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Abstract
Background  The evaluation of genomic selection (GS) efficiency in forestry has primarily relied on cross-validation 
schemes that split the same population within a single generation for both training and validation. While useful, 
this approach may not be reliable for multigenerational breeding. To our knowledge, this is the first study to assess 
genomic prediction in Norway spruce using a large dataset spanning two generations in two environments. We 
trained pedigree-based (ABLUP) and marker-based (GBLUP) prediction models under three approaches: forward 
prediction, backward prediction, and across-environment prediction. The models were evaluated for ring-width, 
solid-wood and tracheid characteristics, using ~ 6,000 phenotyped and ~ 2,500 genotyped individual. Predictive ability 
(PA) and prediction accuracy (ACC) were estimated using an independent validation method, ensuring no individuals 
were shared between training and validation datasets. To assess the trade-off between comprehensive radial history 
and practical direct methods, we compared GBLUP models trained with cumulative area-weighted density (AWE-
GBLUP) and single annual-ring density (SAD-GBLUP) from mother plus-trees. These models were validated using early 
and mature-stage progeny density measurements across two trials.

Results  Despite the smaller number of individuals used in the GBLUP models, both PA and ACC were generally 
comparable to those of the ABLUP model, particularly for cross-environment predictions. Overall, forward and 
backward predictions were significantly higher for density-related and tracheid properties, suggesting that across-
generation predictions are feasible for wood properties but may be challenging for growth and low-heritability traits. 
Notably, SAD-GBLUP provided comparable prediction accuracies to AWE-GBLUP, supporting the use of more practical 
and cost-effective phenotyping methods in operational breeding programs.

Conclusions  Our findings highlight the need for context-specific models to improve the accuracy and reliability 
of genomic prediction in forest tree breeding. Future efforts might aim to expand training populations, incorporate 
non-additive genetic effects, and validate model performance across cambial ages while accounting for climatic 
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Background
The concept of using genome-wide DNA markers to 
predict genetic merit of individuals, subsequently called 
“genomic selection” (GS), has revolutionized animal and 
plant breeding in the last two decades [1, 2]. In essence, 
GS is a form of marker-assisted selection (MAS) that uti-
lizes marker-trait associations [3]. Nevertheless, unlike 
MAS, which uses a few markers linked to large-effect 
quantitative trait loci (QTLs), GS does not necessarily 
require prior identification of the associations between 
phenotypes and markers, the genomic locations of QTLs, 
or their relative effects on the phenotype [4]. Principally, 
GS models are trained on an available set of phenotypic 
and marker data from a training set (TS) to establish a 
statistical model that predicts breeding values of geno-
typed but non-phenotyped individuals, referred to as 
selection candidates or the validation set (VS) [5, 6].

Genomic prediction models, coupled with drasti-
cally reduced genotyping costs, have led to significant 
gains in key crop and livestock traits while shortening 
the time needed for conducting well-informed selection 
[7]. In forest tree breeding, conventional breeding meth-
ods have consistently improved traits such as, tree vol-
ume [8], wood quality [9, 10] and stem straightness [11]. 
However, forest tree breeding is still in its early stages, 
hindered by long breeding cycles, delayed and poor flow-
ering, and late expression of economically important 
traits [2]. For instance, tree improvement of boreal coni-
fer species typically involves breeding cycles that exceeds 
20 years or more, including creation of crosses, field eval-
uation of progenies, selection of superior individuals, and 
the subsequent propagation of selected material through 
either sexual or vegetative methods [12]. This time con-
straint along with the high cost of field evaluations 
underscores that the impact of GS on forest tree breed-
ing could be even greater than in agricultural crops or 
animal breeding programs [2]. Additionally, what distin-
guishes GS from traditional breeding methods is its use 
of DNA data to construct the realized relationship matrix 
between individuals (G-matrix) rather than relying only 
on pedigree-based relationship matrix (A-matrix), which 
is often prone to errors [13, 14]. This advancement, not 
only enhances pedigree accuracy, but may also capture 
within-family variation resulting from random Mende-
lian segregation [14, 15].

Nevertheless, the performance of GS is determined by 
its accuracy, which reflects its ability to predict a breed-
ing value for trees that lack phenotypic data. Overall, pre-
diction accuracy (ACC) is a trait- and population-specific 

parameter and is influenced by several factors, includ-
ing the heritability of the target trait, the size of TS, the 
degree of genetic relatedness between the TS and VS, and 
the extent of linkage disequilibrium (LD) between mark-
ers and QTLs. The degree to which LD can be leveraged 
for improving predictions is determined by marker den-
sity and effective population size ( Ne) [16, 17].

Since the first GS studies in forest trees [18, 19], it has 
become evident that ACC is highest when models are 
applied to related trees of the same age and grown under 
the same environmental conditions similar to those of the 
TS. Numerous studies in conifers [20–22] and eucalyptus 
[23] have confirmed the importance of genetic relation-
ships, as well as genotype-by-environment interaction 
(G×E) and age-age correlations. These findings align 
with similar observations in domestic animals and crops 
[24]. However, while high predictive ability (PA) within 
the same cohort and environment is often observed, it is 
not necessarily the primary goal in operational breeding, 
where selection across different environments, genera-
tions, or ages is typically required.

A common method for evaluating GS model perfor-
mance is k-fold cross-validation, where individual obser-
vations are randomly divided into k subsets. All but one 
subset is used as the TS, while the remaining subset 
serves as the VS, with its phenotypes set to missing. The 
correlation between predicted and observed phenotypes 
across multiple iterations is used to measure the PA [25]. 
Although this approach is useful, the results often shows 
a misleadingly optimistic view of GS potential because 
the same population is used for both model develop-
ment and validation [26]. Among other limitations, this 
method does not account for changes in the marker–
trait linkage phase, which may lead to an overestimation 
of model accuracy. To more accurately assess the effi-
ciency of GS in forest trees, the population must undergo 
breeding to observe the effects of recombination on the 
marker-trait phase. In other words, a model developed 
for the current generation should be validated indepen-
dently in a subsequent generation and/or tested in a sep-
arate environment for a more robust evaluation [14, 27].

In general, G×E interaction is low for wood properties 
[28]. A previous study using the same trial sites in the 
current study also reported low G×E for various wood 
traits, based on phenotypic data collected from these 
sites [29]. Similarly, The accuracy of GS for tree height 
and wood quality traits in Norway spruce (Picea abies L.) 
has previously been evaluated within a single generation 
using a cross-validation design [22, 30, 31]. However, due 

variability during the corresponding growth years. Overall, this study offers a valuable foundation for implementing 
GS in Norway spruce breeding programs.
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to the ongoing advancement of GS programs for Norway 
spruce and the significant changes in wood chemical and 
physical properties from the juvenile to mature phases 
of secondary growth, it is essential to retrain and test GS 
models across generations, environments, and develop-
mental stages to ensure that predictions remain aligned 
with those from earlier stages.

In this study, we conducted genomic prediction for 
economically important wood traits in Norway spruce 
using genotypic and phenotypic data from two gen-
erations across two half-sib progeny trials (Höreda and 
Erikstorp) and their parent clones located in breeding 
archives in Sweden. The specific objectives were:

(i) To assess narrow-sense heritability ( h2), PA, and 
ACC of pedigree-based models (ABLUP) and marker-
based GS models (GBLUP), we evaluated three differ-
ent approaches involving training and validation across 
environments—and in most cases, across generations. 
Approach A: training the models on the phenotypic 
data of the parental generation (G0), which consists of 
plus trees—that is, individuals with superior phenotypes 
selected from natural stands based on traits of economic 
or ecological importance, and validating predictions for 
progenies (G1) in Höreda (G1H) and Erikstorp (G1E), 
Approach B: training the models on the phenotypic 
data from G1H and validating predictions for G1E and 
G0 trees, and Approach C: training the models on the 
phenotypic data from G1E and validating predictions 
for G1H and G0 trees; (ii) To assess the efficiency of 
early training in GBLUP for wood density and to evalu-
ate whether wood juvenility influences the outcomes of 
selection, under Approach A and; (iii) To evaluate the 
impact of different measurement methods [accumulated 
area-weighted wood density (AWE) versus single annual-
ring direct density (SAD)] on the efficiency of GBLUP 
model under Approach-A. This comparison is motivated 
by practical considerations, as AWE provides a more 
integrated measure over time but is more labour-inten-
sive, whereas SAD may offer a quicker, lower-cost alter-
native for operational breeding.

Methods
Plant material
The Norway spruce breeding program in Sweden began 
in the 1940 s with the phenotypic selection of approxi-
mately 900 plus trees (the G0 population) from across 
most of the species’ range [32], followed by the estab-
lishment of the first round of seed orchards [33]. Prog-
eny (G1) from the G0 trees were obtained either through 
controlled crosses to generate full-sib progenies or 
through open-pollination, resulting in half-sib progenies. 
Progeny testing of the plus trees began in 1971, 30 years 
after their selection, to develop the next generation pop-
ulation (G1).

In the 1980 s, additional plus trees selected from com-
mercial forest nurseries, together with selection of the 
best progeny-tested plus trees from the previous selec-
tion resulted in the second round of seed orchards. The 
third round of seed orchards were established in 21 st 
century by genetic testing of the progenies of plus trees.

This study utilized phenotypic and, where available, 
genomic data from a two-generation Norway spruce ped-
igree. The maternal generation consists of about 1,300 
plus tree clones, from which two large open-pollinated 
progeny trials, Höreda (S21F9021146) (57.61°N, 15.04°E) 
and Erikstorp (S21F9021147) (55.90°N, 13.93°E), were 
established by the Forestry Research Institute of Sweden 
(Skogforsk) in southern Sweden in 1990. The experimen-
tal design for each trial follows a randomized incomplete 
block layout, utilizing single-tree plots. The Höreda trial 
comprises 1,373 half-sib families distributed across 20 
blocks, while the Erikstorp trial includes 1,375 half-sib 
families divided into 23 blocks [29].

Phenotypic and genotypic data
In 2010 and 2011, two 12-mm bark-to-pith increment 
cores were collected at a height of 1.3 m from progenies 
at ages 20 to 21 years old, respectively. These progenies 
originated from 524 out of 1,300 G0 mother plus trees 
established as grafts in various breeding archives in 
southernmost Sweden in 1986. A total of six progenies 
were sampled per family and per progeny trial, Höreda 
and Erikstorp, resulting in about 6,000 progenies, which 
were phenotyped for high-resolution data on pith-to-
bark radial variations in different solid wood and tracheid 
properties, using the SilviScan instrument at Innventia 
(now RISE) in Stockholm, Sweden. From these variations, 
growth rings and their segments of earlywood (EW), 
transition wood (TW), and latewood (LW) were identi-
fied, and the widths and mean wood and tracheid prop-
erties were calculated for all rings and segments [34]. 
Additionally, a 12-mm bark-to-pith increment core was 
collected from one ramet (a clonally propagated copy) 
from each of the 524 G0 mother plus trees and analysed 
using SilviScan instrument.

In this study, we primarily focused on wood density 
in growth rings (DENS) and their three ring segments: 
earlywood density (EWDENS), transition wood density 
(TWDENS), and latewood density (LWDENS). We also 
assessed ring width (RWT), representing secondary tree 
growth, along with modulus of elasticity (MOE), micro-
fibril angle (MFA), tracheid wall thickness (TWTH), 
and tracheid coarseness (TC). In summary, these wood 
properties were measured in 524 presumably unrelated 
mother plus-trees (G0 trees), 3,788 G1 open-pollinated 
offspring trees from Höreda (G1H), and 2,664 G1 trees 
from Erikstorp (G1E).
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Because area-weighted values (AWE) more accurately 
represent the average properties of the wood [35], the 
AWE for each trait was calculated and used in this study 
as follows:

	
AWE =

∑
(aidi)∑
(ai)

� (1)

where i is the cross-sectional area of annual ring i, 
assuming that each ring is circular, and diis the value of 
annual ring i.

Furthermore, genotypic data were used for 518 G0 
trees, 1,684 G1 trees from Höreda originating from 
1,339 half-sib families (with 1,274 of families represented 
by only one individual per family and 65 families rep-
resented by approximately 6.2 individuals per family). 
Additionally, 303 G1 trees from Erikstorp originating 
from 65 half-sib families (represented by an average of 
4.6 individuals per family) were genotyped.

The number of families subjected to genotyping was 
much higher in the Höreda trial compared to the Erik-
storp trial due to sampling strategies used in earlier stud-
ies. Initially, 404 individuals from 65 families in Höreda 
and 303 individuals from similar families in Erikstorp 
were sampled for GS studies [30]. Later, for genome-wide 
association studies (GWAS), which required genetically 
unrelated individuals, an additional 1,280 individuals 
from Höreda were sampled, with only one individual rep-
resenting each family.

DNA extraction and genomic data
Genomic DNA was extracted from buds or from needles 
when buds were unavailable. Genotyping was performed 
at Rapid Genomics, USA, using exome capture sequenc-
ing, following methods similar to those described in [36]. 
Briefly, sequence capture was conducted using 40,018 
diploid probes previously designed for P. abies [37]. 
Samples were sequenced to an average depth of 15x on 
an Illumina HiSeq 2500 platform. Variant calling was 
performed with the Genome Analysis Toolkit (GATK) 
HaplotypeCaller v3.6 for all samples and then all sam-
ples were jointly called. To improve the quality of called 

SNPs, we filtered SNPs by removing indels, keeping 
only bi-allelic sites, removing sites with minor allele fre-
quency < 0.05, removing sites and individuals with more 
than 70% SNP missingness, and removing SNPs with an 
excess of heterozygotes and deviation from Hardy-Wein-
berg equilibrium. These filtering criteria reduced the 
dataset to 2,452 individuals, including 493 G0 trees and 
1,958 G1 trees from 1,321 families, along with 194,831 
SNPs. We used ASRgenomics package [38] in the R envi-
ronment [39] for data organization and filtering of miss-
ing data. The final number of genotyped and phenotyped 
individuals with high-quality data retained for the analy-
sis are presented in Table 1; Fig. 1.

Statistical analysis for pedigree-based and 
genome-based predictions
Prior to conducting genomic prediction analysis, a mixed 
linear model was applied to each trait in each progeny 
trial to account for environmental differences and reduce 
their impact on trait evaluation. The model is as follows:

	 y = Xβ + Wb + Zu + e� (2)

where y is a vector of phenotypic observations of a sin-
gle trait, β is a vector of fixed effects, including a grand 
mean, b is a vector of post-block effects and u is a vector 
of random additive genetic effect of individuals, assumed 
to follow a normal distribution  , and e is the residual 
error term, also assumed to follow a normal distribution 
N(0, Iσ 2

e), where σ 2
A and σ 2

e are the additive genetic 
and residual variances, respectively. A represents the 
additive numerator relationship matrix estimated from 
pedigree information, and I  is the identity matrix.

The incidence matrices X , W , and Z  correspond to 
the fixed effects β , post-block effects b, and random 
genetic effects u, respectively. The phenotypic data for 
each trait were adjusted by removing the variation asso-
ciated with environmental design features and post-block 
effects for all individuals. These adjusted phenotypes 
( y′ ) were then used to calculate trait heritability and to 
develop prediction models.

Two different models were used to estimate breeding 
values: Genomic BLUP (GBLUP) and pedigree-based 
BLUP (ABLUP).

These approaches followed the framework of the mixed 
model:

	 y′ = Xb + Zu + e� (3)

where y′  is a vector of adjusted phenotypic observations, 
b is a vector of fixed effect (intercept), u and e are vec-
tors of random additive genetic and residual error effects, 
respectively. The incidence matrices X  and Z  corre-
spond to the fixed effects b and random additive genetic 

Table 1  Number of individuals used for the ABLUP and GBLUP 
analysis Under three different approaches
Number of individuals G0 G1H G1E
Available individuals in pedigree 1360 14552 13972
Individuals with phenotypes 511 3788 2664
Individuals with genotypes 493 1657 301
Individuals with both phenotypes & genotypes 481 1527 221
G0: mother plus-trees; G1H: progenies in Höreda trial; G1E: progenies in 
Erikstorp trial

The discrepancies between number of phenotypes and genotypes are because 
not always the same individuals were selected for both genotyping and 
phenotyping
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effects u, respectively. The mixed model equations were 
solved to obtain estimated breeding values according to 
the model in Eq. (3).

It has been demonstrated that there is a strong popu-
lation structure among the individuals included in this 
study [40]. Therefore, in the ABLUP method, the effect 
of population structure is incorporated as contempo-
rary genetic groups directly within the pedigree [41]. 
The pedigree-derived relationship matrix (A) is used 
in Eq.  (3) to predict estimated breeding values (EBVs). 
In GBLUP, the inverse of the realized genomic relation-
ship matrix ( G−1) replaces ( A−1) to predict genomic 
estimated breeding values (GEBVs). Similarly to Eq.  (1), 
the vectors of random additive effects ( u) and residual 
effects ( e) were assumed to follow normal distributions. 
For ABLUP, u was assumed to follow u N(0, Aσ2

u), and 
for GBLUP, u N(0, Gσ2

u).
The G-matrix was calculated following VanRaden’s 

approach [42] as:
G = (M−P )(M−P )T

2
∑

q
i=1pi(1−pi)

, here M  is the allele-sharing 

matrix, where rows represent the total number of geno-
typed individuals and columns represent the total num-
ber of markers, coded as 0 for homozygous reference 
allele, 1 for heterozygous, and 2 for homozygous alterna-
tive allele; P  is a matrix of allele frequencies with the i
-th column given by 2( pi− 0.5), where pi is the observed 
allele frequency for the i-th marker of all genotyped 
samples.

Narrow-sense heritability ( h2) for ABLUP and GBLUP 
models was calculated as:

	
h2 = σ 2

a

σ 2
a+σ 2

e

� (4)

where σ 2
a and σ 2

e are the additive genetic and residual 
variances, respectively, obtained from each model.

Model evaluation
To independently validate the efficiency of selection 
models, the two-generation dataset was divided into a 
training set (TS) comprised of both genotypic and phe-
notypic data for model development, and a validation set 
(VS), where phenotypes were predicted solely based on 
the model and genotypic data. Model evaluation was car-
ried out based on predictive ability ( PA), defined as the 
Pearson correlation (r) between the adjusted phenotypes 
and the model predicted phenotypes, i.e. r = corr(y′ , ŷ), 

and prediction accuracy ( ACC), defined as P A√
h2 , across 

all studied traits. For the subdivision of the dataset into 
TS and VS, three different approaches were used (Fig. 1).

In Approach-A, relationship matrices ( G) was con-
structed using genotype data from all available individu-
als (both progeny trials and mothers), while the models 
were trained solely on the phenotypic data of the mother 
plus trees. Predictions were then evaluated for progeny 
trees in both Erikstorp and Höreda trials. In Approach-B, 
the A and G matrices were built using the genotype data 
of all individuals, but the models were trained solely on 
the phenotypic data from the Höreda trial. Predictions 
were then evaluated for trees in Erikstorp and for the 
mother plus trees. In Approach-C, the A and G matrices 
were built using the genotype data of all individuals, but 
models were trained solely on the phenotypic data from 

Fig. 1  Graphical representation of cross-generation assessment comparing pedigree-based (ABLUP) and marker-based (GBLUP) models under three 
different approaches (Approach-A, Approach-B, and Approach-C) based on two progeny trials (G1H and G1E) and parental breeding archive clones (G0) 
of Norway spruce in Sweden
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the Erikstorp trial. Predictions were then evaluated for 
trees in Höreda and for the mother plus trees.

Assessment of early training and measurement 
method in GBLUP
The increment cores collected from mother plus trees 
(G0) contained up to 29 annual rings along the cambial 
age, with most cores comprising 21 rings. In progeny 
trees (G1), the cores had a maximum of 21 rings, while 
the majority contained 16 rings. To assess the efficiency 
of early training in GBLUP, the G-matrix was con-
structed using genotype data from both G0 and G1 trees 
(Approach-A). As such, the models were trained exclu-
sively on G0 trees, using different sets of wood density 
measurements of the mother plus trees, while the pre-
dictions for each dataset were then validated on G1 trees 
from the Höreda and Erikstorp trials, using their whole-
core area-weighted wood density measurements.

We trained the GBLUP model using two distinct 
types of datasets. The first type used accumulative area-
weighted wood density (AWE-GBLUP), integrating den-
sity cumulatively from the pith (the innermost ring) to a 
final ring of choice. This final ring ranged from the 1 st 
to the maximum 21 st from pith as most wood strips 
from G0 trees contained reliable measurements for wood 
properties up to ring number 21. This approach aimed 
to determine at which age the genomic predictions from 
mothers would be most efficient for selection of their 
progenies given that a full radial density profile could be 
obtained, e.g. by analysing increment cores. The second 
type of datasets comprised density data obtained from 
single individual annual rings (SAD-GBLUP), ranging 
from the 1 st to the 21 st ring from pith. This approach 
simulated a scenario in which density measurements 
were collected using non-destructive, fast, and inex-
pensive methods, such as pilodyn [43] and Hitman [44], 

applied directly under the bark at a range of different 
timepoints during tree development.

Additionally, to check whether wood juvenility, which 
usually is more variable compared to juvenile wood, had 
an excessive influence on the results, we compared the 
PA from validations using only the 10 innermost rings 
of progeny wood cores (juvenile core) with that using all 
available rings.

Results
Quantitative-genetic parameters and relatedness
The distribution of genomic pairwise relationship coef-
ficients within and among Norway spruce open-polli-
nated (OP) families used in this study is shown in Fig. 2. 
The left panel illustrates the distribution of relationship 
coefficients among families, with most values clustering 
around 0.00 (mean = 0.05), indicating no relationship. 
The right panel presents the distribution of relationship 
coefficients within families, with most values clustering 
around the expected 0.25 (mean = 0.26). However, some 
individuals deviate from 0.25, suggesting an imperfect 
half-sib family structure.

The genetic parameter estimates for various wood 
traits under ABLUP and GBLUP models reveal notable 
patterns in additive genetic variance ( σ 2

A), residual vari-
ance (σ 2

e), and narrow-sense heritability estimates ( h2) 
(Table 2). Approach-A, yielded higher σ 2

A and, therefore, 
higher h2 estimates for density (DENS) and its three 
components, including earlywood (EWD), transition-
wood (TWD), and latewood density (LWDENS), com-
pared to tracheid wall thickness (TWTH) and tracheid 
coarseness (TC). These estimates were mostly zero for 
ring width (RWT), modulus of elasticity (MOE), and 
microfibril angle (MFA).

The greatest observed difference between the trained 
models were the substantial reduction in σ 2

A esti-
mate, which was followed by a decrease in h2, when 

Fig. 2  Histogram of genomic pairwise relationship coefficients between individuals across (left panel) and within (right panel) Norway spruce open-
pollinated (OP) families
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the GBLUP model was used, compared to the ABLUP 
model. This was particularly noticeable for density-
related properties. For instance, when trained on G1H 
data (Approach-B), the σ 2

A estimates from GBLUP were 
approximately 63%, 57%, 50%, and 38% lower than those 
from the ABLUP model for DENS, EWDENS, TWDENS, 
and LWDENS, respectively. When trained on G1E data 
(Approach-C), the reductions for EWDENS, TWDENS, 
and LWDENS were 29%, 25%, and 42%, respectively, 
while for DENS, GBLUP yielded a σ 2

Aestimate nearly the 
same as ABLUP.

Similarly, the σ 2
Aestimates from the GBLUP model 

were about 64%, 55%, 39%, 63%, and 66% lower than 
those from ABLUP for RWT, MOE, MFA, TWTH, and 
TC under Approach-B. In contrast, under Approach-
C, the σ 2

Aestimates from GBLUP were about 7% and 
24% higher than ABLUP for RWT and TC, respectively. 

For MFA and TWTH, the estimates were mostly 
equal, whereas for MOE, GBLUP yielded a much lower 
estimate.

As expected, the h2 estimates followed a similar pat-
tern to the σ 2

A estimates. In general, h2 estimates from 
ABLUP were higher than those from GBLUP under 
Approach-B. However, under Approach-C, h2 estimates 
from GBLUP were higher or similar to ABLUP, except for 
MOE.

Moreover, the σ 2
e estimates from ABLUP were gener-

ally lower than those from GBLUP under Approach-B. 
In contrast, under Approach-C, GBLUP yielded mostly 
lower σ 2

e estimates than ABLUP (Table 2).

Evaluation of the models’ performances
The performances of ABLUP and GBLUP models were 
evaluated based on their predictive ability (PA) and 

Table 2  Additive variance (σ2
A), Residual variance (σ2

e), and Narrow-sense heritability (h2) with their standard errors (±SE), from 
ABLUP and GBLUP models for nine different wood properties measured in Norway spruce
Trait Approach Trained 

data
Additive variance (σ2

A)  Residual variance (σ2
e )  Narrow-sense heritability 

(h2) 

ABLUP GBLUP ABLUP GBLUP ABLUP GBLUP
DENS A G0 NA 612.284 (356.346) NA 978.316 (458.689) NA 0.384 (0.246)

B G1H 1041.527 (114.337) 380.470 (108.856) 397.987 (100.456) 916.750 (137.573) 0.723 (0.072)  0.293 
(0.089)

C G1E 664.338 (96.695) 703.957 (291.097) 553.442 (86.447) 137.162 (314.406) 0.545 (0.073)  0.836 
(0.367)

EWDENS A G0 NA 168.308 (95.332) NA 302.923 (123.240) NA 0.357 (0.221)
B G1H 428.212 (47.818) 181.418 (47.530) 159.442 (42.013) 352.030 (59.278) 0.728 (0.073) 0.340 (0.095)
C G1E 257.284 (39.217) 181.688 (114.837) 244.056 (35.370) 195.875 (131.263) 0.513 (0.073) 0.481 (0.321)

TWDENS A G0 NA 631.197 (286.197) NA 568.799 (362.806) NA 0.525 (0.270)
B G1H 676.495 (91.330) 334.379 (86.470) 559.101 (80.274) 753.093 (109.147) 0.547 (0.066) 0.307 (0.084)
C G1E 632.409 ( 98.203) 470.343 (284.418) 645.384 (89.029) 485.796 (324.432) 0.494 (0.072) 0.491 (0.314)

LWDENS A G0 NA 1425.027 
(560.087)

NA 1069.156 (705.878) NA 0.571 (0.255)

B G1H 928.969(161.008) 570.011 (159.936) 1578.36 (153.236) 1653.805 (205.923) 0.370 (0.062) 0.256 (0.075)
C G1E 1501.219 (267.673) 866.382 (650.081) 1278.462 (196.591) 1624.849 (764.519) 0.540 (0.073) 0.347 (0.273)

RWT A G0 NA 0.002 (0.097) NA 1.345 (0.157) NA 0.001 (0.072)
B G1H 0.275 (0.036) 0.098 (0.035) 0.236 (0.032) 0.453 (0.047) 0.537 (0.065) 0.178 (0.067)
C G1E 0.154 (0.036) 0.165 (0.139) 0.392 (0.035) 0.395 (0.166) 0.282 (0.064) 0.294 (0.259)

MOE A G0 NA 3.90e-07 (NA) NA 3.992 (0.917) NA 0.00
B G1H 1.593 (0.291) 0.711 (0.289) 3.010 (0.279) 3.838 (0.388) 0.346 (0.061) 0.156 (0.065)
C G1E 1.468 (0.311) 0.323 (0.504) 3.051 (0.298) 3.349 (0.686) 0.324 (0.066) 0.088 (0.139)

MFA A G0 NA 0.335 (1.664) NA 20.190 (2.572) NA 0.016 (0.081)
B G1H 2.970 (0.999) 1.813 (1.070) 15.088 (1.022) 17.331 (1.496) 0.164 (0.054) 0.095 (0.06)
C G1E 3.687 (1.298) 3.622 (4.063) 17.622 (1.328) 18.217 (5.114) 0.173 (0.060) 0.165 (0.191)

TWTH A G0 NA 0.009 (0.006) NA 0.024 (0.008) NA 0.288 (0.206)
B G1H 0.019 (0.002) 0.007 (0.002) 0.013 (0.002) 0.022 (0.003) 0.585 (0.068) 0.25 (0.08)
C G1E 0.013 (0.002) 0.013 (0.005) 0.011 (0.001) 0.004 (0.006) 0.501 (0.071) 0.773 (0.328)

TC A G0 NA 100.778 (138.430) NA 889.317 (189.915) NA 0.101 (0.144)
B G1H 397.691 (64.486) 134.075 (62.047) 581.305 (60.742) 743.338 (82.438) 0.406 (0.063) 0.153 (0.073)
C G1E 315.402 (53.965) 392.264 (162.005) 398.781 (48.623) 191.819 (178.172) 0.441 (0.070) 0.671 (0.292)

G0: mother plus-trees; G1H: progenies in Höreda trial; G1E: progenies in Erikstorp trial

DENS: Wood density, EW Earlywood, TW Transition wood, LW Latewood, RWT Ring width, MOE Modulus of elasticity, MFA Microfibril angle, TWTH Tracheid wall 
thickness, TC Tracheid coarseness
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prediction accuracy (ACC) for various wood properties, 
as shown in Fig.  3 and Table S1. Overall, RWT, MOE, 
and MFA exhibited lower PA and ACC compared to 
wood density and its components (EWDENS, TWDENS, 
LWDENS), TWTH, and TC across all models.

Under Approach-A, the PA values for density-related 
properties, TWTH, and TC based on GBLUP ranged 
from 0.18 to 0.31 when validated on G1H and from 0.17 
to 0.26 when validated on G1E. In contrast, the PA values 
for RWT, MOE, and MFA based on GBLUP was substan-
tially lower, ranging from − 0.11 to 0.17 when validated 
on G1H and from − 0.07 to 0.11 when validated on G1E.

When comparing ABLUP and GBLUP under 
Approach-B, with validation on G0 trees, values of PA 
ranged from 0.40 to 0.46 for ABLUP and from 0.19 to 
0.36 for GBLUP in density-related traits, TWTH and 
TC. A similar pattern was observed with models trained 
under Approach-C and validated on G0 trees, where PA 
ranged from 0.36 to 0.44 for ABLUP, and from 0.16 to 
0.29 for GBLUP. Under these approaches and validation 
on G0 trees, PA values for RWT, MOE, and MFA, ranged 
from − 0.08 to 0.26 across ABLUP and GBLUP models.

When models were trained under Approach-B and val-
idated on G1E individuals, PA values for density-related 
properties, TWTH, and TC ranged from 0.19 to 0.36 
for ABLUP and from 0.14 to 0.27 for GBLUP. For RWT, 
MOE, and MFA, under the same approach, PA values 
were lower, ranging from 0.08 to 0.26 across both models.

Similarly, when models were trained under Approach-
C and validated on G1H individuals, PA values for den-
sity-related properties, TWTH, and TC ranged from 0.05 
to 0.29 for ABLUP and from 0.12 to 0.26 for GBLUP. For 
RWT, MOE, and MFA in this scenario, PA values ranged 
from 0.12 to 0.24 across the models.

The ACC patterns were generally similar to those 
observed for PA, with MFA, MOE, and RWT showing 
lower ACC values across models and approaches. For 
instance, when the GBLUP model was trained under 
Approach-A and validated on G1H and G1E trees, the 
ACC values for RWT, MOE, and MFA were nearly zero 
or inestimable. In contrast, for density-related properties, 
TWTH, and TC, the same model yielded ACC values 
ranging from 0.40 to 0.57 when validated on G1H and 
from 0.25 to 0.66 when validated on G1E.

When models were trained under Approach-B and val-
idated on G0, ACC values for density-related properties, 
TWTH, and TC ranged from 0.48 to 0.75 for ABLUP and 
from 0.49 to 0.71 for GBLUP. Under Approach-B and 
validation on G1Eindividuals, ACC values for such traits 
ranged from 0.30 to 0.53 for ABLUP and from 0.27 to 
0.46 for GBLUP.

For models trained under Approach-C and validated 
on G0, ACC ranges for density-related traits, TWTH, 
and TC were 0.55 to 0.61 for ABLUP and 0.19 to 0.50 for 
the GBLUP. However, when validated for G1H individu-
als, ABLUP model yielded values from 0.08 to 0.41 and 
GBLUP model yielded values from 0.14 to 0.44.

Fig. 3  Predictive ability (PA) and prediction accuracy (ACC) of ABLUP and GBLUP models trained and validated under three different approaches for nine 
different wood properties in two generations of Norway spruce. In Approach-A, models were trained using phenotype data from mother (G0) trees and 
validated on progeny (G1) in Höreda (G1H) and Erikstorp (G1E). In Approach-B, models were trained using phenotype data from G1H and validated on G0 
and G1E. In Approach-C, models were trained using phenotype data from G1E and validated on G0 and G1H. TS: training set; VS: Validation set.
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Assessment of early training and phenotyping methods in 
GBLUP
Figure  4 presents the PA (A) and ACC (B) of GBLUP 
models trained under Approach-A using wood density 
(DENS) measurements from rings 1 to 21 of G0 trees. 
Two training methods were used: (1) cumulative area-
weighted estimates (AWE-GBLUP), reflecting evalua-
tions based on the whole radial profile, and (2) single 
annual-ring direct DENS measurements (SAD-GBLUP), 
reflecting non-destructive sampling under the bark at a 
specific timepoint. These models were then validated 
using DENS data from (1) the juvenile portion (inner-
most 10 annual rings) and (2) whole core data (all avail-
able rings) of progeny in Höreda (G1H) and Erikstorp 
(G1E).

Across both trials, PA based on both validation alterna-
tives (juvenile wood or all available rings) increased from 
the pith, peaked around rings 12–18, and then declined 
toward the bark.

In Höreda, PA based on AWE-GBLUP reached a maxi-
mum value of 0.25 when validated using all available 
rings of progenies and a maximum value of 0.21 when 
validated using only the innermost 10 annual-rings, 
both at ring number 16. In Erikstorp, PA based on AWE-
GBLUP peaked at approximately 0.25 at ring number 15 
for both validation methods.

When trained using SAD-GBLUP, PA values for both 
validation methods in both trials fluctuated along the 
cambial age. Initially, PA increased from the pith to ring 
number 7, then declined significantly between rings 9 
and 11, before increasing again and stabilizing toward the 
bark.

Similar to the trend observed for PA, the ACC values 
of SAD-GBLUP model exhibited greater fluctuations 
along the cambial age compared to the AWE-GBLUP 
model. When validated on G1H, ACC values reached 
their lowest levels between annual rings 9 and 11, aligned 
with the lowest PA values, whereas h2 estimates (Fig. S1 
and Table S2) were highest at these ages. As the PA of 
the models declined beyond ring 16, the corresponding 
ACC values became increasingly unstable and potentially 
unreliable. Therefore, ACC values are presented up to 
ring 16 in Fig. 4.

Discussion
To the best of our knowledge, this is the first study to 
investigate genomic prediction in Norway spruce using a 
two-generation dataset that includes quality and growth 
traits assessed from wood increment cores in two differ-
ent environments. Our results provide practical insights 
for the operational deployment of genomic selection 
(GS) in conifer breeding, particularly for economically 
important wood quality traits like density. We explored 
the efficiency of forward and backward GS across two 

generations and environments using three different 
assessment approaches. We specifically evaluated the 
performance of the GBLUP model under Approach-A 
across multiple cambial ages. The model was indepen-
dently validated using wood density data representing 
both the early and later growth phases of progeny in 
Höreda (G1H) and Erikstorp (G1E). The main objective 
was to identify the optimal selection age for GBLUP and 
to evaluate if wood juvenility influences the outcomes of 
GS.

Additionally, we compared the GBLUP models trained 
using both cumulative area-weighted density (AWE-
GBLUP) and single annual-ring density measurements 
(SAD-GBLUP) from the parental mother (G0) trees. The 
motivation was to determine whether the added cost and 
effort of accumulative measurements, which provide a 
comprehensive radial history of wood development, are 
justified, or if the more practical direct methods, which 
primarily assess a limited number of rings near the bark, 
suffice for accurate breeding decisions. Our findings 
underscore the importance of developing context-spe-
cific models to enhance the accuracy and reliability of 
genomic prediction in forest tree breeding.

Various statistical methods are available for predicting 
genetic values, broadly classified into two groups: those 
that estimate individual marker effects (e.g., Bayesian 
shrinkage, ridge regression, Bayesian LASSO) [45] and 
those that utilize genomic relationships among individu-
als derived from the markers (e.g., GBLUP) [46]. While 
empirical and simulation studies in forestry suggest 
that the choice of statistical method has a small impact 
on the efficiency of GS [4, 22, 23, 47], GBLUP is gener-
ally preferred for routine genomic evaluations due to 
its computational efficiency and similarity to the tradi-
tional pedigree-based BLUP model [22, 23, 48]. Further-
more, unlike traits such as disease resistance, which may 
be controlled by a few large-effect genes and are better 
predicted using Bayesian-based methods [49], key for-
estry traits such as growth and wood properties exhibit 
polygenic inheritance, controlled by many small-effect 
loci, making GBLUP models well-suited for their predic-
tion [23]. Therefore, to evaluate the efficiency of GS for 
growth and wood properties, we primarily focused on 
GBLUP and compared it with pedigree-based (ABLUP) 
approaches.

Quantitative-genetic parameters and relatedness
It is well-recognized that reliable estimates of addi-
tive genetic variance ( σ 2

A) are critical for the success of 
genetic improvement programs [40]. Nevertheless, σ 2

A

estimates derived from offspring of open-pollinated 
(OP) families might be inflated because the assumption 
of ‘half-sibling’ relationships is rarely met. Moreover, OP 
family mating schemes face challenges in disentangling 
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Fig. 4  Predictive ability (PA) (A) and prediction accuracy (ACC) (B) for wood density of GBLUP models under Approach-A trained using (1) cumulative 
area-weighted (top panel) and (2) single annual-ring direct (bottom panel) wood density measurements from individual rings 1 to ring 21 of mother plus 
trees (G0) and validated using wood density data from the juvenile portion (innermost 10 annual rings, red line) and whole core data (all available rings, 
blue line) of progeny in Höreda and Erikstorp
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additive from non-additive genetic effects due to shallow 
pedigrees and a lack of connectedness among the tested 
families [50–52].

In our study, we observed a substantial reduction 
in σ 2

A, and consequently, a decrease in narrow-sense 
heritability estimate ( h2) when the GBLUP model was 
applied, compared to the ABLUP model, particularly 
for density-related traits. This reduction is not neces-
sarily indicative of lower model performance but rather 
reflects the fact that GBLUP captures realized genomic 
relationships using SNP data. Notably, the estimated 
genomic pairwise relationships among individuals within 
families often deviated from the expected coefficient of 
relatedness of 0.25 for half-siblings, while relationships 
among individuals from unrelated families remained 
close to the expected value of 0.0 (Fig. 2). Such findings 
suggest that discrepancies in the expected pedigrees, 
and therefore in the pairwise relationships, were effec-
tively corrected using SNP data. Additionally, the dense 
SNP data likely captured hidden genetic variation among 
unknown fathers and possibly also Mendelian sampling/
segregation within families, allowing genetic variance 
estimates to reflect the true genomic proportions among 
half-siblings.

However, it is worth noting that the number of indi-
viduals used in ABLUP was not equal to that used in 
GBLUP. To ensure a fair comparison between the two 
models, analyses should ideally be based on the same set 
of individuals. The observed differences may, therefore, 
partly reflect this imbalance. Nevertheless, we performed 
an additional analysis using a subset of individuals com-
mon to both models for density, and the results were 
consistent with those obtained using the full ABLUP 
dataset (data not shown). That said, a direct comparison 
between ABLUP and GBLUP is not the main objective 
of this study; rather, our main objective was to assess the 
predictive performance of models using the existing data.

Evaluation of the models’ performances
The evaluation of GS efficiency in forestry, and many 
other crops, has primarily relied on cross-validation 
schemes, often by splitting the same generation for both 
model training and validation. While this approach pro-
vides valuable insights into GS performance within a spe-
cific context, its reliability is diminished when applied to 
multigenerational breeding. This is due to the decrease 
in relatedness between the training set (TS) and valida-
tion set (VS) [53] as well as changes in linkage disequi-
librium (LD), caused by genetic recombination, selection, 
and drift [54, 55]. Although limited, a few studies have 
explored the utility of GS across generations, includ-
ing those in maritime pine (Pinus pinaster Ait.) [4] and 
E. grandis [56]. In the latter study, the effectiveness 
of the GS model was further evaluated by measuring 

the realized PA, which was obtained by comparing the 
genomic estimated breeding values (GEBVs) with actual 
phenotypic data for volume growth, wood density, and 
pulp yield across four generations. The authors con-
cluded that GS is more efficient for predicting wood qual-
ity traits but remains challenging for predicting growth 
traits.

As breeding programs advance in their implementa-
tion of GS, the need for rigorous validation becomes 
increasingly critical. This includes predicting progeny 
performance for forward selection, predicting paren-
tal performance for backward selection, and assessing 
genomic performance across trials. In this study, we eval-
uated the accuracies of ABLUP and GBLUP predictions 
using an independent validation method, where no indi-
viduals or environments were shared between TS and VS, 
ensuring a true validation of evaluations. In general, and 
as expected, Predictive ability (PA) and prediction accu-
racy (AC) followed a similar trend to their correspond-
ing narrow-sense heritability estimates ( h2). PA and 
ACC for wood properties were significantly higher than 
for ring width (RWT), modulus of elasticity (MOE), and 
microfibril angle (MFA), traits associated with lower h2. 
These results align well with previous studies comparing 
the genetic control and prediction efficiencies of growth 
and wood properties in Norway spruce [30, 31, 57] and 
some other species [56]. Such pattern is consistent with 
the general findings in forest trees, where adaptive traits, 
such as growth-related properties, exhibit complex 
inheritance patterns and often have lower heritability due 
to strong environmental influences and polygenic control 
[58]. In contrast, wood properties, may be influenced by 
genes with alleles of larger effect or by genes in stronger 
linkage disequilibrium (LD) with markers, giving them 
greater power to explain phenotypic variation [59].

Regarding MFA and MOE, it is well-documented that 
the estimated genetic parameters of these traits often 
exhibit high standard errors. This is most likely due to 
significant within- and among-tree variations [60], as 
well as the challenges in obtaining precise measure-
ments for these traits [61]. As such, ACC for RWT, MOE, 
and MFA using forward GBLUP, backward ABLUP and 
GBLUP models, was mostly inestimable due to the very 
low or nearly zero estimates of PA and h2 for these traits. 
Despite this, the ACC values of RWT, MFA, and MOE 
were significantly higher when the ABLUP and GBLUP 
models were used to predict the performance of prog-
enies in a separate trial. We speculate that this obser-
vation results from the model leveraging the shared 
genetic structure among progenies within the same gen-
eration, particularly given the low G × E interaction levels 
observed for these traits across the two trials [29].

Theoretically, genomic prediction of non-phenotyped 
genotypes based on the GBLUP approach is strongly 
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dependent on the relationship between the TS and the 
VS. In the context of pedigree inheritance, a parent 
contributes 50% of its genetic material to its offspring, 
whereas half-sib individuals, exhibit an expected genetic 
relatedness of 25%. Based on this, higher ACC would be 
expected for cross-generation predictions compared to 
within- generation predictions of half-sib individuals. 
This assumption, however, was only valid for high-herita-
bility traits in our study, particularly for backward selec-
tion predictions, and especially when a larger and diverse 
set of individuals were included in the TS (Approach-B). 
This finding further supports the idea that for high-heri-
tability traits, the haplotype structures and genetic relat-
edness responsible for prediction accuracy are preserved 
and remain more stable across the breeding cycles [62].

It is worthwhile to mention that dominance and epi-
static effects contribute significantly to the growth prop-
erties of Norway spruce [63–65]. Although GBLUP 
provides accurate predictions of breeding values, it esti-
mates additive genetic effects unless specifically modi-
fied. Since forward GBLUP models, which largely rely 
only on parental phenotypes, do not capture non-addi-
tive and environmental variances, their effectiveness in 
prediction of growth-related properties may be limited in 
species like Norway spruce, where both non-additive and 
epigenetic effects [66] play a crucial role.

Assessment of early training and phenotyping methods for 
density using GBLUP
Across both trials, PA based on both validation alterna-
tives (juvenile vs. all available rings) increased from the 
pith, peaked around rings 15–16, and then declined 
toward the bark. This pattern may be attributed to the 
fact that most G1 individuals have up to 16 annual rings, 
with the number of individuals decreasing beyond this 
age toward the bark. In most cases, PA from whole-core 
validation was slightly higher than, or comparable to, that 
from juvenile-ring validation. This indicates that selec-
tion based on early assessed wood density in G0 parents 
can serve as an effective training set for predicting per-
formance in their offspring, regardless of age. This finding 
is further supported by the strong age–age correlations 
previously reported for this trait in these trials [29]. Simi-
larly, both training alternatives (single annual-ring direct 
measurements (SAD-GBLUP) and cumulative whole core 
measurements (AWE-GBLUP)) resulted in comparable 
PA and ACC values. This indicates that standing tree-
based measurements, without the need for deep coring 
into the stem, can serve as a cost-effective alternative 
for model training, consistent with previous findings in 
Norway spruce [30]. However, SAD-GBLUP introduced 
greater variability along the cambial age, as this method 
focuses on a specific tree ring where wood density fluc-
tuates between earlywood and latewood. In contrast, 

AWE-GBLUP reduces this variability by integrating mea-
surements across multiple rings. Despite these differ-
ences, both training methods exhibited a similar trend, 
with PA and ACC decreasing between rings 7 and 11. 
This decline may reflect variability in wood development 
as trees transition from juvenile to mature wood [67]. For 
wood density, the transition is typically reported to occur 
between cambial ages 8 and 12 [68]. Additionally, this 
trend might be influenced by environmental factors, such 
as climatic fluctuations, which could have affected wood 
formation and contributed to increased phenotypic vari-
ability at these ages.

Conclusions
This study represents the first genomic selection (GS) 
analysis in Norway spruce using a two-generation data-
set incorporating secondary growth and wood quality 
traits assessed across two environments. Our findings 
highlight the potential of GBLUP-based models for effec-
tive forward and backward selection, especially for high-
heritability traits such as wood density, based entirely on 
true validation schemes. Notably, direct measurement 
approaches provided comparable prediction accuracies 
to whole-core approaches, supporting the use of more 
practical and cost-effective phenotyping methods in 
operational breeding programs. However, certain limita-
tions should be acknowledged. Although a direct com-
parison between the performance of ABLUP and GBLUP 
was not the primary objective of this study, some of the 
observed differences may partly reflect the unequal 
number of individuals used in each model. Addition-
ally, lower accuracy for traits with low heritability likely 
reflects the influence of non-additive genetic effects and/
or the need for a higher number of individuals per fam-
ily. Despite these constraints, our findings emphasize the 
need for trait- and context-specific GS strategies in coni-
fer breeding. Future efforts should aim to expand train-
ing populations, incorporate non-additive genetic effects, 
and validate model performance across cambial ages 
while accounting for climatic variability during the corre-
sponding growth years. Overall, this study offers a valu-
able foundation for implementing GS in Norway spruce 
breeding programs.
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