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Genome-wide association analysis revealed
novel candidate genes for body measurement
traits in indigenous Gudali and crossbred
Simgud in Cameroon

Youchahou Poutougnigni Matenchi'”, Evren Koban Bastanlar’ and Matthew Hegarty?

Abstract

Background The genetic potential of Central African cattle for enhanced productivity remains largely unexplored.
The absence of systematic pedigree recording and performance monitoring represent a major obstacle to
implementing informed breeding strategies aimed at improving their production. To address this gap, we performed
a genome-wide association analysis (GWAS) on a total of 856 animals genotyped with the GGP Bovine 100K array.
The analysis focused on identifying genomic regions and candidate genes associated with body traits in a local Zebu
(Gudali) and its crossbreed with the European Simmental (Simgud), using mixed linear models (MLM).

Results The SNP-based heritability for the four body traits studied varied between 0.23 + 0.12 for the height at
wither (HAW) to 0.44 + 0.11 for the sacrum height (SH). The genetic correlation ranged from 0.19 + 0.14 between
height at wither and ear length (EL), to 0.81 + 0.06 between height at wither and sacrum height. For the phenotypic
correlations, the ranges were 0.58 + 0.00 between body length (BL) and ear length to 0.90 + 0.06 between height

at wither and body length. The maximum Pairwise Linkage Disequilibrium (LD), measured as squared correlation
coefficient () was 0.465 for Gudali, decreasing by half (0.23) at a distance of 50,708 bp. For the Simgud population
the maximum LD was 0.47 halving (0.23) at 99,201 bp. Notably, we observed extended LD patterns across both the
Gudali and Simgud genomes, persisting over distances greater than 1 mbp. These features hold significant potential
for association analysis studies and genetic improvement initiatives. A total of 52 SNPs were identified has being
associated to the considered body traits. These SNPs were mapped within or near 70 candidate genes across the
genome. Among them, the ADGRD1, NDUFAF T, RTF1 and ITPKA genes exhibited a pleiotropic effect as they were
associated with two or more traits. Additionally, LAMTORS, PCDH9, BCL2, CTIF, BHLHA15, UNC5D, CNTNAPS, TMEM 109,
TMEM132A, and NOSTAP genes showed direct association with individual body traits.

Conclusions This study identified a number of novel loci associated with pathways influencing growth and body
traits, disease resistance and immunity, reproduction and milk production. Overall, the identified genes could be
considered as candidate genes in any attempt to improve growth, disease resistance and production in tropical cattle
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raised under extensive management systems. These genes or genomic regions should be prioritized in future cattle

breeding programs in Cameroon.
Keywords GWAS, Body traits, MLM, Gudali, Simgud

Introduction

Morphometric traits are routinely used as performance
indicators for selection initiatives aiming to improve
beef cattle production [1]. They not only exhibit mod-
erate to high heritability [2, 3], but also are highly cor-
related [4—6] with major traits of economic importance
such as reproduction [7], longevity [8—11], carcass traits
[2], body weight [12], growth [13], animal welfare [4] and
health [14]. Body trait measurements hold great promise
for animal improvement, especially where routine pedi-
gree and performance record keeping is lacking, as seen
in most African breeding systems. As with most traits of
economic importance in farm animals, body measure-
ments are controlled by many genes with small contri-
bution and also influenced by environmental conditions
[15, 16]. Traditional methods of selection would lead to
limited improvement in these traits [17]. Genomic tech-
nologies offer good opportunities for breeding programs
in African countries where the local adapted breeds are
not well characterized for their performance traits [18].
They can be valuable in this case in assessing breed com-
position and parentage assignment [19, 20]. Moreover,
genomic technologies can help identify highly perform-
ing, disease resistant animals that could be subjected to
precision breeding to produce and disseminate improved
elite offspring. It is now possible to use genome-wide
scanning tools to characterize cattle populations [21],
perform studies of association [22] and detect signatures
of selection for productivity [23] as well as genomic eval-
uation [24].

Among genomic technologies, genome-wide SNP
arrays are a powerful tool for identifying associations
between genetic variants and phenotypic traits (GWAS),
as well as for analyzing breed composition and genomic
structure in animals. These technologies are routinely
used in America, Europe, and Asia. GWAS was first
developed and applied to human disease research and
has since driven major breakthroughs [25]. The principle
makes use of sequence variants (mainly single-nucleotide
polymorphisms, i.e. SNPs) across the entire genome,
along with phenotype and lineage information, to per-
form association analysis and identify genes or regula-
tory elements important for targeted traits. Compared
to traditional QTL mapping strategies, GWAS provides
major advantages, mainly in its power to identify nar-
rowed genomic regions harboring causal variants [26].
GWAS could therefore be considered as an ideal tech-
nique for discovering genes underlying complex traits
and offers significant benefits for countries aiming to

develop sustainable agriculture strategies and increase
yields. However, these studies, especially in cattle, are still
limited in their use in the African continent, partly due
to lack of technology, lack of trained personnel, limited
resources, poor infrastructure, difficulties with pheno-
typic data, lack of record keeping and crossbreeding of
animals. The fast decrease in genotyping and sequencing
costs opens an avenue for routine evaluation of breeds in
Africa using genome-wide analysis. Several recent stud-
ies have been conducted in Africa using genomic tools
for genome-wide characterization, parentage assignment
[27], and breed composition [28]. These surveys have
been generally conducted in West Africa [29] and East
Africa [30]. One such study identified several candidate
genes associated with body traits such as PIK3R6 and
PIK3R1 in four cattle breeds of Benin [31].

In Cameroon, the benefits of genomic technology
are not yet perceptible, and research has been limited
to characterization using microsatellites [32]. The only
genome-wide analysis of local cattle of Cameroon was
conducted on a single sample per breed [33]. To the
extent of our knowledge, no genome-wide association
study has yet been conducted in cattle from Cameroon.
Among the local breeds of Cameroon, Gudali Zebu is the
most popular local breed, especially among small farm-
ers in the Adamawa plateau [34]. Also known as Peulh
or Fulbe zebu, Gudali - because of its well-known meat
and milk production potential [35] - has always been at
the centre of cattle improvement initiatives in Camer-
oon. Similar in conformation, size and origin to the East
African shorthorned zebu, it is a well-tempered animal
endowed with good adaptation to poor management
and harsh environments. It produces quite well under
low input systems [36] and thrives under Cameroon’s
disease-loaded agroecological conditions. Improvement
schemes have aimed to combine this local adaptivity
with the higher production of European taurine cattle.
Gudali cattle were used in the development of the wakwa
hybrid through crossbreeding with American Brahmans
[37] and more recently in the creation of the Simgud -a
cross between the Italian Simmental and Gudali- in the
ranches on the National Livestock Company (SODEPA).

To investigate the genomic background of productiv-
ity traits in the Gudali and the crossbred Simgud, we
present here the results of a GWAS study of 856 animals
(717 Gudali, 139 Simgud), along with analysis of popu-
lation structure and linkage disequilibrium. We show
significant marker-trait associations with four body mea-
surements highly correlated with animal productivity,
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Table 1 Descriptive statistics for the phenotypic traits

considered

Trait Mean SD Min Max CV%
BL 104.61 13.20 80.00 153.00 13
HAW 134.00 9.41 93.00 170.00 7

SH 130.98 10.13 86.00 164.00 8

EL 21.82 2.60 15.00 30.00 12

Note: BL Body length, HAW Height at wither, SH sacrum height, EL ear length

Table 2 Genetic and phenotypic correlations and heritability
estimates for the traits considered

Trait BL HAW SH EL

BL 0.27 £0.10 049+0.12 043+0.13 0.19+£0.14
HAW 0.90 = 0.06 0.23+0.12 0.81 +0.06 0.72 £0.09
SH 0.74 +0.00 0.88 +0.00 0.44 +0.11 065+0.10
EL 0.58 = 0.00 0.71 £ 0.001 0.72 +£0.00 0.24+0.10

Phenotypic correlation (below diagonal), genetic correlation (above diagonal)
and heritability (in bold) between traits

representing a resource for genomic improvement efforts
in Cameroon cattle breeding.

Results

Phenotypic description

The results show breed differences in morphological
traits between Gudali and Simgud, and also substantial
variation within the two breeds. The descriptive statistics
for body measurements in Gudali and Simgud are pre-
sented in Table 1. The mean values of all the traits were
104.61 c¢m, 134.00 cm, 130.98 cm and 21.82 cm for body
length, height at wither, sacrum height and ear length
respectively. Likewise, the coefficient of variation ranged
between 13, 7, 8 and 12 respectively for body length,
height at wither, sacrum height and ear length. The dis-
tribution of the four traits and the multifactor ANOVA
analysis (Additional file 7), present the various factors
influencing the traits considered. The height at wither
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was significantly influenced by ranch, camp, herd (p <
0.001) and sex (p < 0.1). The factors ranch, camp and herd
significantly affected (p < 0.001) sacrum height, as did the
sex and age factors at (p < 0.01) and (p < 0.1) respectively.
Ear length was significantly (p < 0.001) affected by ranch
and herd.

Phenotypic, genetic correlation and heritability estimates
The four measured body traits displayed strong phe-
notypic and genetic correlations with one another, and
exhibited moderate to high heritability. The genetic, phe-
notypic correlations as well as the heritability results are
shown in Table 2. The heritabilities were moderate, rang-
ing from 0.23 + 012 for the height at wither to 0.44 + 0.11
for the sacrum height. The results show that the four
body traits under study are strongly correlated. The phe-
notypic correlations were moderate to high, ranging from
0.58 + 0.00 between body length and ear length to 0.90 +
0.06 between body length and height at wither. The same
tendency was generally observed for the genetic correla-
tions, which ranged from 0.19 + 0.14 between ear length
and body length, to 0.81 + 0.06 between height at wither
and sacrum height.

Population genetic analysis

There is a clear distinction between Gudali and Simgud
populations. Figure 1 presents the multidimensional scal-
ing (MDS) plot of relationships between Gudali, Simgud
and the reference populations. The Simgud population
appears to cluster into two subsets of about 25% and 50%
between the reference Simmental and the local Gudali.
The maximum pairwise linkage disequilibrium estimates
show a general decline with the marker distance but per-
sisted up to distances over 1 mbp. Figure 2 illustrates
the evolution of LD throughout the Gudali and Simgud
genomes. The maximum LD is 0.465 in Gudali breed and

Breed
* Boran

East African Zebu

Gudali

N'dama

Nellore

Simgud

Simmental

Bororo Zebu

Fulani

-0.2
-0.1

0.7

Fig. 1 Multidimensional scaling (MDS) plot of relationships between Gudali, Simgud and reference populations from the WIDDE database
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Fig. 2 The linkage disequilibrium (LD) decay analysis at distances below 100 kbp in Gudali (a), Simgud (b) and at distances above 1 mbp in Gudali (c)

and Simgud (d)

decreased by half (0.23) at a distance of 50,708 bp, while
for the Simgud population the maximum LD is 0.47 and
decreased to half at 99,201 bp. Sliding across the genome
to appreciate the evolution of LD, a general decrease
with the marker distance was observed. Interestingly, we
observed long ranges of LD across the genome spanning
distances of over 1 mbp distance. These features hold
great potential interest in association analysis.

Genome-wide association analysis

The GWAS was performed using the MLM approach to
account for relationship between individuals as well as
population structure. Figure 3 presents Manhattan and
QQ plots of the association between SNPs and the four
traits considered. The genome-wide significant SNPs
found associated to body traits in Gudali and Simgud cat-
tle are shown in Table 3. Overall, a total of 52 SNPs were
found significantly associated with body traits. Among
them, 33 were related to sacrum height and located in or
near 51 genes, 8 were linked to body length and mapped
in or near 14 genes. For ear length, we identified 5 SNPs
and mapped them in genomic regions harbouring 6

genes, and another 6 SNPs identified were associated to
height at wither and mapped in or near 7 genes. Some
SNPs showed significant associations with more than
one trait, suggesting pleiotropic effects. Among these,
the SNP BovineHD1700013218 on BTA17:46,179,818
bp mapped within ADGRDI gene showed significant
association with body length, height at wither and ear
length. On BTA10:36,829,871 bp, the SNP ARS-BFGL-
NGS-531 was significantly associated with body length
(p < 107 and height at wither (p < 107%). The loca-
tion of this SNP falls whithin the gene NDUFAFI,
near five other genes including CHPI, OIP5, NUSAPI,
RTF1, ITPKA. For sacrum height-specific associations,
the most significant SNPs detected included seven on
BTAZ25, six on BTA3 and five on BTA24. On BTA3, the
SNPs BovineHD0300010326 and BovineHD0300010324
were located in close proximity (2.4 kbp) to each other
and exhibit the most significant association (p = 6.08E
“18) and (p = 2.37E7") with the trait respectively. This
genomic region harboured five genes including KCNA 10,
CYM, PROK1, LAMTORS, SLC16A4 and RBM1IS5. The
most significant locus observed on BTA24 was assigned
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Fig. 3 Manhattan and QQ plots of the Sacrum Height (a, b), Body length (¢, d), Height At Wither (e, f) and Ear Length (g, h). The horizontal coordinates
represent the chromosomes, and the vertical coordinates are -log,, (P) values for each marker

to CCDCI178 and CELF4. Similarly, the only strongly
associated (p = 3.69E7"7) locus on BTA25 was mapped
to SCNNIB, located approximately 90 kbp down-
stream of SCNNI1G. On the same chromosome, the
SNPs BovineHD2500008133 at position 28,988,722 bp
and ARS-BFGL-NGS-101637 at 28,648,581 bp are both
located within the CALNI gene and strongly associ-
ated (p = 3.01E7°) and (p = 9.91E7%) respectively with
sacrum height. For body length, the two most significant
SNPs (Hapmap52707-rs29020755 and BTB-00103137)
observed on BTA2 were located within the CNTNAPS

gene. Another significant locus (ARS-BFGL-NGS-15883)
was found on BTA29 and mapped to SLCI4A3, near
PTGDR2, TMEMI109 and TMEMI132A genes. A total
of 6 SNPs were significantly associated with height at
wither. among them, the SNP ARS-BFGL-NGS-531 and
BovineHD1700013218 were already mentioned for their
association with more than one trait under study. For the
ear length, the most significantly (p = 4.98E£7°) associ-
ated SNP BTA-69126-no-rs is located within a genomic
region harbouring four genes including NOSIAP and
UHMKI. On BTA27:16,529,725 bp, the most significant
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Trait SNP CHR BP P-value Within gene <100kb
Pleiotropic genes
BL BovineHD0100015405 1 54281520 4.46E-06
EL 6.13E-07
HAW 7.80E-07
SH 1.03E-22
BL BovineHD0600022959 6 81745649 3.57E-06
HAW 9.87E-06
BL BTA-81825-no-rs 8 73015373 221E-10
EL 4.05E-09
HAW 544E-12
SH 6.93E-12
BL ARS-BFGL-NGS-531 10 36829871 1.50E-06 NDUFAF1 CHP1, OIP5, NUSAP1, RTF1, ITPKA
HAW 8.07E-08
BL BovineHD1700013218 17 46179818 3.88E-06 ADGRD1
EL 8.12E-06 -
HAW 4.51E-08
Body length
Hapmap52707-rs29020755 2 76976290 2.32E-06 CNTNAPS
BTB-00103137 2 76839374 9.35E-06 CNTNAPS
ARS-BFGL-NGS-15883 29 37283656 2.88E-06 SLC15A3 PTGDR2, PRPF19, TMEM109,
TMEM132A, CD6
Ear length
BTA-69126-no-rs 3 7057469 4.98E-06 UHMKT1, SH2D1B, NOSTAP, SPATA46
chr27_15586715 27 16529725 5.19E-06 FAT1
Height at withers
BovineHD 1300006489 13 21894567 6.28E-06
Sacrum height
BovineHD0100042173 1 144595788 7.22E-09 KRTAP10-8, KRTAP12-2, UBE2G2,
SUMO3
BovineHD0200039720 2 135082967 8.32E-08 ARHGEF10L
BovineHD030010326 3 33009094 6.08E-18
BovineHD0300010324 3 33006680 237E-17 PROKT, LAMTORS5, KCNA10, CYM,
RBM15
BovineHD0300006766 3 21474502 2.26E-09 ITGA10 TXNIP, POLR3GL, ANKRD34A,
RBMB8A, GNRHR2, PEX11B, ANKRD35,
PIAS3, NUDT17, POLR3C, RNF115
ARS-BFGL-NGS-2973 3 101700489 6.63E-08 ERI3 bta-mir-2414
BovineHD0300020629 3 69700962 742E-08 LHX8
Hapmap51849-BTA-68314 3 69713184 8.99E-08
ARS-BFGL-NGS-97032 10 44727501 8.98E-08 GNG2
BovineHD1200011574 12 40470693 4.22E-10 PCDH9
BovineHD 12000008682 12 29404264 8.24E-09
BovineHD1200008688 29441999 8.87E-09
Hapmap24428-BTA-112183 20 53024269 3.54E-09
BTB-01128234 20 54554943 2.42E-08
Hapmap50255-BTA-119714 21 54304967 7.09E-09
BTB-01452384 21 50156924 8.79E-08
BovineHD2400006667 24 24259870 243E-17 CCDC178
ARS-BFGL-NGS-117961 24 19726696 3.50E-17 CELF4
BovineHD2400013697 24 48525522 2.04E-11 CTIF
ARS-BFGL-NGS-118412 48528658 2.59E-11 U6, SMAD7
ARS-BFGL-NGS-73573 24 61367470 1.45E-10 PHLPP1, BCL2
ARS-BFGL-NGS-14982 24 30132541 9.56E-09
ARS-BFGL-NGS-7030 25 20942828 3.69E-17 SCNN1G, SCNN1B
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Table 3 (continued)

Trait SNP CHR BP P-value Within gene <100kb
BovineHD2500010674 25 37709326 5.68E-10 BAIAP2L1 BRI3, TECPRT, BHLHATS5, LMTK2
BovineHD2500006500 25 22931035 1.54E-09 ZKSCAN2
ARS-BFGL-NGS-78220 25 28385587 1.93E-09 TMEM?248 SBDS
BovineHD2500008133 25 28988722 3.01E-09 CALN1
ARS-BFGL-NGS-101637 28648581 9.91E-08
ARS-BFGL-NGS-18654 25 41015047 3.73E-08 MAD1L1 SNX8, NUDT1, MRM2
ARS-BFGL-NGS-107550 27 31299640 2.42E-09 UNC5D
Hapmap43636-BTA-63692 28 18703012 3.19E-09

locus was assigned to the FATI gene. Following impu-
tation to the higher-density African reference dataset,
a total of 140 SNPs were found associated with sacrum
height (86 SNPs), body length (14 SNPs), height at wither
(25 SNPs) and ear length (15 SNPs). The identified SNPs
and candidate genes are listed (Supplementary Table A1)
and the corresponding Manhattan plots are presented in
Supplementary (Fig. S4).

Enrichment analysis

The enrichment analyses performed have improved our
understanding of the functions of identified candidate
genes. Two enriched regions (Supplementary Fig. S5)
were found on BTA3 and BTA25. The KEGG enrichment
analysis has revealed that the candidate genes identi-
fied in our study mainly participate in the aldosterone-
regulated sodium reabsorption and taste transduction
pathways (Supplementary Fig. S6), as well as ubiquitin
mediated proteolysis and protein sumoylation. Candi-
date genes SUMO3, PIAS3, SCNNIG, SCNNIB, PRPF19,
UBE2G2 were found to be involved in these pathways,
indicating their role in controlling body size through reg-
ulation of various metabolic and biological processes.

Methods

Sampling

Samples were collected from various herds across three
agroecological zones of Cameroon (Supplementary Fig.
S1). In the Faro ranch sampling was carried out across
four camps (Bangone, Male I, GMB, Male 8) with animals
selected randomly from 16 different herds. In the Ndo-
kayo ranch, samples were collected from three camps
(Songongo, Camp general, Minale) covering a total of
nine herds. At the Jakiri ranch, sampling was limited to
one camp with animals drawn randomly from six herds
(AIl1, AI2, AI3, Bull herd, AI5, Heifer). The animals were
categorized into three age groups: young (1-4 years),
adults (4-8 years) and old (over 8 years). Representative
images of the Gudali and Simgud are shown in Supple-
mentary Figs. S2 and S3 respectively. A total of 856 ani-
mals were sampled and blood samples collected from
the jugular vein into EDTA tubes using sterile 5 ml
syringes. In the field, samples were stored at —-4°C and

later transferred to —20°C for long-term storage. DNA
extraction was subsequently carried out at EGE Univer-
sity (Turkiye).

Linear body measurements

Morphometric traits were measured on Gudali and
Simgud while they stood on a flat surface, using a stan-
dard tailor’s measuring tape and a measuring stick. The
recorded measurements included body length (BL),
height at wither (HAW), sacrum height (SH) and ear
length (EL). These traits were selected based on their
potential and demonstrated association with key produc-
tion traits as well as their proven correlation with growth
performance and disease resistance [8, 9].

Genotyping and quality control

DNA was extracted using a chloroform-based proto-
col adapted from Guha et al., (2018) [38]. The quality
and quantity of the extracted DNA were assessed using
a NanoDrop™ 2000 spectrophotometer and confirmed
by 0.8% TBE agarose gel electrophoresis. A total of 856
DNA samples with optimal concentration and purity
were genotyped using the GeneSeek Genomic Profiler
(GGP) Bovine 100K assay (http://www.neogen.com/ge
neseek/). Quality control of the resulting dataset was pe
rformed using PLINK software v.1.07 [39] with filtering
thresholds set as follows: minor allele frequency (MAF)
< 0.05; maximum SNP missingness < 0.1 and maximum
individual missingness < 0.1. A call rate of 0.99 was
achieved. Of the 95,256 SNPs included in the GGP 100K
array, 77,242 SNPs passed the filter and were retained for
subsequent analysis.

Control of environmental and genetic structure effects in
the population

The body traits considered were first tested for normal-
ity followed by one-way analysis of variance (ANOVA) to
assess trait-wise significance. Subsequently, a multifac-
tor ANOVA was conducted in R (R Core Team, 2023),
incorporating the factors: breed, ranch, camp, herd, age,
and sex. For population structure assessment, the fil-
tered SNP dataset was merged with additional reference
populations from the WIDDE database [40], including 24
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Nellore, 20 Simmental, 20 Boran, 20 East African Short-
horn Zebu, 56 N'dama, 23 Bororo Zebu and 43 Fulani
individuals. An identity-by-state (IBS) genomic relation-
ship matrix was generated using the stratification option
in PLINK. This matrix was used to perform a multidi-
mensional scaling (MDS) analysis in PLINK, and the first
20 MDS components (Additional file 8) were fitted in the
model as covariates in the GWAS to correct for popula-
tion stratification.

Estimation of phenotypic, genetic correlations and
heritability

A descriptive analysis of the four traits considered was
performed using R software. The key statistics calculated
included the minimum, maximum, mean, standard devi-
ation, and coefficient of variation. In addition, phenotypic
and genetic correlations as well as SNP-based heritability
estimates between traits were calculated using the GCTA
software [41]. For heritability estimation, a genomic relat-
edness matrix (GRM) was generated using SNPs located
on the autosomes. The Restricted Maximum Likelihood
(REML) analysis was then performed in GCTA using
this GRM along with the phenotypic data. To control
for fixed effects, the model included ranch, breed, sex,
and age group, as well as the top five principal compo-
nents from the multidimensional scaling (MDS) analysis.
These covariates were incorporated using the —covar and
—qcovar functions of the GCTA software. The statistical
model can be represented as follows:

y=aB+ BW +¢ (1)

Where: y is the morphometric trait, B the vector of the
fix factors (ranch, sex, age group, breed), W the vector
of the additive genetic effect including the GRM, with a
variance-covariance structure of

w~ N (0,Go?) 2)

where G represents the genomic relationship matrix
between individuals, 02, the polygenic variance; and e the
vector of residual effects

e~ N(0,10?) 3)

I is an identity matrix of dimension (n x n) where n rep-
resents the sample size (856) and a and 3 the incidence
matrices for B and W respectively. The genetic correla-
tion (r,) between pairs of body traits (x, y) was estimated
in a bivariate genomic REML analyses and the pheno-
typic correlation (rp) between the two traits, derived from
the bivariate genomic REML analysis output using the
formula:
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rp = (OWay + 0€ry)/\/ (020 + 022) (02y + 02y) (4)
To estimate the standard error of the correlation, the

Fisher’s z transformation was performed on the bivariate
correlations (r,) following the formula:

Z =1/2In((1+rp)/(1 —1p)) (5)
A standard error of Z is computed as:
SEz=1VN -3 (6)

The Z standard error is reverted back to correlation scale
by:

SEry ~ SEz\/(1-13) /(N — 1) 7)

P

Estimation of linkage disequilibrium

Linkage disequilibrium between pairs of loci was mea-
sured for the Gudali and Simgud populations and the LD
decay under four distance windows (< 100 kbp, 100 kbp
to 500 kbp, 500 kbp to 1 mbp and >1 mbp) using TAS-
SEL 5.2.13 software [42]. It was performed following
Weir (Weir 1990) squared allele-frequency correlations
(r?) which consider allele frequencies at loci. Fischer’s
exact test [43] was used to calculate the LD estimate
probabilities at least as extreme as those observed under
a hypothesis of linkage equilibrium (P-values). LD decay
as a function of distance between loci was computed by a
non-linear regression model and the result was displayed
as a plot in R version 4.1.2 software (Core Team).

Genome-wide association analysis

Before performing the GWAS, we included the environ-
mental and population stratification factors (MDS) as
fixed effects by adding ranch, camp, herd, age, sex, and
breed along with the top 20 MDS components as covari-
ates in the model. The GWAS was performed to assess
for any association between the measured body traits
(BL, EL, HAW and SH) and molecular markers, using
TASSEL 5.2.13, and fit in the association analysis with the
Mixed Linear Model (MLM). The potential effect of the
SNP markers on body traits was estimated following the
model:

y=XB+Zu+e (8)

Where y is the vector of the observation (BL, SH, HAW,
EL). B represents the vector of fixed effect including
SNP markers, ranch, camp, herd, age, sex, and breed, the
kinship genetic matrix computed with the scaled-IBS
method of PLINK, and the 20 first MDS principal com-
ponents as covariates. u is the vector of random additive
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genetic effects from various QTL for individuals SNPs
and € represents the vector of the residual effect value.
The 1 and € are assumed to be following a normal dis-
tribution with mean of 0 and a variance equal o2 a.
X, Z are the incidence matrices of 8 and pu respectively.
The results were displayed in the form of Manhattan
and Quantile Quantile (Q-Q) plot in R using the qgman
package [44] and ggplot2 [45]. To enhance the statis-
tical power for the detection of associations, we have
performed haplotype inference through imputation to
higher-density SNP data [46, 47]. Genome imputation
improves the resolution power for detecting association
signals and uncovering novel variants [48]. We refitted
the GWAS model with the same parameters but applied
it to the genome imputed with Beagle v5.2 [49]. For the
imputation, we used the largest available dataset of Afri-
can indigenous cattle breeds as reference. This dataset
includes 1082 animals from more than 30 local breeds,
genotyped with the Illumina® BovineHD DNA Analysis
Kit (Illumina, San Diego, CA), comprising approximately
777,962 SNPs, reported in [50]. Using a multibreed ref-
erence population has been shown to improve imputa-
tion accuracy [51]. Imputation resulted in 232,441 SNPs
when considering only markers with Dosage R square
(DR?) higher than 0.4. DR? statistic is a Beagle internal
estimator of imputation accuracy and a reliable proxy for
selecting highly accurate imputed sites for downstream
analyses [52]. Previous studies have suggested that DR?
values between 0.3 and 0.8 are acceptable thresholds
for filtering [53]. After filtering, we achieved an average
imputation accuracy of 0.64. For multiple testing correc-
tion, we applied the Bonferroni correction test with sig-
nificance thresholds set as o = 0.05 and o = 0.01, and
we defined the genome-wide significance threshold at
(p < 1078).

Candidate gene identification and enrichment analysis

Markers showing significant associations with traits were
used to query the Bovine ARS-UCD1.3 genome build via
the NCBI Genome Data Viewer (https://www.ncbi.nlm.n
ih.gov/gdv/browser/genome/ accessed in May 2024), to
locate potential candidate genes within a window of 100
kbp upstream and downstream of each SNP. The window
was determined based on the extent of the average LD
half-distance observed throughout the genome, to allow
accurate identification of candidate genes. The location
of genes and overlapping QTL from the Ensembl Bos
taurus UMDL1.3 assembly was determined using Biomart
tool 2.62.0 [54]. Further we mapped the significant SNPs
to the Animal QTL Database (https://www.animalgenom
e.org/cgi-bin/QTLdb/BT/index, accessed on 5 February
2025) to find if a significant region is a novel or existing
QTL. Moreover, we performed enrichment and pathway
analysis using the graphical web application ShinyGO
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0.77 [55], accessing the KEGG database for enrichment
analysis.

Discussion

Genetic correlation and heritability

The SNP-based estimated heritabilities of the four body
measurements found in our study are considered moder-
ate, as reported in previous studies [2, 14, 56, 57]. How-
ever, our heritability estimates are lower compared to
those estimated for body traits in Benin local breeds [31]
and in Wagyu cattle of China [3]. Genetic correlations
found in our study show similar trends to the phenotypic
correlations obtained. All the body traits considered were
positively correlated and this interplay implies the poten-
tial to improve body traits together as a whole. Similar
positive correlations were observed between produc-
tion and body depth (0.138-0.228) in German Holstein
[14]. Also, our genetic correlations are comparable to the
results obtained in other cattle breeds, such as the local
breeds of Benin [31], the Italian Jersey [58] and the Chi-
nese Holstein [57]. The phenotypic correlation between
HAW and SH in our study is similar to the 0.89 obtained
in local breed of Benin by [31], though that study
observed smaller correlations between other traits. Our
significantly higher sample size would have improved the
accuracy of the estimates.

Population structure and linkage disequilibrium

Population stratification is one of the most common
causes of false positive results in GWAS [59]. With-
out controlling for population structure, we only found
(result not shown) a total of 30 SNPs significantly associ-
ated (p < E™%) with sacrum height; 27 SNPs significantly
(p < E™®) associated with body length; 1 SNP significantly
associated (p < E™®) with ear length and 1 with height at
wither. Controlling for the structure of the population in
our analysis has therefore improved the accuracy of the
GWAS result. The MLM tends to be the model preferred
for GWAS analysis since it controls for the stratification
by integrating population structure, kinship, and fam-
ily structure in the analysis [60]. Moreover, ancient and
recent stratification of the population, as well as natu-
ral or artificial selection [61, 62], creates non-random
associations (i.e. linkage disequilibrium) between alleles
at different loci. Measuring these associations in our
study, we found the maximum LD = 0.45, 0.15, 0.092,
0.056, and 0.037 at marker distances of 100, 250, 500,
1000, and >1000 kbp respectively. The result is similar
to the average LD observed in Charolais, Limousin and
Blonde d’Aquitaine beef breeds of France [63], which var-
ied between 0.5 at distances smaller than 15 kbp, to less
than 0.1 at distances greater than 120 kbp. Our LD esti-
mates are however higher than those reported in most
bovine studies which typically show average LD value
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close to zero for distances greater than 500 kbp. In the
case of the Hawai'i cattle population, [64] found r? of 0.15
reached at a distance of 100 kbp. Similarly, our results are
higher than the r? values of ~ 0.35, 0.25, 0.22, 0.14, and
0.06 observed at marker distances 10, 20, 40, 100, and
1000 kbp, on Dutch and Australian Holstein—Friesian
bulls, Australian Angus, New Zealand Friesian and Jersey
cows respectively [7]. They are also higher than LD val-
ues ranging from 0.05 to 0.02 observed in the East Afri-
can Zebu [30]. A decrease in LD with increasing marker
distance is commonly observed in cattle [63, 65] with the
decline occurring more rapidly in composite and cross-
breed animals [66—68] as a consequence of breed forma-
tion and population history, such as bottleneck events
[69].

One of the most interesting findings in our study is the
existence of long range linkage disequilibrium (LRLD) in
the genome of the Gudali and Simgud cattle, extending
over distance greater than 1 mbp. The admixed genetic
background of the Gudali and Simgud may explain the
LRLD pattern observed. In fact, LRLD can result from
admixture [70, 71], genetic drifts or epistatic selection
[72] or chromosomal variations [73]. As cattle have been
heavily selected, these long-range LD blocks are likely
genuine. Although not yet extensively studied, these large
stretches of LD reveal population specific patterns in
human studies [74] and are only beginning to be investi-
gated in cattle. Currently, the potential functional inter-
actions between regions exhibiting LRLD remain elusive
[63, 71]. It is usual within a breed to find SNPs associated
with a QTL located hundreds of kilobases or megabases
distant because of the persistence of substantial link-
age disequilibrium [75]. While intense selection might
explain the LRLD observed in the Simgud genome, the
Gudali population might have undergone a population
bottleneck with the intensive use of artificial insemina-
tion since it has been implicated in breeding initiatives
with various Europrean taurine [37] and recently with the
Simmental breed. Similar effects of bottlenecks in pro-
ducing LRLD were observed in Blonde d’Aquitaine under
intensive artificial selection [76].

Genome-wide association analysis

By performing the first GWAS for body traits using auto-
somal SNPs on Cameroon indigenous Gudali cattle breed
and its crossbred with Italian Simmental (Simgud), we
identified 52 significantly associated variants, confirming
the high complexity level of cattle genetic architecture of
body traits [77, 78].

Body measures can be considered as indicators of ani-
mal condition in terms of health, immune response, wel-
fare, and longevity [8, 9]. Identified genes or genomic
regions should be targeted for any future cattle genomic
selection in Cameroon.
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The observed 52 SNPs were mapped to 70 genes
including CALNI, CNTNAPS, PTGDR2, TMEMI09,
TMEMI132A, ADGRDI, ITGA10, NDUFAF1, NUSAPI,
KCNA10, CYM, PROKI, LAMTORS5, SLCISA3,
CCDC178, CELF4, SCNNIB, SCNNIG, NOSIAB
UHMK]1 and UNC5D The consistent sample size used in
our study improves the accuracy of our identified mark-
ers, which is crucial in association analysis [79].

Although further functional validation experiments
in a different population could allow us to consoli-
date our studies, the biological function of some of our
associated genes (e.g. CNTNAPS, PTGDR2, UHMKI,
ARHGEFIOL) - combined with HD genotype imputa-
tion which is known to improve the power of associa-
tion analysis [80-82] and reveals additional candidate
genes - make our study a strong initial baseline for fur-
ther association analysis in Cameroon. Some of the QTL
identified showed strong association with more than one
of the body traits studied. For instance, on BTA10, the
SNP ARS-BFGL-NGS-531 located at 36,829,871bp was
associated with body length and height at wither. This
locus was mapped to a genomic region harboring several
genes including NDUFAFI, CHP1, OIP5, NUSAPI, RTFI,
ITPKA. These genes were proposed as a candidate gene
influencing inter-calving period in the Vrindavani cattle
breed of India [83]. Another SNP associated with sev-
eral traits is BovineHD1700013218 on BTA17:46,179,818
bp, which maps to ADGRDI. This marker showed asso-
ciation to all traits considered except sacrum height. The
ADGRDI gene has been suggested as a potential can-
didate for carcass traits, mainly carcass weight, in Sim-
mental beef cattle of China [84]. It encodes a protein that
affects fatty acid concentration in chicken meat [85] and
milk-related traits in Egyptian Buffalo, mainly fat and
protein yields [86]. In humans, variations in the ADGRDI
sequence were associated with metabolism, human
height and heart frequency [87]. It is also associated with
both human and mouse body weight [88]. The involve-
ment of ADGRDI in lipid metabolism in different species
suggests that it is a strong candidate gene for determin-
ing body size and growth. Some of the SNPs associated
with more than one trait, such as BovineHD0100015405,
BTA-81825-no-rs and BovineHD0600022959, were not
mapped to any known QTL. These markers deserve fur-
ther investigation, perhaps expanding the SNP windows
beyond 100 kbp. The identification of these pleiotropic
genes in our study confirms the high genetic correlation
that was observed among all the traits considered and
implies that body measures could be selected together for
faster genetic improvement in Cameroon.

Candidate genes for sacrum height
The genome-wide analysis identified 33 SNPs associated
with sacrum height and mapped within or close to 52
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genes throughout the cattle genome. The vast majority of
the identified genes were reported in previous studies as
related to growth, feed intake, immune response, repro-
duction and fertility and carcass traits in various cattle
breeds  worldwide. On  BTA2, the SNP
BovineHD0200039720 was mapped to Rho Guanine
Nucleotide Exchange Factor 10 Like (ARHGEFI10L) gene.
The exact role of this gene in growth has not yet been
elucidated. Interestingly, another member of the same
family, ARHGEF2, has been linked to childhood obesity
in humans [89] as well as to intramuscular fatty acid
composition in pigs [90]. Other members of the
ARGHGEF family have been associated with cattle
omental fat (ARHGEFS [91]), resistance to disease and
bacterial infection [92] and gastrointestinal parasite resis-
tance in Spanish sheep [93] for ARHGEFI7. Based on
these findings, we speculated that ARHGEFIOL might
contribute to higher body size in cattle and should be
considered as a candidate gene for body size and growth
in cattle. The strongest associations were found on BTA3
with SNPs BovineHD0300010326 and
BovineHD0300010324 (found only 2.4 kbp apart). This
genomic region harbors five candidate genes, namely
KCNA10, CYM, PROKI, LAMTORS and RBM1I5. None
of these identified genes were previously reported as
directly associated with sacrum height. However, the
Late Endosomal/Lysosomal Adaptor, MAPK and MTOR
Activator 5 (LAMTORS) gene was found to be associated
with beef cattle growth traits and reproductive traits [94].
Moreover, LAMTORS was identified as a candidate gene
for weight gain in both Hereford and Bradford beef cattle
[95]. It is also implicated in the immune response
through the regulation of Mammalian Toll-like receptors
[96], which play a role in the defense mechanism against
pathogens [97]. By participating in pathogen response,
LAMTORS contributes to maintaining cattle in good
health and therefore ensuring optimal growth and body
size. KCNA10 was proposed as a candidate gene associ-
ated with beef production and carcass quality traits in
Chikso and Hanwoo cattle [98]. CYM was previously
reported as an immunity-related gene and also associated
with milk fat percentage in South African cattle [12] and
fatty acid composition in Chinese Wagyu cattle [99].
Likewise, RBM15 was revealed as a potential candidate
gene for clinical mastitis resistance [100]. These genes,
located in a known body size-related QTL should be con-
sidered potential candidates for sacrum height in Gudali
and Simgud. The SNPs Hapmap51849-BTA-68314 and
BovineHD0300020629 found on BTA3 at positions
69,713,184 bp and 69,700,962 bp respectively were
mapped near the LIM Homeobox8 (LHX8) gene known
for its association with oocyte development [101]. It
encodes a specific transcription factor, essential for post-
natal folliculogenesis. In an association study in Nellore
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cattle [102], LHX8 was suggested to be associated with
calving interval. The participation of LHX8 in early devel-
opment makes it a potential candidate for body size in
cattle. For the SNP BovineHD0300006766 on BTA3 asso-
ciated with sacrum height and the corresponding gene
Integrin alpha 10 (ITGA10), there is no prior reported
association with cattle body traits. However, ITGA10 is
generally suggested to be crucial in cell adhesion and
migration, as well as the regulation of the inflammatory
response [103]. It is implicated in several vital processes
in cattle: in particular, genome-wide mRNA and miRNA
expression analysis in Nellore cattle [104] linked ITGA10
with mineral concentrations in muscle. Mineral balance
and composition in cells affect almost all physiological
processes and in bovines can affect growth, health, repro-
duction as well as meat quality. This implies that ITGAI0
might participate in the body size of cattle through the
effect of mineral amount and composition. The genomic
region around ITGAIO harbors eleven genes including
TXNIP which was previously reported as a candidate
gene for glucose metabolism in mid-lactation Holstein
[105]. On the same chromosome, at position 101,700,489
bp, the SNP ARS-BFGL-NGS-2973 falls within the ERI3
gene - previously linked to metabolic body weight in
mid-lactation Holstein [105]. The SNP
BovineHD1200011574 on BTA12: 40,470,693 bp and
associated gene PCDHY9 was previously associated with
fat deposition and backfat thickness [105, 107] and there-
fore represents a candidate gene for body size because of
its role in lipid metabolism. On BTA24, six important
candidate genes were found and related to body size
(CCDC178), marbling (SMAD?), immunity (PHLPPI),
stress tolerance (BCL2), and two novel candidate genes
CELF4 and CTIF. The CCDC178 gene was associated
with body size and especially birth weight in alpine cattle
breed [108]. It was also identified in a GWAS study on
hoof disorders in Austrian Fleckvieh and Braunvieh
[109]. Another member of the same family (CCDC117)
was found associated with feed intake and heat stress
regulation in cattle [110, 111]. SMAD? is a transcription
factor with potential relation to meat quality and espe-
cially marbling in cattle [112]. The PHLPPI (PH domain
and leucine rich repeat protein phosphatase 1) gene was
found as a candidate gene associated to gastrointestinal
nematode resistance in German black pied cattle [113].
These parasites have major effects on pasture-grazed cat-
tle, especially leading to decreases in milk production
and female fertility [114—116]. The BCL2 protein family
regulates embryonic development and growth [117, 118]
by creating a balance between its pro- and anti-apoptosis
genes [119]. This gene is of paramount importance for
embryonic development and animal growth in tropical
environments filled with challenges such as heat stress,
parasites, poor pasture and management. It was
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identified as a possible candidate for adaptive selection in
North African cattle [120]. For its key role in embryo
development and growth, BCL2 could be considered a
novel candidate gene for body size in cattle. We also iden-
tified two genes that have not previously been associated
with cattle production traits: CELF4 and CTIF. The
CELF4 gene encodes an RNA-binding protein, expressed
mainly in the central nervous system, which is implicated
in the regulation of several genes both co-transcription-
ally and post-transcriptionally [121]. It was found in a
genomic region displaying signatures of selection in
North African cattle [120]. The CTIF gene is associated
with longissimus muscle area, known to be a good indi-
cator of growth and production [122, 123] in Nellore cat-
tle [124]. Due to its association with growth-related
indicators, CTIF should be considered a novel candidate
gene for body size in cattle. On BTA25, the highly signifi-
cant SNP ARS-BFGL-NGS-7030 was mapped close to
sodium channel epithelial 1 subunit B and G (SCNN1B,
SCNNI1G). These are both part of the ENaC epithelial
sodium concentration regulatory path - involved in salt
taste and sodium ingestion [125]. Salt is also a major
component of cattle saliva that helps in rough forage
digestion. The salt content is directly linked to growth
since it influences forage, water intake, dry matter digest-
ibility and rumen fermentation [126], especially in beef
cattle reared under poor quality forage. Therefore we
concluded that SCNN1B and SCNNIG are strong candi-
date genes regulating body size in cattle. The SNP
BovineHD2500010674 at 37,709,326 bp was mapped to
BAIAP2LI and upstream of BRI3, TECPR1, BHLHAIS
and LMTK?2. The Brain-specific angiogenesis inhibitor 1
(BAIl)-associated protein 2-like 1 (BAIAP2LI) is
involved in plasma membrane protrusion and actin for-
mation during cell morphogenesis and migration [127]. It
was identified as a candidate gene for volatile fatty acid
production in a GWAS of ruminant methane emission
using Holstein cattle [128]. By acting on actin formation
it is clearly participating in growth and development of
the animals. Therefore we speculate that BAIAP2LI
might be active in cattle body size through maintaining
cell shape and polarity. The BHLHAILS5 gene plays an
important role in growth and development through its
critical role in embryogenesis especially in gastrulae and
plantule stages in mouse [129]. By participating in
embryo development, theBHLHA 15 contributes to body
size and should therefore be consider candidate gene for
growth and body size in cattle. Another significant asso-
ciation on BTA25 was the SNP BovineHD2500008133
and ARS-BFGL-NGS-101637, both within the CALNI
gene. This gene was reported as potentially associated to
longevity in Chinese Holsteins [130] and feed efficiency
in mid-lactation Holsteins [131]. It was also associated
with lipid absorption/metabolism in Duroc, Landrace
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and Yorkshire pigs [96]. By playing role in feed efficiency
and lipid metabolism, CALNI directly participates in
growth and body size and should therefore be considered
candidate gene for improvement of growth in cattle.
Finally, the significantly associated SNP ARS-BFGL-
NGS- 78220 is located within the TMEM248 gene, previ-
ously proposed as a candidate for feed intake in
mid-lactation Holstein [131]. On BTA27, SNP ARS-
BFGL-NGS-107550 was mapped to the UNC5D gene
which is within a known QTL for body depth, calving
ease, stature, feet and leg conformation. It is also linked
to residual feed intake in mid-lactation Hosltein [105].

Candidate genes for body length

Beside the pleiotropic genes discussed previously, the
genome-wide association identified 13 SNPs signifi-
cantly related to body length. Two SNPs were found on
BTA2 at positions 76,976,290 bp and 76,839,374 bp, both
within the CNTNAPS gene, which has been previously
associated with differences in hip cross height in Brah-
man versus Yunling cattle [132]. This gene also showed
significant association with bicostal diameter in Sudanese
goats [133]. A partial deletion in the NRXN1, a homol-
ogous gene of CNTNAPS, resulted in short stature in
humans [134], reinforcing the hypothesis of a possible
link between the CNTNAPS locus and animal stature. A
variant on BTA29 (ARS-BFGL-NGS-15883) at position
37,283,656 bp, was located within SLC15A3 and near the
PTGDR2, PRPFI9, TMEMI109, TMEMI132A and CD6
genes. The SLCI5A3 gene belongs to the solute carrier
gene family (SLC) protein which is known as the larg-
est set of cell transporters for nutrients such as sugars,
SCFAs and amino acids [135, 136]. Members of the SLC
family generally participate in growth and adaptation.
For instance, a polymorphism at the 5" UTR of SLC44A5
was found to be associated with birth weight in Holsteins
and thus could be considered to control dystocia in cattle
[137]. SLC16A4 is within a known QTL related to body
length in cattle. It was recently associated to feed effi-
ciency in indigenous cattle breeds of Benin [31]. More
recently [105], SLC45A2 was associated to heat toler-
ance in a genome-wide association analysis of milk pro-
duction in Thai dairy cattle. Likewise, a polymorphism
in SLC11A1 was associated to bovine tuberculosis (bTB)
resistance [56] while SLC6A6 was suggested to be asso-
ciated with bTB resistance in Irish Holsteins [138]. This
gene family has also been associated with ribeye area in
Nellore cattle [106]. Because SLC16A4 has been already
associated with body length, feed efficiency and belongs
to the SLC family which transport nutrients to cells thus
providing the necessary energy for basic metabolism and
growth, we concluded that SLCI5A3 is a strong candi-
date gene for BL in cattle and should be considered for
cattle breeding in a tropical environments like Cameroon
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characterized by heat stress and parasite constraints.
The PTGDR?2 is a heat stress related gene implicated in
thermoregulation [139] and fever response [140]. its
expression is increased during heat shock and it regulates
vasodilation as a key response to reduce temperature
through a gradient from from the skin to the ambient air.
Temperature above 25°C implies limited activities due to
thermal stress and subsequent decline in rate of dry mat-
ter intake from grazing animals [141] which might lead
to reduced body weight and size. Although this gene has
not been associated with body traits, its potential effects
on dry matter intake during heat stress condition that is
frequent in tropical conditions, make PTGDR2 a candi-
date gene for body traits in Gudali and Simgud. The same
region also harbors two transmembrane protein genes:
TMEMI109 and TMEM132A. Transmembrane proteins
constitute a large family of genes participating in various
processes such as male fertility and growth [142] in Chi-
nese indigenous cattle breeds, intramuscular fat content
in Nellore breed [83, 143], childhood and adult obesity
in humans [144, 145] and in immune response [146]. For
their implication in growth, immunity and lipid metabo-
lism, we speculated that TMEM109 and TMEMI132A
are candidate genes for the body length in Gudali and
Simgud cattle breeds.

Candidate genes for ear length

The five genome-wide significant SNPs identified were
mapped to six genes. The SNP BTA-69126-no-rs on
BTA3 is located in a region harbouring the UHMKI,
SH2D1B, NOSIAP and SPATA46 genes. Among these
genes, UHMKI and NOSIAP were linked to saturated
fatty acid profile in intramuscular fat of the longissi-
mus thoracis muscle of Nellore cattle [147]. Moreover,
NOSIAP showed direct association with body size, espe-
cially chest width, in Xinjiang Brown cattle [148]. There-
fore we speculate that NOSIAP and UHMK]I are novel
candidate genes for ear length in Gudali and Simgud cat-
tle because of their participation in body conformation
and lipid metabolism in cattle. On BTA27, a SNP at posi-
tion 16,529,725 bp was mapped within FATI, a candidate
gene for reproductive traits in Holstein [149].

Candidate genes for height at wither

The six genome-wide significant SNPs found related to
height at wither were mapped to 7 candidate genes. The
BovineHD1700013218 and ARS-BFGL-NGS-531 were
located in a genomic region exhibiting pleiotropic effect
and have been discussed earlier.

Candidate genes from imputation analysis

In addition to the above mentioned body trait genes
identified, using the imputed genome provided more
potential associations, with genes such as COLECI2,
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GNAI3, ATXN7L2, COMMDI10, GRMS8, DABI, USPS,
CCDC83 and USP24. COLECI2 is within a QTL related
to feed conversion ratio and residual feed intake, param-
eters known to affect feed efficiency which is directly cor-
related with animal growth [150]. Therefore this gene/
QTL should be considered a candidate for selecting for
body size in cattle. GNAI3 is involved in various cellular
processes, including proliferation, apoptosis, cytokine-
sis, and differentiation [151, 152]. It was reported to be
related directly to body conformation traits in Korean
Holstein Population [153]. Moreover, GNAI3 has a
potential implication in heat tolerance mechanisms in
goat [154]. It represents a promising candidate gene for
body size in cattle in a tropical context like Cameroon.
ATXN7L2 is another candidate gene regulating skeletal
muscle development. Although it has not been directly
associated with body size in prior studies, its known
function makes it worth investigating as a strong can-
didate for body size. COMMNDIO0 plays a role in various
tissues, being involved in ubiquitin expression. It was
recently revealed to play a new and critical role in neu-
ral development [155]. Although no previous association
was reported between GRMS8 and the body traits studied
here, this gene was proposed as a candidate for chest cir-
cumference in Brahman and Yunling cattle breeds [132].
The imputation, by increasing the number and density
of SNP available for association analysis [156], improved
the resolution of marker-trait association [157]. More-
over, using a large multi-breed composite imputation
reference panel is known to further improve imputation
accuracy compared to within breed reference panel [51].
We obtained stronger associations, with higher P-values
than for the genotype for all traits. The enrichment analy-
sis shows that our candidate genes mostly participate in
ubiquitin-mediated proteolysis, sumoylation, sodium
intake and taste transduction pathways. It is reported
that high sodium intake for pregnant cows is associated
with increased birth weight of their calves [158]. Simi-
larly, taste plays a major role in food intake [159] and in
maintaining a healthy diet [160]. Meanwhile ubiquitina-
tion and sumoylation are both crucial for immunity, dis-
ease resistance and inflammatory response [161, 162], all
of which are crucial for animal adaptation and growth,
particularly in harsh tropical environments such as those
found in Cameroon. Our study has identified key can-
didate genes that could be targeted for genetic selection
in Gudali and Simgud cattle of Cameroon. As such, it
provides a valuable resource to inform decision-making
aimed at improving growth performance in these cattle
populations in Cameroon. Additionally, we have explored
the enriched pathways associated with these candidate
genes to gain deeper insight into the genetic basis of body
traits in Gudali and Simgud.
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Conclusion

This study represents the first genome-wide analysis of
the local zebu Gudali and its crossbred with the Italian
Simmental (Simgud) in semi-extensive system in Cam-
eroon. The study revealed moderate heritability, posi-
tive genetic and phenotypic correlation among the four
traits. Using a Mixed Linear Model approach, we have
produced a comprehensive candidate gene set associ-
ated with major body traits in the population. Although
these associations have not yet been validated in a
broader population, many of the identified genes and
genomic regions align with findings from previous stud-
ies, thereby strengthening confidence in the validity of
the associations. These associations will however be con-
firmed in future studies with the breeders at SODEPA
to improve cattle production in Cameroon. Further-
more, we identified several novel candidate genes asso-
ciated to reproduction, growth, disease resistance traits.
Given their known biological functions, these candidate
genes could be valuable targets for genetic improvement
efforts in Gudali and Simgud cattle. Our work thus rep-
resents a considerable resource for the foundation of a
genomic breeding programme in Gudali and the Simgud
crossbreed.
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