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ABSTRACT
Predation may indirectly influence prey's fitness and population dynamics through behavioural adjustments in response to 
perceived predation risk. These non- consumptive effects of predation can also arise from hunting by humans, but they remain 
less documented. Advances in biologging allow detailed assessments of the activity budgets of elusive wildlife, increasing the 
potential to uncover the non- consumptive effects of human activities on animals. We used tri- axial accelerometry to record the 
daily activity of 24 Scandinavian brown bears (20 females and 4 males) from a heavily hunted population in Sweden, for a total 
of 29 bear- years (2015–2022). We used a random forest algorithm trained with observations of captive brown bears to classify 
the accelerometry data into four behaviours, running, walking, feeding and resting, with an overall precision of 95%. We then 
used these classifications to evaluate changes in bear activity budgets before and during the hunting season. Bears exhibited a 
bimodal daily activity pattern, being most active at dusk and dawn and resting around midday and midnight. However, during 
the hunting season, males became more nocturnal compared to before the hunting season, suggesting a proactive behavioural 
adjustment to reduce encounters with hunters. Females showed the opposite pattern and had a higher probability of being active 
during the day, potentially to increase nutritional gains before denning. Additionally, daily number of running bouts did not 
vary between the pre- hunting and hunting seasons in both sexes, but females' proportion of running bouts occurring during 
legal hunting hours was higher during the hunting season than prior to it, which suggests a reactive behavioural adjustment to 
encounters with hunters. Detailed assessments of wild animal behaviours, allowed through recording of movement data at high 
frequencies, have the potential to improve our understanding of the impacts of human activity on wildlife.

1   |   Introduction

Predators influence the dynamics of prey populations and 
the structure of communities by consuming prey (Menge and 
Sutherland 1976; Schmitz et al. 2004; Schmitz 2008). In addition 

to the effects related to prey consumption (i.e., consumptive 
effects), predation may also trigger non- consumptive effects, 
whereby prey adjust morphological, physiological, behavioural 
or life- history traits in response to their perception of preda-
tion risk in the landscape (Laundré et  al.  2001, 2010; Gaynor 
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et al. 2019), which then results in fitness costs that affect prey 
population demography and abundance (Peacor et  al.  2020, 
2022; Sheriff et al. 2020). For example, individuals may use reac-
tive behavioural responses such as fleeing when predation risk is 
imminent or proactive behavioural responses such as increasing 
vigilance or avoiding high- risk areas to reduce the likelihood of 
encountering a predator (Valeix et al. 2009; Courbin et al. 2016; 
Gaynor et al. 2019). Reactive behavioural responses likely incur 
fitness costs through increased physiological stress, whilst pro-
active behavioural responses may induce nutritional costs by 
reducing foraging time or efficiency when low- risk areas are 
of lower forage quality (Creel  2018). Predation risk does not 
only vary spatially but can also vary through time, for exam-
ple, when predators show cyclic daily activity patterns (Palmer 
et al. 2022). Prey may then use areas with abundant resources 
but high- predation risk only at times of the day when predators 
are less active (Kohl et al. 2018; Smith et al. 2019).

Human hunters can be considered ‘super- predators’, as they have 
the capacity to rapidly change the dynamics of targeted popula-
tions, which may result in cascading ecosystem effects (Ripple 
et al. 2014, 2016; Darimont et al. 2015). In addition to the direct 
impacts resulting from the removal of individuals, hunting can 
also cause non- consumptive effects by affecting the behaviour of 
animals (Montgomery et al. 2022; Gerber et al. 2024). Individuals 
targeted by hunters may react to spatiotemporal variations in 
hunting risk similarly as they would to predation risk by natural 
predators. They may avoid high- risk open habitats and areas near 
roads that are more frequently used by hunters (Bonnot et al. 2013; 
Spitz et al. 2019). Because hunters are generally active during day-
light hours (Lebel et al. 2012; Gaynor et al. 2022), hunted animals 
may increase their night- time activity to avoid encounters with 
hunters (Ordiz et al. 2012; Lamb et al. 2020). They also prefer-
entially use habitats that provide cover during daylight hours 
of the hunting season (Di Bitetti et al. 2008; Bonnot et al. 2013; 
Paton et  al.  2017). Overall, mammals are generally becoming 
more nocturnal as human activity increases (Gaynor et al. 2018). 
However, the prevalence and the strength of non- consumptive 
effects resulting from behavioural responses to hunting risk re-
main less documented than non- consumptive effects caused by 
natural predators (Clinchy et al. 2016; Suraci et al. 2019; Gaynor 
et al. 2022; Montgomery et al. 2022). Identifying whether individ-
uals behaviourally respond to spatiotemporal variations in preda-
tion (or hunting) risk, both proactively and reactively, is the first 
step to evaluating whether non- consumptive effects may occur 
(Peacor et al. 2020, 2022; Wirsing et al. 2021). Animal biologging 
is a powerful tool that can be used to study the behaviours of 
elusive wildlife targeted by hunters (Nathan et al. 2022; English 
et  al.  2024). For example, high- resolution GPS data reveals the 
habitat selection behaviour of targeted animals, whilst accelerom-
eters are particularly useful to quantify activity budgets and iden-
tify behavioural changes (Nickel et al. 2021; Brown et al. 2023; 
Kirchner et al. 2023).

We studied Scandinavian brown bears (Ursus arctos) from a popu-
lation for which hunting is the most important cause of mortality 
(Bischof et al. 2018). In Sweden, all bears can be legally harvested 
except individuals in family groups, i.e., females accompanied by 
dependent offspring (Van de Walle et al. 2018). Brown bears in 
Sweden are hunted mainly with hounds that follow scent trails, 
and hunters attempt to intercept and shoot the tracked bear (Le 

Grand et al. 2019). Since the general success rate of bear hunts 
with hounds is most likely low, many bears are potentially chased 
by dogs without being killed (Le Grand et al. 2019). In addition 
to consumptive effects, hunting induces behavioural changes 
in bears that could result in non- consumptive effects (Frank 
et al. 2017). For example, solitary individuals reduce movement 
rates and foraging activity in the morning when hunting risk is 
highest (Ordiz et  al.  2012; Hertel, Zedrosser, et  al.  2016). A re-
cent study also found that females accompanied by dependent 
offspring increased their movement rates when near roads in the 
mornings of the hunting season, suggesting that protected indi-
viduals also adjust their behaviour in relation to perceived hunt-
ing risk (Brown et al. 2024). These studies used GPS relocations 
collected at 30–60 min intervals to quantify bear activity levels 
(based on movement speed and direction) but may have missed 
other adjustments in behaviour that would only be detectable if 
using higher resolution movement data (Nathan et al. 2022). For 
example, reactive responses to risk, such as fleeing from hounds, 
may only be detectable when using high spatiotemporal resolu-
tion data (Bryce et al. 2017).

The goal of this study was to evaluate the effects of hunting 
risk on the behaviour of brown bears, using high- resolution, 
continuous tri- axial accelerometry. Our first objective was to 
quantify brown bear activity budgets prior to and during the 
hunting season. We trained a supervised machine learning al-
gorithm to classify brown bear accelerometry data into different 
behaviours, based on behavioural observations of captive brown 
bears. Our second objective was to evaluate whether wild bears 
adjust their behaviour to temporal variations in hunting risk, 
both proactively and reactively. We hypothesized that bears pro-
actively respond to changes in hunting risk by modifying their 
daily activity patterns at the start of the hunting season. We 
predicted that bears are more nocturnal after the onset of the 
hunting season to reduce the likelihood of encountering hunt-
ers (prediction 1). We further expected that running bouts are 
more frequent during the hunting season compared to the pre- 
hunting season (prediction 2) because bears use running to es-
cape dogs (a reactive response) and that running bouts are most 
likely to occur during the legal compared to the non- legal hours 
of the hunting season (prediction 3). Lastly, because hounds 
do not discriminate between solitary bears and family groups, 
we predicted similar behavioural responses in all demographic 
groups (prediction 4).

2   |   Materials and Methods

2.1   |   Study System

The study area is located in south- central Sweden (~61° N, 15° E) 
and is mainly composed of managed boreal forests with Norway 
spruce (Picea abies), Scots pine (Pinus sylvestris) and birches 
(Betula spp.) as the dominant tree species, as well as bogs, lakes 
and a dense network of forestry roads (Leclerc et al. 2019). The 
bear hunting season runs from August 21 to October 15 or until 
regional quotas are filled, and legal hunting hours are from 1 h 
before sunrise to 2 h before sunset (Bischof et al. 2018; Leclerc 
et al. 2019). August 21 is also the date at which hunting dogs are 
allowed to be unleashed (for training and hunting). Most bears 
are shot during the morning hours within the first few days of 
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the hunting season (Hertel, Zedrosser, et al. 2016). From mid- 
July until den entry and therefore during the hunting season 
and the month preceding it, bears are in hyperphagia and built 
adipose tissue reserves to prepare for hibernation, feeding al-
most exclusively on berries (Vaccinium spp. and Empetrum spp.; 
Hertel, Steyaert, et al. 2016).

2.2   |   Captures and Handling

Brown bears are captured after den emergence in spring by dart-
ing from a helicopter with a remote drug delivery system (Dan- 
Inject, Børkop, Denmark). Individuals are weighed and sexed, 
and adults are equipped with a GPS transmitter (GPS Vertex 
Plus, Vectronic Aerospace, Berlin, Germany). For bears not cap-
tured as yearlings, a premolar is extracted for age determination 
(Matson et al. 1993). See Arnemo and Evans (2017) for further 
details on capture and handling. We defined bears of 4 years 
and older as adults and younger bears as subadults (Zedrosser 
et  al.  2013). To determine reproductive status and count cubs 
of the year, females are located during the non- denning season 
from the ground or the helicopter a minimum of three times: at 
den emergence, after the mating season and before den entry 
(Van de Walle et al. 2019). In this study, individuals were clas-
sified in one of the four following demographic groups: female 
accompanied by dependent offspring, subadult solitary female, 
adult solitary female and adult male (no subadult males were 
part of this study). All capture procedures were conducted in 
accordance with the Swedish Environmental Protection Agency 
(NV- 01758- 14, NV- 00741- 18) and Swedish Ethical Committee 
on Animal Research, Uppsala (C18/15).

2.3   |   Movement Monitoring

Between 2015 and 2022, we deployed Vertex Plus collars that 
contained a tri- axial accelerometer. Accelerometer loggers were 
configured in two different ways. For 1/3 of the deployments 
(2015–2017), an external accelerometer and an independent bat-
tery were attached next to the GPS. For the remaining 2/3 of the 
deployments (2018–2022), the accelerometer was integrated into 
the GPS housing of the collar. In both cases, the accelerometer 
was located on the dorsal side of the bear, with most of the weight 
(i.e., the battery pack) located on the ventral side to prevent the 
collar from rotating. In all cases, we collected accelerometry 
at a frequency of 8 Hz on the X (sway, side- to- side movement), 
Y (surge, forward- backward movement) and Z (heave, up- and- 
down movement) axes. After collar retrieval, accelerometer data 
were exported from raw data files to csv files using Motion Data 
Monitor software from Vectronic Aerospace (v1- 2- 1 for external 
accelerometers, v1- 3- 1 for internal units).

2.4   |   Behavioural Classification 
of Accelerometry Data

2.4.1   |   Training Dataset Preparation

We made behavioural observations of two captive female brown 
bears aged 3 and 15 years old, between June 1 and June 5, 2015, 
at Orsa Predator Park located in our study area (Orsa, Sweden, 

61 °N, 15 °E, closed since 2022). The individuals were housed 
in naturalistic 2 ha enclosures composed of wooded and open 
areas, hills, ponds and a small stream. Bears were fed but 
also foraged on their own. Captive bears were equipped with 
a Vertex Plus collar and external accelerometer recording tri-
axial acceleration at 8 Hz. Both bears were filmed from outside 
the enclosure using a video camera (Sony DCR- SR 35) each day 
at variable times. The older female shared an enclosure with a 
male, and the younger female shared a separate enclosure with 
a male and three yearlings. We accumulated a total of ~18 h of 
bear videos.

We used the software BORIS v8.21.8 (Friard and Gamba 2016) 
to annotate the videos and classified bear behaviours into rest-
ing, feeding, walking and running (Table 1). We noted the start 
and end times of each behaviour for video sequences where the 
bear's behaviour could be determined. We excluded transitions 
between two behaviours and rare behaviours (playing, fight-
ing, shaking, scratching, swimming, tree rubbing and drink-
ing) which together represented ~1% of observations. We then 
associated video sequences with corresponding sequences of 
accelerometry data using R software v4.3.2 (R Development 
Team 2023). As a delay between video and accelerometer times 
was suspected, we visually explored sequences of accelerome-
try that included clear transitions between different behaviours 
(e.g., standing to running) to identify exact time lags and adjust 
video times accordingly (time lags ranged from 60 to 179 s). We 
then prepared the training dataset by partitioning data into 3 s 
sequences that contained a single, uninterrupted behaviour. We 
used sequences of 3 s duration as they are short enough to en-
sure enough observations in each behaviour category after par-
titioning, whilst containing a few cycles of any repetitive pattern 
(Shepard, Wilson, Halsey, et al. 2008).

2.4.2   |   Behavioural Classification Algorithm

To predict brown bear behaviours, we fitted a random forest 
supervised machine learning algorithm using the R pack-
age randomForest v4.7- 1.1 (Breiman  2001). A random forest 
model grows multiple classification trees; each uses a random 
subset of the data, and then the results of all trees are com-
bined (Breiman 2001; Valletta et al. 2017). Decisions on how 
to split data at each node are based on a random subset of pre-
dictor variables. For each tree, the part of the dataset (about 

TABLE 1    |    Description of four Scandinavian brown bear behaviours.

Behaviours Description

Resting No movements apart from head. Includes 
standing, sitting and lying down.

Feeding Searching or collecting food with 
mouth or claws or consuming 
food whilst standing or sitting.

Walking Moving forward at low or medium 
speed but not running/galloping.

Running Moving forward at high speed, galloping.
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one- third) that is not used to grow the tree is used to calculate 
a classification error, called the out- of- bag (OOB) error rate 
(Breiman 2001).

We used a set of summary statistics describing each 3 s accel-
erometry sequence as predictor variables in the random forest 
model. The statistics were calculated over eight initial param-
eters: the static and dynamic body accelerations (DBA) of each 
axis, the overall dynamic body acceleration (ODBA) and the 
magnitude (Table 2). We used a 3 s running mean of the raw 
acceleration to calculate static acceleration (Shepard, Wilson, 
Halsey, et al. 2008; Shepard, Wilson, Quintana, et al. 2008). 
DBA was calculated by subtracting the static acceleration 
from the raw acceleration, and ODBA was calculated as the 
absolute sum of DBA over the three axes (Wilson et al. 2006). 
We calculated the magnitude as the square root of the sum of 
squares of the three axes (Nathan et al. 2012). We used a total 
of 36 summary statistics as predictor variables (Table 2), in-
cluding the mean, standard deviation, maximum, minimum, 
kurtosis and skewness of each axis and magnitude, correla-
tions amongst axes, mean DBA for each axis, ODBA total and 
mean (Nathan et  al.  2012; Dunford et  al.  2024). We further 
calculated the dominant power spectrum as the maximal 
power spectral density of a fast Fourier transform (function 
‘spectrum’ in R). The dominant power spectrum is used to 
identify periodicity, provided the sampling frequency is high 
enough (Nathan et al. 2012).

We fitted 1000 trees. We compared the OOB error rate of mod-
els with a different number of predictor variables used at each 
node and selected the number reaching the lowest OOB error 
rate (using the function ‘tuneRF’ of randomForest package). In 
addition to the model's OOB error rate, we built a confusion ma-
trix with the numbers of true positives (TP), false positives (FP), 
true negatives (TN) and false negatives (FN), to estimate preci-
sion and recall of the classification for each behaviour category. 
Precision is the proportion of correct classifications into a cate-
gory (TP/TP + FP). Higher precision indicates fewer FP. Recall 
is the proportion of instances of a behaviour classified into the 
correct category (TP/TP + FN), where higher recall indicates 
fewer FN Instead of accuracy (proportion of correct classifica-
tions in or out of a category), we further calculated Matthews’ 
correlation coefficient (MCC = (TP*TN) − (FP * FN)/sqrt((T
P + FP) * (TP + FN) * (TN + FP) * (TN + FN))), which provides 
a better measure of predictive ability for unbalanced datasets 
(Matthews 1975; Pagano et al. 2017) and was thus more appro-
priate, as we had fewer observations of running compared to 
the other categories (see the Results).

2.5   |   Statistical Analyses of Wild Bear Activity 
Patterns

We used wild bear accelerometry data from August 1 to August 
31, which included 20 days before the onset of bear hunting 

TABLE 2    |    Description of initial parameters and summary statistics calculated over a 3 s sequence of accelerometry data.

Variables Description

1. Initial parameters

Acceleration (x, y, z) Raw acceleration value (g) on the x (side- to- side), y 
(forward- backward) and z (up- and- down) axes

DBA (x, y, z) Dynamic body acceleration, i.e., raw acceleration minus static 
acceleration calculated as a 3 s running mean of raw acceleration

ODBA Overall dynamic body acceleration, i.e., the 
sum of absolute DBA over all axes

Magnitude Sqrt of sums of squares of the acceleration in x, y, z

2. Summary statistics

Mean (x, y, z, magnitude) Mean of the sample

Std (x, y, z, magnitude) Standard deviation of the sample

Max (x, y, z, magnitude) Maximum value of the sample

Min (x, y, z, magnitude) Minimum value of the sample

Cor (xy, xz, yz) Pearson's correlation coefficient between two axes

Mean DBA (x, y, z) Mean of DBA over the sample

ODBA total Sum of ODBA over the sample

Mean ODBA Mean of ODBA over the sample

Kurtosis (x, y, z, magnitude) Measure of weight of the tails relative to a normal distribution

Skewness (x, y, z, magnitude) Measure of symmetry of the distribution

Dominant power spectrum (x, y, z, magnitude) Maximum power spectral density

Note: The summary statistics were used as predictor variables in the random forest model.
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(August 1–August 20) and the first 11 days of the hunting sea-
son (August 21–August 31). The cut- off on August 31 ensured 
we avoided any interference with the moose hunting season, 
which starts on the first Monday of September. The acceler-
ometry data was then partitioned into 3 s sequences. From 
this dataset, we also computed the 36 summary statistics for 
each sequence in R. We then used the trained random forest 
algorithm to predict the behaviour of wild brown bears during 
each 3 s sequence.

Once a behaviour was assigned to each sequence, we exam-
ined how the proportion of sequences classified for each be-
haviour varied amongst bear- years. We observed that for 34% 
of bear- years, < 5% of observations were classified as walking 
(Appendix A: Figure A1). We concluded that the classification 
did not perform well at differentiating walking from feeding be-
haviour for wild individuals and that some walking events were 
misclassified as feeding based on two reasons: (1) daily propor-
tion of observations classified as walking correlated weakly 
with daily distance travelled, which was calculated as the 
daily sum of linear distances between successive GPS locations 
(Appendix A: Figure A2), and (2) the proportions of sequences 
classified as resting and running behaviours were mostly con-
stant across bear- years (Appendix  A: Figure  A1). These mis-
classifications are in fact not surprising considering that at this 
time of the year bears spend most of their active time feeding on 
berries (Welch et al. 1997; Hertel, Steyaert, et al. 2016; Hertel, 
Zedrosser, et al. 2016) by slowly walking and at the same time 
picking berries from bushes. We therefore grouped observations 
classified as walking or feeding into a ‘feedwalking’ category in 
the following analyses.

In a next step, we tested if the probability of being in the be-
havioural state feedwalking varied according to temporal 
variations in hunting risk. We modelled the probability of 
feedwalking at each 3 s sequence using a generalized additive 
mixed model (GAMM) with a binomial error distribution and 
logit link function, using the ‘bam’ function of the R package 
mgcv v1.9- 0 (Wood  2017). We included as parametric terms 
the demographic group (i.e., female accompanied by depen-
dent offspring, subadult solitary female, adult solitary female, 
adult male), the period (pre- hunting or during the hunting 
season) as well as their interaction. As smoothing terms, we 
included the numeric time of the day (units in seconds) with 
a cyclic cubic spline function of 20 basis dimensions (k = 20). 
The number of basis dimensions was set high enough to allow 
modelling variation in the probability of feedwalking associ-
ated with time of day, but low enough to keep computation 
time reasonable (Pedersen et  al.  2019). In addition to a sin-
gle common smoother for time of day, we added smoothers 
for each combination of demographic group and period, al-
lowing for different wiggliness amongst groups (model GI in 
Pedersen et  al.  2019). Lastly, we included bear identity (ID) 
and year as random intercepts. We evaluated whether bear 
probability of feedwalking significantly differed between 
the pre- hunting and the hunting season at each time of the 
day using the ‘plot_comparisons’ function of the R package 
marginaleffects v.0.24.0 (Arel- Bundock et  al.  2024). We in-
spected residual diagnostics using simulation- based tests in 
the R package DHARMa v0.4.6 (Hartig 2021). As including all 
available observations (at an interval of 3 s) led to deviations 

in the model's residuals, we used a subset of data including 10 
randomly chosen observations by hour for each bear- year- day. 
To ensure results were robust, we ran the GAMM on different 
subsets (Appendix B).

As resting and feedwalking observations represented most of the 
dataset (98% of observations, see the Results and Appendix A: 
Figure A1), bears that were not feedwalking were most likely to 
be resting. As such, we did not expect that modelling the proba-
bility of resting would provide any additional information to the 
feedwalking model described above, but as a formality, we also 
modelled the probability of resting with a GAMM and the same 
model specifications. The results for the resting behaviour are 
shown in Appendix C.

Running happened less frequently than other behaviours (see 
the Results and Appendix  A: Figure  A1). Therefore, instead 
of modelling the probability of running at each 3 s timestep, 
which would produce a majority of 0, we combined consecu-
tive running observations and computed (1) the number of run-
ning bouts occurring each day and (2) the daily proportion of 
running bouts that occurred during legal hunting hours (i.e., 
for each day: number of running bouts during daylight hours/
total number of running bouts). For the first model, we used 
a generalized linear mixed model with a negative binomial 
error distribution to model the daily number of running bouts 
as a function of demographic group, period, their interaction 
and bear ID and year as random effects using the ‘glmer.nb’ 
function of the R package lme4 v1.1- 35.1 (Bates et al. 2015). For 
the second model, we used a generalized linear mixed model 
with a binomial error distribution and logit link function to 
model the daily proportion of running bouts occurring during 
legal hunting hours as a function of demographic group, pe-
riod, their interaction and bear ID and year as random effects 
(‘glmer’ function of lme4). We used the emmeans package 
v1.8.9 (Lenth  2023) to obtain estimates of pairwise compari-
sons amongst the means of each level of variable in interaction 
and further used ‘plot_comparisons’ of the R package margin-
aleffects to allow easy visualization of differences between sea-
sons for each demographic group.

Lastly, we explored if temporal adjustments in behaviour might 
incur energetic costs. To do so, we used the daily distance trav-
elled calculated as the sum of linear distances between succes-
sive 1 h GPS locations for each bear- day as a proxy for energy 
expenditure. To test how it varied between periods across de-
mographic groups, we used a linear mixed model of the daily 
distance travelled as a function of demographic group, period, 
their interaction and bear ID and year as random effects (‘lmer’ 
function of lme4).

3   |   Results

3.1   |   Behavioural Classification of Captive Brown 
Bear Accelerometry Data

Our training dataset derived from captive bears was composed 
of 12,879 3 s sequences, representing slightly < 11 h of acceler-
ometry. Overall, we had 6758 resting sequences, 4125 feeding 
sequences, 1848 walking sequences and 148 running sequences. 
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6 of 22 Ecology and Evolution, 2025

Figure  1 illustrates an example of acceleration values on the 
three axes for each behavioural category. The random forest 
model performed well with an OOB error rate of 4.5%, with 9 
predictor variables used at each node. All behaviours had a pre-
cision, recall and MCC ≥ 90% (Table 3).

3.2   |   Wild Brown Bear Activity Patterns

We obtained 29 bear- years from 24 individual bears with accel-
erometry data in August. Five bear- years were females accompa-
nied by dependent offspring, 13 subadult solitary females, 7 adult 
solitary females and 4 adult males (three females were observed 
for 2 consecutive years and one female for 3 consecutive years, ei-
ther as a solitary individual or with offspring). After partitioning 
the accelerometry data into 3 s sequences, we obtained a total of 
23,233,646 sequences. The random forest algorithm classified 43% 
of these sequences as resting, 35% as feeding, 20% as walking and 
2% as running. Therefore, 55% of sequences were either classified 
as walking or feeding, thereby forming the feedwalking category.

The subset of data analyzed in the GAMM contained 202,681 3 s 
behavioural sequences (Table 4). Our model indicates some dif-
ferences in the probability of feedwalking between demographic 
groups and seasons (Table 4: parametric coefficients), but their 
size and significance depend on the time of day. Overall, we 
found significant evidence of non- linear relations between the 
probability of feedwalking and the time of the day in all de-
mographic groups and periods (Table 4: smooth terms time of 
day). Bears showed a bimodal daily activity pattern, being most 
likely to be feedwalking at dusk and dawn and more likely to 
rest around midday and midnight (Figure  2A). Males were, 
however, more active at night compared to the day (Figure 2A). 
They became even less likely to feedwalk during some hours of 
the day and more likely to do so during the night after the onset 
of the hunting season (Figure 2B). Females showed the opposite 
pattern as they had a higher probability of feedwalking during 
most daylight hours of the hunting season compared to the pre- 
hunting season (Figure 2B). Thus, the increase in diurnal activ-
ity of females seemed to be compensated by a lower probability 
of feedwalking during the darkest hours, whilst the increase in 
nocturnal activity of males was compensated to a lesser extent by 
lower diurnal activity (Figure 2B). We observed similar patterns 
using different subsets of the dataset (Appendix B: Figure B1) 
and when modelling the probability of resting (Appendix  C: 
Table C1 and Figure C1).

We computed 156,781 running bouts during the month of 
August, which had an average (±SD) duration of 9 ± 12 s (me-
dian = 6 s). In comparison to females with offspring and males, 
subadult solitary females had significantly more running bouts 
per day (Table 5 and Figure 3). In contrast, our model predicted 

FIGURE 1    |    Example of acceleration on the X (orange), Y (blue) and 
Z (black) axes over 10 s of resting, feeding, walking and running be-
haviours in a captive Scandinavian brown bear.

TABLE 3    |    Random forest model confusion matrix on the left side of the table, where rows are observations in each category (showing TP and 
FN) and columns are predictions in each category (TP and FP), total number of observations (3 s sequences) in each category, and model performance 
metrics on the right side, with precision, recall and Matthews' correlation coefficient (MCC).

Confusion matrix Model performance

Predictions

Precision Recall MCCFeeding Resting Running Walking Total

Observations Feeding 3826 195 0 104 4125 0.94 0.93 0.90

Resting 103 6640 0 15 6758 0.97 0.98 0.95

Running 0 0 145 3 148 0.99 0.98 0.99

Walking 154 5 1 1688 1848 0.93 0.91 0.91
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that adult solitary females exhibited fewer running bouts each 
day (Table 5 and Figure 3). Based on pairwise comparison tests 
(Appendix D: Table D1), we found no significant difference in 
the daily number of running bouts between the pre- hunting and 
hunting season for females with offspring and adult solitary fe-
males and a small but significant decrease during the hunting 
season for subadult solitary females and adult males (Figure 3). 
Next, we found that females with offspring and subadult soli-
tary females had a higher proportion of running bouts during 
legal hunting hours compared to adult solitary females and 
males (Table  6 and Figure  4). Based on pairwise comparison 
tests (Appendix D: Table D2), we found that the daily propor-
tion of running bouts during legal hunting hours increased sig-
nificantly during the hunting season for females of all groups, 
but slightly decreased for males (Figure  4). The results of all 
pairwise comparisons of means for both models are shown in 
Appendix D, along with visualizations of the estimated differ-
ences between seasons for each demographic group (Figures D1 
and D2). Finally, we found similar daily distances travelled be-
tween periods for females, whilst males travelled longer daily 
distances during the hunting season compared to the pre- 
hunting season (Appendix E).

4   |   Discussion

We evaluated whether Scandinavian brown bears adjusted their 
behaviour in response to temporal variations in hunting to un-
derstand the potential for hunting to result in non- consumptive 
effects through changes in behaviours. We found that the daily 
activity pattern of bears varied between the pre- hunting and the 
hunting seasons, suggesting a proactive behavioural response 
to increasing hunting risk. More specifically, all individuals 
showed a bimodal activity pattern both prior to and during the 
hunting season, but only males became more nocturnal during 
the hunting season (partial support prediction 1). All females, 
independent of age or reproductive status, increased the time 
they spent feedwalking during daylight hours of the hunting 
season. Although bears did not increase their time running after 
the onset of the hunting season (no support prediction 2), the 
daily proportion of running bouts during legal hunting hours by 
females, but not males, was higher during the hunting season 
compared to the pre- hunting season (partial support prediction 
3), suggesting a potential reactive behavioural response to being 
chased by hounds. The use of high- resolution acceleration data 
thus revealed variation in the types of behavioural responses 

TABLE 4    |    Estimates from generalized additive mixed model (with a binomial error distribution) testing the effect of the demographic group, 
period and time of day (ToD) on the probability of walking or feeding (feedwalking) in Scandinavian brown bears (n = 202,681 observations, between 
2015 and 2022).

Components Terms Estimates SE z values p

A. Parametric 
coefficients

(Intercept) 0.43 0.15 2.86 0.004

Subadult solitary females −0.10 0.17 −0.58 0.564

Adult solitary females −0.20 0.03 −6.22 < 0.001

Males −0.66 0.23 −2.92 0.004

During hunting −0.09 0.03 −2.59 0.010

Subadult solitary females: during hunting −0.06 0.04 −1.63 0.104

Adult solitary females: during hunting 0.05 0.04 1.11 0.267

Males: during hunting 0.51 0.06 8.73 < 0.001

Components Terms edf Ref df Chi sq p

B. Smooth terms s(ToD) 16.36 18.00 194.67 < 0.001

s(ToD): females with offspring pre- hunting 14.32 18.00 92.79 < 0.001

s(ToD): subadult solitary females pre- hunting 10.72 18.00 22.96 < 0.001

s(ToD): adult solitary females pre- hunting 14.01 18.00 72.43 < 0.001

s(ToD): males pre- hunting 12.65 18.00 50.98 < 0.001

s(ToD): females with offspring during hunting 14.85 18.00 112.42 < 0.001

s(ToD): subadult solitary females during hunting 14.25 18.00 72.20 < 0.001

s(ToD): adult solitary females during hunting 14.31 18.00 70.38 < 0.001

s(ToD): males during hunting 9.96 18.00 30.47 < 0.001

s(bear_ID) 20.00 21.00 68,338.78 0.001

s(year) 4.60 6.00 136,538.69 < 0.001

Note: We used ‘females with offspring’ as the reference value for the demographic group and ‘pre- hunting’ for the period.
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8 of 22 Ecology and Evolution, 2025

male and female brown bears use to avoid being hunted, which 
may contribute differently to non- consumptive effects.

We detected differences in bear daily activity patterns between 
the pre- hunting and the hunting seasons, suggesting bears pro-
actively respond to the increase in perceived mortality risk by 
adjusting their behaviours after the start of the hunting sea-
son. Indeed, the activity of human hunters is usually highly 
predictable spatiotemporally, because hunters often return to 
specific areas, stay near roads or hunt during specific hours 
(Lebel et al. 2012; Gaynor et al. 2022), which increases a prey's 
potential to respond to variations in predation risk (Preisser 
et al. 2007; Gaynor et al. 2019). We found that during the hunt-
ing season, male brown bears become even more nocturnal 
compared to before the onset of the hunting season. These 
findings are based on only four males, but they corroborate 
the results of a previous study in our system, which also found 
that males increase their nighttime activity during the hunting 

season (n = 31 male bears; Ordiz et al. 2012). This increase in 
nighttime activity is associated with an overall increase in daily 
travelled distances during the hunting season. Although the 
onset of the hunting season probably explains the increase in 
males' nocturnality, we did not assess causality and therefore 
cannot exclude that other factors may have contributed to this 
shift. Being more active at night may help reduce encounters 
with hunters and their dogs, which are exclusively day active 
in our system. Switching to more nocturnal behavioural pat-
terns is also a common response to increasing human activity 
in mammals (Gaynor et al. 2018), including brown bears from 
our and other systems (Gibeau et  al.  2002; Ordiz et  al.  2013, 
2014; Lamb et  al.  2020). Although nocturnality may help to 
reduce encounters with hunters, it may also incur costs. For 
example, foraging on berries at night may be less efficient than 
during the day, when colours and details are easier to discrim-
inate (MacHutchon et al. 1998; Ordiz et al. 2012). As such, be-
coming more nocturnal during the hunting season may incur 

FIGURE 2    |    (A) Probability of walking or feeding (feedwalking) according to the time of the day during the pre- hunting in orange and hunting 
season in blue, and (B) estimated differences in probability of feedwalking by time of day between the pre- hunting and the hunting seasons, for each 
demographic group (n = 202,681 observations). Shaded areas are 95% confidence intervals. Differences are significant if confidence intervals do not 
overlap zero (horizontal dotted black line). Time of day is in local Sweden time (UTC + 02:00). On both panels, black dashed vertical lines indicate 
start and end of legal hunting hours, and full black lines indicate sunrise and sunset hours as of August 21. Demographic group and number of bear- 
years in each group are indicated on the right of the panels.
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nutritional costs to males, which could further lead to non- 
consumptive effects (Creel 2018).

Females, however, did not become more nocturnal during the 
hunting season but increased their use of active behaviours 
(walking and/or feeding) during risky times of the day. 
Females with dependent young, which are legally protected, 
showed a similar response to risk as solitary females (support 
prediction 4). During the hunting season, female brown bears 
also avoid high- risk areas such as roads and open habitat 
(Brown et  al.  2023), a spatial tactic that may help compen-
sate for the increased daytime activity. However, females' in-
crease in diurnal activity did not result in an increase in daily 
travelled distances during the hunting season. Additionally, 
it is unclear why female bears increase their activity during 
daylight hours of the hunting season rather than maintaining 
pre- hunting activity levels or becoming more nocturnal. One 
possible explanation is that females are becoming more diur-
nal to avoid encounters with males, who are becoming more 
nocturnal. Spatial segregation between females and males 
typically occurs during the spring mating season, when males 
may engage in sexually selected infanticide (Van de Walle 
et  al.  2019), but this segregation is not observed during the 
berry season (Steyaert et  al.  2013), making this explanation 
unlikely. Another potential explanation is that females, espe-
cially those accompanied by young, are more willing to take 
risks compared to males. Switching to more nocturnal activity 
patterns and thus potentially reducing foraging efficiency may 

TABLE 5    |    Estimates from generalized linear mixed model 
(with a negative binomial error distribution) testing the effect of the 
demographic group and period (pre- hunting and hunting seasons) 
on the daily number of running bouts during the month of August in 
Scandinavian brown bears (n = 857 bear- days, between 2015 and 2022).

Terms Estimates SE z values p

(Intercept) 4.38 0.23 19.22 < 0.001

Subadult 
solitary females

1.27 0.27 4.70 < 0.001

Adult solitary 
females

−0.18 0.09 −2.14 0.032

Males 0.14 0.37 0.38 0.701

During hunting 0.11 0.08 1.46 0.146

Subadult 
solitary females: 
during hunting

−0.31 0.09 −3.46 0.001

Adult solitary 
females: during 
hunting

−0.27 0.11 −2.52 0.012

Males: during 
hunting

−0.62 0.14 −4.46 < 0.001

Note: We used ‘females with offspring’ as the reference value for the 
demographic group and ‘pre- hunting’ for the period. Results of pairwise 
comparison tests are shown in Appendix D: Table D1.

FIGURE 3    |    Predicted number of running bouts occurring each day during the pre- hunting (orange) and the hunting season (blue), for each de-
mographic group (n = 857 bear- days). Error bars indicate 95% confidence intervals, and raw data points are in grey. Demographic group and number 
of bear- years in each group are indicated above each panel, and p- values of pairwise comparisons between the pre- hunting and hunting seasons for 
each group are indicated within each panel. The scale of the Y- axis for subadult solitary females differs from other groups to facilitate visual com-
parison. A visual representation of the estimated differences in the number of running bouts between seasons is shown in Appendix D: Figure D1.
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be a trade- off that is too costly for lactating females, due to 
their higher energy requirements. Additionally, females of all 
ages and reproductive status start denning earlier than males 
(Manchi and Swenson  2005; Evans et  al.  2016). Having less 
time to build adipose tissue before hibernation, females of all 
demographic groups may not be able to afford reductions in 
foraging time during daylight hours of the hunting season. 
Thus, these individuals may be driven to forage more often 
as denning time approaches, although these alternative hy-
potheses remain to be tested. It is worth noting, however, that 
similar responses were also observed in females of ungulate 
species, which increased diurnal movement rates during the 
hunting season (Proffitt et al. 2009; Brown et al. 2020).

Our finding that females become more diurnal after the onset 
of the hunting season may appear to contradict a previous study 
(Ordiz et al. 2012), which found that similarly to males, solitary 
females become more nocturnal. They further observed that 
females with cubs of the year respond similarly, but to a lesser 
extent. Our data, however, were collected during different pe-
riods (Ordiz et al. 2012: 2003–2010 vs. this study: 2015–2022). 
Discrepancies between our findings and those of this earlier re-
search may be explained by changes in hunting techniques and 
increasing hunting pressure between the two periods (records 
of bears killed through hunting in Sweden may be found from 
the Swedish Environmental Protection Agency at https:// www. 
rovba se. se/ rappo rt/ doder ovdyr ).

Because we expected that several pursuits by dog hunts may be 
unsuccessful (Le Grand et al. 2019), we predicted that running 

TABLE 6    |    Estimates from generalized linear mixed model (with a 
binomial error distribution) testing the effect of the demographic group 
and period (pre- hunting and hunting seasons) on the daily proportion of 
running bouts occurring during legal hunting hours during the month 
of August in Scandinavian brown bears (n = 857 bear- days, between 
2015 and 2022).

Terms Estimates SE z values p

(Intercept) 0.67 0.21 3.13 0.002

Subadult 
solitary females

−0.12 0.25 −0.48 0.628

Adult solitary 
females

−0.68 0.04 −15.49 < 0.001

Males −0.85 0.34 −2.46 0.014

During hunting 0.47 0.04 11.79 < 0.001

Subadult 
solitary females: 
during hunting

−0.21 0.04 −5.04 < 0.001

Adult solitary 
females: during 
hunting

−0.14 0.06 −2.61 0.009

Males: during 
hunting

−0.70 0.08 −8.79 < 0.001

Note: We used ‘females with offspring’ as the reference value for the 
demographic group and ‘pre- hunting’ for the period. Results of pairwise 
comparison tests are shown in Appendix D: Table D2.

FIGURE 4    |    Predicted proportion of running bouts occurring each day during legal hunting hours of the pre- hunting (orange) and the hunt-
ing season (blue), for each demographic group (n = 857 bear- days). Error bars indicate 95% confidence intervals, and raw data points are in grey. 
Demographic group and number of bear- years in each group are indicated above each panel, and p- values of pairwise comparisons between the pre- 
hunting and hunting seasons for each group are indicated within each panel. A visual representation of the estimated differences in the proportion 
of running bouts occurring each day during legal hunting hours between seasons is shown in Appendix D: Figure D2.
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bouts should be more frequent after the start of the hunting 
season. We found no difference in the frequency of running 
bouts between the pre- hunting vs. hunting period or even a 
small decrease during the hunting season in subadult solitary 
females and males. However, the proportion of running bouts 
that occurred during legal hunting hours increased during the 
hunting season for females of all groups, but slightly decreased 
for males. Therefore, although females do not seem to run 
more during the hunting season, their probability of running 
during legal hunting hours was higher during the hunting sea-
son compared to the pre- hunting season, which is not the case 
for males. We cannot exclude that these findings could be at-
tributed to females' general increase in daytime activity and to 
males' slight decrease in daytime activity, but they could also 
indicate that females use running as a reactive behavioural ad-
justment in response to encounters with hunters and their dogs 
(Inman and Vaughan 2002; Leclerc et al. 2019). Furthermore, 
the daily number of 3 s sequences classified as feedwalking is 
moderately correlated with the daily number of sequences clas-
sified as running (Spearman's ρ = 0.31, p < 0.001), which tends 
to remain low, suggesting that an increase in feedwalking time 
is not necessarily associated with an increase in running time. 
For plantigrade species such as bears, travelling at high speeds 
incurs higher energetic demands compared to other quadrupe-
dal mammals (Pagano et al. 2018), and therefore, dog chases 
could incur non- negligible energetic costs to Scandinavian 
brown bears. It would thus be important to continue develop-
ing our methodology to identify and quantify failed dog hunts 
(see Bryce et al. 2017; English et al. 2024) and their physiologi-
cal impacts (Creel 2018).

It is worth noting that using an algorithm trained on captive 
bears to infer wild bear behaviours may introduce errors that we 
cannot quantify. The captive brown bears used in this study were 
kept in naturalistic enclosures, i.e., enclosures that mimic the 
natural habitat of bears in Scandinavia as closely as possible in 
a captive setting, which should help minimize errors (Dickinson 
et al. 2021). However, wild bears may exhibit behaviours not ob-
served in captivity, and foraging behaviour may differ between 
the two contexts, which may have contributed to our inability to 
distinguish between feeding and walking in wild bears.

5   |   Conclusion

High- resolution acceleration data suggested sex differences in 
Scandinavian brown bear behavioural responses to temporal 
variation in perceived and real mortality risk from hunting. 
To evaluate whether hunting causes non- consumptive effects, 
the next step would be to measure whether these behavioural 
changes have an impact on individual fitness. Given daily 
compensatory shifts in activity patterns, there appear to be no 
energetic costs associated with this behavioural change for fe-
males, as indicated by similar daily distances travelled during 
the pre- hunting and hunting seasons. On the contrary, the in-
creased nocturnal activity of males is associated with larger dis-
tances travelled each day during the hunting season, suggesting 
larger energy expenditure. For both sexes, there may be other 
consequences of behavioural adjustments. The hunting sea-
son coincides with hyperphagia, and any behavioural changes 

could prevent bears from accumulating sufficient fat reserves 
for hibernation. For example, male bears may reduce foraging 
efficiency by becoming more nocturnal during the hunting sea-
son. Female bears, on the other hand, may experience a higher 
stress level when active at times when hunters and their dogs 
are the most active. Identifying the effects of risk- induced be-
havioural changes on population dynamics should be a primary 
focus of future studies to better understand the various impacts 
humans have on animals, which go beyond the direct killing of 
individuals (Ciuti et al. 2012; Montgomery et al. 2022). As non- 
consumptive effects often result from behavioural adjustments 
(Ciuti et  al.  2012; Creel  2018), detailed assessments of wild 
animal behaviours through high- frequency recording of their 
movements can increase our understanding of human impacts 
on wildlife and guide conservation decisions.
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Appendix A

Accelerometry Classification by Bear- Year

FIGURE A1    |    Proportion of 3 s accelerometry sequences classified in each behaviour for each bear- year of data. Feeding and Walking were 
grouped into a “feedwalking” category into the following analyses (see main text).

FIGURE A2    |    Daily proportion of 3s sequences classified as walking as a function of daily distance travelled (n = 543 bear- days during August 
2015–2022). Daily distances travelled were calculated as the sum of linear distances between successive 1- h GPS locations for each day. Results of 
Pearson's test of correlation: coefficient = 0.13, t = 3.07, df = 541, p- value = 0.002.
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Appendix B

GAMM Probability of Feedwalking Using Different Subsets

To ensure results were robust across different subsets of the dataset, we repeated our GAMM on additional subsets. We reached similar results 
(full analyses not shown). Figure B1 below presents the estimated differences in probability of feedwalking by time of day between the pre- hunting 
season and the hunting season, for each demographic group, using three additional subsets. Patterns are consistent across subsets including the one 
presented in the main text (Figure 2B).

FIGURE B1    |    Estimated differences in probability of feedwalking by time of day between the pre- hunting and the hunting seasons, for each demo-
graphic group. We used three different subsets of data (respectively n = 202,670 observations, n = 202,642 observations, n = 202,668 observations) and 
the same model specifications as the model shown in the main text (Table 4). Shaded areas are 95% confidence intervals. Differences are significant if 
confidence intervals do not overlap zero (horizontal dotted black line). Time of day is in local Sweden time (UTC + 02:00). Black dashed vertical lines 
indicate start and end of legal hunting hours, and full black lines indicate sunrise and sunset hours as of August 21. Demographic group and number 
of bear- years in each group are indicated on the right of the panels.
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Appendix C

GAMM Probability of Resting

TABLE C1    |    Estimates from generalized additive mixed model (with a binomial error distribution) testing the effect of the demographic group, 
period and time of day (ToD) on the probability of resting in Scandinavian brown bears (n = 202,681 observations, between 2015 and 2022).

Components Terms Estimates SE z values p

A. Parametric coefficients (Intercept) −0.50 0.18 −2.79 0.005

Subadult solitary females −0.08 0.20 −0.39 0.698

Adult solitary females 0.24 0.03 7.22 < 0.001

Males 0.69 0.27 2.54 0.011

During hunting 0.07 0.04 1.96 0.050

Subadult solitary females: During hunting 0.11 0.04 2.85 0.004

Adult solitary females: During hunting −0.03 0.04 −0.63 0.526

Males: During hunting −0.48 0.06 −7.97 < 0.001

Components Terms edf Ref df Chi.sq p

B. Smooth terms s(ToD) 16.26 18.00 179.81 < 0.001

s(ToD): Females with offspring Pre- hunting 13.50 18.00 66.85 < 0.001

s(ToD): Subadult solitary females Pre- hunting 12.75 18.00 36.65 < 0.001

s(ToD): Adult solitary females Pre- hunting 13.97 18.00 67.74 < 0.001

s(ToD): Males Pre- hunting 13.55 18.00 60.76 < 0.001

s(ToD): Females with offspring During hunting 14.51 18.00 93.27 < 0.001

s(ToD): Subadult solitary females During hunting 15.13 18.00 93.65 < 0.001

s(ToD): Adult solitary females During hunting 13.95 18.00 58.84 < 0.001

s(ToD): Males During hunting 10.05 18.00 28.51 < 0.001

s(bear_ID) 20.07 21.00 113,900.04 < 0.001

s(year) 4.64 6.00 232,920.02 < 0.001

Note: We used ‘females with offspring’ as the reference value for the demographic group and ‘pre- hunting’ for the period. The same subset of data was used as for the 
feedwalking GAMM presented in the main text (Table 4).
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FIGURE C1    |    (A) Probability of resting according to the time of the day during the pre- hunting in orange and hunting season in blue, and (B) 
estimated differences in probability of resting between the pre- hunting and the hunting seasons, for each demographic group (n = 202,681 obser-
vations). Shaded areas are 95% confidence intervals. Differences are significant if confidence intervals do not overlap zero (horizontal dotted black 
line). Time of day is in local Sweden time (UTC + 02:00). On both panels, black dashed vertical lines indicate start and end of legal hunting hours, 
and full black lines indicate sunrise and sunset hours as of August 21. Demographic group and number of bear- years in each group are indicated on 
the right of the panels.
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Appendix D

Running Models: Pairwise Comparisons of Means

TABLE D1    |    Pairwise comparisons of means of each level for the generalized linear mixed model (with a negative binomial error distribution) 
testing the effect of the demographic group and period (pre- hunting and hunting seasons) on the daily number of running bouts during the month of 
August in Scandinavian brown bears (n = 857 bear- days, between 2015 and 2022).

Pairs Ratios SE z ratios p

Females with offspring Pre- hunting/Subadult solitary females Pre- hunting 0.281 0.076 −4.704 < 0.001

Females with offspring Pre- hunting/Adult solitary females Pre- hunting 1.201 0.103 2.138 0.390

Females with offspring Pre- hunting/Males Pre- hunting 0.869 0.318 −0.384 1.000

Females with offspring Pre- hunting/Females with offspring During hunting 0.895 0.069 −1.455 0.831

Females with offspring Pre- hunting/Subadult solitary females During hunting 0.343 0.093 −3.946 0.002

Females with offspring Pre- hunting/Adult solitary females During hunting 1.408 0.142 3.395 0.016

Females with offspring Pre- hunting/Males During hunting 1.448 0.546 0.980 0.977

Subadult solitary females Pre- hunting/Adult solitary females Pre- hunting 4.271 1.152 5.383 < 0.001

Subadult solitary females Pre- hunting/Males Pre- hunting 3.089 1.072 3.251 0.025

Subadult solitary females Pre- hunting/Females with offspring During hunting 3.181 0.869 4.239 0.001

Subadult solitary females Pre- hunting/Subadult solitary females During hunting 1.220 0.057 4.249 0.001

Subadult solitary females Pre- hunting/Adult solitary females During hunting 5.008 1.382 5.836 < 0.001

Subadult solitary females Pre- hunting/Males During hunting 5.149 1.846 4.572 < 0.001

Adult solitary females Pre- hunting/Males Pre- hunting 0.723 0.262 −0.893 0.987

Adult solitary females Pre- hunting/Females with offspring During hunting 0.745 0.071 −3.100 0.041

Adult solitary females Pre- hunting/Subadult solitary females During hunting 0.286 0.077 −4.621 < 0.001

Adult solitary females Pre- hunting/Adult solitary females During hunting 1.173 0.089 2.105 0.411

Adult solitary females Pre- hunting/Males During hunting 1.206 0.451 0.500 1.000

Males Pre- hunting/Females with offspring During hunting 1.030 0.380 0.079 1.000

Males Pre- hunting/Subadult solitary females During hunting 0.395 0.137 −2.668 0.132

Males Pre- hunting/Adult solitary females During hunting 1.621 0.593 1.320 0.892

Males Pre- hunting/Males During hunting 1.666 0.195 4.375 < 0.001

Females with offspring During hunting/Subadult solitary females During hunting 0.384 0.105 −3.493 0.011

Females with offspring During hunting/Adult solitary females During hunting 1.574 0.171 4.166 0.001

Females with offspring During hunting/Males During hunting 1.618 0.615 1.268 0.911

Subadult solitary females During hunting/Adult solitary females During hunting 4.104 1.138 5.090 < 0.001

Subadult solitary females During hunting/Males During hunting 4.219 1.517 4.004 0.002

Adult solitary females During hunting/Males During hunting 1.028 0.387 0.073 1.000

Note: Main results of the model are shown in Table 5 of the main text. Comparisons of interest are bolded.
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TABLE D2    |    Pairwise comparisons of means of each level for the generalized linear mixed model (with a binomial error distribution) testing the 
effect of the demographic group and period (pre- hunting and hunting seasons) on the daily proportion of running bouts occurring during legal hunting 
hours during the month of August in Scandinavian brown bears (n = 857 bear- days, between 2015 and 2022).

Pairs Ratios SE z ratios p

Females with offspring Pre- hunting/Subadult solitary females Pre- hunting 1.131 0.287 0.485 1.000

Females with offspring Pre- hunting/Adult solitary females Pre- hunting 1.983 0.088 15.493 < 0.001

Females with offspring Pre- hunting/Males Pre- hunting 2.331 0.802 2.461 0.212

Females with offspring Pre- hunting/Females with offspring During hunting 0.623 0.025 −11.787 < 0.001

Females with offspring Pre- hunting/Subadult solitary females During hunting 0.874 0.221 −0.533 0.999

Females with offspring Pre- hunting/Adult solitary females During hunting 1.427 0.076 6.699 < 0.001

Females with offspring Pre- hunting/Males During hunting 2.924 1.020 3.076 0.044

Subadult solitary females Pre- hunting/Adult solitary females Pre- hunting 1.754 0.443 2.222 0.338

Subadult solitary females Pre- hunting/Males Pre- hunting 2.062 0.670 2.225 0.336

Subadult solitary females Pre- hunting/Females with offspring During hunting 0.551 0.140 −2.340 0.272

Subadult solitary females Pre- hunting/Subadult solitary females During hunting 0.773 0.011 −17.978 < 0.001

Subadult solitary females Pre- hunting/Adult solitary females During hunting 1.262 0.321 0.914 0.985

Subadult solitary females Pre- hunting/Males During hunting 2.586 0.854 2.876 0.077

Adult solitary females Pre- hunting/Males Pre- hunting 1.176 0.403 0.473 1.000

Adult solitary females Pre- hunting/Females with offspring During hunting 0.314 0.016 −23.149 < 0.001

Adult solitary females Pre- hunting/Subadult solitary females During hunting 0.441 0.111 −3.240 0.026

Adult solitary females Pre- hunting/Adult solitary females During hunting 0.720 0.027 −8.729 < 0.001

Adult solitary females Pre- hunting/Males During hunting 1.475 0.512 1.119 0.953

Males Pre- hunting/Females with offspring During hunting 0.267 0.092 −3.826 0.003

Males Pre- hunting/Subadult solitary females During hunting 0.375 0.122 −3.018 0.052

Males Pre- hunting/Adult solitary females During hunting 0.612 0.210 −1.429 0.844

Males Pre- hunting/Males During hunting 1.254 0.086 3.299 0.022

Females with offspring During hunting/Subadult solitary females During hunting 1.401 0.357 1.325 0.890

Females with offspring During hunting/Adult solitary females During hunting 2.289 0.133 14.278 < 0.001

Females with offspring During hunting/Males During hunting 4.691 1.641 4.420 < 0.001

Subadult solitary females During hunting/Adult solitary females During hunting 1.634 0.416 1.926 0.533

Subadult solitary females During hunting/Males During hunting 3.348 1.106 3.656 0.006

Adult solitary females During hunting/Males During hunting 2.049 0.714 2.059 0.442

Note: Main results of the model are shown in Table 6 of the main text. Comparisons of interest are bolded.

 20457758, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71489 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [07/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 of 22 Ecology and Evolution, 2025

FIGURE D1    |    Estimated differences in the number of running bouts between the pre- hunting and the hunting seasons for each demographic 
group during the month of August in Scandinavian brown bears (n = 857 bear- days, between 2015 and 2022), as estimated with the “plot_compari-
sons” function of the marginaleffects package in R.

FIGURE D2    |    Estimated differences in the daily proportion of running bouts occurring during legal hunting hours between the pre- hunting and 
the hunting seasons for each demographic group during the month of August in Scandinavian brown bears (n = 857 bear- days, between 2015 and 
2022), as estimated with the “plot_comparisons” function of the marginaleffects package in R.
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Appendix E

Daily Distance Travelled Across Periods

We caclulated daily distance travelled (m) as the sum of linear distances between successive 1- h GPS locations for each day and assessed whether 
it differed between periods across demographic groups (Table  E1). For all groups, daily distance slightly increased during the hunting season 
(Figure E1), but these differences were only statistically significant for males (Figure E2).

TABLE E1    |    Estimates from linear mixed model testing the effect of 
the demographic group and period (pre- hunting and hunting seasons) 
on the daily distance travelled of Scandinavian brown bears in August 
(n = 550 bear- days, between 2015 and 2022).

Terms Estimates SE z values p

(Intercept) 7918.86 487.48 16.24 < 0.001

Subadult solitary 
females

−31.00 627.79 −0.05 0.961

Adult solitary 
females

−1038.47 452.35 −2.30 0.022

Males −215.09 1113.11 −0.19 0.848

During hunting 730.86 505.91 1.45 0.149

Subadult solitary 
females: During 
hunting

−60.81 628.57 −0.10 0.923

Adult solitary 
females: During 
hunting

−583.74 708.75 −0.82 0.411

Males: During 
hunting

1943.25 1080.39 1.80 0.073

Note: We used ‘females with offspring’ as the reference value for the 
demographic group and ‘pre- hunting’ for the period.

FIGURE E1    |    Predicted daily distances travelled during the pre- hunting (orange) and the hunting season (blue), for each demographic group 
(n = 550 bear- days, between 2015 and 2022). Error bars indicate 95% confidence intervals.
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FIGURE E2    |    Estimated differences in the daily distance travelled between the pre- hunting and the hunting seasons for each demographic group 
during the month of August in Scandinavian brown bears (n = 550 bear- days, between 2015 and 2022), as estimated with the “plot_comparisons” 
function of the marginaleffects package in R.
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