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1. Introduction

A major challenge in climate change science is to identify, model, 
and assess the risks of self-amplifying feedback loops between climate 
and terrestrial ecosystems. With climate change the risk of systems 
reaching tipping points due to such feedbacks increases (Kaufmann and 
Pretis, 2023; Lenton et al., 2019; Menon et al., 2007; Roe, 2009) and 
may already be unfolding.

Such is the case for the greenhouse gas (GHG) nitrous oxide (N2O), 
where its recent steep rise in atmospheric concentration cannot be 
explained by an increase of global nitrogen fertilization alone (Griffis 
et al., 2017; Rychel et al., 2020; Thompson et al., 2019), suggesting 
self-amplification. Episodic events such as dry-wet and freeze-thaw cy
cles, capable of triggering peak N2O emissions (Congreves et al., 2018) 
known as hot moments (McClain et al., 2003), are likely contributors to 
such self-amplification. Hot moments are generally triggered by rapid 
changes in soil water and enhanced substrate availability leading to 
shifts in microbial activity. Rewetting, through precipitation, irrigation 
or thawing reactivates microbes and under increased anaerobiosis 
denitrification is enhanced which triggers an emission pulse of N2O 
(Congreves et al., 2018).

Recently, more attention has been paid to freeze-thaw than to dry- 
wet cycles due to their apparent higher potential to increase emissions 
(Congreves et al., 2018) and uncertainties remaining regarding their 
impact on N2O emissions in the first place. While some studies associate 
dry-wet cycles induced hot moments rather with CO2 emissions (Sang 
et al., 2022), the majority of available studies suggest, that agricultural 
soils rich in labile carbon (C) and reactive nitrogen (N) are capable of 
producing extreme N2O emission pulses when rewetting follows extreme 
drying (Anthony and Silver, 2021; Barrat et al., 2020; Guo et al., 2014; 
Harris et al., 2021; Molodovskaya et al., 2012; Song et al., 2022). 
Despite their high emission potential (Anthony and Silver, 2021; Barrat 
et al., 2020; Guo et al., 2014), the long-term relevance of meteorological 
dry-wet cycle induced hot moments under climate change remains 

uncertain as reported contributions to annual N2O emissions range from 
as little as 2 % to as high as 70 % (Zhao et al., 2011; Davidson, 1992). 
Yet, as current climatic changes indicate an increase in dry-wet cycles 
across the whole globe in the near future (Chai et al., 2021; IPCC, 2014) 
and N-fertilizer inputs continue to rise (Griffis et al., 2017; Aryal et al., 
2022; Huang et al., 2022a), both the magnitude and frequency of such 
events will most likely increase as well. Assessing the potential risk of 
self-amplifying N2O feedbacks from nutrient rich agricultural soils 
under these changing conditions is therefore critical.

Biogeochemical models are widely used to simulate soil-climate in
teractions and are well suited for projecting such feedbacks. However, to 
simulate hot moments accurately, models must capture short-term soil 
moisture dynamics and need to be responsive to meteorologically 
induced dry-wet cycles. Meaning, it is imperative to use best possible 
climate projections for highly likely future scenarios. However, 
depending on the combination of Global Circulation Model (GCM) and 
Regional Climate Model (RCM) and the applied post processing tech
niques, individual future climate projections inherit a high degree of 
variability and uncertainty, especially with regards to precipitation 
distribution and climate extremes (Iles et al., 2020; Lhotka and Kyselý, 
2022; Sillmann et al., 2017). Although projection uncertainty can be 
reduced by using a Multi Model Ensemble (Tegegne et al., 2020; Wang 
et al., 2018) and by calculating the ensemble mean (Tegegne et al., 
2020; Wang et al., 2018; Balhane et al., 2022), it comes with the risk of 
smoothing precipitation patterns and climate extremes (Tegegne et al., 
2020) which are essential for robust N2O predictions, especially in the 
context of dry-wet cycles.

Compounding these challenges, biogeochemical models need to 
perform satisfyingly under default parametrization as they are increas
ingly applied at larger scales (Ogle et al., 2020), where site specific 
parametrization is challenging and often not feasible. This makes it 
critical to evaluate how well models perform under default parametri
zation and whether they are able to capture key feedback mechanisms 
such as dry-wet cycle induced hot moments when driven by an ensemble 
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of future climate projections. Even if field and laboratory studies have 
yet to conclusively demonstrate how significantly such events 
contribute to cumulative annual emission rates.

In this study we analyzed how biogeochemical models input with 
climate projections respond to meteorologically induced dry-wet cycles 
as characterized by precipitation heterogeneity and whether they cap
ture the potential for self-amplifying feedbacks in the form of N2O hot 
moments from agricultural soils under climate change. We conducted 
three calculation exercises using the models CANDY, LDNDC, DNDC and 
DayCent within a simplified, theoretical simulation setup comparing 
annual N2O emission rates and associated hot moments under default 
model parametrization. All biogeochemical models were driven by the 
same ten climate projections of the EURO-CORDEX ensemble, including 
the ensemble mean in the first calculation exercise.

2. Methods

2.1. Biogeochemical models

All simulation exercises were performed with the four process based- 
biogeochemical models CANDY v.22.6 (Carbon & Nitrogen DYnamics) 
(Franko et al., 1995), LDNDC v.1.35 (Landscape DeNitrification & 
DeComposition) (Haas et al., 2013), DNDC95 (DeNitrification & 
DeComposition) (Li et al., 1992a, 1992b) and DayCent17EVI (Daily 
CENTURY) (Parton et al., 1998). Running on daily time steps, input 
parameters include information about soil properties, agricultural 
management applications as well as daily meteorological data including 
precipitation, temperature (mean, min, max) and global radiation. In
formation about shared soil input parameters as well as management 
schedules can be retrieved from Table S1 and Table S2, respectively. 
Detailed information, manuals and supplementary materials regarding 
the individual biogeochemical models can be requested and or down
loaded for CANDY (https://www.somod.info/candy_cdy22_intro.php), 
LDNDC (https://ldndc.imk-ifu.kit.edu), DNDC (https://www.dndc.sr. 
unh.edu). DayCent is available upon request from the developers.

2.2. Climate data and scenario development

The first calculation exercise established the baseline simulation 
framework using ten climate projections (Table S3) from the EURO- 
CORDEX ensemble (Jacob et al., 2014). These projections include 
daily information about minimal, maximal, and mean temperature, 
mean daily precipitation and surface downward solar radiation at a 
spatial resolution of 0.11◦ (~12.5 km). Stuttgart, which represents a 
location in between maritime and continental conditions in Germany, 
was selected as model-region to represent the future changes in climatic 
conditions. The mean regional climate consisted of the regions 
08111/08115/08116/08118/08119 (‘Stuttgart und angrenzende 
Landkreise’) as described by GERICS ‘Klimaausblicke für Landkreise’. 
The climate projections were selected based on demonstrating the 
smallest relative bias in mean precipitation between April and 
September from 1971 to 2000 compared to HYRAS (hydrometeorology 
gridded dataset), which served as the reference observational dataset. 
All multi-model ensemble projections are based on IPCC’s Representa
tive Concentration Pathway (RCP) scenario, RCP 8.5. This scenario as
sumes an increase of GHG emissions throughout the 21st century, 
resulting in an increase in radiative forcing of 8.5 W m− 2 by the end of 
the century relative to its pre-industrial levels. The multi-model 
ensemble mean was calculated similar to Wang et al. (2018), and 
weighting of individual projections are assumed equal. The results from 
this first calculation exercise, the baseline, served as the reference for 
evaluating model behaviour and were used for comparison in all sub
sequent simulation exercises.

In the second calculation exercise, we aimed to assess the isolated 
impact of projected changes in precipitation patterns under climate 
change on simulated N2O emissions. To achieve this, we manipulated 

each of the climate projections by excluding temperature development 
with climate change and instead fixing daily temperature values to those 
from year 1972 for each respective projection. This approach ensures 
that any variation in simulated N2O emission patterns can be directly 
attributed to changes in precipitation, while also allowing an indirect 
assessment of temperatures effect by comparing with the baseline 
established in the first exercise.

For the third calculation exercise, to evaluate model performance 
under conditions favouring an increase in dry-wet cycles, we designed 
specific precipitation-free scenarios (PFS). In these scenarios, the annual 
precipitation sum of each year was kept constant but redistributed 
randomly over the year based on a defined probability that any given 
day could be precipitation free. For example, in PFS-10 %, approxi
mately 10 % of the days (~35 days) are precipitation free, resulting in a 
relative homogeneous distribution of precipitation across the remaining 
90 % of days and a low probability for dry-wet cycles. In contrast, a PFS- 
70 % leaves ~255 days without precipitation, concentrating the same 
annual precipitation on just 30 % of annual days, resulting in much more 
intense individual precipitation events and higher probability for 
changing dry-wet conditions. Increasing PFS values therefore directly 
correspond to an increased intensity of dry-wet cycles until a critical 
threshold is reached, beyond which the number of dry days exceeds the 
probability for dry-wet cycles to occur. We applied this approach across 
all ten projections with PFS values ranging from 0 % to 90 % (+-1 %) in 
10 % increments.

Results from all calculation exercises were summarised and pre
sented in 30-year intervals (2010–2039, 2040–2069, 2070–2099). In the 
first calculation exercise, simulated emissions were evaluated relative to 
a historical reference period (1980–2009). In the second and third ex
ercise, the baseline emission trends then served as the reference for the 
manipulated climate simulation scenarios, as described above.

2.3. Simulation setup

In order to specifically address the influence of climate change- 
induced temperature and precipitation changes on simulated N2O 
emissions, certain adjustments and simplifications were made to the 
simulation setup. The total simulation period was divided into individ
ual simulation periods, each consisting of a three-year spin-up followed 
by the result year for evaluation.

During the spin-up period, meteorological data from the related 
result year was repeated. Further simplifications included soil profile 
homogenization and the annual repetition of a single agricultural 
management practice. Specifically, we assumed a crop rotation of winter 
wheat with three fertilization applications totalling 240 kg N ha− 1 

year− 1, reflecting high N fertilization levels. Expected yield was set to 
7.28 t ha− 1 as derived from the average yield data for Germany from 
1995 to 2016 (Faustzahlen für die Landwirtschaft, 2018) including the 
yield data from 2022 (BMEL - Bundesministerium für Ernährung und 
Landwirtschaft). These measures aim to minimize potential C and N 
accumulation or loss, ensuring that changes in N2O emissions can be 
attributed solely to climate change.

2.4. CANDY

CANDY (Carbon And Nitrogen DYnamics) simulates C and N dy
namics with a focus on agricultural systems (Franko et al., 1995). 
CANDY incorporates sub-models for soil water, temperature, and crop 
growth. The model simulates N2O emissions resulting from denitrifica
tion, influenced by soil temperature and water content. The soil profile is 
divided into 20 homogeneous layers of 10 cm thickness. Hydrological 
processes are modelled using the capacity (or tipping bucket) concept, 
allowing downward water flux only when field capacity is exceeded. 
Nitrogen losses occur through leaching of nitrate (NO3

− ) and gaseous 
emissions including ammonia volatilization and N2O emissions, trig
gered by anaerobic turnover (Meurer et al., 2016). Denitrification rate 
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calculation involves soil moisture and temperature reduction functions, 
NO3

− pool size, and carbon in the active soil organic matter pool, limited 
by a denitrification constant. Similar to Parton et al. (1996), dinitrogen 
(N2) and N2O are considered together during denitrification and parti
tioned based on factors including water filled pore space, CO2 produc
tion, NO3

− concentration and soil texture.

2.5. DNDC

DNDC95 simulates daily and seasonal C and N dynamics as well as 
GHG emissions with focus on agricultural soils in a 0–50 cm soil profile 
with multiple layers (Li et al., 1992a, 1992b), where the depth of each 
layer is determined by the saturated hydraulic conductivity (Zhang 
et al., 2021). The model includes submodules for soil climate, crop 
growth, decomposition, and denitrification, incorporating detailed soil 
C and N cycling. Across the soil profile, soil physical properties are 
assumed to be uniform with the exception of C and N pools of various 
layers which are logarithmically initialized using input data. The ‘tip
ping-bucket’ approach is adopted to simulate downward soil water 
movement which is dependent on each layer’s water storage capacity 
such as field capacity, involving a rapid drainage of a soil layer to the 
next once it reaches field capacity (Parton et al., 1998). DNDC assumes 
the ‘anaerobic balloon’ concept to be applied to determine conditions 
and allocate substrates required for nitrification and denitrification, 
occurring simultaneously at aerobic and anaerobic microsites, respec
tively (Zhang et al., 2021). The rate of nitrification is controlled by soil 
temperature, moisture, pH, and nitrifier activity (Wang et al., 2021). 
Following the ’leaky pipe’ concept described by (Stange et al., 2000), 
N-trace gas production during nitrification is determined by the fraction 
of nitrified ammonium, which varies with soil moisture, temperature, 
and pH. Nitrification is impacted only when water-filled pore space 
(WFPS) > 0.05, with a negative linear association (Wang et al., 2021). 
During denitrification, the DNDC model simulates the sequential 
reduction of NO3

− to NO2, NO, N2O, and ultimately to N2 using 
Michaelis-Menten kinetics and the Pirt functions (Zhang et al., 2021; 
Wang et al., 2021). The rate of each reduction step is determined as a 
function of denitrifiers, dissolved organic carbon (DOC), specific 
nitrogenous oxides, temperature, redox potential (Eh), and soil pH 
(Wang et al., 2021).

2.6. LDNDC

LDNDC, a simulation framework designed for terrestrial ecosystem 
models at both site and regional scales (Haas et al., 2013), originates 
from the site-scale model MoBiLE (Grote et al., 2009), which was 
developed based on the earlier models Arable-DNDC and Forest-DNDC 
(Li et al., 1992b, 1994; Stange et al., 2000). Its modular design allows 
the utilization of exchangeable sub modules including the soil-chemistry 
module MeTrx (Kraus et al., 2015, 2016), the plant growth model Pla
Mox (Kraus et al., 2016), the hydrology module WatercycleDNDC (Kiese 
et al., 2011) and the microclimate module CanopyECM (Grote et al., 
2009). In LDNDC, the depth of the soil profile and the number of layers is 
flexible, and user defined. In MeTrx, nitrification is modelled as a 
two-stage process where ammonia is stepwise oxidised to NO2

− and to 
NO3

− . While the second step of nitrification is calculated independent of 
microbial biomass, the first step of nitrification depends on microbial 
biomass and growth rate described as a function of DOC, O2 and NH4

+. 
Here, nitrification is slightly negatively correlated with pH (Booth et al., 
2005) and influenced by soil temperature and moisture (Boos et al., 
2024). Microbial denitrification is calculated as a four-step process 
including the stepwise reduction of the nitrogen species NO3

− , NO2
− , NO 

and N2O. The denitrification rate of each nitrogen species is determined 
by its relative abundance, and all denitrification steps are calculated 
based on the actively denitrifying microbial biomass. The activity of 
these microbes is regulated by a harmonic mean of soil temperature and 
water content dependent response coefficient. Similar to nitrification, 

the microbial growth rate dependents on the availability of carbon and 
nitrogen (Boos et al., 2024). One important feature of LDNDC is its 
unique capability to simulate multiple sites simultaneously, ensuring 
that all cells are synchronized with respect to time, which is crucial for 
successful model coupling (Haas et al., 2013; Klatt et al., 2016). For our 
simulation framework we used the soil-chemistry module MeTrx at sub 
daily timesteps for simulating soil carbon and N turnover, the plant 
growth module PlaMox and the hydrology module WatercycleDNDC at 
daily timesteps, respectively.

2.7. DayCent

DayCent is the daily time step version of CENTURY including sub
modules for plant production, soil water, soil temperature, and organic 
matter cycling, nitrification, denitrification, methane oxidation in up
land soils, and methanogenesis in flooded systems (Parton et al., 1998; 
Grosso et al., 2001). The model computes daily WFPS using stored 
water, inputs, evapotranspiration demand, and soil properties like field 
capacity, wilting point, bulk density, and saturated conductivity (Parton 
et al., 1998). Similar to DNDC, DayCent employs the ’tipping-bucket’ 
approach for simulating soil water movement. This method involves 
rapidly draining a soil layer to the next layer once it reaches field ca
pacity, as described by Parton et al. (1998). DayCent simulates N2O 
emissions from both nitrification and denitrification processes, utilizing 
soil WFPS as a proxy for O2 availability to regulate their potential. 
Nitrification is determined by soil NH4

+ concentration, WFPS, soil tem
perature, pH, and soil texture, with N2O flux calculated as a proportion 
of total nitrified N (Parton et al., 2001). Nitrification is limited by soil 
moisture stress and O2 availability, with optimal conditions around 50 % 
WFPS. Furthermore, nitrification rates decline exponentially under 
more acidic pH conditions and decrease with lower temperatures 
(Gurung et al., 2021). Denitrification is a function of soil NO3

− concen
trations, labile C availability (using soil respiration as proxy), WFPS, and 
soil physical properties related to soil texture affecting gas diffusivity. 
Soil temperature and pH do not influence denitrification rates. The 
denitrification rate increases exponentially with higher WFPS values, 
particularly when WFPS >0.6, across all soil textures (Wang et al., 
2021). Initially, DayCent models denitrification as the total denitrifi
cation rate (N2 + N2O), which is then partitioned into N2 and N2O, 
considering the N2/N2O ratio as a function of soil NO3

− , soil respiration, 
WFPS and soil texture (Wang et al., 2021). DayCent assumes no con
sumption of N2O produced in deeper layers. Independent of the soil 
layer, once N2O is produced it is released to the atmosphere (Xing et al., 
2023).

2.8. Statistical analysis

All statistical analyses, data evaluation and visualisation was done 
using R version 4.2.2 (R Core Team, 2022) within the IDE RStudio 
version 2022.12.0.353 (Posit team, 2022) and the package rstatix 
(Kassambara, 2023). Significance testing was done by Kruskal-Wallis 
statistical testing following a Wilcoxon’s test. Significance between 
groups was assumed for p-values <0.05.

’Hot moments‘ of N2O emissions were identified similar to Molo
dovskaya et al. (2012), i.e., by applying the box plot method. Its great 
advantage besides its simplicity to other methods is the linkage of 
magnitude of the numerical event to the median and not the mean 
allowing its usage even for non-normal distributed data (Walfish, 2006). 
In this study, we used the mild approach for the upper fence (UF) 
calculated by the box plot method, applied over a complete year, as a 
primary threshold to identify N2O peak events and potential hot mo
ments, which has been identified as the optimal method to calculate hot 
moments (Stuchiner et al., 2024): 

UF=Q3 + n(Q3 − Q1) (Eq. 1) 

The UF was calculated for each scenario and simulation year, with 
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Q1 as 25th percentile, Q3 as 75th percentile, and n as the fixed distance 
(n = 1.5). Any daily emission flux exceeding the UF was identified as a 
hot moment.

Calculated climate indices included dry days, dry spells, and extreme 
precipitation days. A dry day was assumed if daily precipitation < 1 mm, 
an extreme precipitation day if daily precipitation exceeded 20 mm. The 
identification of dry spells involved setting lower and upper boundaries 
for their duration. Each year was analyzed to determine the occurrence 
of dry spells based on these boundaries for every climate scenario. Dry 
spell lengths were categorized into two groups: 7–10 days and greater 
than 14 days.

Last but not least, if not explicitly available as model output (CANDY 
& LDNDC), WFPS values were calculated similar to Guo et al. (2014): 

WFPS=

⎛

⎜
⎜
⎝

VSWC

1 −

(
bd
pd

)

⎞

⎟
⎟
⎠*100 (Eq. 2) 

where VSWC is the volumetric soil water content [m3 m− 3], bd the bulk 
density [g cm− 3] and pd the particle density [g cm− 3].

3. Results

3.1. Baseline scenario

The trends in annual N2O emissions relative to the reference period 
(dotted line) as simulated by the biogeochemical models, displayed in 
Fig. 1, show distinct patterns depending on the model used. Three of 
four models projected decreasing emissions under future climate pro
jections, which was contrary to our initial expectations. Trends as 
simulated with the Climate Projection Mean (CPM) amplified the trends 
as observed with the Individual Climate Projections (CPI) in both 
increasing and decreasing directions, respectively.

CANDY projected a steady decrease in annual N2O emissions over 
time (Fig. 1). While individual years and projections showed increased 
emissions in some outliers, the median emissions under CPI showed 
significant decreases (p < 0.05): from 19.8 % in the 2010–2039 period, 
to 25 % in 2040–2069, and 30.8 % in 2070–2099 relative to the refer
ence period 1980–2010. The CPM simulations indicated a similar, yet 
slightly larger, decrease compared to CPI, with median decreases of 
21.2 %, 31.4 %, and 43.7 % over the respective periods. Notably, 
emissions in all periods were significantly different between CPM and 

CPI (p < 0.05). LDNDC projected the opposite trend, with a clear in
crease in annual N2O emissions over time (Fig. 1). Under CPI, median 
emissions increased significantly (p < 0.05), by 6.1 % in the first period 
(2010–2039), 28.9 % in 2040–2069, and 64.7 % in 2070–2099. The 
variance in emissions increased notably in later periods, with the largest 
annual outlier showing an increase of approximately 800 % relative to 
the reference period. CPM simulations amplified these trends, showing 
even larger increases of 19.9 %, 147.3 %, and 307.8 % for the three 
respective periods, all significantly different from CPI (p < 0.05). DNDC 
showed minimal changes in annual emissions over time. Median emis
sions under CPI increased slightly, but not significantly, by 0.7 % in 
2010–2039, decreased by 0.3 % in 2040–2069, and increased again by 
1.7 % in 2070–2099 (Fig. 1). Individual years and projections displayed 
occasional outliers with increased emissions compared to the reference 
period. CPM simulations reflected a similar trend, with small but not 
significant increases (with the exception for the last period) in emis
sions: 3.2 % in 2010–2039, 4.4 % in 2040–2069, and 10 % (p < 0.05) by 
2070–2099. DayCent projected decreasing emissions similar to CANDY 
(Fig. 1). Median emissions under CPI showed significant declines (p <
0.05) by 4.3 % in the first period, 16 % in the second, and 30 % in the 
final period. CPM simulations (negatively) amplified CPI trends, though 
the difference between CPM and CPI was not statistically significant. 
Emissions with the CPM significantly decreased by 15.7 % in 
2010–2039, by 18.2 % in 2040–2069 and by 38.1 % in the last period 
compared to the reference period.

In addition to the observed trends in N2O emissions, the number of 
hot moments and their contribution to annual cumulative N2O emissions 
was evaluated under baseline conditions (Table 1). For LDNDC, under 
CPI, the median number of identified hot moment days in the first period 
accounts for 10.9 % of the days in a year contributing 53 % to annual 
cumulative N2O emissions (Table 2). Both the number of hot moments 
and their contribution to annual emission totals decreased over time. In 
the last period, hot moments were identified for 7.7 % of annual days, 
contributing 37.3 % to annual cumulative emissions (Table 1 + 2). 
DayCent exhibited a similar number of hot moments under baseline 
conditions. In the first period, the median number of hot moment days 
was ~11 % of a year, contributing 59.5 % to annual cumulative emis
sions. Like LDNDC, the number of hot moments and their contribution 
decreased over time, though less pronounced. By 2070–2099, 10.4 % of 
the days annually were identified as hot moments, contributing 53.1 % 
to cumulative annual N2O emissions (Table 1 + 2). CANDY and DNDC 
showed significant differences in the number of simulated hot moments, 
both, compared to DayCent and LDNDC, and between each other. In 

Fig. 1. Percentage change in annual N2O emissions relative to the reference period (1980-2009) across 30-year intervals as simulated by the four biogeochemical 
models CANDY (blue), LDNDC (red), DNDC (yellow), and DayCent (grey). Boxplots show the range of all annual N2O emissions under both, the climate projection 
mean (CPM, striped) and the ten individual climate projections (CPI, unpatterned). Upper and lower edges of the inner, saturated boxes represent the 75th and 25th 
percentile, while outer boxes include outliers. Median is shown as white line in the boxes.
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CANDY, the median number of hot moments was 0 across all periods, 
with hot moments identified only in outlier years and projections. In 
contrast, DNDC identified hot moments made up 15.9 % annually in the 
first period, decreasing over time, as in the other models (Table 1 + 2). 

However, in DNDC, the annual contribution of hot moments to cumu
lative N2O emissions remained above 99 % throughout all periods, 
indicating that hot moments were the primary source of N2O emissions 
across the entire simulation period.

Table 1 
Median annual percentage [%] of days identified as hot moment averaged over all ten climate projections.

Treatment CANDY LDNDC

2010–2039 2040–2069 2070–2099 2010–2039 2040–2069 2070–2099

baseline (CPI) 0.0 0.0 0.0 10.9 9.9 7.7
CPM 0.0 0.0 0.0 9.6 5.7 3.0
const. temp. 0.0 0.0 0.0 13.0 12.3 10.4
0 % PFS 0.0 0.0 0.0 6.6 3.0 1.0
10 % PFS 0.0 0.0 0.0 7.1 3.8 1.4
20 % PFS 0.0 0.0 0.0 8.5 3.8 1.6
30 % PFS 0.0 0.0 0.0 7.5 5.7 2.5
40 % PFS 0.0 0.0 0.0 9.3 6.9 3.8
50 % PFS 0.0 0.0 0.0 10.7 8.2 6.0
60 % PFS 0.0 0.0 0.0 10.7 9.6 7.9
70 % PFS 0.0 0.0 0.0 11.8 10.1 8.5
80 % PFS 0.0 0.0 0.0 11.2 9.8 9.3
90 % PFS 0.0 0.0 0.0 9.0 9.0 8.0

​ DNDC DayCent
2010–2039 2040–2069 2070–2099 2010–2039 2040–2069 2070–2099

baseline (CPI) 15.9 15.3 14.0 11.0 10.7 10.4
CPM 19.9 19.7 18.3 11.5 10.8 9.4
const. temp. 15.9 15.3 15.1 11.0 10.4 9.8
0 % PFS 19.2 19.2 18.4 11.2 11.0 10.4
10 % PFS 18.4 17.8 16.7 11.2 11.0 10.4
20 % PFS 17.3 17.0 16.4 11.2 11.0 10.4
30 % PFS 17.3 16.7 15.8 11.2 11.0 10.7
40 % PFS 16.4 16.2 15.1 11.2 11.0 10.4
50 % PFS 15.9 15.3 14.5 11.5 11.2 10.7
60 % PFS 15.1 14.8 14.0 11.2 11.2 10.7
70 % PFS 14.0 13.2 12.6 11.2 11.0 10.7
80 % PFS 12.6 12.1 11.2 11.8 11.2 11.0
90 % PFS 11.8 11.0 10.4 12.1 12.3 12.0

Table 2 
Median hot moment contribution [%] to annual cumulative N2O emissions averaged over all ten climate projections.

Treatment CANDY LDNDC

2010–2039 2040–2069 2070–2099 2010–2039 2040–2069 2070–2099

baseline (CPI) 0.0 0.0 0.0 53.0 46.8 37.3
CPM 0.0 0.0 0.0 35.3 22.5 12.8
const. temp. 0.0 0.0 0.0 57.7 55.5 47.7
0 % PFS 0.0 0.0 0.0 26.7 13.1 4.7
10 % PFS 0.0 0.0 0.0 29.7 17.3 6.2
20 % PFS 0.0 0.0 0.0 35.7 18.5 7.6
30 % PFS 0.0 0.0 0.0 35.4 24.3 11.1
40 % PFS 0.0 0.0 0.0 40.9 30.2 18.1
50 % PFS 0.0 0.0 0.0 49.3 36.7 28.5
60 % PFS 0.0 0.0 0.0 51.8 45.8 37.3
70 % PFS 0.0 0.0 0.0 56.7 49.7 42.5
80 % PFS 0.0 0.0 0.0 55.8 48.9 45.3
90 % PFS 0.0 0.0 0.0 45.1 45.0 40.1

​ DNDC DayCent
2010–2039 2040–2069 2070–2099 2010–2039 2040–2069 2070–2099

baseline (CPI) 99.5 99.4 99.2 59.5 56.6 53.1
CPM 99.9 99.9 99.8 55.5 52.6 45.1
const. temp. 99.4 99.4 99.4 59.4 56.6 53.5
0 % PFS 99.8 99.8 99.8 56.7 53.8 50.9
10 % PFS 99.7 99.6 99.5 57.6 55.0 51.2
20 % PFS 99.5 99.5 99.4 58.6 56.7 52.5
30 % PFS 99.4 99.3 99.1 59.3 56.9 52.9
40 % PFS 99.2 99.2 99.0 60.7 57.4 53.1
50 % PFS 99.1 99.1 98.8 62.1 59.0 54.1
60 % PFS 99.1 99.9 98.7 62.9 60.4 56.1
70 % PFS 99.0 98.9 98.6 64.3 61.0 57.3
80 % PFS 99.0 98.9 98.5 66.6 63.2 60.5
90 % PFS 99.2 99.0 98.8 69.9 70.6 68.0
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Interestingly, hot moments were also observed under CPM calcula
tions, referring values can be found in Tables 1 and 2 respectively. 
Overall, the emission trends in Fig. 1, along with the identified hot 
moments (Table 1), serve as the baseline for subsequent comparisons, 
including simulations with manipulated climate projections. This base
line allows us to assess the impact of individual climate change traits on 
N2O emissions, as well as hot moments and their contribution to annual 
cumulative emissions in the following sections.

3.2. Temperature manipulation

In this calculation exercise, the exclusion of the temperature effect 
revealed the isolated impact of precipitation patterns on simulated N2O 
emissions. Notably, three of the models (CANDY, DayCent, and DNDC) 
showed only marginal changes in median annual emissions when 
compared to the baseline scenario as seen in Fig. 2, indicating a stronger 
sensitivity to precipitation. LDNDC, on the other hand, demonstrated a 
clear downward trend in emissions under constant temperature, sug
gesting a stronger sensitivity to temperature changes.

Under constant temperature, CANDY showed only minor changes in 
emissions compared to the baseline scenario. Overall, median N2O 
emissions were slightly higher, with a 5.6 % increase in 2010–2039, 9.7 
% in 2040–2069, and 11.1 % in 2070–2099 relative to the baseline 
(Fig. 2). These increases, though small, were statistically significant (p 
< 0.05). LDNDC projected a significant decrease in emissions under 
constant temperature, revealing a stronger sensitivity to temperature 
changes. Relative to the baseline, median emissions decreased signifi
cantly (p < 0.05) by 15.7 % in 2010–2039, 30.3 % in 2040–2069, and 
40.8 % in the last period (Fig. 2). Additionally, the variability in indi
vidual projections diminished over time, indicating a decreased differ
ence in emissions spread in relation to the baseline, as shown by the 
reduced spread of outliers.

DNDC displayed only a slight reduction in emissions compared to the 
baseline under constant temperature as shown in Fig. 2, with median 
emissions decreasing significantly (p < 0.05) by 7.5 % in 2010–2039, 
5.6 % in 2040–2069, and 8.3 % in 2070–2099. However, the spread of 
individual projections increased as time progressed, indicating a greater 
difference to respective baseline simulations in later periods. DayCent 
was the least affected by the temperature manipulation, showing no 
significant changes in emissions relative to the baseline scenario. Me
dian emissions decreased slightly by 1.8 % in 2010–2039, increased 
marginally by 2.4 % in 2040–2069, and then decreased again by 2.7 % in 

2070–2099.
Similar to the baseline, CANDY did not simulate any hot moments 

across all periods, and as a result, median hot moments did not 
contribute to cumulative annual N2O emissions (Table 1 + 2). In 
contrast, the median contribution of hot moments to annual cumulative 
N2O emissions remained above 99 % for DNDC throughout all periods, 
corresponding to the baseline results. LDNDC simulated number of hot 
moments in the first period accounted for 12.6 % of the days in a year, 
contributing 57.7 % to the annual cumulative N2O emissions (Table 1 +

2). As in the baseline results, both the number of hot moments and their 
contribution to N2O emissions decreased over time but remained higher 
in all periods under the constant temperature compared to the baseline. 
As shown in Tables 1 and 2, by 2070–2099 the number of hot moment 
days decreased to 10.4 % of a year, with their contribution to annual 
emissions dropping to 47.7 %. DayCent also showed a reduction in both 
the number of hot moment days and their contribution to annual N2O 
emissions over time with similar values compared to the baseline. In the 
first period, ~11 % of the days were identified as hot moments, 
contributing 59.4 % to the annual cumulative emissions (Table 1 + 2). 
By 2070–2099, hot moments accounted for 9.9 % of the days and 
contributed 53.5 % to annual emissions.

3.3. Precipitation free scenarios

In this calculation exercise, the annual number of hot moments under 
increasing iterations of PFS is shown in Fig. 3, related annual cumulative 
N2O emissions relative to the baseline in Fig. 4. The occurrence and 
trend of hot moments and their contribution to annual emissions varied 
considerably across the different biogeochemical models.

Most interestingly, LDNDC was the only model following the ex
pected trend with hot moments increasing as the number of dry days 
increased, peaking between 70 and 80 % PFS as shown in Fig. 3. Beyond 
this threshold, the length of consecutive dry days reduced the frequency 
of dry-wet cycles and therefore the number of hot moments, resulting in 
their decline at 80–90 % PFS. At these peak events, hot moments made 
up over 11 % of days annually (Table 1) and contributed over 55 % to 
cumulative annual emissions in the first period (Table 2). Identified hot 
moments and their contribution gradually decreased over time, similar 
to the baseline scenario. At peak events, annual days identified as hot 
moments in the last period were reduced to 9 % contributing less than 
46 % to annual emissions, respectively. In certain outlier years and 
climate projections no hot moments were detected.

Fig. 2. Percentage change in annual N2O emissions relative to the baseline scenario (dotted line) across 30-year intervals as simulated by the four biogeochemical 
models CANDY (blue), LDNDC (red), DNDC (yellow), and DayCent (grey) under temperature manipulation. The temperature profile was kept constant (by repeating 
the 1972 temperature profile) to isolate the effect of precipitation patterns on N₂O emissions. Boxplots show the range of all annual N2O emissions under the ten 
individual climate projections (CPI, unpatterned). Upper and lower edges of the inner, saturated boxes represent the 75th and 25th percentile, while outer boxes 
include outliers. Median is shown as white line in the boxes.
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With CANDY the annual median number of simulated hot moments 
was 0 in all periods (Table 1). Hot moments were only detectable in 
specific outlier years and climate projections as illustrated by the spread 
of the boxplots in Fig. 3. Furthermore, no clear trend on the impact of 
increasing iterations of PFS on the number of hot moments was 
observable, except for a general decrease over time. DNDC, on the other 
hand, exhibited a clear trend, with the number of hot moments gradu
ally decreasing as PFS iterations increased (Fig. 3). Unlike CANDY, hot 
moments were identified in all years and across all climate projections. 
Notably, DNDC had the highest proportion of days identified as hot 
moments, particularly at lower PFS iterations, where hot moments 
accounted for nearly 20 % of the days annually (Table 1). However, 
regardless of the number of hot moments identified, they consistently 
contributed to 99 % of cumulative annual N2O emissions across all pe
riods and PFS iterations as shown in Table 2. DayCent maintained a 
relatively constant number of hot moments up to PFS-70 % in all pe
riods, with approximately 11 % of days identified as hot moments. 
Interestingly, the number of hot moments did not change considerably 
at lower iterations of PFS compared to the baseline, as originally ex
pected. A small increase was observed at PFS-80 %, followed by a 
noticeable rise at PFS-90 %, indicating that hot moments became more 
frequent during extreme dry periods (Fig. 3). Similar to DNDC, all years 
and climate projections included hot moments.

While the number of hot moments and their contribution to cumu
lative annual N2O emissions varied across the PFS iterations, depending 
on the biogeochemical model, the overall trend in N2O emissions was 
more surprising. Rather than following expected patterns, two distinc
tive trends in cumulative annual N2O emissions emerged across the PFS 
iterations, as illustrated in Fig. 4.

Both, LDNDC and DayCent show an interesting pattern where, 
although the proportion of N2O emitted during hot moments increased, 
the overall cumulative annual emissions steadily decreased as PFS 

iterations increased (Fig. 4). This suggests that while hot moments 
became more frequent (Fig. 3), their contributions to total annual 
emissions did not result in higher cumulative N2O fluxes, indicating a 
decreasing trend in emissions with increasing precipitation heteroge
neity (Fig. 4). Similarly, DNDC showed a gradual decline in cumulative 
annual emissions with increasing PFS iterations. However, in contrast to 
LDNDC and DayCent, DNDC’s N2O emissions were dominated by hot 
moments (as seen in Table 2), making them the primary contributor 
across all periods and climate projections. DNDC’s emissions can be 
attributed almost entirely to hot moments, with minimal contribution 
from background emissions.

CANDY, on the other hand, deviated from the other models exhib
iting a different trend. As shown in Fig. 4, CANDY was the only model to 
simulate an increase in annual median N2O emissions as PFS iterations 
increased. In the first period (2010–2039), annual median emissions 
gradually rose until PFS-80 %, then declined with PFS-90 %. However, 
this decrease was not observed in later periods, where emissions 
continued to rise beyond PFS-80 %. Moreover, the cumulative annual 
N2O emissions in CANDY simulations can be attributed to background 
emissions alone rather than hot moments (see Table 2), contrasting 
DNDC. Hot moments were detected only in outlier years (see Fig. 3).

Interestingly, CANDY projected lower cumulative N2O emissions 
than the baseline scenario for PFS iterations below 80 % (Fig. 4). In 
contrast, LDNDC and DNDC projected higher emissions around the same 
PFS iterations (70–80 %). DayCent consistently simulated higher cu
mulative emissions than the baseline scenario in all PFS iterations, 
except for PFS-90 % in the first period.

3.4. N2 emissions

N2 emissions for all PFS iterations and the baseline are shown in 
Fig. 5. Unfortunately, CANDY does not output N2 and is therefore 

Fig. 3. Number of annual occurring hot moments for both, the baseline simulations and all iterations of PFS across 30-year intervals as simulated by the four 
biogeochemical models A) CANDY, B) LDNDC, C) DNDC, and D) DayCent. Precipitation Free Scenarios (PFS) were generated by randomly redistributing the annual 
precipitation totals for each year based on the scenario iteration value (0-90%). Higher PFS percentages indicate an increase in dry days (days with <1 mm of 
precipitation), followed by more intense precipitation events. The total annual precipitation amount remains the same across all PFS iterations and the baseline. 
Boxplots show the range of all hot moments under the ten individual climate projections. Upper and lower edges of the inner, saturated boxes represent the 75th and 
25th percentile, while outer boxes include outliers. Median is shown as white line in the boxes.
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Fig. 4. Percentage change in annual N2O emissions relative to the baseline for all iterations of PFS across 30-year intervals as simulated by the four biogeochemical 
models A) CANDY, B) LDNDC, C) DNDC, and D) DayCent. Precipitation Free Scenarios (PFS) were generated by randomly redistributing the annual precipitation 
totals for each year based on the scenario iteration value (0-90%). Higher PFS percentages indicate an increase in dry days (days with <1 mm of precipitation), 
followed by more intense precipitation events. The total annual precipitation amount remains the same across all PFS iterations and the baseline. Boxplots show the 
range of all hot moments under the ten individual climate projections. Upper and lower edges of the inner, saturated boxes represent the 75th and 25th percentile, 
while outer boxes include outliers. Median is shown as white line in the boxes.

Fig. 5. Annual N2 emissions across 30-year intervals as simulated by the three biogeochemical models A) LDNDC, B) DNDC, and C) DayCent. No N2 output is possible 
with CANDY. Boxplots show the range of all annual N2 emissions for the ten individual climate projections. Upper and lower edges of the inner, saturated boxes 
represent the 75th and 25th percentile, while outer boxes include outliers. Median is shown as white line in the boxes.
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excluded from Fig. 5.
N2 emissions varied considerably between the three remaining 

models LDNDC, DNDC, and DayCent. While LDNDC and DayCent dis
played clear emission patterns, DNDC’s N2 emissions were negligibly 
low (below 1 kg N/ha) and were observed primarily in outlier years and 
projections across all PFS iterations and the baseline (see Fig. 5). Most 
notably, LDNDC’s N2 emissions, unlike its N2O emissions, closely 
mirrored the trend associated with hot moment occurrences, as shown in 
Fig. 3. N2 emissions were comparably high (median values ranging be
tween approximately 45-150 kg N/ha), and they consistently increased 
with higher iterations of PFS. In the last two periods a threshold emerged 
at 80 % PFS, beyond which N2 emissions began to decrease. Moreover, 
unlike N2O emissions, N2 emissions increased over time across all PFS 
iterations as well as the baseline. Contrary, DayCent depict much lower 
emissions (median emissions ranging between approx. 7–25 kg N/ha) 
decreasing over time for all iterations of PFS and the baseline (Fig. 5). 
Also, N2 emissions show a more decreasing trend with increasing PFS 
iterations, similar to simulated N2O emissions. In contrast, DayCent 
exhibited much lower N2 emissions (median values ranging from 
approximately 7-25 kg N/ha – Fig. 5), which decreased over time across 
all PFS iterations and the baseline. Additionally, N2 emissions in Day
Cent did show a decreasing trend with increasing PFS iterations, similar 
to the N2O emissions.

3.5. Mean annual WFPS

Fig. 6 illustrates the mean annual WFPS for all PFS iterations and the 
baseline across the four models.

In CANDY, WFPS remained consistently high across all periods, with 
a slight decrease over time and across increasing PFS iterations. Median 
WFPS values ranged between 70 % and 80 %. The spread of boxes is 
more compact in the earlier periods (2010–2039), with greater vari
ability emerging in later periods (see Fig. 6). In LDNDC, WFPS remained 
relatively stable across all PFS iterations, with values consistently 

clustering around 80 % throughout all periods. Unlike the other models, 
LDNDC exhibited only minimal spread of WFPS with a slightly more 
downward trend in variability over time. DNDC exhibited the highest 
annual median WFPS values out of the four models, particularly at lower 
PFS iterations. Median WFPS values remained close to 85–90 % in the 
earlier periods, decreasing slightly over time with increasing PFS iter
ations. DayCent showed a clear decreasing trend in WFPS over time and 
with increasing PFS iterations. WFPS values in DayCent gradually 
decrease from around 70–80 % in the first period (2010–2039) to 
around 65–75 % in the last period (2070–2099). DayCent exhibited the 
lowest annual median WFPS levels of all the models.

4. Discussion

Researchers suggest that N2O emissions from hot moments following 
dry-wet cycles will become increasingly important under climate change 
scenarios (Barrat et al., 2020; Zhao et al., 2011). However, only few 
studies have actually assessed the contribution of N2O emissions from 
meteorological dry-wet cycles to annual amounts. Reported contribu
tions vary from 2 % (Davidson, 1992) to 70 % (Zhao et al., 2011) as the 
relative contribution of hot moments to the annual emissions do vary in 
both space and time. So far it is still rather speculative to assume that hot 
moments have any influence on the total amount of cumulative annual 
N2O emissions. While it is intuitive to assume that hot moments influ
ence both temporal variability and cumulative amounts, this has not yet 
been tested. Cold moments, i.e., periods of low or zero emissions may 
follow hot moments resulting in similar annual cumulative emission 
rates as by more homogenously emitted daily N2O. If agricultural fer
tilizer application rates remained the same, the amounts of reactive soil 
nitrogen might not change significantly, which in turn could lead to 
similar amounts of annually released N2O. Nevertheless, this still re
mains a knowledge gap, and we are not aware of any scientific articles 
reporting on this.

To determine whether hot moments simply increase the 

Fig. 6. Mean annual Water Filled Pore Space (WFPS) [%] across 30-year intervals as simulated by the four biogeochemical models A) CANDY, B) LDNDC, C) DNDC, 
and D) DayCent. Boxplots show the range of all annual N2 emissions for the ten individual climate projections. Upper and lower edges of the inner, saturated boxes 
represent the 75th and 25th percentile, while outer boxes include outliers. Median is shown as white line in the boxes.
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heterogeneity of daily emission rates throughout a year or actually in
crease total cumulative annual N2O emissions, controlled precipitation 
manipulation experiments are essential. In practice, both climate and 
soil management often vary, making it challenging to distinguish 
climate from management effects on N2O emissions. To generate accu
rate projections of potential self-amplifying effects between climate 
change-induced precipitation changes and N2O emissions from agri
cultural soils, model ensembles, rather than individual models, are 
needed to simulate daily emission rates including hot and cold moments. 
However, this makes the testing of possible individual ensemble mem
bers a necessity prior to their application. If precipitation-induced hot 
moments prove irrelevant for annual emissions, the models could 
maintain their current level of simplicity.

4.1. Baseline scenario

In our first calculation exercise to establish the baseline, only one out 
of four models projected increasing annual N2O emissions due to climate 
change (Fig. 1). As a result, the expectations of many authors were not 
met (Griffis et al., 2017; Aryal et al., 2022; Huang et al., 2022a; Grant 
and Pattey, 2008). However, rising annual emissions are anticipated not 
solely due to climate change, but in combination with increasing ni
trogen applications. In our simulation framework we kept fertilizer 
levels steady over time, setting focus on climate change impact. There
fore, unchanged or even declining annual emission rates, as predicted by 
the other three models are comprehensible, as warmer and wetter 
conditions might lead to increased N losses as leachate, by runoff, 
increased plant uptake or stimulated soil microbes.

However, a main question will be if hot moments actually increase 
cumulative annual N2O amounts or simply mirror the heterogeneity in 
precipitation patterns as long as the N input remains the same. Ac
cording to the model study presented by Zhang et al. (2021), precipi
tation heterogeneity significantly elevated N2O emissions. Their study 
showed that less frequent but high intense precipitation increased 
emissions, while more frequent but less intense patterns reduced them, 
especially under high fertilization treatments. Our model experiment 
did not confirm this. Contrary, homogenization of precipitation resulted 
in higher annual cumulative emissions compared to more irregular 
precipitation events by most models (see Fig. 4). This becomes partic
ularly evident considering the homogenized precipitation of the CPM 
(Fig. 1), characterized by a homogeneous distribution due to the aver
aging process. The more homogeneous precipitation distribution 
enhanced the N2O trends that emerged with the CPI in each of the 
models, heavily skewing the annual values into a positive or negative 
direction.

To assess model response in simulating hot moments we can examine 
the annual percentage of days identified as hot moments and their 
contribution to cumulative annual N2O emissions (see Tables 1 and 2), 
although studies on this topic are limited. According to Molodovskaya 
et al. (2012), hot moment emissions of N2O accounted for up to 51 % of 
total cumulative annual N2O emissions, even though these events 
comprised less than 7 % of the total observation period days. More 
recently, Stuchiner et al. (2024), using the same methodology as 
Molodovskaya et al. (2012) which is also employed in this study, found 
that hot moments, on average, accounted for about 66 % of cumulative 
annual N2O emissions occurring on just about 9 % of annual days.

For this study’s baseline scenario, averaged across all periods and 
climate projections, LDNDC simulated hot moments for 9.49 ± 1.43 % 
days of a year contributing about 44 ± 6.52 % to annual emissions 
(Tables 1 and 2). Similarly, DayCent simulated that hot moments occur 
on 11 ± 0.25 % of annual days and accounted for about 56 ± 2.64 % of 
cumulative annual emissions, both falling well within the reported 
ranges. In CANDY, averaged over all climate projections and periods, 
days identified as hot moments only made up less than 0.1 % of a year 
with a similar low contribution to cumulative annual emissions. The 
reason behind this are high background emissions, shifting hot moment 

identifying thresholds considerably upwards. On the opposite, cumula
tive annual N2O emissions with DNDC were >99 % the result of hot 
moments with basically no contribution of background emission. These 
results clearly suggest that both CANDY and DNDC show difficulties in 
accurately simulating hot moments under set conditions.

Based on these observations, two critical points emerge from the 
baseline-scenario calculations. First, we cannot assert that hot moments 
are exclusively due to dry-wet cycles, given that simulations with the 
CPM simulated hot moments as well, where dry-wet cycles are unlikely 
due to the very homogeneous precipitation distribution. However, the 
lower frequency and contribution of hot moments under CPM compared 
to the baseline—especially in LDNDC—alongside the seasonal occur
rence patterns of such events (mainly in spring to summer and early 
autumn, Tables S4–S7) strongly suggest that dry-wet cycles did play a 
significant role contributing to hot moment occurrence. Second, not 
only did three of the four models show declining trends in annual N2O 
emissions (see Fig. 1), which might be realistic as stated above, but all 
models consistently simulated a decrease in hot moment occurrence 
over time (Fig. 3). These trends might be linked to two key factors: (1) 
projections of the EURO-CORDEX ensemble which are known to over
estimate precipitation amounts (Demory et al., 2020; Vautard et al., 
2021) and (2) our simulation setup assuming a homogeneous soil profile 
have influenced simulation results. Especially in combination, these two 
factors might significantly influence the dry-wet cycle probability and 
annual emission trends and the overall simulation behaviour of models. 
Moreover, it can be assumed that under these conditions an increase in 
NO3

− leaching is likely. This is true for CANDY and DayCent (Fig. S2), yet 
topsoil NO3

− remained abundant across all models (Fig. S3), aligning 
with the initial simulation setup that focused primarily on the impact of 
climate. These two points made it necessary to manipulate the climate to 
unravel the impact of dry-wet cycle hot moments on cumulative annual 
N2O emissions.

4.2. Temperature manipulation

To exclude the temperature effect from the precipitation effect, air 
temperature was kept as projected for the year 1972, thus removing the 
influence of climate change-related temperature shifts. This ensured that 
any observed hot moments would be predominantly influenced by 
precipitation patterns without the increasing temperature effect 
inherent to climate change.

Interestingly, hardly any significant effect was shown with this 
manipulation experiment in three of four models as seen in Fig. 2. 
LDNDC, which calculated increasing N2O emissions for the combined 
effect of temperature increase and changes in precipitation in the 
baseline scenario, showed that this increase is reduced by about 30 % 
(averaged over all projections and periods) if temperature does not in
crease. The latter fits to the finding of Elli et al. (2022), who reported 
strong reactions of simulated N2O emissions to both manipulated tem
peratures and precipitation (heterogeneity) but only minor reactions to 
precipitation alone. While increasing temperatures significantly affected 
the magnitude of the trend with LDNDC, this had comparably reduced 
effects on annual cumulative emissions with CANDY, DNDC and Day
Cent. This temperature insensitivity on annual cumulative N2O emis
sions seems unlike the common consensus. While some studies attribute 
more impact to temperature (Huang et al., 2022a), it is commonly 
agreed on that the combinatory effect of precipitation and temperature 
lead to elevated, not decreasing N2O emissions (Grant and Pattey, 2008; 
Elli et al., 2022; Huang et al., 2022b; Duan et al., 2019). The observed 
declining trend of cumulative annual N2O emissions in CANDY, DNDC 
and DayCent, may be linked to some sort of temperature insensitivity in 
the models. At least for DayCent, this lies directly in the model structure, 
as it, for example, does not consider the impacts of soil temperature on 
denitrification (Wang et al., 2021). The same is true for CANDY, which, 
for description of the denitrification process, shares algorithms with 
DayCent. Improvements in this regard would greatly benefit simulation 
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prediction robustness, especially in the context of climate change. 
Nevertheless, all models did show a great sensitivity to precipitation.

Identified hot moments at constant projected temperature followed 
the trend of the baseline scenario, with the difference of increasing 
annual occurrence and contribution in LDNDC, while slightly lower in 
DayCent (see Tables 1 and 2). Simulations with CANDY and DNDC again 
were showing fewer hot moments as demonstrated already with baseline 
simulations (s.a.). However, though not as pronounced as in LDNDC, 
days identified as hot moments and their contribution to annual cu
mulative N2O emissions did increase slightly compared to the baseline in 
these models as well. Therefore, a negative effect of increasing tem
perature with rising precipitation heterogeneity on the occurrence of hot 
moments seems likely. Yet, the decrease in the amount of identified hot 
moments with progressing time, as observed with the baseline simula
tions, prevailed. However, since the decreasing trend over time is 
greater than the negative effect of temperature increases on the occur
rence of hot moments (at least for LDNDC, CANDY and DNDC) it leaves 
precipitation in either annual totals or heterogeneity as the responsible 
parameter for the declining trends of hot moments.

4.3. Precipitation manipulation – hot moments and related N2O emissions

As stated above, the climate projections used in this study did not 
fully meet the criteria necessary to evaluate the impact of dry-wet cycles 
due to their tendency to overestimate precipitation. This limitation 
necessitated to manipulate towards increasing precipitation heteroge
neity to force dry-wet cycles to occur more frequently. We hypothesized 
that this manipulation would lead to more frequent hot moments, which 
would, in turn, increase cumulative annual N2O emissions until a tipping 
point is reached. Such tipping points are crossed when dry days exceed 
the stimulatory effect of dry-wet cycles and hinder N-mineralization, 
nitrification and hence denitrification more than fostering it, hence 
leading to a decrease in emissions again. Our expectations are based on 
Barrat et al. (2020) and Guo et al. (2014), who demonstrated that the 
magnitude of a hot moment and N2O emissions in substrate-rich envi
ronments are directly linked to the difference between the dry and wet 
state of the soil, particularly through changes in WFPS.

Contrary to our expectations, the models did not simulate an increase 
in annual cumulative N2O emissions (Fig. 4) with increasing precipita
tion heterogeneity, despite the rising number of hot moments (Fig. 3). 
While the relative contribution to annual cumulative N2O emissions 
increased with increasing numbers of hot moments at each iteration of 
precipitation-free days (PFS), the annual cumulative emission totals 
decreased in respective models.

Since the quality of the individual models simulating hot moments 
has already been established with the baseline scenario, it is reasonable 
to assume that these quantities serve as indicators for the quality of the 
PFS simulation results. Yet, surprisingly, these manipulations high
lighted possible shortcomings in how models simulate hot moments in 
the context of dry-wet cycles characterized by precipitation heteroge
neity. At 0 % PFS, where dry-wet cycles are unlikely to occur, DayCent 
simulated nearly the same number of hot moments and contribution to 
annual N2O emissions as the baseline scenario (see Tables 1 and 2), 
suggesting that a considerable portion of DayCent’s simulated hot mo
ments are likely not the product of dry-wet cycles. In contrast, LDNDC 
simulations at 0 % PFS did show a clear decrease in the number of hot 
moments compared to the baseline, indicating that the model more 
accurately associates hot moments with dry-wet cycles. Moreover, the 
expected tipping point where the number of hot moments decreases due 
to the limited occurrence of dry-wet cycles at higher iterations of PFS 
was reached in LDNDC but not in DayCent. Nevertheless, it can be 
concluded that the simulated hot moments in our calculation exercises 
show that an increasing number of modelled hot moments do not result 
in higher cumulative annual N2O emissions.

As expected, the relative contribution of hot moments to annual 
cumulative N2O emissions increased with increasing precipitation 

heterogeneity and associated dry-wet cycle intensity at respective PFS 
iterations across all models (Table 2). This agrees well with the princi
ples governing this process. Barrat et al. (2020) stated that the degree of 
rewetting and the resulting WFPS significantly influenced N2O emis
sions to the fact that larger differences between dry and wet states of the 
soil are leading to larger hot moments. Whereas under similar but 
constant anaerobicity and WFPS, emissions were much lower. Similarly, 
Wei et al. (2023) stated that prevailing saturated, anoxic conditions 
rather lead to N2O consumption than emission, which they attribute to 
the low diffusivity of gases under saturated conditions. Under such 
conditions the N2O diffusion to the soil surface is reduced promoting the 
reduction of N2O to N2 through denitrification. Highest N2O flux was 
found below 10 % (±2 %) O2 concentration, indicating that suboxic soil 
conditions are optimal to stimulate soil N2O production in the soil while 
simultaneously allowing the diffusion to the soil surface, which in Wei 
et al. (2023) was consistent at the inflection point of 56 % WFPS. 
Comparably, Vor et al. (2003) showed unleashed N2O emissions during 
dynamically changing low O2 conditions (around 0–5 %), strongly 
indicating that changing low, not static O2 conditions favor N2O emis
sions. Soil O2 was found to strongly inversely correlate with N2O emis
sions (Song et al., 2019, 2022; Wei et al., 2023), with WPFS as a 
regulator limiting soil aeration and diffusivity, highlighting the sensitive 
balance between WFPS, O2 availability and substrate that regulates 
denitrification.

In our simulation framework three of the models simulate N2 emis
sions and in all of them, WFPS is the main factor determining the dis
tribution of available N into N2O and eventually N2, thus determining 
whether nitrification or denitrification dominates. In DayCent, denitri
fication is driven by WFPS, serving as a proxy for O2 availability along 
with labile C (e− donor) and NO3

− (e− acceptor) concentrations. The 
threshold at which nitrification or denitrification occur depends on soil 
texture: while coarse-textured soils are assumed to have a higher gas 
diffusivity until WFPS exceeds 80 %, denitrification occurs much easier 
in fine-textured soils and at WFPS of ~60 %. Denitrification is calculated 
in a separate sub-model (Parton et al., 1996; Del Grosso et al., 2000), 
which first calculates the total N gas flux, i.e. N2 + N2O, using a N2:N2O 
ratio function to then split the total flux into its individual components. 
The ratio in turn depends on the soil gas diffusivity and the ratio of NO3

−

to labile C (i.e., the ratio of e− acceptor to e− donor).
Similarly, DNDC calculates denitrification in a specific sub-model, 

which is activated at every precipitation event and immediately upon 
saturation of the soil with water. It is assumed that oxic (nitrification) 
and anoxic (denitrification) conditions occur simultaneously in the soil 
controlled by the soil redox potential (Zhang et al., 2015). Like in 
DayCent, soluble carbon and NO3

− are used by denitrifiers as e− donor 
and acceptor, respectively (Li et al., 1992a), and determine the relative 
growth rates of NO3

− , NO2-, NO and N2O denitrifiers. Both N2O and N2 
are highly sensitive to the annual precipitation, soil pH, mean annual 
temperature, as well as the SOC content (Li et al., 1992a). Diffusion rates 
are calculated separately for N2O and N2 based on soil porosity and clay 
content.

While LDNDC inherits the modelling of soil temperature and mois
ture from DNDC, the dynamics of nitrifiers and denitrifiers that stimu
late nitrification and decomposition processes follow the work presented 
by (Blagodatsky and Richter, 1998; Blagodatsky et al., 1998). Diffusion 
rates are calculated by Fick’s first law (Zhang et al., 2015) – which 
differs from the approach used in DNDC. Equations and parameters 
related to denitrification are the same for both models (see (Zhang et al., 
2015)).

It can be concluded that all models in this study relied heavily on soil 
NO3

− and WFPS, and in turn on precipitation events to simulate deni
trification products. Throughout our simulation exercises, topsoil NO3

−

was abundant in all models, and mean annual WFPS values were within 
the optimal range for denitrification. Despite these favorable conditions, 
total N2O emissions decreased with increasing precipitation heteroge
neity in three of the models. This phenomenon mirrors the behaviour 
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already observed in the baseline scenario with the CPM, where median 
N2O emissions in LDNDC, DayCent, and DNDC were elevated under 
more homogeneous precipitation distributions (see Fig. 1). Interestingly, 
this agrees with findings from Miller et al. (2022), where projected 
future precipitation patterns for the U.S upper Midwest did not signifi
cantly affect growing-season N2O emissions, but were instead favoured 
by optimal soil WFPS and N concentrations. Similarly, Barrat et al. 
(2020) stated that it is well established that saturated soils are more 
likely to produce N2O. However, this contradicts their earlier claim (s.a.) 
and findings from several other studies, that increased N2O emission can 
be associated with the intensification of precipitation (Huang et al., 
2022a; Jiao et al., 2024; Li et al., 2020; Yan et al., 2018; Zhang et al., 
2022) up to a certain threshold at which the precipitation intensity ex
ceeds the stimulatory effect on emission rates (Li et al., 2023).

The decline in N2O emissions with increasing precipitation hetero
geneity and dry-wet cycles in LDNDC can be attributed to a shift in the 
balance between N2O and N2 production towards N2. As shown in the 
results (Fig. 5), LDNDC’s simulated N2 emissions increased with more 
hot moments, almost mirroring their trend, resulting in a significant 
release of N2 emissions especially compared to the other models. 
Inspecting WFPS values, the elevated denitrification rate becomes more 
apparent, as median annual WFPS values (Fig. 6) just slightly exceeded 
the optimal range for N2O emissions at 65–80 % (Dobbie and Smith, 
2001; Gillam et al., 2008). Additionally, median daily WFPS distribu
tions across all projections showed that values rarely surpassed 75–85 % 
(Figs. S4–S6), even during summer under the highest iteration of PFS. 
These prolonged elevated WFPS values probably shifted the N2:N2O 
ratio in favor of N2. However, compared to the other models, LDNDC’s 
simulated daily WFPS values appear visibly higher than for the other 
models.

In contrast, DayCent showed decreasing N2O and N2 emissions 
despite the denitrification fostering conditions, i.e., optimal median 
annual WFPS and NO3

− levels. Unlike LDNDC, median daily WFPS values 
in DayCent showed a notable ‘belly’ (dropping WFPS values – 
Figs. S4–S6) in summer. However, outliers never fell below 46 % or 
exceeded 95 % resulting in sharp WFPS changes in spring and autumn, 
suggesting some sort of WFPS value capping within the model algo
rithms. Still, denitrification emission products decreased throughout all 
simulation scenarios, suggesting another factor to be responsible.

DNDC, on the other hand, displayed highly elevated mean annual 
WFPS values compared to the other models, likely overestimating soil 
saturation. Unlike LDNDC, DNDC did show a very pronounced ‘summer- 
belly’ (Figs. S4–S6), i.e. a drop in WFPS over the summer, yet this drop 
occurred after returning from a very wet winter at 100 % WFPS. The 
model’s denitrification sub-model considers the transformation of 
denitrification products during their diffusion through the soil matrix, 
which would help explain the near absence of N2O background emis
sion. Yet, N2 emissions were negligible at most and almost exclusively 
observable in outliers, indicating that another disturbing factor might be 
responsible for DNDC’s unique emission behaviour throughout the 
simulation framework.

CANDY deviated from the other models, showing increasing N2O 
emissions with increasing precipitation heterogeneity. However, as 
established earlier, these emissions were linked to CANDY’s higher 
emphasis on background emissions and not hot moments. Unfortu
nately, no N2 emissions data was available for CANDY, making a full 
assessment of its denitrification behaviour difficult. Compared to the 
other models, CANDY’s simulated median daily WFPS appeared the 
most ‘realistic,’ showing a similar curve to DNDC, but without the 
significantly elevated WFPS values during winter (Figs. S4–S6).

While LDNDC exhibited the expected behaviour in terms of both, 
increasing annual N2O emissions over time and simulating hot moments, 
the simulated decrease in N2O emissions with increasing precipitation 
heterogeneity can be explained by an increased denitrification rate, 
shifting emissions towards N2. However, none of the other models 
(DayCent, DNDC, or CANDY) could attribute the observed decreases in 

N2O emissions over time or across all PFS iterations to temperature or 
precipitation distribution alone. DayCent, despite the denitrification 
fostering conditions did not show increasing emissions either over time 
or at increasing PFS iterations. Both, DNDC and CANDY, either dis
played little to no background emissions with only hot moments or vice 
versa. All models displayed comparably elevated median annual WFPS 
values to varying degrees with DayCent and LDNDC exhibiting partic
ular distinctive anomalies in regard to their daily WFPS distribution. It is 
sensitive to assume that models did struggle with the elevated precipi
tation projected by the EURO-CORDEX ensemble, likely enhanced by 
the simulation setup assuming homogeneous soil conditions.

Since the simulation framework is grounded on testing models under 
default parametrization, it can be assumed that all models were initially 
parameterized and validated under much lower annual precipitation 
totals than those provided by the climate projections. Moreover, Day
Cent showed significantly elevated trace gas emissions compared to the 
other models, particularly N2O (Table S7). This overestimation is likely 
due to the model’s assumption that once N2O is produced, it is released 
to the atmosphere regardless of soil layer depth (Xing et al., 2023). 
Under saturated conditions, limited gas diffusivity would normally 
inhibit N2O escape, promoting its consumption in deeper soil layers 
rather than its emission (Wei et al., 2023; Goldberg et al., 2008; Kuang 
et al., 2019).

Therefore, to achieve accurate soil N2O emission estimates, espe
cially in the context of dry-wet cycles, both soil WFPS and soil O2 levels 
must be considered. While soil O2 is the primary regulator of soil N2O 
concentrations (Song et al., 2019, 2022), WFPS is crucial for predicting 
soil surface emissions as it significantly influences gas diffusivity and 
soil aeration (Del Grosso et al., 2000; Klefoth et al., 2014). As established 
above, soil moisture alone cannot account for dynamic changes in ox
ygen availability caused by the addition of, for example, organic resi
dues, manures, or N-fertilizers (Wei et al., 2023). Moreover, soil 
moisture does not account for small-scale O2 concentration gradients, 
such as sub-anaerobic conditions, which can trigger nitrifier denitrifi
cation (Wei et al., 2023; Burgin and Groffman, 2012; Liptzin et al., 
2011).

Nevertheless, the estimation accuracy can be greatly improved by 
considering soil O2 status as the primary regulator of soil N2O concen
trations, along with WFPS to control gas diffusivity and subsequent 
surface emission. Especially in the simulation of dry-wet cycle associ
ated hot moments. That is why the concept of the ‘anaerobic balloon,’ as 
integrated into DNDC, is a compelling approach to capture these dy
namics. The balloon ‘swells’ under anoxic conditions, promoting sub
strate allocation to anaerobic microsites and enhancing denitrification. 
Conversely, under more oxic conditions, the balloon ‘shrinks,’ reducing 
substrate availability for denitrification and favoring nitrification. Un
fortunately, this concept is highly sensitive to elevated precipitation 
levels, as observable from our simulations, which likely led to an over- 
inflated anaerobic balloon, contributing to the model’s behavior under 
our simulation setup.

4.4. Climate projections

The goal of this study was to test biogeochemical model reactions to 
increasing drying and rewetting cycles. However, projections of the 
EURO-CORDEX ensemble as used in this study, proved to overestimate 
precipitation amounts and were generally too wet, which seems to be a 
known issue (Iles et al., 2020; Demory et al., 2020; Vautard et al., 2021). 
This evidently shows in the comparison with observed weather from two 
climate stations from the selected model region (Fig. S1 and Tables S8 
and S9). Since not only the emissions of N2O occurring in the field, but 
also the biogeochemical models simulating it being very sensitive to 
climate variability, weather data input is an important component 
influencing the extent to which emission simulations are biased. To 
overcome this shortcoming we manipulated precipitation, showing that 
biogeochemical models are not that well prepared and react either over- 
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or under sensitive to elevated precipitation. That is why the simulations 
framework will need to be tested with lower annual precipitation 
amounts and, moreover, with different soil types to verify our findings.

The internal variability, different forcing scenarios and the different 
responses of the projecting climate models lead to a high degree of un
certainty in the simulated climate projections (Dalelane et al., 2018), 
cascading down to impact studies (Wang et al., 2018). That is why 
climate modelers stress that climate projections are precisely that, pro
jections of possible climatic developments, not forecasts (Cannon et al., 
2020). However, this is exactly what policy makers require. Future 
weather forecasts that are as realistic as possible and how they drive N2O 
simulations in order to develop robust and sustainable mitigation stra
tegies. Nonetheless, due to the high uncertainty of relying on just one 
projection, it is emphasized to use a multi-model ensemble approach in 
impact studies (Tegegne et al., 2020; Wang et al., 2018). By using a 
multi-model ensemble, we rely on a variety of possible climate pro
jections which cover a high variance of possible trends. Therefore, 
model weighting approaches such as the Model Mean approach can help 
to reduce the uncertainty of an ensemble significantly (Balhane et al., 
2022). Nevertheless, such weighting methods can introduce unwanted 
side effects, especially when dealing with daily precipitation data. Due 
to the averaging process, climatic extreme values are not extracted 
(Tegegne et al., 2020) thereby possibly skewing output downstream. 
This unwanted introduction of bias is very evident within our results, 
especially in simulations with CANDY and LDNDC. Depending on the 
biogeochemical model, the CPM (Climate Projection Mean) heavily 
amplified or attenuated the simulated trend of the CPI (Individual 
Climate Projections). Fortunately, this is seldomly done in impact 
studies and most studies rely on the multi model mean of the individual 
projections (averaging the output - CPI), thereby reflecting the vari
ability of the individual projections in the output.

Furthermore, current climate modelers emphasize the importance of 
post processing, or bias adjusting, climate projections before their uti
lization in impact models (Cannon et al., 2020; Chen et al., 2021; Dinh 
and Aires, 2023). As GCMs and RCMs often have systematic errors, such 
as an overestimation of rainy days or an underestimation of extremes 
events (Iles et al., 2020; Lhotka and Kyselý, 2022; Sillmann et al., 2017), 
bias adjusting aims to approximate simulated values closer to the 
observed data. However, the large number of available bias adjustment 
methods of varying complexity poses a challenge for impact modelers, 
who are responsible to select the most suitable approach. Due to the 
inherent complexity and the immense workload it entails, many impact 
studies either overlook or deliberately omit this step, making results 
disputable. Conversely, this leads to ‘blindly’ applying bias adjustment 
methods or already bias adjusted projections, without considering 
whether such adjustments even improve model performance or are 
appropriate for the study applied (Benestad et al., 2021). Bias adjusting 
should always be considered as a statistical post processing method 
missing physical arguments and applying may introduce new un
certainties (Benestad et al., 2021). In our case, we did not bias adjust the 
climate projections used. Commonly applied bias adjustment methods 
are based on the quantile mapping approach (Piani et al., 2010) which 
provide notable improvements for seasonal means and percentiles. Yet, 
they do not directly account for time-dependent statistics such as 
consecutive dry-wet days (Benestad et al., 2021), the evaluation of 
which was a main focus of this study.

4.5. Generalizability

Overall, the biogeochemical models used within this study certainly 
have the potential to represent expected emission patterns and trends 
with climate change, particularly after extensive parameterization and 
calibration using available measurement data on specific sites are 
feasible. Notably so, Del Grosso et al. (2019) demonstrated significant 
improved performance of DayCent after site-specific calibration and 
validation compared to default parametrization. However, even under 

good calibration, daily estimates and peak events can be over- or 
underestimated (Gaillard et al., 2018; Fuchs et al., 2020), which is 
related to unrepresented processes within the models themselves, such 
as freeze-thaw and rewetting dynamics (Iqbal et al., 2018). More so, 
parametrization becomes increasingly challenging, the greater the scale 
of the simulation scenario. Trade-offs need to be made between data 
availability and calibration accuracy. Especially in regions where reg
ular direct measurements are scarce, models need to perform under 
default parametrization. As highlighted within this study, there is great 
potential to improve on unrepresented processes like dry-wet cycle dy
namics. The biogeochemical models CANDY, DNDC, LDNDC and Day
Cent under default parametrization expressed very mixed results 
capturing expected trends under increasing dry-wet cycles. Since such 
biogeochemical models are increasingly applied within grand scale 
projects (Klatt et al., 2016; Butterbach-Bahl et al., 2022; Kraus et al., 
2022; Meurer et al., 2019) and for national inventories (EPA, 2024), the 
challenge of achieving simulation accuracy without site-specific cali
bration possibilities further highlights the need to improve on unrep
resented processes. Obviously, that requires a better understanding of 
these processes before they can be incorporated as algorithms into the 
models. This is currently particularly stressed for freeze-thaw cycles but 
is also needed for dry-wet cycles. Contemporary biogeochemical mod
elers apparently see the need to include freeze-thaw dynamics more than 
dry-wet cycles. They are believed to yield higher potentials for 
extraordinary cumulative annual N2O emissions resulting from hot 
moments than dry-wet cycles do (Congreves et al., 2018). And notably 
so, DayCent developers already incorporated a version featuring 
freeze-thaw dynamics showing improvement of N2O estimates applied 
at national scale (Del Grosso et al., 2022). Similarly, significant progress 
has been made to improve DNDC to better represent freeze-thaw dy
namics (Del Grosso et al., 2022; Cui and Wang, 2019; Dutta et al., 2018; 
Yadav and Wang, 2021). Yet, while freeze-thaw dynamics are crucial in 
regions experiencing regular episodes of frost, it is important to note, 
that dry-wet cycles are more widespread across diverse climates, making 
them equally, if not more relevant for consideration. As climatic con
ditions shift towards fewer regions experiencing severe episodes of frost 
and more regions experiencing drying tendencies (Chai et al., 2021; Berg 
et al., 2016), the influence of dry-wet cycles becomes increasingly sig
nificant. The combination of climate change and increased use of N 
fertilisers in many regions of the world makes it clear that the potential 
risk of ever-increasing N2O feedback loops is imminent.

However, in the end, the ability of models to predict biogeochemical 
cycling ultimately relies on the quantity and quality of data available for 
parametrization and validation (Berardi et al., 2020). Field and labo
ratory studies are in dear need to finally unravel the mysteries of these 
missing links. Studies need to focus on high frequency, long term mea
surements, capturing the spatio-temporal variability of N2O emissions. 
This all plays together in order to improve our simulation estimates 
helping to find sustainable GHG mitigation strategies paving the way for 
a brighter tomorrow.

4.6. Potential improvements to the simulation setup

Certain improvements to the current simulation setup might be 
better suited to explore the N2O simulation behaviour of models in the 
context of dry-wet cycles. Considering a heterogeneous instead of a 
homogeneous soil profile could significantly improve the overall simu
lation behaviour, as it was suspected to have greatly biased output 
depending on the biogeochemical model used. In this context, different 
soil textures need to be considered in future studies. While the used soil 
texture served well as a proof of concept, it limited our total under
standing of the simulation behaviour. It is well established that different 
soil textures considerably affect N2O relevant parameters, not only in 
nature but also in biogeochemical models simulating it, and the likeli
hood of dry-wet cycles to occur in the first place. In addition to that, we 
need either climate projections that robustly anticipate dry-wet cycles or 
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improved precipitation manipulation scenarios to more precisely depict 
these cycles. Future studies should not only consider periods of dry days 
as indicators of dry-wet cycles but also evaluate soil state variables and 
other measures, such as the Standardized Precipitation Index (SPI) or 
Standardized Precipitation Evaporation Index (SPEI), to define periods 
of drought. This turned out to be crucial, as in our study, we were not 
able to link hot moments to dry-wet cycles with absolute certainty, 
despite the specialized simulation setup. With these improvements, it 
will be possible to robustly pinpoint the exact behaviour of biogeo
chemical models in response to dry-wet cycle-induced hot moments.

5. Conclusions

In this study, we investigated in a simplified simulation setup the 
response of contemporary biogeochemical models to anticipated in
creases in dry-wet cycles under climate change, with a focus on their 
impact on N2O emissions. Our results highlight major uncertainties in 
the regard of precipitation heterogeneity driven dry-wet cycle induced 
hot moments of N2O, not only in areas of biogeochemical modelling but 
also climate projections.

It remains uncertain whether total annual rates over multi-year pe
riods will be increased via hot moment contribution. According to our 
model simulations, dry-wet cycle associated hot moments will not lead 
to the expected increase in cumulative annual N2O emissions and, 
consequently, do not appear to trigger an uncontrolled self-amplifying 
effect. However, it is premature to draw definitive conclusions at this 
stage. Not only are model improvements in regards of dry-wet cycles 
necessary, but future studies evaluating biogeochemical models will 
need to adjust on the simulation setup.

If precipitation-induced hot moments prove irrelevant for annual 
emissions, the models could maintain their current level of simplicity. 
However, they are mandatory at the daily scale to assess best manage
ment practices and help to find mitigation strategies. Presently, it is 
important to determine if the recent rise in atmospheric N2O concen
trations indicates that annual emissions are indeed influenced by such 
cycles.

A common goal within the scientific community is to make models 
applicable more casually without the need of extensive parametrization. 
Particularly in political context models will be needed to be represen
tative substitute for measured values. To achieve this goal enhancing 
model algorithms is necessary, requiring comprehensive multi-year 
studies to better understand the long-term impacts of dry-wet cycles 
on N2O emissions.
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Ciarlò, J.M., Fealy, R., Nikulin, G., Peano, D., Putrasahan, D., Roberts, C.D., 
Senan, R., Steger, C., Teichmann, C., Vautard, R., 2020. European daily precipitation 
according to EURO-CORDEX regional climate models (RCMs) and high-resolution 
global climate models (GCMs) from the high-resolution model intercomparison 
project (HighResMIP). Geosci. Model Dev. (GMD) 13, 5485–5506. https://doi.org/ 
10.5194/gmd-13-5485-2020.

Dinh, T.L.A., Aires, F., 2023. Revisiting the bias correction of climate models for impact 
studies. Clim. Change 176, 140. https://doi.org/10.1007/s10584-023-03597-y.

Dobbie, K.E., Smith, K.A., 2001. The effects of temperature, water-filled pore space and 
land use on N2O emissions from an imperfectly drained gleysol. Eur. J. Soil Sci. 52, 
667–673. https://doi.org/10.1046/j.1365-2389.2001.00395.x.

Duan, P., Song, Y., Li, S., Xiong, Z., 2019. Responses of N2O production pathways and 
related functional microbes to temperature across greenhouse vegetable field soils. 
Geoderma 355, 113904. https://doi.org/10.1016/j.geoderma.2019.113904.

Dutta, B., Grant, B.B., Congreves, K.A., Smith, W.N., Wagner-Riddle, C., VanderZaag, A. 
C., Tenuta, M., Desjardins, R.L., 2018. Characterising effects of management 
practices, snow cover, and soil texture on soil temperature: model development in 
DNDC. Biosyst. Eng. 168, 54–72. https://doi.org/10.1016/j. 
biosystemseng.2017.02.001.

Elli, E.F., Ciampitti, I.A., Castellano, M.J., Purcell, L.C., Naeve, S., Grassini, P., La 
Menza, N.C., Moro Rosso, L., de Borja Reis, A.F., Kovács, P., Archontoulis, S.V., 
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