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A B S T R A C T

White bread is a worldwide consumed food product with significant nutritional value. The loaf volume of bread 
is a crucial parameter that influences its texture, appearance and consumer acceptability. Near Infrared Spec
troscopy (NIRS) has shown significant potential in predicting the loaf volume of white bread, providing a faster 
and potentially more accurate alternative to time consuming traditional methods. This study investigates the 
effectiveness of NIRS and Near Infrared Transmission (NIT) spectroscopy in predicting loaf volume based on 
wheat flour measurements using both benchtop instruments and a portable FT-NIR instrument. A set of 154 
wheat flour samples, including both winter and spring varieties, was analyzed. The performance of NIRS and NIT 
models was compared with conventional flour analysis methods such as farinograph, alveograph, and rapid visco 
analyzer. The regression models based on NIR and NIT data demonstrated higher prediction accuracies com
parable to traditional methods while significantly reducing both time and complexity of the analysis. This study 
underscores the potential of NIRS technology to offer rapid and precise predictions of loaf volume, proving to be 
a valuable tool for baking producers of all scales. Furthermore, the availability of affordable and portable NIR 
devices makes this technology accessible for small-scale producers, enabling broader adoption across the baking 
industry.

1. Introduction

According to the Food and Agriculture Organization of the United 
Nations (FAO) wheat Triticum aestivum L. is the third most-produced 
cereal grain worldwide, only surpassed by Maize and Rice (Awika, 
2011). Wheat flour is one of the major food raw materials in the human 
diet and it is a primary ingredient in many food products such as bread 
(Ahmed, Randhawa, & Sajid, 2014). Bread stands among the first pro
cessed foods crafted by humans and it is prepared by baking fermented 
dough made from wheat flour, water and yeast (Hidalgo & Brandolini, 
2014). The global bread and bakery market continues to grow yearly 
approx. 6.8 % (CAGR). The growing world population results in an 
increased demand for food to ensure adequate nutrition for people 
(Fróna, Szenderák, & Harangi-Rákos, 2019) and analysis of wheat flour 
for bread making remain a key technology. Determining baking volume 

is a key aspect of assessing the quality of the flour when baking white 
bread. This complex parameter is correlated directly with baked prod
ucts texture, appearance and overall consumer acceptability. Baking 
volume primarily depends on two factors: the volume of carbon dioxide 
produced during yeast fermentation, and the gas retention capacity of 
the dough. These factors are in turn influenced by several underlying 
parameters: the amount of fermentable simple sugars naturally present 
in the flour, the starch hydrolyzed into glucose and maltose by amylase 
enzymes from mixing until baking (when amylase is denatured), and the 
gluten network developed during dough hydration and mixing. The 
gluten network, formed by glutenins and gliadins is stabilized primarily 
through disulfide bridges, provides a visco-elastic structure essential for 
CO₂ retention. Additionally, physical processes such as dough mixing are 
critical for developing an effective gluten network capable of entrapping 
carbon dioxide. Accordingly, an ideal predictive method for baking 
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volume should accurately measure flour parameters including simple 
sugar content, starch content, amylase activity, protein content (espe
cially glutenins and gliadins), and the quantity of disulfide bridges. 
Accurate measurement and prediction of baking volume thus play a 
pivotal role in optimizing recipes, ensuring product consistency, and 
meeting consumer expectations. Measurement of loaf volume through 
baking test requires skilled personnel, specialized equipment and the 
associated costs. Therefore, there is a continuous quest for a technique 
that can predict the baking volume from measurement on the flour. 
Several methods have been developed, including farinograph and 
extensograph to predict rheological properties of the dough and loaf 
volume (Hermannseder, Ahmad, Kügler, & Hitzmann, 2017; Oliver & 
Allen, 1992). Proposed methods for the prediction of baking perfor
mance include a combination of farinograph data with artificial neural 
networks and stepwise linear regression (Hermannseder et al., 2017) 
and also within a use of alveograph method (Addo, Coahran, & Pom
eranz, 1990; Jodal & Larsen, 2021). In the baking industry, the Mixolab 
method (Lacko-Bartošová, Konvalina, & Lacko-Bartošová, 2019) is 
frequently utilized for evaluation the rheological properties and quality 
of the dough. It measures the force required for mixing flour after 
addition of water. Mixolab curves gives information about strength of 
the dough, time development, enzymatic activity as well as pasting 
properties of the starch (Chung, Ohm, Caley, & Seabourn, 2001; Kah
raman et al., 2007; Schmiele, Ferrari Felisberto, Pedrosa Silva Clerici, & 
Chang, 2017). Loaf volume has also been proposed to be predicted from 
large deformation rheological properties. Dobraszczyk and Salmano
wicz found that the baking volume was predominantly influenced by the 
strain hardening index, bubble failure strain, and mixograph bandwidth 
at 10 min (Dobraszczyk & Salmanowicz, 2008). While this technique 
only needs relatively small sample sizes, it unfortunately requires long 
run times. As a curiosity it can be mentioned that also seasonal weather 
data along with neural networks has been used to predict loaf volume 
(Karki, Glover, Bondalapati, & Krishnan, 2016). Nagael-Held et al. used 
Fourier-transform Raman spectroscopy (FT-Raman), near-infrared 
spectroscopy (NIR), fluorescence, and a data fusion approach to pre
dict several parameters in wheat flour, such as protein content, wet 
gluten, water absorption, plant height, and grain yield. However, in the 
case of predicting the loaf volume, the authors obtained models with 
high prediction errors (Nagel-Held, Kaiser, Longin, & Hitzmann, 2022). 
In this study, the authors did not include RVA, falling number, amylo
graph, or farinograph parameters in their analysis. In contrast, present 
study includes a more comprehensive analysis incorporating flour, 
dough, and baking volume measurements, allowing for a more robust 
modeling approach.

In this manuscript, we compare the usefulness and limitations of 
applying NIR reflection, NIR transmission, and portable NIR reflection 
to predict the loaf volume directly from wheat flour measurements. 
These results are then compared with a series of conventional flour 
analysis methods in predicting baking volume. The study is performed 
on a series of standardized wheat flours from a commercial wheat mill. 
The techniques presented in this paper have several key advantages. 
They are fast, require no sample preparation, and are environmentally 
friendly. Unlike traditional methods, they do not use any chemicals, 
making NIR technology a green and sustainable solution for flour 
analysis (Czaja & Engelsen, 2025). Additionally, the development of 
small handheld NIR instruments enabled a cost-effective and reliable 
alternative to traditional benchtop instruments. These portable systems 
are more affordable and highly accessible, enabling smaller mills and 
bakeries to utilize advanced NIR technology in their operations and to 
monitor key quality parameters of wheat samples without the need for 
time-consuming and labor-intensive baking trials. However, NIR spec
troscopy cannot directly predict parameters like amylase activity, 
detailed protein specification (glutenins and gliadins), or disulfide 
bridges due to their low quantities. Despite these limitations, our hy
pothesis posits that these factors are interdependent- referred to as the 
cage of covariance (Eskildsen et al., 2021) – thus allowing NIR 

spectroscopy to predict baking volume with satisfactory accuracy 
compared to traditional methods.

2. Experimental

2.1. Material

Wheat flour samples for analysis were collected from Lantmannen 
Cerealia in Malmö and Strängnäs, Sweden. A total of 154 samples were 
gathered, comprising both winter and spring wheat. To ensure a diverse 
range of variations, 105 samples of winter wheat and 49 samples of 
spring wheat were included. For winter wheat, 45 samples were 
collected in 2018 and 60 in 2019. In the case of spring wheat, 21 samples 
were collected in 2018 and 28 in 2019. All samples consisted of sifted 
flours without any additives and were stored at − 20 ◦C before under
going spectroscopic analysis.

2.2. NIR and NIT measurements

Near infrared spectra of all flour samples were obtained using three 
different spectrometers: (1) a general purpose benchtop NIR spectrom
eter in reflectance mode, (2) a portable FT-NIR spectrometer in reflec
tance mode and (3) a shortwave benchtop spectrometer designed for 
transmission NIR spectroscopy (NIT).

The general purpose NIR spectrometer (1) was the FOSS DS2500 
spectrometer (FOSS Electric A/S, Hillerød, Denmark) equipped with 
Silica (400–1100 nm) and Indium gallium arsenide (InGaAs) 
(1100–2500 nm) detectors. Spectra were acquired in the range 400 nm 
to 2500 nm, with a spectral resolution of 1 nm in reflectance mode. Each 
spectrum was an average of 32 scans taken at 8 different positions using 
a rotating sample cup, resulting in an averaged spectrum combining the 
256 scans.

The portable FT-NIR spectrometer (2) was the NeoSpectra scanner 
(Si-Ware Systems, Cairo, Egypt), which operates within a wavelength 
range of 1350–2500 nm with scan time 10 s and 5 scans. The spec
trometer is equipped with a monolithic micro-electro-mechanical sys
tem (MEMS) Michelson interferometer.

The shortwave NIR transmission spectrometer was the Infratec 
spectrometer (FOSS Electric A/S, Hillerød, Denmark) which operates in 
the wavelength range from 800 to 1100 nm with a digitalization of 1 nm. 
The NIR transmission spectra were used to predict protein and moisture 
content using a build-in calibration.

2.3. Reference analysis

Wheat flour samples were analyzed by a range of classical flour 
analysis methods some of which have previously been used to predict 
loaf volume (Selga, Johansson, & Andersson, 2024). In the following the 
flour laboratory references are briefly described.

Protein content is measured by a prediction method based on the NIT 
spectra which has been calibrated against a Kjeldahl based reference 
method.

Moisture content is measured by a prediction method based on the 
NIT spectra which has been calibrated against an oven drying gravi
metric method.

Hagberg falling number is typically used by the baking industry to 
determine the quality of the flour. It represents an indirect measure of 
the activity of the hydrolytic enzymes (especially α-amylase) in the 
flour. The falling number of wheat flour for white bread baking is 
typically around 250–350. A high number means little enzyme activity 
(Olaerts et al., 2016).

The Farinograph by Brabender measures and records the dough's 
resistance to mixing, providing information on key parameters such as 
water absorption (the amount of water needed for standard dough 
consistency), development time (time to reach maximum resistance), 
stability (how long the dough maintains its maximum resistance), 
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degree of softening (dough weakening over time), and the Farinograph 
Quality Number (FQN), which summarizes overall flour quality and 
typically ranges from 50 to 100 for wheat bread flour (Technical, 
2009a).

The Alveograph test evaluates gluten strength by inflating a piece of 
dough until it bursts. To perform the test, the dough is initially prepared 
and developed. Next, disks of dough are cut and left to rest. Each disk is 
then inflated with air, and its resistance to expansion is measured. This 
test provides valuable insights into predicting dough behavior and 
baking quality for various applications, such as bread and confectionery. 
Additionally, flour millers and manufacturers use the Alveograph test 
for quality control and product development. Typical values for wheat 
bread are: P (Resistance to deformation): 60–100 mm H2O, L (Extensi
bility): 80–120 mm and W (Baking strength): 200–300 × 10− 4 (de Beer, 
2023).

Wet gluten is extracted from flour using automatic gluten washing 
apparatus, then centrifuged. The total wet gluten, expressed as a per
centage of the sample, and the gluten index, the percentage of wet gluten 
remaining on the sieve, are measured. Typical values for total wet gluten 
for wheat flour are 25–35 % of the sample (Technical, 2009b).

An amylograph measures the gelatinization and viscosity properties 
of starches during heating, providing insights into their behavior in food 
products. The gelatinization peak refers to the maximum viscosity 
achieved during the gelatinization process, indicating the point where 
the starch granules have absorbed the most water and swelled fully. The 
gelatinization temperature is the range at which starch granules begin to 
swell and lose their crystalline structure, marking the start of the 
thickening process (Juliano et al., 2006).

Rapid Visco Analyzer (RVA) assesses the pasting properties of 
starches and other ingredients, offering quick and detailed analysis of 
their viscosity profiles including peak viscosity (maximum swelling ca
pacity), breakdown (starch stability under heat and shear), final vis
cosity (gel strength upon cooling), setback (retrogradation tendency), 
peak time (rate of gelatinization), and pasting temperature (onset of 
viscosity increase) (Balet, Guelpa, Fox, & Manley, 2019; Jackson, 2003).

The white bread baking protocol and loaf volume measurements 
were performed as described in previous study (Selga et al., 2024) .

2.4. Data analysis

Principal component analysis (PCA) (Bro & Smilde, 2014; Wold, 
Esbensen, & Geladi, 1987) and Partial least squares (PLS) regression 
(Geladi & Kowalski, 1986; Wold, Martens, & Wold, 1983) was per
formed using PLS Toolbox 9.0. Before PCA and PLS data were mean 
centered. In the case of PLS, calibration models were constructed using 

either 2nd derivative or 2nd derivative + multiplicative scattering 
correction (MSC) (Pedersen, Martens, Nielsen, & Engelsen, 2016; 
Rinnan, Berg, & Engelsen, 2009; Sørensen et al., 2021). The obtained 
spectra and results of reference baking volume analyses were combined 
to construct regression models. Using random subset cross validation, 
the root mean square of cross-validation (RMSECV) was calculated to 
select an optimal number of PLS latent values. The variable selection 
was supported by applying forward interval Partial Least squares algo
rithm (iPLS), evaluating different window sizes to identify the most 
informative spectral regions. (Nørgaard et al., 2000). To ensure a 
stratified sampling approach, 25 % of the samples from both the winter 
and spring datasets were randomly selected as validation set, while the 
remaining samples were used for calibration purposes. Following model 
validation, paired t-tests were conducted on the predicted bread volume 
values to statistically assess differences in prediction accuracy between 
the NIR methods and traditional reference methods. All data processing 
was performed in Matlab (2022b, MathWorks, Natwick, MA, USA) 
environment.

3. Result and discussion

Winter wheat typically contains a moderate protein content ranging 
from 10 to 12 % compared to spring wheat with a higher protein con
centration of 12–14 %. The spring wheat is often used specifically for 
producing bread flour or combined with winter wheat to create versatile 
all-purpose flour (Gibson & Newsham, 2018). In order to cover a bigger 
range of variability both winter and spring flour were used in this study. 
Fig. 1 depicts the distribution of falling number, protein content and loaf 
volume values. Loaf volume and protein content both reveal a bimodal 
distribution, distinctly marking separate spring and winter groups. This 
pattern suggests a relation between protein content and loaf volume. In 
contrast, the falling number parameter displays a distribution ranging 
from 300 to 480 without a clear separation between spring and winter 
flour samples.

Apart from the measurements of protein, falling number and loaf 
volume also water, ash content, wet gluten, farinograph, amylograph 
and rapid visco analyzer were also conducted for all wheat flour sam
ples. The Pearson correlation coefficient inter-correlation matrix was 
calculated for the obtained data, and the results are shown as a heat map 
in Fig. 2. The analysis shows that loaf volume values correlate with 
protein content, wet gluten, and development time (from Farinograph 
analysis). There is no observed correlation with falling number (r =
0.03). The falling number only reveals weak correlations with the far
inograph gelatinization peak (r = 0.54) and RVA final viscosity (r =
0.52).

Fig. 1. Distribution of falling number (left), protein content (middle) and loaf bread volume (right) in wheat flour samples. Samples colored according to spring 
(green) and winter (blue) wheat flour.
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Based on the obtained data, principal component analysis was per
formed using the auto-scaled data. Fig. 3 shows the PCA biplot of the 
first two principal components describing 32.06 % and 18.05 %, 

respectively, of the total variation. The bi-plot shows that the spring or 
winter wheats are clearly separated along PC1, and equally distributed 
along PC2. To further illustrate this separation, 95 % confidence ellipses 

Fig. 3. PCA biplot of 154 flour samples based on reference flour data. Blue circles represent winter wheat flour samples, green circles represent spring wheat flour 
samples, and orange triangles indicate flour quality parameters (loadings). 95 % confidence ellipses are drawn around each class to illustrate group dispersion.

Fig. 2. Heatmap of Pearson correlations among the analyzed flour parameters in the flour lab.

T.P. Czaja et al.                                                                                                                                                                                                                                 Food Research International 219 (2025) 116966 

4 



were added for the spring and winter wheat flour samples. Additional 
principal components were also analyzed; however, did not yield addi
tional relevant information.

Visual analysis of the biplot shows that the flour quality parameters 
such as loaf volume, stability and ash are highest in the spring wheat 
flours, while the degree of softening is highest for the winter wheats. 
Parameters such as water content, falling number and absorption are 
located between sample two sample groups, meaning that they are of 
similar magnitude for the two. The obtained results align with the his
tograms in Fig. 1, where spring wheat were characterized with higher 
values of protein content and baking volume, and falling number was 
distributed across the whole sample set.

3.1. Regression models

The primary aim of this study is to develop a method for predicting 
white bread loaf volume based on NIR measurements of wheat flour. 
According to the correlation analysis above the protein content 
(measured by NIT) is the most promising parameter. However, to 
investigate this further, we developed baking volume prediction models 
from: (1) only the protein content parameter, (2) all flour laboratory 
reference parameters as described in the correlation table and Section 
2.3, excluding protein content, (3) NIR reflectance spectra from 400 to 
2500 nm, (4) portable FT-NIR instrument 1350–2500 nm and (5) NIR 
transmission spectra from 800 to 1000 nm.

To develop PLS regression models, the complete set of 154 wheat 
flour samples was divided into calibration and validation sets. The 
samples, representing 25 % of each set were randomly selected from 
both spring and winter flour samples. A total of 117 samples were used 
for model calibration, while 37 samples were used for validation, 
maintaining representative distributions of both wheat types in each 
subset.

In the first prediction model (1), only the protein content as deter
mined by NIT, was used for predicting baking volume. The result, shown 
in Table 1, indicate that this simple univariate regression can predict 
baking volume with an uncertainty of RMSECV = 162 cm3 and a squared 
correlation coefficient of R2 = 0.78. In the second prediction model (2) 
we use all the quality parameters from the flour lab corresponding to the 
24 reference parameters. This model further improved the prediction of 
the baking volume to an uncertainty of RMSECV = 140 cm3 and a 
squared correlation coefficient of R2 = 0.81 (Table 1). The ‘measured 
versus predicted’ plots for the loaf volume quantification, based on 
reference measurements data table and protein content, are gathered in 
Fig. 4. The next step involved prediction of the baking volume directly 
from the spectroscopic NIR reflectance and transmission data, allowing 
for accurate estimation from flour samples without the need for baking. 
(See Fig. 5.)

The most accurate predictions using NIR transmission spectra were 
achieved utilizing the 2nd derivative and MSC correction (Pedersen 
et al., 2016) while for benchtop NIR and portable FT-NIR, only the 2nd 

derivative was employed. Various preprocessing methods were tested, 
but these combinations yielded the best results. In all approaches, 
optimal variable selection was conducted using iPLS to identify the most 
relevant data segments for loaf volume prediction. The results of the 
iPLS analysis, including selected intervals, are provided in the supple
mentary material on Figs. S1-S3. As we have seen above, baking volume 
is highly correlated with protein. Therefore, for modeling purposes, the 
combination band (approximately 2290 nm) and the 1st (1960 nm), 2nd 

(1490 nm), and 3rd (988 nm) overtones of NH bands, which come from 
protein, were selected. Different wavelength selections were applied for 
each technique—NIR benchtop, portable FT-NIR, and NIT—though the 
primary focus on the bands mentioned above. For the spectroscopic 
models the prediction uncertainties (RMSEPs) was in the same range as 
the model based on the 24 reference parameters i.e. RMSEP = 126 (NIR), 
RMSEP = 138 (portable NIR) and RMSEP = 124 (NIT), respectively 
(Table 1). In case of the R2 models based on NIR are marginally lowered 
as compared to the model based on the 24 reference parameters. To 
further evaluate model performance, residual plots from the PLS 
regression models are provided in the supplementary material 
(Figs. S4–S6). Bland–Altman plots based on the calibration datasets for 
all three spectroscopic models (NIT, NIR, and portable FT-NIR) are also 
included in the supplementary material (Fig. S7) to illustrate agreement 
between predicted and reference baking volume values. From the five 
models it is evident that the lowest prediction accuracies for bread 
volume are heavily influenced by protein content. It is possible to pre
dict loaf volume directly from the protein content but the error obtained 
is notably higher than for the other prediction models. The most precise 

Table 1 
R2 and RMSEP of loaf volume prediction based on protein, reference analysis 
table NIR and NIT.

Protein 
content 

from NIT

Reference 
analysis table 

without protein 
content

Benchtop 
NIR

Portable 
FT-NIR

NIT

R2 0.779 0.838 0.881 0.804 0.848
R2

cv 0.776 0.803 0.863 0.759 0.815
RMSEC 162 118 102 124 116
RMSECV 165 135 116 129 125
RMSEP 161 132 126 138 124
LV – 3 4 5 3

Fig. 4. Prediction plots for loaf volume quantification based on reference measurements data table without protein content (right) and protein content (left). Black 
circles represent calibration samples. Diamonds indicate validation samples, colored by flour type: blue for winter wheat flour and green for spring wheat flour.
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prediction values are obtained using NIR methods, delivering high ac
curacy with minimal uncertainty in under a minute. Although statistical 
analysis (paired t-tests) showed no significant difference (p > 0.05) in 
prediction accuracy between NIR methods and traditional reference 
methods for baking volume prediction. NIR offers comparable perfor
mance with the added benefits of non-destructiveness and fast analysis. 
In contrast, reference analysis tables require numerous time-consuming 
analyses and specialized equipment. Additionally, NIR is a green 
analytical tool with a negligible CO₂ footprint, making it a superior 
alternative to traditional baking lab methods.

The results obtained from portable FT-NIR instrument are slightly 

less accurate compared to NIT and benchtop NIR instruments. However, 
this opens up the possibility to implement NIR technology in small-scale 
baking producers and milling companies. This creates an opportunity for 
smaller businesses to perform rapid and accurate analyses of raw ma
terial quality and importantly, predict baking volume directly from flour 
measurements - without requiring the baking process itself. The devel
opment of portable NIR instruments has made them increasingly 
affordable and more advanced, enabling many small businesses to invest 
in this technology without relying on laboratory facilities. This provides 
a cost-effective solution for real-time quality control and analysis 
directly at production sites. NIR technology is highly versatile and can 

Fig. 5. Prediction plots for loaf volume determination and spectra colored based on loaf volume for, NIR (top), portable FT-NIR (middle) and NIT (bottom). Black 
circles represent calibration samples. Diamonds indicate validation samples, colored by flour type: blue for winter wheat flour and green for spring wheat flour.
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be calibrated to measure other critical parameters like protein, moisture, 
starch, and gluten, making it an invaluable tool. With just a single 
measurement, it's possible to gain insights into multiple factors, such as 
baking volume, moisture content, and ash levels. This allows small 
producers to monitor raw material quality easily and ensure consistent, 
optimized production.

Importantly, NIR technology supports green and sustainable mea
surement practices. It is ultrafast, requires no chemicals, produces no 
waste, and is energy-efficient (Czaja & Engelsen, 2025). By using this 
environmentally friendly solution, producers can improve operations, 
reduce waste, and contribute to sustainability while minimizing the 
environmental impact of food production.

4. Conclusion

This study confirms the raison d'etre of NIRS technology in com
mercial mills and the baking industries. Green NIRS technology provides 
rapid predictions not only of protein, moisture content, but it is also able 
to predict loaf volume on par or better to any other quality parameters in 
the flour laboratory. Even the performance of an easy to use handheld 
FT-NIR spectrometer gives very good prediction of loaf volume making 
the method feasible in smaller mills. The techniques presented here 
eliminate the need for specialized equipment and time-consuming 
measurements. In combination with chemometrics make also possibil
ities to measure and determine other parameters in wheat flour. As the 
demand for sustainable and efficient food production grows, the inte
gration of benchtop and portable, green NIRS technologies provides a 
forward-looking solution for quality assurance in both large-scale and 
artisanal milling and baking operations.
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