, σ 2

e  = residual variance, rg = direct–indirect genetic correlation. Estimates of VC marked with * were 
biased (the true value was outside of the 95% confidence interval for the mean across 100 replicates)

Description Scenario 
number

σ
2
aD

σ
2
aI

σaDI σ
2
eI

σ
2
e

rg

Simulated

1,4,5 192,000 6400 0 6400 64,000 0.0

2 − 21,033 − 0.6

3 21,033 0.6

Basic scenario

 rg = 0 1 188,572 (28,941) 6523 (1123) − 12 (996) 6325 (998) 66,839 (23,006) 0.00 (0.05)

Correlations

 rg = − 0.6 2 193,396 (23,264) 6354 (840) − 20,909 (1100) 6408 (731) 63,289 (17,325) − 0.60 (0.04)

 rg = 0.6 3 195,244 (21,622) 6479 (725) 20,975 (1244) 6291 (674) 61,967 (16,463) 0.59 (0.04)

Herd size

 50 cows 4 189,337 (29,473) 6420 (1089) − 159 (1106) 6378 (1066) 65,986 (21,567) 0.00 (0.03)

 200 cows 5 182,380 (27,376)* 6313 (1131) 40 (1079) 6518 (944) 70,255 (21,431)* 0.00 (0.03)
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different simulated sizes of σ 2
aI
. Here, we used σaDI = 0 as 

assumed in scenario 1, where

We assessed how much the σ 2
aI

 explained the σ 2
P , as 

I2P = (nσ 2
aI
)/σ 2

P , and the proportion of phenotypic vari-
ance explained by the total social indirect variance 
(genetic and environmental) as S2P =

n(σ 2
aI
+σ 2

eI
)

σ 2
P

 (derived 
from Eq. (6)). Finally, we calculated the proportion of var-

iance in TBV explained by IGE, as I2TBV =
n2σ

2
aI

σ 2
TBV

 (derived 
from Eq. (9)). The results from these calculations are pre-
sented in Table  3. For the simulated values, T 2 ranged 
from 0.75 to 9.3 for the smallest to the largest size of σ 2

aI

(when explaining 1.5–30% of the σ 2
P ) and the σ 2

aI
 

explained between 60–97% of the total heritable varia-
tion, while the variance of the total indirect genetic and 
environmental effect explained between 3–60% of the σ 2

P.

Results
Scenario 1
The estimates of the variance components and rg for 
scenario 1 were unbiased and precise (Table  4). Only 
two out of 100 replicates did not converge. The EBVs 
for the DGE and IGE were unbiased, where the regres-
sion coefficient of BV on EBV ranged from 1.00 to 1.02, 
and the standard deviations of the regression coeffi-
cients ranged from 0.04 to 0.09 (results not shown). The 
EBVs had moderate to high accuracies, which ranged 
from 0.72 to 0.96 for the DGE and from 0.55 to 0.92 for 
the IGE (Table 5).

(9)σ 2
TBV = σ 2

aD
+ n2σ 2

aI
.

Other scenarios
Genetic correlation, herd size, and size of IGE
When including a genetic correlation of − 0.6 (scenario 
2) or 0.6 (scenario 3) between DGE and IGE, we found 
unbiased and similar results for the variance component 
estimates, rg , and the EBVs as in scenario 1 (Tables  4 
and 5). Only one of the replicates did not converge. The 
regression coefficient of the BV on EBV ranged from 1.00 
to 1.01, with standard deviations between 0.03–0.07.

Altering the herd size to either 200 herds with 50 cows 
in each herd (scenario 4) or 50 herds with 200 cows in 
each herd (scenario 5) also returned similar results as 
in scenario 1 (100 herds with 100 cows in each herd). 
The variance component and rg estimates were, in gen-
eral, unbiased, and only two out of 100 replicates did 
not converge (Table  4). The estimates for σ 2

aD
 and σ 2

e  in 
scenario 5 were slightly biased but could be an effect of 
multiple testing. The EBVs for the DGE and IGE were 
also unbiased. With 50 cows in each herd (scenario 4), 
the regression coefficient mean (sd) for the DGE EBVs 
was 1.00 (0.03) for the sires and 1.02 (0.10) for the cows. 
With 200 cows in each herd (scenario 5), the regression 
coefficient mean (sd) for the DGE EBVs was 1.00 (0.04) 
for the sires and 1.04 (0.09) for the cows. The regression 
coefficient mean (sd) for the IGE EBVs was the same for 
herds with 50 cows in each herd and 200 cows in each 
herd, with 1.01 (0.06) for the sires and 1.01 (0.09) for the 
cows. The accuracy for the DGE EBVs was slightly higher 
with smaller herds with 50 cows each, while the accuracy 
for the IGE EBVs was slightly lower with smaller herds 
(Table 5).

When reducing the size of σ 2
aI

 , from explaining 30% 
of the σ 2

P in scenario 1 to explaining 15% of the σ 2
P (sce-

narios 6–8), the variance components were still, in gen-
eral, unbiased and precise (Table  6). In scenario 7, the 

Table 5  Accuracy of EBVs for the basic scenario and scenarios with altered correlation and herd size

The means of accuracies across the 100 replicates with the standard deviation in brackets

DGE, direct genetic effect; IGE, indirect genetic effect; rg , direct–indirect genetic correlation
a  Cows with phenotypes

Description Scenario number Accuracy

Sires Cowsa

DGE IGE DGE IGE

Basic scenario ( rg = 0) 1 0.96 (0.01) 0.92 (0.02) 0.74 (0.01) 0.59 (0.02)

Correlations

 rg = − 0.6 2 0.96 (0.01) 0.92 (0.01) 0.75 (0.01) 0.65 (0.02)

 rg = 0.6 3 0.96 (0.01) 0.92 (0.02) 0.74 (0.01) 0.65 (0.02)

Herd size

 50 cows 4 0.96 (0.01) 0.90 (0.02) 0.77 (0.01) 0.55 (0.02)

 200 cows 5 0.94 (0.01) 0.91 (0.02) 0.72 (0.01) 0.60 (0.02)
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estimates for σ 2
aI ,

 and σaDI were slightly biased but could 
be an effect of multiple testing. The EBVs were unbiased 
with moderate to high accuracy, which ranged from 0.66 
to 0.94 for the DGE and from 0.46 to 0.85 for the IGE 
(Table 7). All replicates converged for the scenarios when 
the size of σ 2

aI
 explained 15% of the σ 2

P . When reducing 
σ 2
aI

 further, we could estimate the mean size of the vari-
ance components quite well, but with larger standard 
errors and more difficulties getting the models to con-
verge, especially when σ 2

aI
 explained only 3 and 1.5% of 

the σ 2
P , and in combination with the smaller herd size of 

50 cows. For the scenarios when σ 2
aI

 explained 3 and 5% 
of the σ 2

P , 79–99 replicates out of 100 converged for each 
scenario. For scenarios 15–17, when σ 2

aI
 explained only 

1.5% of the σ 2
P , 54–81 replicates out of 100 converged for 

each scenario. The accuracy of EBVs for the IGE ranged 
from 0.30 to 0.85 for the sires and from 0.16 to 0.52 for 
the cows with phenotypes when σ 2

aI
 explained between 

1.5–15% of the σ 2
P , with the lowest accuracies for the 

smaller herd size.

Figure 1 shows how the accuracy of the EBVs for IGE 
decreases with the size of σ 2

aI
 and herd size, along with 

an increase in the standard errors for the sires and cows. 
When the indirect genetic variance explained 15% of the 
σ 2
P (scenarios 6–8), the EBVs were still unbiased (regres-

sion coefficient mean: 1.00–1.04, sd: 0.08–0.11). When 
σ 2
aI

 explained only 3 or 1.5% of the σ 2
P (scenarios 12–17) 

the regression coefficient of the BV on EBV for the 
IGE ranged from 0.70 to 1.29 with standard deviations 
between 0.29–1.97.

Intensity of contact
When simulating the phenotypes with variation in the 
intensity of contact and estimating the variance com-
ponents using these known intensities (scenario 18), we 
could estimate the variance components well with low 
standard errors (Table 8). The EBVs for the DGE and IGE 
were unbiased (regression coefficient mean: 1.00–1.01, 
sd: 0.04–0.09), and the accuracy ranged from 0.60 to 0.94 
for the DGE and from 0.52 to 0.93 for the IGE (Table 9). 
The mean accuracy (sd) of the IGE EBVs was 0.93 (0.01) 

Table 6  Variance component estimates for scenarios with smaller indirect genetic variance within different herd size

The means across the 100 replicates in each scenario with the standard deviation in brackets. σ 2
P  , phenotypic variance; σ 2

aD
 , direct genetic variance; σ 2

aI
 , indirect genetic 

variance; σaDI , direct–indirect genetic covariance; σ 2
eI

 , indirect environmental variance; σ 2
e  , residual variance; rg , direct–indirect genetic correlation. Estimates of VC 

marked with * were biased (the true value was outside of the 95% confidence interval for the mean across 100 replicates)

Description Scenario 
number

σ
2
aD

σ
2
aI

σaDI σ
2
eI

σ
2
e

rg

Smaller σ 2
aI

 (15% of σ 2

P )

 Simulated 192,000 3200 0 3200 256,000 0.0

 Herd size

  100 cows 6 195,936 (32,213) 3203 (658) − 32 (1284) 3199 (677) 253,252 (26,643) 0.00 (0.05)

  50 cows 7 193,896 (28,644) 3063 (620)* 409 (1455)* 3450 (825) 253,869 (22,759) 0.02 (0.06)

  200 cows 8 191,931 (29,962) 3164 (606) − 92 (1151) 3242 (607) 254,941 (24,786) 0.00 (0.05)

Smaller σ 2
aI

 (5% of σ 2

P )

 Simulated 192,000 1024 0 1024 386,560 0.0

 Herd size

  100 cows 9 192,973 (33,074) 1022 (296) − 67 (1122) 950 (456) 386,335 (26,085) 0.00 (0.08)

  50 cows 10 192,747 (30,684) 1099 (418) − 124 (1316) 928 (725) 385,850 (26,389) − 0.01 (0.10)

  200 cows 11 187,083 (28,423) 1042 (301) − 45 (987) 1036 (467) 389,206 (24,068) 0.00 (0.08)

Smaller σ 2
aI

 (3% of σ 2

P )

 Simulated 192,000 640 0 640 409,600 0.0

 Herd size

  100 cows 12 191,712 (29,506) 654 (266) − 63 (1007) 638 (436) 409,569 (24,999) − 0.01 (0.11)

  50 cows 13 191,463 (32,260) 575 (306)* − 148 (1411) 749 (633) 408,707 (26,587) − 0.01 (0.22)

  200 cows 14 192,144 (35,607) 629 (211) 9 (997) 650 (390) 409,908 (29,040) 0.00 (0.11)

Smaller σ 2
aI

 (1.5% of σ 2

P )

 Simulated 192,000 320 0 320 428,800 0.0

 Herd size:

  100 cows 15 191,904 (35,444) 302 (179) 95 (969) 387 (382) 428,172 (30,065) − 0.01 (0.23)

  50 cows 16 184,482 (28,718)* 328 (253) 299 (1336)* 508 (547)* 432,774 (24,175) 0.07 (0.45)

  200 cows 17 194,155 (33,942) 318 (171) − 74 (888) 360 (332) 426,274 (27,503) − 0.01 (0.23)
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for the sires and 0.63 (0.02) for the cows. When ignor-
ing the variation in intensity when estimating the vari-
ance components (scenario 19), we still could estimate 
the genetic variance components well, but got a signifi-
cant increase in the residual variance of about 585%. The 
mean accuracy of IGE EBVs (sd) decreased to 0.87 (0.03) 
for the sires and 0.52 (0.03) for the cows (regression coef-
ficient mean: 1.00–1.01, sd: 0.06–0.10). When simulating 
the phenotypes with variation in the intensity of con-
tact and random noise was added to the intensities in ZI 
when estimating the variance components (scenario 20), 
the variance components for IGE and IEE were under-
estimated, and the residual variance was increased. The 

mean accuracy of IGE EBVs (sd) was 0.93 (0.01) for the 
sires and 0.62 (0.02) for the cows (regression coefficient 
mean: 1.07–1.08, sd: 0.05–0.08). All replicates out of 100 
converged in all three scenarios (scenarios 18–20).

Direction of contact
When simulating directed interactions and using the 
information on direction in the variance component esti-
mation (scenario 21), we obtained similar results as for 
scenario 1, with in general unbiased estimates of the vari-
ance components (Table  8) and similar accuracies and 
unbiased EBVs (regression coefficient mean: 1.00–1.02, 
sd: 0.03–0.10; Table 9). The estimate for σ 2

P were slightly 
biased but could be an effect of multiple testing. When 
ignoring directed interactions in the variance component 
estimation (scenario 22), we underestimated the variance 
components for σ 2

aI
 and σ 2

eI
 by obtaining approximately a 

quarter of their simulated value. The EBVs’ mean accu-
racy was also lower and the EBVs for the IGE showed 
under-dispersion, with a regression coefficient (sd) of 
2.06 (0.24) for the sires and 2.07 (0.28) for the cows. All 
replicates out of 100 converged in both scenarios 21 and 
22.

Discussion
The simulation study results indicated that it could be 
possible to estimate IGE in dairy cattle based on the 
dynamic social contact structure in dairy herds collected 
from real-time positioning data. With 10,000 phenotyped 
cows distributed over 50–200 herds, the EBVs for IGEs 
were estimated with high accuracy and low standard 
errors of the variance component estimates. However, 
when the size of σ 2

aI
 got smaller, the standard errors of the 

estimates became larger, and there were more difficulties 
in model convergence, especially when the herds were 
smaller, with 50 cows in each herd.

Magnitude of IGE
In the basic scenario (scenario 1), we assumed that 

σ 2
aI

=
σ 2
aD
n  , which means that the sum of the IGE an 

individual receives and its DGE contribute equally to 
the phenotypic variance. The key issue is that we do not 
know σ 2

aI
 or what should be considered as a small or large 

size of IGE in dairy cows. The size of σ 2
aI

 in scenario 1 was 
a starting point and then we explored additional scenar-
ios with reduced magnitude of the IGE to assess how well 
we could estimate the variance components and breeding 
values for the different magnitudes. In this section, we 
discuss this issue further by interpreting the magnitude 
of IGE and its contribution and consequences to the total 

Table 7  Accuracy of EBVs for scenarios with smaller indirect 
genetic variance within different herd size

The means of accuracies across the 100 replicates with the standard deviation 
in brackets

σ 2
P  , phenotypic variance; σ 2

aI
 , indirect genetic variance; DGE, direct genetic effect; 

IGE, indirect genetic effect
a  Cows with phenotypes

Scenario Scenario 
number

Accuracy

Sires Cowsa

DGE IGE DGE IGE

Smaller σ 2
aI

(15% of σ 2

P )

 Herd size

  100 
cows

6 0.94 (0.01) 0.85 (0.03) 0.67 (0.02) 0.50 (0.03)

  50 cows 7 0.94 (0.01) 0.80 (0.03) 0.68 (0.02) 0.46 (0.03)

  200 
cows

8 0.92 (0.02) 0.84 (0.03) 0.66 (0.02) 0.52 (0.03)

Smaller σ 2
aI

(5% of σ 2

P )

Herd size

  100 
cows

9 0.93 (0.01) 0.67 (0.06) 0.65 (0.02) 0.38 (0.04)

  50 cows 10 0.93 (0.01) 0.60 (0.07) 0.65 (0.02) 0.33 (0.04)

  200 
cows

11 0.92 (0.02) 0.69 (0.06) 0.64 (0.02) 0.40 (0.04)

Smaller σ 2
aI

(3% of σ 2

P )

 Herd size

  100 
cows

12 0.93 (0.01) 0.59 (0.06) 0.64 (0.02) 0.33 (0.04)

  50 cows 13 0.93 (0.01) 0.48 (0.12) 0.64 (0.02) 0.26 (0.07)

  200 
cows

14 0.92 (0.02) 0.62 (0.06) 0.64 (0.02) 0.36 (0.04)

Smaller σ 2
aI

(1.5% of σ 2

P )

 Herd size

  100 
cows

15 0.93 (0.01) 0.43 (0.14) 0.64 (0.02) 0.24 (0.08)

  50 cows 16 0.93 (0.01) 0.30 (0.17) 0.64 (0.02) 0.16 (0.09)

  200 
cows

17 0.92 (0.02) 0.46 (0.13) 0.64 (0.02) 0.26 (0.08)
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Fig. 1  Accuracy of EBVs for different sizes of indirect genetic effect variance. IGE, Indirect genetic effects; EBV, Estimated breeding value; T 2 , total 
heritable variance relative to the phenotypic variance; σ 2

TBV
 , total heritable variance; σ 2

P
 , phenotypic variance

Table 8  Variance component estimates for scenarios with intensity and direction of contact

The means across the 100 replicates in each scenario with the standard deviation in brackets. σ 2
aD

 , direct genetic variance; σ 2
aI

 , indirect genetic variance; σaDI , direct–
indirect genetic covariance; σ 2

eI
 , indirect environmental variance; σ 2

e  , residual variance; rg , direct–indirect genetic correlation. Estimates of VC marked with * were 
biased (the true value was outside of the 95% confidence interval for the mean across 100 replicates)
a  Phenotypes were simulated with intensities, and the variance components were estimated with these known intensities
b  Phenotypes were simulated with intensities, but the variance components were estimated assuming that there were no intensities but just a contact (1) or no 
contact (0)
c  Phenotypes were simulated with intensities, random noise was added (~ N(0,0.16)), and the variance components were estimated with imprecise intensities
d  Phenotypes were simulated with the directed graphs, and the variance components were estimated knowing this direction (mean of 15 contacts)
e  Phenotypes were simulated with the directed graphs (mean of 15 contacts), and the variance components were estimated with the undirected graph (mean of 30 
contacts)

Scenario Scenario 
number

σ
2
aD

σ
2
aI

σaDI σ
2
eI

σ
2
e

rg

Intensity of contact

 Simulated 192,000 6400 0 6400 64,000 0.0

 With intensitiesa 18 192,202 (30,507) 6327 (958) 132 (1128) 6460 (773) 63,604 (23,585) 0.00 (0.03)

 Without intensitiesb 19 193,502 (32,203) 6361 (1266) 234 (2223) 6758 (1183)* 438,631 (29,366) 0.00 (0.07)

 With imprecise intensitiesc 20 189,913 (29,893) 5516 (821)* − 231 (1053) 5588 (675)* 110,420 (24,310)* − 0.01 (0.03)*

Direction of contact

 Simulated 192,000 6400 0 6400 64,000 0.0

 With directiond 21 186,518 (25,060)* 6235 (1266) 136 (1533) 6567 (1028) 67,691 (19,634) 0.00 (0.05)

 Without directione 22 186,998 (25,950) 1556 (391)* 73 (851) 1640 (365)* 147,755 (20,076) 0.00 (0.05)
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heritable variation with help from our inputs and calcula-
tions in Table  3. We have simulated scenarios with dif-
ferent sizes of σ 2

aI
 and σ 2

eI
 to assess the consequences for 

the estimations when the effect size gets smaller. In the 
basic scenario (scenario 1), T 2 = 9.3 , which is substan-
tially larger than the direct heritability ( h2D = 0.3), shows 
that the chosen σ 2

aI
 in this scenario contributed the vast 

majority of the total heritable variation. IGE explained 
between 60–97% of σ 2

TBV  depending on the simulated 
size of σ 2

aI
(1.5–30% of the σ 2

P ) , which is a high contribu-
tion of the IGEs to the total heritable variation even for 
the smallest effect sizes. However, for the three smallest 
effect sizes in our study, the σ 2

aI
 only explained between 

1.5–3% of the σ 2
P , which seems relatively low. It is difficult 

to choose a realistic magnitude of IGE because the con-
tribution of IGE differs greatly between phenotypic vari-
ance and total heritable variation, particularly with large 
groups, because the first is proportional to n and the lat-
ter to n2. Hence, in large groups such as in dairy cattle, 
a small contribution of IGE to phenotypic variance may 
still represent a very large contribution to the total herit-
able variation. In our calculations of the contribution to 
the total heritable variance, we assumed that the direct–
indirect genetic covariance was zero. With a positive 
covariance, the total heritable variation would increase 
for our calculations, while the total heritable variation 
would be less with a negative covariance. The expected 
covariance is still unknown and needs to be investigated.

In laying hens, it has been shown that social inter-
actions can explain between 33–76% of σ 2

TBV  in traits 

such as survival time [10]. In mink, 30–52% of σ 2
TBV  

for bite mark traits were explained by the IGE variance 
[12]. However, these results are based on aggressive and 
harmful behaviours and might not be comparable to 
the potential social effects on milk yield in dairy herds. 
IGEs have also been found for less harmful interactions, 
e.g., in a study in mice that only interacted through the 
scent of each other, they found that IGEs explained 1–2% 
of the phenotypic variance in wheel running [34]. There 
are fewer examples of positive social interactions in the 
literature than negative social interactions [10], and this 
could be due to the fact that the negative interactions 
might be easier to detect [35]. Baud et  al. [36] found 
IGEs on the rate of wound healing in mice and showed 
that the IGEs explained up to 18% of the phenotypic vari-
ance. This indirect effect on wound healing could be due 
to for example, social grooming or the induction of sys-
temic stress response [36]. In these two mice studies [34, 
36], the group size of interacting individuals is, however, 
much smaller than in our study, n = 2, and the relation-
ship between the contribution of IGE to the phenotypic 
variation is therefore different. In their meta-analysis, 
Santostefano et  al. [14] showed that the IGEs contrib-
uted, on average, 3% of the phenotypic variance in a vari-
ety of traits and species, yet with a high variation across 
studies and with a range from 0 to 12%. The social effects 
seemed to explain more of the variation in behavioural 
and reproductive traits than in other traits, such as physi-
ological traits. These findings might indicate that the 
scenarios with the lowest magnitude of the IGE in our 

Table 9  Accuracy of EBVs for scenarios with intensity and direction of contact

The means of accuracies across the 100 replicates with the standard deviation in brackets. DGE, direct genetic effect; IGE, indirect genetic effect
a  Phenotypes was simulated with intensities, and the variance components were estimated with these known intensities
b  Phenotypes were simulated with intensities, but the variance components were estimated assuming that there were no intensities but just a contact (1) or no 
contact (0)
c  Phenotypes were simulated with intensities, random noise was added (~ N(0,0.16)), and the variance components were estimated with imprecise intensities
d  Phenotypes were simulated with the directed graphs, and the variance components were estimated knowing this direction (mean of 15 contacts)
e  Phenotypes were simulated with the directed graphs (mean of 15 contacts), and the variance components were estimated with the undirected graph (mean of 30 
contacts)
f  Cows with phenotypes

Scenario Scenario number Accuracy

Sires Cowsf

DGE IGE DGE IGE

Intensity of contact

 With intensitiesa 18 0.94 (0.01) 0.93 (0.01) 0.68 (0.02) 0.63 (0.02)

 Without intensitiesb 19 0.91 (0.02) 0.87 (0.03) 0.60 (0.02) 0.52 (0.03)

 With imprecise intensitiesc 20 0.94 (0.01) 0.93 (0.01) 0.66 (0.02) 0.62 (0.02)

Direction of contact

 With directiond 21 0.96 (0.01) 0.89 (0.02) 0.76 (0.01) 0.55 (0.03)

 Without directione 22 0.95 (0.01) 0.83 (0.03) 0.73 (0.01) 0.48 (0.03)
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simulations, where σ 2
aI

 explained 1.5–3% of σ 2
P (scenarios 

12–17), might be more realistic. In that case, with a suffi-
cient number of herds and animals, our results indicated 
that it would be possible to estimate IGEs in dairy cattle, 
but with lower accuracy and precision and less accurate 
EBVs. Nonetheless, in the review of Santostefano et  al. 
[14], there were only two studies with cattle included, 
and these studies were on social dominance and involved 
competitive interactions [37, 38]. Studies on social inter-
actions in dairy cattle and their effect on milk yield and 
other traits are still needed to learn more about the mag-
nitude of the IGEs.

Intensity of contact
Our results indicate that we might not need to know the 
intensity of contacts when we monitor social interactions 
in dairy cows and want to estimate IGEs (scenario 19). 
When ignoring the information on variation in inten-
sity, we still found unbiased and accurate variance com-
ponents of IGE, and EBVs’ accuracies were moderate to 
high (scenario 19). However, when we did not account 
for the intensity of contacts in estimating variance com-
ponents, we (obviously) did not capture the variation of 
intensities of contacts between individuals. We found a 
large residual variance instead and less accurate EBVs 
(scenario 19). When we added random noise to the 
intensities and estimated the variance components with 
imprecise intensities (scenario 20), we got biased esti-
mates for σ 2

aI
 and σ 2

eI
 and an increased residual variance. 

The added noise changed the scale of the intensities. It, 
therefore, affected the estimated variance components 
(the implication of the scale of the intensities is discussed 
further in the next paragraph). In the simulation by Fikse 
et al. [24], uncertainty in the intensities was seen to affect 
the estimation of variance components of IGEs. Random 
noise was added to the intensities, and the variance of 
the IGE was underestimated, while the residual variance 
was overestimated. The authors concluded that the pre-
cision of the measured intensities was of importance for 
estimating unbiased variance components of IGE. How-
ever, the accuracy of EBVs was not assessed in that study. 
In this study, the imprecise intensities did not affect the 
accuracies of the EBVs to any large extent (scenario 20), 
yet larger errors might affect the accuracies more. None-
theless, when we ignored the intensities, the accuracies 
of both the DGE and IGE were lower than if we used 
imprecise intensities. Also, for these scenarios (scenar-
ios 18–20), we used the same size of σ 2

aI
 as in the basic 

scenario (scenario 1), where the σ 2
aI

 explained 30% of 
the σ 2

P and 97% of σ 2
TBV  ; using a smaller σ 2

aI
 would prob-

ably lead to even lower accuracies. Since the breeding 
values are the estimates we are most interested in when 

selecting animals, these results indicate that ignoring the 
intensity of contact would be worse than using imprecise 
intensities.

We did a multiplicative standardization of the intensi-
ties to have a mean and a variance of 1 to stay on the same 
scale as when ignoring the intensities in estimating vari-
ance components and assuming the contacts as binary (0 
or 1). If the intensities are not standardized and the phe-
notypes are simulated with intensities of mean = 0.5 and 
then ignored in the analysis, the intensity of a contact is 
1 in the estimation and twice as large as the true mean of 
0.5. Multiplying f  by 2 in Eq. (8):

leads to Var
(

y
)

= σ 2
aD

+ fij
2(4σ 2

aI
) + fij2(4σ 2

eI
)+σ 2

e , i.e., 
the variance components σ 2

aI
 and σ 2

eI
 will be four times 

smaller (results shown in Additional file 1, Table S1) and 
the EBVs will be smaller by a factor of two (see Additional 
file  1, Table  S2). The scale of the intensities will impact 
the estimates of the indirect variance components, and 
it is necessary to consider how the scale is defined when 
interpreting the biological importance of these estimates 
[39]. If the intensities are expressed in the total time 
individuals interact, for example, measuring the time in 
seconds or hours, this will impact the estimates. Stand-
ardizing the intensity of contacts with a multiplicative 
adjustment is helpful to compare across studies, and 
using a mean of 1 facilitates comparisons with studies 
that ignored intensities. Measuring the intensities by the 
specific interaction is also an alternative method, e.g., by 
the number of displacements or allogrooming events.

Including intensities as the regression coefficient in 
the IGE model will recover more variance, as also seen 
in social genetic effects models in pigs [17]. The vari-
ance explained by social effects is expected to double 
if the intensities vary as in our simulation, with a mean 
and a variance of 1, which agrees well with the increase 
of the residual variance in our results when intensities 
are ignored in the analysis (see Additional file 2, Text S1 
for derivation). Angarita et al. [17] showed an increase in 
the direct additive genetic variance and a decrease in the 
residual variance when including the intensity of inter-
action in an IGE model in pigs. In our simulation, the 
variation of intensities increased the phenotypic variance 
since we added the variation to Eq.  (6), with the simu-
lated underlying variance components kept unchanged. 
This means that the heritability decreased, and also the 
accuracies. An alternative method for the simulation of 
phenotypes would have been to keep the phenotypic var-
iance fixed and let the magnitude of the residual variance 
depend on the variation of intensities.

yi = herdi + aDi +

ni
∑

i �=j

2fijaIj +

ni
∑

i �=j

2fijeIj + eDi ,
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Direction of contact
When not accounting for the direction of contact (sce-
nario 22), i.e., which contacts are the incoming and out-
going contacts of the focal cow, but instead counting 
all the individuals a cow has contact with to affect that 
cow, we underestimated the variance components for the 
indirect effects, along with biased and lower accuracies 
of the EBVs. Since only half of the interactions affected 
the phenotype of the focal cow, but all the interactions 
were included in the analysis, the underestimation of σ 2

aI
 

and σ 2
eI

 led to a quarter of the expected results. We were 
simulating the phenotypes according to Eq.  (5) with the 
average number of contacts (n = 15) and in the analysis 
multiplied n by 2 (since we included both the incoming 
and outgoing contacts in the estimation of variance com-
ponents, n = 30) which led to Var

(

y
)

= σ 2
aD

+ 22σ 2
aI

 + 
22σ 2

eI
+ σ 2

e  , i.e., the variance components σ 2
aI

 and σ 2
eI

 were 
four times smaller. This also explains why the EBVs were 
biased by a factor of 2.

In our simulation, we assumed that half of an indi-
vidual’s contacts were incoming contacts, and half of the 
contacts were outgoing contacts, which might be a crude 
assumption. In an observational study by Foris et  al. 
[33], the mean number of out-degree and in-degree was 
similar for the cows regarding both allogrooming and 
displacement behaviour, but the out-degree was more 
variable than the in-degree. However, the group sizes in 
that study were only between 11 and 14 cows and the 
ratio between in- and out-degree might be different in 
larger groups, with more individual differences. Foris 
et al. [33] found that the affiliative and the agonistic net-
work were not highly correlated. The affiliative network 
was more asymmetric than the agonistic network, and 
they concluded that using a directed network was impor-
tant when studying social interactions in dairy cows. 
Nonetheless, there might be many more situations than 
allogrooming and displacement behaviour that might 
have an indirect effect on an individual’s milk yield or 
other traits. In our (variance component) model for IGE, 
we did not look into any specific behaviour that caused 
the indirect effect. Our results might indicate that cam-
eras are needed to capture the initiator and the recipient 
of the dyadic interaction; however, the implications of 
this need to be studied further.

Limitations
Our simulation assumed that the social interactions 
between cows were random, although this is not true 
in commercial dairy herds. A cow’s parity and lactation 
stage might influence their contact structures in different 
barn areas [22]. Additionally, cows with similar attrib-
utes, such as cows with the same parity or breed, have 
been shown to have more contact with each other than 

with other individuals [19, 23]. Relatedness and famili-
arity have also been shown to lead to more preferential 
and stronger bonds between cows and affect dairy herds’ 
social networks [23, 40, 41]. The relatedness between 
interacting individuals was not accounted for in this 
study. The pedigree used in the simulation was a simple 
pedigree with only one generation and no inbreeding, 
and each dam had only one offspring. Each herd had only 
paternal half-sibs from around nine sires, with a variation 
in family size. As a first step in assessing what informa-
tion would be required to estimate IGEs in dairy cattle, 
this study’s population structure was kept simple to avoid 
adding complexity and better understand the differences 
between scenarios. Modelling familial relationships or 
using genomic prediction may need further attention 
in more complex real-life scenarios when one wants to 
separate inheritance patterns from preferential bonding 
due to animals being related. A more realistic structure of 
the cattle population is also needed in future simulations 
to assess the number of herds and animals, phenotypes 
and genotypes that would be sufficient to estimate IGE in 
dairy cattle.

The indirect environmental effects and the residuals 
(which represent the direct environmental effect) were 
assumed to be independent, both in the simulation and 
in the analyses. A positive correlation between direct 
and indirect environmental effects, means that a cow 
who performs better than expected given its (systematic) 
environment also provides a good environment for its 
social partners. A correlation between direct and indirect 
environmental effects might possibly impact the results. 
However, since we assumed that the contacts are random 
it might have a limited impact on the results. This could 
be further assessed in future simulations.

An individual´s IGE on a single recipient may be 
diluted and smaller with an increasing group of interact-
ing individuals, known as the “dilution effect” [26, 27, 42]. 
In this simulation study, we assume that the cows have, 
on average, contact with 30 other individuals in the herd. 
The variation in the number of contacts between individ-
uals does not increase the total variance due to the IGE 
an individual receives (see Additional file  2, Text S2 for 
derivation). However, if the individuals´ average number 
of contacts increases or varies between herds, the dilu-
tion effect may be another possible method to account 
for this, rather than with the intensity of contact. The 
social contacts between individuals in our simulations 
are assumed to be monitored indoors for cows living in 
loose housing systems. The layout of free-stall barns and 
the stocking density are additional factors that might 
impact dairy cows’ social behaviour [43, 44], as well as 
the farm’s milking system, e.g., the use of automatic milk-
ing systems [45], or if the cows have access to pasture or 
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not [19, 46]. In our study, we also used a simple network, 
accounting only for the number of contacts, but social 
network analyses can also be extended to include more 
detailed information about topological network param-
eters such as betweenness centrality, closeness central-
ity, and eigenvector centrality scores [47]. There is also 
a possible genetic variation of an individual’s number of 
contacts [48, 49], which we have yet to consider in our 
analyses and would be necessary to investigate. Another 
step further will include genomic information and assess 
the optimal genotyping strategy to estimate IGE in dairy 
cows.

Conclusions
Indirect genetic effects in dairy cattle could be esti-
mated precisely and accurately from simulated data of 
dairy herds’ dynamic social contact structure. However, 
the size of the indirect genetic effects will impact the 
estimates, where smaller variance of the IGE will lead 
to larger standard deviations of the estimates, less accu-
rate EBVs, and more trouble in getting the models to 
converge. The estimated variance components for IGE 
depend on the scale of the included intensity of contacts, 
and information about the intensity of contacts to esti-
mate unbiased variance components for IGE appeared 
unnecessary. Yet, by ignoring the information about 
the intensity of contacts, we got a large residual vari-
ance and less accurate EBVs, and ignoring information 
about intensities in the model would be worse than using 
imprecise intensities due to lower accuracies of EBVs for 
both the DGE and IGE. When contacts are directional 
and this is ignored in the genetic analysis, the variance 
components of the social effects will be underestimated, 
and EBVs will be biased, suggesting that technology such 
as camera vision would be beneficial to monitor social 
contacts in dairy herds. However, the implications of 
including or not including the direction of contact when 
estimating IGE would need to be investigated further. 
When choosing a strategy for monitoring social interac-
tions between cows and estimating IGE in dairy cattle, 
these findings are important to consider.
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Additional file 1: Table S1. Variance component estimates for scenarios 
with the intensity of contact without standardization. The means across 
the 100 replicates in each scenario with the standard deviation in brackets. 

σ 2
aD

 = direct genetic variance, σ 2
aI

 = indirect genetic variance, σaDI = 

direct-indirect genetic covariance, σ 2
eI

 = indirect environmental variance, 

σ 2
e  = residual variance, rg = direct-indirect genetic correlation. Model 

convergence shows how many replicates out of 100 that converged. a 
Phenotypes was simulated with intensities (mean = 0.5, var = 0.25), and 

the variance components were estimated with these known intensities, b 
Phenotypes were simulated with intensities (mean = 0.5, var = 0.25), but 
the variance components were estimated assuming that there were no 
intensities but just a contact (1) or no contact (0). Table S2. Accuracy of 
EBVs for scenarios with intensity of contact without standardization. The 
means of accuracies across the 100 replicates with the standard deviation 
in brackets. DGE = direct genetic effect, IGE = indirect genetic effect. a 
Phenotypes was simulated with intensities (mean = 0.5, var = 0.25), and 
the variance components were estimated with these known intensities. b 
Phenotypes were simulated with intensities (mean = 0.5, var = 0.25), but 
the variance components were estimated assuming that there were no 
intensities but just a contact (1) or no contact (0). c Cows with phenotypes.
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