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Recognising information uncertainties in 
forest planning: Incentives and strategies 

Abstract 
This thesis addresses uncertainty in information about the state of forests and the 
implications of this uncertainty for long-term forest planning. This is done by 
examining how forestry manages forest information uncertainty, including the 
effects of ignoring it. It also proposes a methodology to explicitly address this 
uncertainty using an optimisation approach. The primary motivation of this thesis is 
to enhance decision-making in forestry, which is why emphasis is placed on practical 
relevance. Paper I explores existing strategies for addressing forest information 
uncertainty at large forest companies. Notably, the use of analytical methods, such 
as optimisation, for planning under uncertainty was found to be rare. The effects of 
ignoring forest information uncertainty are analysed in Papers II and III. Paper II 
examines whether mismatches between strategic and tactical objectives lead to 
suboptimal decisions and how information uncertainty affects planning results in this 
context. Paper III examines how errors in remote sensing predictions, which stem 
largely from regression towards the mean, affect planning results. Here, regression 
towards the mean is the tendency to underestimate large true values and overestimate 
small ones. The results of Papers II and III show that objective fulfilment decreases 
when uncertainty is not addressed. Finally, Paper IV evaluates a stochastic 
programming model that explicitly incorporates uncertainty into long-term planning. 
The model was integrated into a forest decision support system and tested in a case 
study to assess the value of accounting for multiple uncertainty scenarios 
simultaneously. Feedback from users provided managerial insights, supporting 
further refinement and application of the model, including decision support system 
development. In conclusion, this thesis provides a deeper understanding of what 
strategies forestry currently employs to address information uncertainty. 
Furthermore, the thesis provides clear incentives why information uncertainty 
should be recognised and proposes a method to consider this uncertainty explicitly 
to improve the objective fulfilment of forest planning. 

 
Keywords: errors, forest decision support systems, forest information uncertainty, 
forest inventory, forest management, optimisation, remote sensing, stochastic 
programming 
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Beaktandet av osäker information i skoglig 
planering: drivkrafter och strategier 

Sammanfattning 
Denna avhandling behandlar osäkerhet i information som beskriver skogars tillstånd 
och vad denna osäkerhet har för konsekvenser för långsiktig skoglig planering. Detta 
görs genom att undersöka hur skogsbruket hanterar denna osäkerhet och vad 
effekterna blir av att ignorera den. Även en optimeringsmetodik för hur denna 
osäkerhet kan hanteras föreslås. Det övergripande syftet är att möjliggöra bättre 
beslutsfattande inom skogsbruk, varför tonvikten ligger på praktisk relevans. Studie 
I utforskar befintliga strategier hos skogsföretag för att hantera osäker skoglig 
information i sin planering. Ett viktigt resultat är att användningen av avancerade 
beräkningstekniker, såsom optimering, för planering under osäkerhet är ovanlig. 
Effekterna av att inte hantera osäkerhet i skoglig information analyseras i studierna 
II och III. Studie II undersöker om skillnad i målsättning mellan strategisk och 
taktisk planering leder till suboptimala beslut och hur informationsosäkerhet 
påverkar detta. Studie III undersöker hur fel i fjärranalysbaserade prediktioner, som 
ofta har fel som beror på dragning till mitten, påverkar planeringsresultatet. 
Dragning mot mitten innebär att höga sanna värden underskattas medan låga sanna 
värden överskattas. Resultaten från studierna II och III visar att måluppfyllelsen 
minskar om osäkerhet ej beaktas. Slutligen utvärderar studie IV en modell baserad 
på stokastisk programmering som explicit integrerar osäkerhet i långsiktig planering. 
Modellen implementerades i ett skogligt beslutsstödsystem och testades i en 
fallstudie för att bedöma värdet av att samtidigt beakta flera osäkerhetsscenarier. 
Feedback från användare gav viktiga insikter för vidareutveckling och tillämpning 
av modellen, inklusive beslutsstödsystemet. Sammanfattningsvis ger denna 
avhandling en fördjupad förståelse för vilka strategier skogsbruket i dag använder 
för att hantera informationsosäkerhet. Vidare visar avhandlingen tydliga incitament 
till varför informationsosäkerhet bör beaktas samt föreslår en metod som explicit 
hanterar osäkerhet för att förbättra måluppfyllelsen i skoglig planering. 
 

Nyckelord: fel, fjärranalys, optimering, osäkerhet i skoglig information, skogliga 
beslutsstödsystem, skogshushållning, skogsinventering, stokastisk programmering 
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1. Introduction 

Forests host biodiversity and provide ecosystem services vital for life on 
Earth (Brockerhoff et al. 2017). The photosynthesis of the world’s forests 
accounts for 49% of the global gross primary production of terrestrial biomes 
(Beer et al. 2010). Forests are also the primary habitat for many species 
(Pillay et al. 2022). Human society depends on biodiversity and on these 
services (Brockerhoff et al. 2017). One obvious example is the provision of 
goods such as timber and game meat (FAO 2020b; Needham et al. 2023). 
However, regulating services, such as stabilising the climate and mitigating 
soil erosion, should also be acknowledged (Li et al. 2015; Bullock et al. 
2016). Forests are also crucial for human well-being and recreation (Oh et 
al. 2017; Derks et al. 2020).  

The numerous values associated with forests must be considered when 
utilising their resources, especially in light of climate change (Başkent 2018; 
Felton et al. 2024). Forest planning (i.e., defining the objective of a forest’s 
management and proposing the best actions to achieve that objective) 
provides tools and processes to consider these values, thereby contributing 
to sustainable forest management. Since forests and forestry are impacted by 
much uncertainty, these tools and processes should preferably be able to 
consider that uncertainty.  

Uncertainty can be viewed as a spectrum ranging from determinism to 
complete uncertainty (Walker et al. 2003). In a deterministic system, one has 
complete knowledge of all objects’ states and movements, as well as how all 
processes function both historically and in the future. However, knowledge 
like this never exists. Thus, all systems and decisions regarding them should 
be considered to exist under some uncertainty.  

The uncertainty affecting forests and forestry stems from many sources. 
On the ecological side, there is the natural randomness of ecosystems, 
ranging from the molecular level to interactions between organisms and 
communities (Buiatti & Longo 2013; Messier et al. 2016). Biotic 
disturbances in managed forests, such as damage from pests or browsing, 
should be included here (Canelles et al. 2021). Related to the ecosystem, 
there are abiotic uncertainties associated with the physical world, the 
atmosphere, and the weather, including storms, rainfall, lightning-induced 
fires, and drought (Seidl et al. 2011). These uncertainties are, of course, 
interlinked; for example, drought increases trees’ susceptibility to insect 
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damage (Gely et al. 2020). All the above factors affect the growth of trees in 
various ways (Fox et al. 2001). Uncertainty is also present on the socio-
economic side of forests and forestry. For example, market prices for wood 
fluctuate (Hildebrandt & Knoke 2011) due to changes and uncertainties in 
wood supply and demand (Carlsson et al. 2009). Policy changes are also a 
source of uncertainty (Hyde & Olmos 2024). From a decision-making 
perspective, there is usually great uncertainty about decision-makers’ 
preferences (Eyvindson et al. 2018a). The different uncertainties have been 
categorised by Pasalodos-Tato et al. (2013): 

 
1. Uncertainty due to forest inventory errors 
2. Uncertainty from growth models 
3. Uncertainty in market conditions 
4. Uncertainty in the preferences of decision-makers 
5. Uncertainty from natural hazards 

The scope of this thesis is uncertainty1 in forest planning. More precisely, it 
examines how forest information uncertainty, i.e., uncertainty in the 
description of forests (point 1 in the list above), is addressed in contemporary 
long-term forest planning and how current practices, which largely overlook 
this uncertainty, impact objective fulfilment. Lastly, it evaluates and suggests 
a method for explicitly dealing with forest information uncertainty in forest 
planning models. A special focus is given to large forest-owning 
organisations with formalised planning routines. Uncertainty connected to 
points 2-5 according to Pasalodos-Tato et al. (2013) is important, but is not 
explicitly considered here.  
  

 
 
1 Connected to uncertainty is the concept of risk. Sometimes, risk is referred to as a state of quantifiable 
uncertainty, i.e., it is possible to estimate the probability of an event (Knight 1921). The risk preference, i.e. how 
willing one is to gamble with the potential (negative and positive) outcomes of a decision, is an important 
characteristic of decision-makers (Weber 2010). However, in this thesis, a decision-maker is generally 
considered risk-neutral. 
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1.1 Forest planning in practice: dealing with an uncertain 
future 

Long-term forest planning has evolved over the centuries in response to the 
need for sustainability in society’s use of forests and forests’ ecosystem 
services (Kangas et al. 2015). In fact, as the sections below will show, forest 
planning emerged from the need to minimise the uncertainty of future wood 
supply. 

1.1.1 Early planning of wood production 
The first ideas about conserving forests systematically for future wood 
supply stem from the late medieval period or the early Renaissance (Warde 
2011, 2018). The earliest example of forest planning with a scientific 
approach was made by von Carlowitz (1713). When managing the declining 
forest resources used by Saxony’s mines, he concluded that the harvesting 
rate should not be higher than the rate at which the forests could be 
regenerated. With his stipulation, he is often considered the first person to 
have framed the concept of sustainability (Morgenstern 2007). His work was 
continued by Hartig (1795) and Cotta (1804), who both proposed measures 
to achieve a steady supply of harvestable forests, i.e. a sustained yield, by 
dividing the forest into equally large parts according to standing volume or 
area in what can be called a framework pattern (Hagberg 1943; Lundmark 
2020). The number of such areas should correspond to the number of years 
needed for an entire forest rotation; i.e., from planting to final felling. 
Hartig’s and Cotta’s systems are early cases of scientifically based forest 
management, as they were based on assessments from inventories and 
considered the future need for forest resources. In principle, one could say 
that these systems were developed to control and minimise the uncertainty 
of future wood-supply.  

Hartig and Cotta are two examples of early calculating foresters, a new 
type of forester who drew inspiration from the Central European movement 
towards a cameral science, by introducing data-driven rationality to the use 
of forests (Lowood 1990). Cameral science, which aimed to establish 
economic order in the governance of states and nations, significantly 
influenced the new Forstwissenschaft (forest science) developed by these 
calculating foresters. In essence, the need to plan the use of forests was one 
of the main reasons for developing forest science as a scientific field of 
enquiry.  
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A general principle governing most forest planning and general forest 
science literature in the 19th century is the idea of a normal forest (Reed 
1986). A normal forest is the hypothetical state of a forest in which the area 
for all age classes for each site class is equal (Eklund 1979). A normal forest 
will, in theory and per definition, result in sustained yield and is the natural 
consequence and long-term steady state of harvesting systems like those 
suggested by the early German foresters (Hartig 1795; Cotta 1804). With no 
other aides to ensure sustained yield, most early planning instructions aimed 
to transform any forest into a normal one, as this structure seemed the easiest 
to manage (Reed 1986). A normal forest is a simple (idea-wise, at least) way 
of managing the uncertainty of future harvests. The rigid division of forests 
into the same number of stands (all equally sized) as the number of years in 
the rotation period, will, at least in theory, and without any external actions, 
lead to reduced variation over time in the outcomes of ecosystem services if 
one stand is harvested per year (Petrini 1948).  

The Industrial Revolution in the 1800s led to a significant increase in the 
demand for wood, while most of continental Europe at the time lacked the 
necessary forest resources to meet this demand (Lotz 2015; McGrath et al. 
2015). The focus of new harvesting campaigns was on the sparsely populated 
and previously largely untouched boreal forests in the Nordic countries 
(Östlund 1995). The forestry that came to be practised in these areas was 
initially exploitative. However, concerns soon emerged regarding the long-
term wood supply when it became evident that the exploited forests were not 
regenerating as rapidly as had been anticipated (e.g. Ström 1860). In 
response to this concern, numerous European countries enacted legislation 
during the late 19th and early 20th centuries to address declining forest 
resources (Luzzi 2001; Richards 2003; Nylund 2009). With that process, 
legal and policy-oriented rationales for forest planning also emerged, further 
confirming the general objective of reaching sustainable use of forest 
resources.  

With the increasing demand for planning the utilisation of forest 
resources and the availability of forest inventory methods, the concept of a 
forest management plan emerged. According to Obbarius, a German forester 
active in Sweden during the 1800s, a forest management plan must be long-
term; i.e., covering at least one rotation period (Obbarius 1847). 
Furthermore, he stated that a plan should consist of a map showing borders 
between forest stands, including descriptions of every stand, planned 
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management operations, and estimates of future harvest levels based on these 
operations. For Obbarius, it was also obvious that a plan must aim to reach 
the maximum forest yield while remaining comprehensive and easily 
understandable. 

Forest planning remained very stable, both in terms of objectives (highest 
possible yield) and what methods (normal-forest-oriented) were used 
through the first half of the 20th century (Föreningen för skogsvård i 
Norrland 1914; Norrlands skogsvårdsförbund 1918, 1923, 1941). The 
underlying information to describe forests also remained similar over time. 
Throughout history, the main source of forest information has been field-
based surveys. First, they were rudimentary, mostly subjective and coarse, 
but as mathematics, statistics, and forest science developed, so did forest 
inventory and sampling (Warde 2018). The earliest example of a forest 
survey method with an objective approach was the tallying of all trees in a 
forest while assigning them to diameter classes, as explained by Beckmann 
in the 1750s (Lowood 1990). The total enumeration of trees was unrealistic 
for large-scale inventories, which soon led to the development of other 
inventory designs. Surveys on strips, i.e., walking in a straight line and 
counting or measuring all trees within the strips, were probably the most 
common during the 19th century and the first decades of the 20th century. 
This survey technique was employed in many of the first national forest 
inventories, including in Sweden (Fridman et al. 2014). To avoid spatial 
autocorrelation, i.e., that forests close to each other are more similar than 
those farther away (Matérn 1960), the strip survey evolved into the plot 
survey, which has remained one of the most dominant methods for objective 
field surveys of forests since then (Fridman et al. 2014). Purposive sampling 
methods have been employed in parallel to the development of probability-
based survey methods (Ståhl 1992). They are based on ocular and subjective 
estimates and rely heavily on the surveyor’s experience and expertise.  

During the 1950s, the increased availability of aerial photography made 
it possible to assess forests in ways other than by visiting them in the field 
(Norrlands skogsvårdsförbund 1956). The art of aerial reconnaissance based 
on stereoscopy was first developed during World War I (Ives 1920). Like 
many new technologies, it was later applied to forestry, providing the first 
remote-sensing estimates of forests (e.g. Hesselman 1939).  
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1.1.2 Computers and mathematical programming 
During and after the Second World War, considerable effort was devoted to 
the development of computational science and electronic computers (Rosen 
1969). Simultaneously, these new machines proved to be of great use in the 
emerging field of operations research (Rau 2005), which is the field of 
development and application of analytical methods for problem-solving and 
decision-making. In operations research, solving optimisation problems with 
mathematical programming (e.g., linear programming) has become the 
cornerstone of many analyses, thanks to new computers and their ever-
increasing power, along with the introduction of the Simplex algorithm by 
Dantzig in 1947 (Dantzig 1990). The Simplex algorithm provides a fast and 
efficient method for solving linear programming problems. Soon after its 
creation, the algorithm was implemented on an electronic computer 
(Hoffman et al. 1953). Since then, the original implementation of the 
Simplex algorithm has been further developed and optimised, leading to 
shorter solution times (Bixby 2012).  

Together with computers, linear programming and other mathematical 
programming approaches have been used to solve forest planning problems 
since the 1950s (Lindgren & Näslund 1968; Ware 1968; Bettinger & Chung 
2004). In Sweden, the first documented application of linear programming 
in long-term forest planning was performed by Stridsberg (1959). He wanted 
to examine the usability and applicability of linear programming for the 
Swedish case. He concluded that linear programming was promising overall 
but found that the computationally demanding method for simulating 
alternatives needed to be expanded. He also acknowledged the uncertainty 
of the plan and stated that the forest information used for the calculations 
needed to be sufficient. 

In Swedish forestry, computers were first used during the 1960s to store 
and process forest information for all stands in a forest holding (Hagner 
2005). By the end of the 1960s, the Swedish forest industry faced 
economically harsh times, which is why some of the largest forest companies 
turned to computerisation and linear programming to increase profit by 
lowering forest management costs. As a result, the forest company SCA 
(Svenska Cellulosa Aktiebolaget) had a working system for conducting 
holding-wide analyses based on optimisation at the beginning of the 1970s. 
The system was also used for national analyses in 1973 (Hagner 2001). Also, 
internationally, linear programming was used early on in forest planning. 
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According to a travel report from 1969, multiple companies in North 
America, such as Columbia Cellulose Co. Ltd. and Weyerhaeuser Co., used 
linear programming for forest planning, while even more had installed 
computers for other purposes (Lönner et al. 1969). Since then, linear 
programming has become standard in forest planning (Rönnqvist 2003). 

1.1.3 Introduction of decision support systems and multiple objective 
forestry  

Efficient solution techniques and improved computing power and storage 
were combined into decision support systems2 in the late 1960s and early 
1970s (e.g. Turban 1967; Andersson 1971). By the 1980s, the use of decision 
support systems had become integral to forest planning (Vacik & Lexer 
2014). Initially, the scope of the decision support system development was 
quite narrow. If we take Sweden as an example, HUGIN and the Forest 
Management Planning Package were two early examples of decision support 
systems, both developed in the 1970s and 1980s (Jonsson et al. 1993; 
Lundström & Söderberg 1996). Both systems were designed to improve the 
financial value of forestry by, for example, finding maximum timber yields. 
Other values of forests were not considered.  

However, towards the end of the 20th century, a new type of forestry 
emerged: multi-objective, or multiple-use forestry. A forerunner in the 
transition to this new forestry was the United States Forest Service, with its 
regulations to consider values other than wood production on federal land 
(Lämås & Fries 1995; Lämås 1996). Following the development in the 
United States, Sweden and the other Nordic countries adopted a broader view 
on forest resources (Angelstam et al. 2011). With the introduction of a new 
national forest policy in 1993 and increasing conservation demands from 
voluntary certifications, forest planning has also evolved to consider more 
than just wood production (Lämås 1996). For example, large forest 
companies use ecological landscape plans (Elbakidze et al. 2013), which 
highlight areas for conservation or nature-oriented management. Increased 
time is also invested in finding natural values on potential harvest sites 
(Willén & Andersson 2015). Additionally, the social aspects of planning 
evolved as efforts devoted to co-planning or consultation with the reindeer 

 
 
2 For a definition and more background, refer to section 1.2.4. 
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husbandry increased during the 20th century and accelerated further with the 
introduction of voluntary certifications at the beginning of the 21st century 
(Widmark 2006). 

The growing complexity of forestry objectives spurred new decision 
support system development. The need to consider more than one objective 
was a strong argument for employing more structured problem-solving 
approaches, leading the way for new solution techniques being used, such as 
multi-objective optimisation and multi-criteria decision analysis (e.g. 
Öhman & Lämås 2003; Mendoza & Martins 2006). In response, the Heureka 
system was developed in Sweden, expanding the scope of what could be 
considered in forest planning to, for example, species habitat, carbon storage, 
and the amount of dead wood (Lämås et al. 2023). 

1.1.4 Forests and forest planning in Sweden today 
Sweden is a forested country, with 68% of its land area covered by forests 
(Nilsson et al. 2025). Even though most Swedish forests are boreal (Ahti et 
al. 1968), Swedish forestry has relatively high wood production rates 
considering the country’s small size (FAO 2020a; b). This productivity can 
be explained by the long-standing focus of many actors in forestry on high 
wood production through intensive rotation forestry, combined with a large 
and developed forest industry (Lindahl et al. 2017). Other important aspects 
include the long tradition of using decision support systems for forest 
planning (Stridsberg 1959; Jonsson et al. 1993; Lämås et al. 2023) and the 
high share of productive forest land belonging to forest companies, which is 
approximately 37% (Nilsson et al. 2025).   

Large forest-owning companies have significant incentives to employ a 
formal planning process due to their size and economic focus. This planning 
process is commonly assumed to adhere to the planning hierarchy paradigm 
(Weintraub & Cholaky 1991; Martell et al. 1998; Sessions & Bettinger 2001; 
Tittler et al. 2001; Andersson 2005; Ogden & Innes 2007; Eriksson 2008; 
Nilsson et al. 2012; Duvemo et al. 2014; Lämås et al. 2014; Gautam et al. 
2015, 2017; Kangas et al. 2015:160). According to the paradigm, the forest 
planning process is divided into three stages that are organised hierarchically. 
The three stages are strategic, tactical, and operational planning, where each 
stage addresses different aspects of the decision-making problem in forest 
planning. The strategic stage primarily addresses long-term and high-impact 
issues, such as determining sustainable harvest levels over extended time 
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periods. The operational stage comprises the day-to-day scheduling of 
harvests to meet short-term industry demand. The tactical stage bridges the 
other two and primarily deals with medium-term planning on what stands 
should be harvested in which year to fulfil the strategically decided harvest 
levels. Traditionally, the tactical stage is also considered to facilitate the 
planning of road construction and maintenance. Some investigations on how 
the forest planning process is structured in practice have been conducted 
implicitly (Nilsson et al. 2012), but explicit analyses are lacking to a large 
extent.  

1.2 Forest planning in theory 
As we have seen, forest planning in practice has, throughout history, evolved 
both in scope (wood production → multiple objectives), underlying 
information (rudimentary estimations → probability-based field surveys → 
remote sensing predictions), and decision support (normal forest state → 
optimisation → decision support systems). This section will provide an 
overview of the current state of the scientific theory used in this thesis.  

This section, as well as section 3, will introduce equations and other 
mathematical statements. The notation is context-based and not very strict. 
Some symbols are reused between, for example, utility functions and 
optimisation models. In those cases, the symbols should represent either the 
same thing or something very similar. In other cases where symbols are 
reused but do not represent the same thing, this should be clear given the 
context.  

1.2.1 Decision-making and planning 
Simon (1960) presented a conceptual decision-making model consisting of 
three steps: 1) intelligence, 2) design, and 3) choice. The first step involves 
the search for reasons to make a decision. The second step involves the 
mapping of alternative actions. The last step is the process of actually 
choosing an alternative. According to Simon, these steps can be intertwined 
and may call back to each other. However, to a large extent, decision-making 
should follow that order of business. Keeny (1982)  presented a decision-
making model sharing many similarities with Simon’s model. Keeny’s 
model involves four steps: 1) structuring the problem by defining objectives 
and alternative actions; 2) evaluating the impact of the alternative actions, 
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including their probabilities; 3) describing decision-maker preferences; and 
finally, 4) comparing alternatives to each other to facilitate a decision (Figure 
1). The main difference is probably Keeny’s emphasis on decision-maker 
preferences and objectives, which are only implicitly covered by Simon’s 
model. 

Planning is connected to decision-making in the sense that planning 
facilitates the entire decision-making process in a structured manner, i.e., it 
organises the problem, provides rational alternative actions, and forms the 
basis for the final choice. (Kangas et al. 2015). However, in contrast to 
decision-making, planning involves linking different decisions to each other 
into a system to accomplish an expected or desired outcome, i.e., to create a 
plan (Eliasson 1976). Another difference is that planning mostly deals with 
the future; otherwise, the two fields are closely interlinked. Based on 
Eliasson (1976), one can develop a definition of planning as an “ex-ante 
rehearsal of the decision-making process”, which means that planning lets a 
decision-maker test a particular combination of decisions before 
implementing them. However, more simply put, planning can be described 
by the components needed to create a plan: 1) an objective, 2) activities that 
can be used to reach the objective, and 3) methods to combine these two 
components (Stålhandske 1974). These planning components are very 
similar to those in the decision-making process in Figure 1. However, 
defining the decision-maker’s objective is only implicitly included in the 
way that an objective has already been given. 

Forest planning, in principle, does not differ from any other planning. 
However, some practical differences should be noted. Forest planning stands 

Define alternatives 

Define objectives 

Determine magni-
tude and likelihood 
of proposed altern-
atives 

Structure and 
quantify values of 
decision-makers 

Evaluate proposed 
alternatives and 
conduct sensitivity 
analysis 

Step 1 Structure 
the decision 
problem 

Step 3 Determine 
preferences of 
decision-makers 

Step 2 Assess 
possible impact 
of alternatives 

Step 4 Evaluate 
and compare 
alternatives 

Figure 1. The structure and process of decision making according to Keeny 
(1982). 
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out due to its long time horizons, the intricate production systems subject to 
natural randomness, and the complex decision-making process involving 
many stakeholders with contrasting objectives (e.g. Kangas et al. 2015). 
These differences pose challenges for practitioners and researchers, but 
thanks to information acquisition methods, forest development models, and 
advanced solution techniques implemented in decision support systems, 
forest management plans are made continuously.  

A concrete result of forest planning can be a forest management plan, 
which is a document that describes the future management and development 
of a forest, together with the forecasted output (resulting products and 
services given stated actions). The decisions involved in creating such a plan 
should consider the interlinked relations between management today and in 
the future. Morgenstern (2007) concluded that the information included in a 
forest management plan should be at least a general description of the forest 
and of the inventory methods used; a list of all stands and relevant attributes 
for each; an outline of the proposed management, including regeneration; a 
list of previous management; and the expected harvest volumes. This 
suggested content can likely be viewed as standard and is common 
throughout practice (e.g. Bettinger et al. 2010; Brukas & Sallnäs 2012; 
McDill 2014). 

1.2.2 Formulating the planning problem 
Theoretically, it is often assumed that a decision-maker is rational and has a 
utility function that can be described mathematically (von Neumann & 
Morgenstern 2004). Based on such a utility function, it is possible to rank 
alternative actions according to which alternative provides maximum utility. 
From the utility function of a decision-maker, an optimisation model can be 
developed to solve the posed planning problem; i.e., find the optimal way of 
reaching the stated objective. Any optimisation model is a mathematical 
program that consists of an objective function, decision variables, and a set 
of constraints that restrict the values of the decision variables (Lundgren et 
al. 2010). The objective function describes what the model should optimise, 
for example, to minimise cost or maximise profit. The decision variables, 
which can be either discrete (taking on a fixed set of values) or continuous 
(taking any real value in an interval), are the levers that the decision-maker 
can use to affect the objective function. The constraints limit what values the 
variables are allowed to take. 
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Let us say that a decision-maker has the utility function, which for a 
certain action 𝑥𝑥 has the utility 
(1)  𝑈𝑈 = 𝑓𝑓(𝑥𝑥) 

If there are alternative actions, say 𝑥𝑥1, 𝑥𝑥2 up to 𝑥𝑥𝑗𝑗 and that the utility provided 
we choose a specific action 𝑗𝑗 can be described as 𝑓𝑓�𝑥𝑥𝑗𝑗� = 𝑛𝑛𝑗𝑗𝑥𝑥𝑗𝑗, where 𝑛𝑛 is 
some quantity that has a linear relationship between the decision 𝑥𝑥 and utility 
𝑈𝑈 (the relationship can be non-linear, but for simplicity’s sake we will only 
cover the linear case here), then we want to maximise the sum of all potential 
actions, like 

(2) max𝑈𝑈 = �𝑛𝑛𝑗𝑗𝑥𝑥𝑗𝑗
𝑗𝑗∈𝐽𝐽

. 

Thus, we look for the values of 𝑥𝑥𝑗𝑗 that provide the largest sum, i.e., 

(3) 𝑥𝑥𝑗𝑗 = argmax
𝑥𝑥

𝑈𝑈 

It is easy to see that if 𝑥𝑥𝑗𝑗 represents a yes or no to alternative 𝑗𝑗, we need to 
include some bounds for what values 𝑥𝑥𝑗𝑗 can take. In a binary situation where 
only one alternative can be chosen, these bounds can be stated as 
(4) 𝑥𝑥𝑗𝑗 ∈ {0,1} ∀𝑗𝑗  

(5) �𝑥𝑥𝑗𝑗
𝑗𝑗∈𝐽𝐽

= 1. 

Eq. (4) indicates that we can only assign 0 or 1, i.e., no or yes, to any 
alternative. Eq. (5) indicates that we can only choose one alternative. We 
now have a utility function that can be used to rank alternative actions and 
determine the best option for this specific decision-maker.  

The quantity 𝑛𝑛𝑗𝑗 in the utility function can denote whatever the decision-
maker wants to maximise. In many cases of forest planning, the quantity used 
to describe utility is the net present value, i.e., the present value of future 
cash flows (Pearse 1967; Knoke et al. 2020). The net present value for 
rotational forestry can be calculated as 

(6) 𝑛𝑛 = �
𝑅𝑅𝑡𝑡

(1 + 𝑟𝑟)𝑡𝑡

𝑆𝑆

𝑡𝑡=0

+
(1 + 𝑟𝑟)−𝑆𝑆

1 − (1 + 𝑟𝑟)−𝑇𝑇  �
𝑅𝑅𝑡𝑡

(1 + 𝑟𝑟)𝑡𝑡

𝑇𝑇

𝑡𝑡=𝑆𝑆

  

where 𝑛𝑛 is the net present value, 𝑅𝑅𝑡𝑡 is the net revenue at year 𝑡𝑡, and 𝑟𝑟 is the 
real interest rate (Faustmann 1849, 1995). The first term of Eq. (6) sums all 
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discounted net revenue for an ongoing forest generation up to the time for 
final felling (𝑆𝑆) back to year 0. The second term refers to the soil expectation 
value and is the net present value of the next full forest generation up to the 
year for (the next) final felling (𝑇𝑇) repeated to infinity by multiplying it in a 
geometric series represented by (1 − (1 + 𝑟𝑟)−𝑇𝑇)−1. Calculating net present 
value for non-rotational forestry is somewhat more complex, but essentially 
the same (Haight & Getz 1987). 

Even if maximising net present value is standard in forest planning, other 
objectives can be used. A decision-maker concerned with biodiversity might, 
for example, try to maximise the number of species or habitats in a forest 
(e.g. Kangas & Kuusipalo 1993; Marshalek et al. 2014). Other possible 
objectives include decreasing carbon emissions (e.g. Raymer et al. 2009), 
increasing recreational values (e.g. Pukkala et al. 1995), decreasing fire 
hazards (e.g. González-Olabarria & Pukkala 2011), and many others. 
Practices have also evolved to consider multiple objectives simultaneously 
(Steiguer et al. 2003; Mendoza & Martins 2006). It is also possible to 
translate other objectives and their indicators to financial terms and thus 
include them in the net present value calculation (Brander et al. 2024). In 
practice, however, many forest companies strive for maximum sustained 
yield (Elbakidze et al. 2013) since wood production is what provides 
financial value (Chudy et al. 2020). This is an old idea; as Hartig stated in 
1803, “always deliver the greatest possible constant volume of wood” should 
be the overall objective of forestry (Hartig 1803:64 as cited by Lowood 
1990). 

1.2.3 Solving the planning problem 
One of the most common mathematical programming techniques for solving 
optimisation problems is linear programming. A linear programming model 
is a special case of an optimisation problem where the objective function and 
constraints are expressed as linear equations or inequalities, together with 
continuous variables. This technique is frequently used in forest planning 
applications (Rönnqvist et al. 2023). 

Let us use the problem of maximising the total profit from conducting a 
harvest in a forest during a year as an example for a standard linear 
programming model. If 𝒄𝒄 is a column vector where each element is the profit 
per hectare for harvesting a stand in the forest, then 𝒙𝒙 is the column vector 
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with the area of each stand that will be harvested. The objective of the 
decision-maker is then to 
(7) 𝑚𝑚𝑚𝑚𝑚𝑚 𝒄𝒄𝑇𝑇𝒙𝒙 , 

i.e., the decision-maker wants to find the vector 𝒙𝒙 that provides the largest 
product 𝒄𝒄𝑇𝑇𝒙𝒙. However, the decision-maker should acknowledge that the 
stands do not have infinite areas. Thus, we need to introduce a symmetric 
matrix 𝑨𝑨, in which the diagonal elements are the total area of each stand and 
the off-diagonal elements are 0, and the vector 𝒃𝒃, which, in this example, 
also contains the total area of each stand. This means that the maximisation 
is subject to 
(8) 𝑨𝑨𝑨𝑨 ≤ 𝒃𝒃 , 

i.e., the total area harvested in each stand should not be larger than the total 
available area in that stand. Furthermore, it is natural in this case that 𝒙𝒙 needs 
to be positive, as it is not possible to harvest negative areas. Thus, the 
maximisation should also be subject to 
(9) 𝒙𝒙 ≥ 0. 

By utilising linear programming, the decision-maker can solve the problem 
and thus create a plan for harvesting operations that maximises profit while 
keeping the plan within the reasonable natural boundaries of the problem. 
However, this plan is not sustainable, since the future harvest supply is not 
considered (in fact, the decision will naturally be to harvest the whole forest). 
If the decision-maker wants to include some considerations towards 
sustainability, it is possible to add multiple rows in 𝑨𝑨 and 𝒃𝒃 that account for 
this. 

Since the aforementioned standard formulation of linear programming is 
not very pedagogical, we will reformulate it more extensively and adapt it to 
a forestry context as 

(10) max𝑈𝑈 = ��𝑛𝑛𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

 

subjected to 
(11) 0 ≤ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1 ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖  

(12) �𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖

= 1 ∀𝑖𝑖 ∈ 𝐼𝐼 
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In this formulation, Eq. (10) is the objective function that maximises the sum 
of the product between the net present value per hectare (𝑛𝑛𝑖𝑖𝑖𝑖), the area of 
stand 𝑖𝑖 (𝑎𝑎𝑖𝑖), and the proportion 𝑥𝑥𝑖𝑖𝑖𝑖 of stand 𝑖𝑖 that should be treated with the 
alternative 𝑗𝑗 over all stands in the set 𝐼𝐼 and all alternatives for every stand in 
the set 𝐽𝐽𝑖𝑖. The alternatives are different ways of managing the forest. Eq. (11) 
states that 𝑥𝑥𝑖𝑖𝑖𝑖 is a number between 0 and 1 for all stands and alternatives. Eq. 
(12) states that the whole area of each stand 𝑖𝑖 should be assigned an 
alternative 𝑗𝑗. To make the resulting plan sustainable in relation to future 
harvest levels in terms of non-declining yield, a third restriction could be 
added as 

(13) ��𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

≤  ��𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖+1𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

 ∀𝑝𝑝 ∈ 𝑃𝑃 \ {𝑝𝑝0} 

where 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 denotes the harvested volume per hectare in period 𝑝𝑝 for stand 𝑖𝑖 
that is treated with the alternative 𝑗𝑗. The restriction is active for every 𝑝𝑝 
except the first (𝑝𝑝0) in the set of periods (𝑃𝑃) and ensures that harvest levels 
do not decline over time. This sustained yield restriction can also be 
expressed in terms of, for example, the maximum allowed fluctuation in 
harvest volumes between periods or in terms of a minimum ending inventory 
of standing timber. 

A development of the linear programming formulation is the mixed-
integer program, which introduces binary or integer variables. The problem 
described in Eq. (10) and onwards could easily be subject to the constraint 
that only one alternative should be assigned to each stand. This is, for 
example, relevant in a spatial case, where whole stands, rather than 
proportions of stands, should be planned (Başkent et al. 2024). To change 
the above model accordingly, Eq. (11) should be modified to 
(14) 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖  

where 𝑥𝑥𝑖𝑖𝑖𝑖 is defined to be either 0 or 1. A mixed integer programming model 
is much harder to solve than its corresponding linear programming 
relaxation, since there exist no algorithms that can solve it as efficiently as 
the Simplex method can solve a standard linear programming model (Garey 
& Johnson 1990); even so, the performance of algorithms for solving mixed 
integer programming problems is steadily increasing (Bixby & Rothberg 
2007; Klotz & Newman 2013). Linear programming and mixed-integer 
programming models, as described above, play a crucial role in this thesis. 
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1.2.4 Decision support systems and forest planning 
Commonly, the definition of what a decision support system is, usually 
revolves around it being a software based on models that includes a database 
used to store initial forest information and results, a system for solving 
problems based on the information, and a user interface that lets users 
interact with the decision support system and its outputs (Burstein & 
Holsapple 2008; Eriksson & Borges 2014; Lämås et al. 2023). Thus, a 
decision support system requires information about the forest, models that 
describe the forest’s development under different management strategies, 
and methods that enable users to pose questions about the forest’s 
management or development and receive answers. All these components 
must be packaged so that sub-systems and sub-models can communicate 
within the system and users can interact with the system as a whole.  

How decision support systems are structured varies greatly (Segura et al. 
2014). Broadly, it is possible to distinguish two main categories of decision 
support systems: simulating and optimising systems (von Malmborg 1971). 
The first category comprises systems that forecast forest development 
primarily based on rules, such as what management will be applied in a forest 
at a certain age. Such systems are mainly used to analyse what will or could 
happen in a forest if set rules are followed, i.e., they help in answering 
questions in the form of what if (Nobre et al. 2016). They are particularly 
suitable for descriptive or exploratory analyses of new management 
strategies, like how changes in harvest residue extraction intensity affect soil 
carbon (Ortiz et al. 2014) or how changes in rotation lengths impact carbon 
accumulation in forests (Ericsson 2003).  

However, a planner typically seeks the most efficient way to achieve 
one’s objective. For that purpose, optimising decision support systems have 
been developed. These systems also use rules to simulate forest 
development, but instead of only one future development, multiple 
alternative developments within the limits defined by the rules are generated 
to allow for optimisation. Optimising decision support systems can be used 
to answer questions in normative analyses like how to do something most 
efficiently, like optimising the wood supply chain (Pekka et al. 2020) or 
finding the financially best harvesting plan given certain demands of the 
spatial configuration and amount of species habitat (Öhman et al. 2011). 

The core of any forest decision support system is the models describing 
forest dynamics. Of these, tree growth models have probably been 
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considered the most important, as tree growth is the resource utilised in 
traditional forest management. Tree growth models can be divided into two 
broad categories: empirical growth-and-yield models and climate-sensitive 
process-based models (Mendoza & Vanclay 2008). Empirical growth models 
build upon observed growth and therefore forecast growth based on 
historical conditions, such as climate, species mix, and management. 
Process-based models will instead predict the ecophysiological response to 
actual conditions, providing possibilities to explore what will happen if 
conditions, such as the climate, change. Between these two concepts, hybrid 
growth modelling has emerged that mixes these approaches to make use of 
the empirical rigour of traditional models and the climate responsiveness of 
process-based models (e.g. Goude et al. 2022). Apart from pure growth 
models, forest decision support systems require mortality models (e.g. 
Fridman & Ståhl 2001), models for the establishment of new trees (e.g. 
Holmström et al. 2017), and models for management responses (e.g. Jonsson 
1995). Furthermore, all these models must be interconnected to capture the 
dynamics of the forest ecosystem. Apart from the core models related to the 
growth of trees, other models that describe various aspects of forests and 
forest management are also necessary. Common examples include economic 
models such as machine productivity functions (e.g. Eriksson & Lindroos 
2014) and tree-bucking models (e.g. Sessions et al. 1989), biodiversity 
models, like habitat suitability models (e.g. Edenius & Mikusiński 2006), 
and models describing social values, like recreational values (e.g. Eggers et 
al. 2018).  

1.2.5 Area-based vs. strata-based forest planning 
Different approaches to forest planning can be employed depending on the 
type of information available or collected (Öhman et al. 2020). If the 
information about the forest is wall-to-wall, i.e. geographically 
comprehensive, planning can be area-based (e.g. Nelson et al. 1991; Murray 
1999). Here, area-based indicates that the entire area of the forest is 
explicitly and directly considered for planning purposes, commonly by 
utilising wall-to-wall remote sensing maps or information from stand 
inventory databases. Note that area-based planning, per se, does not require 
a map. As long as the entire forest area is explicitly included, area-based 
planning is possible. If we take the model presented in Eq. (10) and onwards 
(page 24) as an example, the set 𝐼𝐼 contains all stands in the forest. Spatial 
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planning is a continuation of the area-based approach, which includes 
considerations regarding individual stands’ positions relative to 
neighbouring stands, the shapes of stands, and other spatial properties 
(Başkent & Keles 2005).  

Since the area-based approach requires information about all stands in the 
forest, and all these stands must be represented in the planning model, the 
need for computational power increases (Liittschwager & Tcheng 1967). 
Another problem is that inventories covering all stands in a large forest 
holding often use coarse methods and purposive sampling, resulting in the 
information having unknown or low quality (Duvemo et al. 2014). The need 
for computational power can be reduced by aggregating information about 
similar stands within strata (Daust & Nelson 1993; Church et al. 2000), and 
the quality and detail of the information can be improved or controlled by 
selecting a stratified sample of stands for field surveys (Jonsson et al. 1993). 
Modelling forest development based on such information is the basis of the 
strata-based planning approach.  

With the strata-based approach, the forest is represented by either 
aggregated stands in the form of strata or sampled stands that represent more 
stands than themselves. Thus, with this approach, the decision 𝑥𝑥𝑖𝑖𝑖𝑖 (see Eqs. 
(10) and onwards on page 24) does not refer to the proportion of a stand per 
se; instead, since the set 𝐼𝐼 represents a set of strata or representative stands 
(or plots), 𝑥𝑥𝑖𝑖𝑖𝑖 is the proportion of that stratum or all stands of the same type 
as the one included. Strata-based planning has been the standard approach 
for strategic planning in Sweden for a long time (Jonsson et al. 1993). 

1.3 Forest information and information acquisition 
methods 

In this thesis, forest information is defined as structured data about forest 
resources; i.e., attributes that describe the state of forests (definition based 
on Ackoff 1989). The distinction between data and information is, in part, a 
philosophical one. However, a common view in the literature is that when 
data has been given structure and meaning, it turns into information (Rowley 
2007). Thus, data are only the raw data points; i.e., the numbers.  

Forest companies require information about their forest resources to plan 
and execute operations (Nilsson et al. 2012; Kangas et al. 2018). Forest 
information has traditionally been mainly related to the forest as a resource 



29 
 

(even though other uses are common). Thus, most of the focus has been on 
information about the tree layer and its potential for harvest, such as total 
tree volume, tree species, and tree age, in combination with the attributes 
needed to calculate volume, including basal area and average tree height (e.g. 
Brandel 1990; Johansson 2005). However, information has also been needed 
to estimate economic returns from planned harvests, which is why attributes 
such as average tree diameter and the number of trees per hectare have been 
collected (Eriksson & Lindroos 2014). Additionally, information about the 
terrain’s traversability and accessibility for harvest machines has become 
important since forestry was mechanised during the second half of the 20th 
century (Reisinger & Davis 1986). Information regarding site characteristics, 
such as soil moisture, vegetation type, and slope aspect, is important for 
forecasting tree growth based on site productivity and can be used to estimate 
site index (Hägglund & Lundmark 1977). This thesis primarily focuses on 
the attributes presented above, which describe the forest as an economic 
resource. However, one also needs to acknowledge forest information 
describing other values of forests, such as biodiversity and the ecological 
values of forests, e.g., information about species, substrates, and habitat 
abundance (Hekkala et al. 2023).  

Forest information can be collected, measured, or estimated in various 
ways (Maltamo et al. 2021). Each method, or group of methods, has its pros 
and cons (Bergstrand 1983). Furthermore, each method represents a trade-
off between the quality of the collected information and its cost (Burkhart et 
al. 1978).  

1.3.1 Field-based inventory 
Traditionally, field-based inventory has been the only source of forest 
information collected with any scientific or statistical rigour. The field-based 
methods can be categorised as either probability-based or based on purposive 
sampling (Maltamo et al. 2021).  

Probability-based inventories 
The first category encompasses randomly (often on a systematic grid) 
sampled inventories, which are often based on circular field plots (Lindgren 
2000).  

Sweden has a long tradition of probability-based inventories, both within 
the scope of the national forest inventory (Fridman et al. 2014) and forest 
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management-oriented inventories (Jonsson et al. 1993; Maltamo et al. 2021). 
From the beginning, both utilised landscape-wide systematic approaches, 
where the positions of individual inventory plots were systematically 
sampled across whole landscapes without considering forest stand 
boundaries. For planning purposes, this kind of representation is somewhat 
problematic, since stands are the units managed in reality, not individual 
plots (Hägglund 1982). Therefore, a system of two-phase sampling of forest 
stands and plots was developed during the 1970s (Jonsson et al. 1993). 
According to this system, a sample of stands represents the whole forest 
holding (typically based on stratified sampling, i.e., sample stands selected 
within strata, often with probability proportional to stand area), and the 
information for each stand is collected on systematically sampled field plots 
within the sampled stand. This system combines the advantages of sampling 
only parts of the forest holding and the use of whole stands that are assumed 
to be management units. 

Purposive sampling 
In comparison to probability-based sampling, the purposive approach has no 
scientific foundation that informs about the quality of any gathered 
information (Ståhl 1992). Even so, purposive sampling has provided 
substantial value for forestry and forest planning. In forest conditions where 
stands can be assumed to be uniform, it might be economically sound to 
select fewer sampling points that the surveyor deems representative, 
especially in cases when the quality of the information is not particularly 
important to know. Commonly, purposive sampling is coupled with ocular 
methods, i.e., the surveyor, based on previous knowledge and experience, 
estimates the attributes without measurements, sometimes referred to as 
‘guesstimation’.  

1.3.2 Remote sensing inventory and wall-to-wall information 
Remote sensing is the process of gathering information about an object 
without physical interaction using sensors in the electromagnetic spectrum 
located on mobile platforms (Fussell et al. 1986). Remote sensing has its 
roots in air reconnaissance, which dates back to the invention of hot air 
balloons in the 18th century (Kotar & Gessler 2011). However, it gained 
greater usability and spread with the development of aeroplanes. The first 
applications were probably wartime mapping (Ives 1920). 
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Remote sensing can be categorised by the sensor used and the location 
from which it is used. The first sensors worked in the visible spectrum of 
light; i.e., cameras for optical imagery. If two photographs are taken 
simultaneously but with a physical distance approximately the same as that 
between human eyes, it is possible to join those photographs in an optical 
illusion (stereography) that shows the photograph in three dimensions (King 
2013). If these photographs are taken from above a forest, it is possible to 
construct instruments that allow a person to measure attributes in the 
photograph, such as tree heights (Ives 1920; Moessner 1953; Åge 1985). If 
stereography is expanded with multiple photographs of objects from multiple 
angles, it is possible to produce real three-dimensional information about 
those objects (Goodbody et al. 2019). This method, known as 
photogrammetry, has demonstrated promising value for mapping certain 
forest attributes (Bohlin et al. 2017). Optical images can also be captured 
from satellites in space, providing relatively inexpensive and timely images 
with global coverage (White et al. 2016). These images can be used to 
describe a wide range of forest attributes (Falkowski et al. 2009).  

Optical sensors have a major weakness, as they are passive; i.e., they 
require an external source (mostly the sun) to emit light onto the object to 
record information about the object from the reflection. Active sensors 
instead emit their own electromagnetic waves and can therefore measure 
distances and directions of objects that are hit by the waves. For example, 
radar (radio detection and ranging), mounted on either aircraft or spacecraft, 
can be applied to forest inventory (Sinha et al. 2015). Radar can, for example, 
be used to predict above-ground biomass. One major advantage of radar is 
that it can penetrate clouds, providing more timely data for clouded areas. 

However, the sensors that have proven to be probably the most valuable 
for forest inventory are lidar (light detection and ranging) sensors used for 
airborne laser scanning (Lim et al. 2003). In comparison to radar and normal 
light, lidar emits focused and monochromatic beams of energy at a single 
wavelength, making it possible to distinguish the return of individual beams 
(Næsset et al. 2004). This enables the accurate definition of high-density 
point clouds delineating objects in three-dimensional space. Based on the 
point clouds, secondary metrics can be computed for a two-dimensional grid 
and related to ground-truth information collected on field plots (Næsset 
2002). Such predictions have been used widely to produce forest attribute 
maps. 
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To produce forest attribute maps, models are constructed, describing the 
relationship between some ground truth and corresponding remote sensing 
metrics (e.g. Nilsson et al. 2017). The models can be non-parametric, like k-
nearest neighbour matching (e.g. Reese et al. 2002), or parametric, like least 
squares regression (Næsset et al. 2005). 

Forest attribute maps have been produced for large areas (e.g. Reese et al. 
2003; Hansen & Loveland 2012; Kotivuori et al. 2016; Nilsson et al. 2017; 
Astrup et al. 2019). These maps introduced a groundbreaking change to 
forest planning, which, until recently, lacked high-quality, wall-to-wall 
information. The maps can be used to update already collected information 
(Lindgren et al. 2022), or to directly form the basis for forest planning 
(Wilhelmsson et al. 2025). 

1.3.3 Stand inventory databases 
A business system is a computer-based system that supports the planning and 
execution of business within a company (Snoeck et al. 2000). Forestry is a 
business that revolves around the harvesting of wood in various stands spread 
over a larger area. Large forest organisations, such as forest-owning 
companies, utilise business systems to organise their operations and facilitate 
communication between departments. One key component of such systems 
in forestry is the stand inventory database, which stores forest information 
for all stands belonging to the company (Nilsson et al. 2012).  

Historically, the forest information in this database has been collected 
from various sources, including field survey campaigns or aerial photo 
interpretation (Ståhl 1992; Koivuniemi & Korhonen 2006; Maltamo et al. 
2021). Today, most forests have also been surveyed using remote sensing 
methods (Næsset 2014; Nilsson et al. 2017). Direct feedback from harvesting 
machines is also used (Möller et al. 2017). The contents of the stand 
inventory database are continuously updated using growth models, resulting 
in declining quality over time (Haara & Leskinen 2009). 
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1.4 Decision-making and planning under uncertainty  
From a decision-maker’s point of view, uncertainty can be included in the 
utility function to increase rationality (Kangas 2010). The function in Eq. (1) 
on page 22 can be expanded so that the action 𝑥𝑥 is dependent on some 
observed state 𝑞𝑞 as 
(15)  𝑈𝑈 = 𝑓𝑓(𝑥𝑥(𝑞𝑞)) 

If the observation is uncertain, the observed state 𝑞𝑞 can be viewed as a 
random variable from some probability distribution. The width of the 
distribution corresponds to how certain we believe our observation is. If we 
are more certain that the observed state 𝑞𝑞 actually is the true state, the width 
of the distribution is narrower, and vice versa.  

The distribution of the observed state 𝑞𝑞 may be discretised into a finite 
number of plausible scenarios (𝑆𝑆). Thus, assume that the observed state 𝑞𝑞 has 
|𝑆𝑆| potential scenarios for the quantity 𝑛𝑛 due to uncertainty, linked with 
probabilities 𝜋𝜋𝑠𝑠, then we can alter the utility function in Eq. (2) on page 22 
to consider the expected utility across all scenarios in 𝑆𝑆 given the decision 𝑥𝑥 
as 

(16) max𝔼𝔼(𝑈𝑈) = ��𝜋𝜋𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑥𝑥𝑗𝑗
𝑗𝑗∈𝐽𝐽𝑠𝑠∈𝑆𝑆

. 

𝑛𝑛𝑠𝑠𝑠𝑠 in Eq. (16) is a realisation from the probability distribution of the 
observed state 𝑞𝑞 in Eq. (15).  

If we assume that the distribution is normal 𝑛𝑛~𝑁𝑁(𝜇𝜇,𝜎𝜎2), then the 
variance indicates how certain we are that the observed state 𝑞𝑞 is the same as 
the mean of the distribution (𝜇𝜇). The variance can be described as a function 
𝑔𝑔(. ), so that 𝜎𝜎2 = 𝑔𝑔(𝑚𝑚), where 𝑚𝑚 is a measure of how much effort is spent 
to provide the information on which we base the decision 𝑥𝑥. If 𝑚𝑚 is larger, 
then 𝜎𝜎 in most cases should be smaller, returning a narrower probability 
distribution and, thus, a higher expected utility. It is possible that another 
effort, say 𝑚𝑚′, costs less but returns the same 𝜎𝜎 and utility. When deciding 
between doing 𝑚𝑚 and 𝑚𝑚′, choosing 𝑚𝑚′ would be more rational, since the cost 
is lower, but the yielded utility is the same. The total utility, considering the 
cost of the information acquisition effort and the utility of the decided action, 
would be larger.  
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1.4.1 The value of information 
The value of information can be defined as the change in the total value of a 
decision situation resulting from the presentation of new, better information 
to the decision-maker (Hirshleifer & Riley 1979; Kangas 2010). If the value 
of information depends on the observed state 𝑞𝑞 it is more fitting to talk about 
the expected value of information. It can be calculated as 
(17) 𝔼𝔼(𝑉𝑉𝑉𝑉𝑉𝑉) = 𝑓𝑓�𝑥𝑥′(𝑞𝑞′)� − 𝑓𝑓�𝑥𝑥(𝑞𝑞)� 

where the functions in Eq. (15) are used to describe the utility of the decision 
𝑥𝑥, which is dependent on the state 𝑞𝑞 to the utility of making another decision 
𝑥𝑥′ based on information about the state with lower uncertainty (𝑞𝑞′). If the 
information about 𝑞𝑞′ is collected with effort 𝑚𝑚′ which carries some cost, it 
is rational to collect the new information if 𝔼𝔼(𝑉𝑉𝑉𝑉𝑉𝑉) is larger than that cost. 
If the new information about the state (𝑞𝑞′) does not yield any change in the 
outcome of the decision, 𝔼𝔼(𝑉𝑉𝑉𝑉𝑉𝑉) is, per definition, 0.  

A concept related to the calculation of the value of information is the cost-
plus-loss analysis (Duvemo 2009). In such an analysis, the value of a 
particular information acquisition method is compared to the case of the 
optimal action given perfect information, thereby including the distance to 
optimality (see Figure 2). The expected cost-plus-loss (𝔼𝔼(𝐶𝐶 + 𝐿𝐿)) can be 
calculated as 
(18) 𝔼𝔼(𝐶𝐶 + 𝐿𝐿) = 𝑚𝑚′ + 𝑓𝑓�𝑥𝑥∗(𝑞𝑞∗)� − 𝑓𝑓�𝑥𝑥′(𝑞𝑞′)� 

where 𝑞𝑞∗ is the state 𝑞𝑞 described with perfect information (i.e., ‘true’) and 
𝑥𝑥∗ is the optimal action given that state. A cost-plus-loss analysis is useful 
for comparing information acquisition methods, while the value-of-
information approach provides knowledge on whether any method is 
profitable and thus rational. However, minimising 𝔼𝔼(𝐶𝐶 + 𝐿𝐿) and maximising 
𝔼𝔼(𝑉𝑉𝑉𝑉𝑉𝑉) should lead to the same decision regarding what information 
acquisition method to choose.  
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1.4.2 Forest information uncertainty 
The information describing the observed state 𝑞𝑞 in Eq. (15) does not have to 
be information describing the initial state of a forest to be modelled in a forest 
planning process; it can be any information that, in general terms, describes 
some state in nature, now or in the future. However, seeing it as information 
describing the initial state of a forest is suitable for the work in this thesis.  

If we see the initial information about some unit 𝑖𝑖 as some observed value 
(𝑞𝑞𝑖𝑖) being a combination of the true unobservable value (𝑦𝑦𝑖𝑖) and an error 
(εi), this relationship can simply be described as 
(19) 𝑞𝑞𝑖𝑖 = 𝑦𝑦𝑖𝑖 + εi 

The error component εi can be further subdivided into random (η) and 
systematic error (𝑏𝑏𝑖𝑖), where it is often assumed that the random error belongs 
to a normal distribution, η ∼ N(0,σ2), with mean 0 and variance σ2. The full 
description of the observed value would, therefore, be 
(20) 𝑞𝑞𝑖𝑖 = 𝑦𝑦𝑖𝑖 + η + bi 

Errors exist for many reasons. They can stem from faulty measurement tools, 
biased sampling, or flawed modelling. They can also result from natural 
randomness. The random errors (η) have a variance (σ2) that can describe 
their probable size.  

Information quality

Cost

Figure 2. The conceptual relation between the cost of information, the loss 
from suboptimal decisions and their sum (cost+loss) with increasing 
information quality. 
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In a practical sense, it is easiest to see uncertainty in forest information as 
some vagueness in our knowledge about the true state of a certain forest. For 
example, we may have some prior understanding of the size of the growing 
stock in a stand for which we have collected information. After the final 
felling, we know with greater certainty what the growing stock was, since all 
trees have been individually measured. The difference between these two 
figures is an example of real uncertainty affecting real forestry. If the 
harvested volume is less than expected, problems may arise due to a higher 
demand than supply, and vice versa. Coming back to the concept of the value 
of information, it might be a rational choice to spend more money on getting 
a more certain figure on the growing stock if the cost of the consequences of 
erroneous information is more severe than the cost of getting the information. 
The size of random errors can be improved by using better equipment or 
making a greater effort; e.g., taking a larger sample or repeating the sample 
multiple times. The systematic error or bias can be estimated by comparing, 
for example, the estimated population mean obtained using one inventory 
procedure with the estimated population mean obtained using a more 
accurate and unbiased inventory method. Knowing the bias makes it possible 
to calibrate the less accurate method to remove some of that error.  

A special type of bias commonly found in remote sensing predictions is 
regression towards the mean (Ståhl et al. 2024). This bias arises when using 
models generated from covariates that have a relatively low correlation 
between the quantity to be predicted and the true values. The resulting 
predictions tend to overestimate small true values and underestimate large 
true values (e.g. Gilichinsky et al. 2012). This effect reduces the variance 
among the predicted values compared to the true ones. In comparison to 
classical errors, errors due to regression towards the mean (also known as 
Berkson-type errors) correlate with the true values rather than the predicted 
ones (Carroll et al. 2006; Kangas et al. 2023).  

1.4.3 Risk 
A decision-maker can be either risk-averse, risk-neutral or risk-seeking 
(Weber 2010). A risk-averse decision-maker will make decisions that 
minimise the likelihood of unwanted outcomes. Such a decision-maker 
would choose a concave 𝑓𝑓(. ) as utility function in Eq. (15) so that reducing 
𝜎𝜎 increases the expected utility 𝔼𝔼(𝑓𝑓(𝑥𝑥(𝑞𝑞))) even if 𝜇𝜇 remains the same. A 
risk-seeking decision-maker will instead make risky decisions, i.e., decisions 
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that potentially can lead to very positive outcomes (e.g., jackpots) but also 
naturally have some probability of failure. Such a decision-maker would 
choose a convex 𝑓𝑓(. ) as utility function so that a wider distribution (larger 
𝜎𝜎) increases the expected utility 𝔼𝔼(𝑓𝑓(𝑥𝑥(𝑞𝑞))) even if 𝜇𝜇 remains the same, 
since some low-probability scenarios yield very large utility. A risk-neutral 
decision-maker will make the decision that leads to the maximum degree of 
objective fulfilment. Such a decision-maker would choose a linear 𝑓𝑓(. ) so 
that expected utility 𝔼𝔼(𝑓𝑓(𝑥𝑥(𝑞𝑞))) increases with increasing 𝜇𝜇.  

1.4.4 Methods to acknowledge information uncertainty in forest 
planning 

An early attempt to acknowledge information uncertainty in forest planning 
was Sprängare (1975). He used Monte Carlo simulation to generate an 
uncertainty scenario of forest information for a forest holding and then 
solved the same linear programming problem for both the original and 
generated forests. He then compared the solutions to investigate the effect of 
the information uncertainty. He found that 30-40% of harvesting decisions 
would be different if better data were available. By doing so, he conducted a 
sensitivity analysis. It is considered good practice to conduct sensitivity 
analyses when proposing models of any kind, especially optimisation models 
(Janová et al. 2024). However, many sensitivity analyses reported for new 
models can be referred to as uncertainty analyses (Saltelli et al. 2019). An 
uncertainty analysis is conducted by varying input factors and recording the 
possible ranges of the output. The purpose of a sensitivity analysis is to take 
the process one step further by pointing out each input factor’s contribution 
to the output uncertainty. 

Others have conducted investigations into how uncertainty in forest 
information affects optimality in forest planning. As in the case of Sprängare 
(1975), many have used simulation techniques to explore this area (refer to 
Duvemo & Lämås 2006 for an overview). In such analyses, the aim is often 
to assess the value of information from some suggested inventory method in 
a certain decision setting. The standard procedure is to compare decisions 
based on new information with decisions based on the currently available 
information (value of information analysis) or to compare decisions based 
on information from a specific method (e.g., new) with decisions based on 
information considered to be without uncertainty (cost-plus-loss analysis). 
Results from these analyses provide insight into how much decisions can be 
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improved by enhancing the quality of information. Common suboptimality 
losses in terms of net present value from inventory errors reported in the 
literature range from 1% to 7% (Duvemo & Lämås 2006). 

The aforementioned methods mostly deal with assessing the potential 
effects of uncertainty posterior to the actual solution. However, there also 
exist methods that involve considerations of uncertainty when solving a 
problem by optimisation (Näslund 1965; Pasalodos-Tato et al. 2013). An 
early attempt was the mean value process, where a linear programming 
model is adapted so that, for example, the expected area of burned forests in 
each period is treated as bare land in the next (e.g. Reed & Errico 1986). The 
mean value process is thus rather simplistic. Another possibility is to use 
what is called chance-constrained programming. It can be used when the 
right-hand side of the constraints in a linear programming model (i.e., the 
vector 𝒃𝒃 in Eq. (8) on page 24) has an uncertainty that can be described with 
a closed-form cumulative distribution function (e.g. Hof & Pickens 1991). 
In that case, a decision-maker can set restrictions on the tolerated probability 
of infeasible solutions dependent on 𝒃𝒃, like, for example, “in 95% of the 
cases, the supply should meet the demand”. A somewhat similar approach is 
to let elements in the objective function and constraints (i.e., the vectors 𝒄𝒄 in 
Eq. (7) and 𝒃𝒃 in Eq. (8) on page 24) belong to fuzzy sets according to some 
membership functions (e.g. Mendoza & Sprouse 1989). Another method, 
especially suitable for large, non-linear problems of great dimensions with 
interlinked decisions (e.g., in spatial forest planning) some heuristics can be 
applied instead of exact solution methods (e.g. Meilby et al. 2001). The large 
dimensions of such problems with interlinked decisions have spurred the use 
of graph-based Markov decision processes, which organise the 
interconnection between management and uncertainty but lack exact solution 
methods (e.g. Forsell et al. 2011). Similarly, stochastic dynamic 
programming can be used (van Kooten et al. 1992). Another possibility is to 
use stochastic programming.  

Stochastic programming 
Stochastic programming3 is an optimisation approach that assumes that data 
in the optimisation model belong to probability distributions instead of being 
single values. In essence, stochastic programming provides the solution that, 

 
 
3 Note: not stochastic dynamic programming. 
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on average, is the best given the uncertain parameters. The common 
approach to stochastic programming is to model decisions that must be made 
without realising the uncertainty and what the optimal decision would be 
following the realisation of uncertainty. Generally, this is done in two stages, 
but one or multiple stages are also possible.  

A two-stage stochastic program analogous to the linear program 
presented in Eq. (7) and onwards (page 24) can be stated as  
(21) max𝒄𝒄𝑇𝑇𝒙𝒙 + 𝔼𝔼(𝑄𝑄(𝒙𝒙, 𝜉𝜉)) 

Subjected to 
(22) 𝑨𝑨𝑨𝑨 ≤ 𝒃𝒃 

(23) 𝒙𝒙 ≥ 0 

where 𝑄𝑄(𝒙𝒙, 𝜉𝜉) is the optimal value for 𝒙𝒙 in the second-stage problem, given 
the realisation of the uncertain data 𝜉𝜉 belonging to some probability 
distribution. Eq. (21) states that we want to maximise the return of the 
decision vector 𝒙𝒙 (first-stage) including the expected return of the same 
decision vector when the uncertainty 𝜉𝜉 has been realised (second stage).  

A general stochastic program with parameters belonging to continuous 
distributions is not solvable with available methods. Therefore, it is standard 
practice to develop its deterministic equivalent. The following example is the 
same as provided in Eqs. (10) and onwards (page 24), with uncertainty 
considered in the outcome of harvested volume and net present value. First, 
one has to assume that the uncertain data belong to a known distribution. Let 
us say that the net present value (𝑛𝑛) is explained by the distribution of 
probable harvest volume per hectare (𝑛𝑛 = 𝑓𝑓(𝑣𝑣)) and that 𝑣𝑣~𝑁𝑁(𝜇𝜇,𝜎𝜎2). In 
some process, the distribution is discretised for a set of scenarios (𝑆𝑆). If so, 
the formulation of the stochastic program can be stated as 

(24) max𝑈𝑈 = ���𝜋𝜋𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

 

subjected to 
(25) 0 ≤ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1 ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖  

(26) �𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖

= 1 ∀𝑖𝑖 ∈ 𝐼𝐼 
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(27) ��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

≤  ��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+1𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

 ∀𝑠𝑠 ∈ 𝑆𝑆, 
∀𝑝𝑝 ∈ 𝑃𝑃 \ {𝑝𝑝0} 

What is new in Eq. (24) compared to Eq. (10) is the probability 𝜋𝜋𝑠𝑠 for each 
scenario 𝑠𝑠 in 𝑆𝑆, given ∑ 𝜋𝜋𝑠𝑠𝑠𝑠∈𝑆𝑆 = 1. Net present value (𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠) is also indexed 
by 𝑠𝑠, since it is an indirect realisation of the distribution of 𝑣𝑣. Also 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in 
Eq. (27) has been indexed over 𝑆𝑆. Note that 𝑥𝑥𝑖𝑖𝑖𝑖is not indexed over 𝑆𝑆, which 
means that a decision of what alternative to be applied in a stand must be the 
same over all scenarios. The first-stage problem would correspond to finding 
the highest expected net present value across all scenarios. In this 
formulation, there are no second-stage decisions. However, they probably 
need to be introduced due to feasibility concerns. Changing the formulation 
only in Eqs. (24) and (27) would encompass that: 

(28) max𝑈𝑈 = ���𝜋𝜋𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

−��𝜋𝜋𝑠𝑠𝛽𝛽𝑠𝑠𝑠𝑠
𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

 

subjected to 
(29) 0 ≤ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1 ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖  

(30) �𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖

= 1 ∀𝑖𝑖 ∈ 𝐼𝐼 

(31) ��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

≤��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+1𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

+ 𝛽𝛽𝑠𝑠𝑠𝑠 ∀𝑠𝑠 ∈ 𝑆𝑆, 
∀𝑝𝑝 ∈ 𝑃𝑃 \ {𝑝𝑝0} 

The new term (∑ ∑ 𝜋𝜋𝑠𝑠𝛽𝛽𝑠𝑠𝑠𝑠𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆 ) in the objective function (Eq. (28)) 
minimises the sum of the deviations from reaching the restriction on harvest 
levels in Eq. (31). The first-stage problem will still be to find the highest 
expected net present value. The second stage will be to consider those 
decisions in light of the realised deviations from the desired harvest levels. 
Note that the two stages are solved for simultaneously, not separately.  

The discretisation of continuous probability distributions can be achieved 
using Monte Carlo simulation. In essence, Monte Carlo simulations utilise 
the law of large numbers, which, simply put, states that if you draw enough 
random samples from a distribution, the mean among those samples will 
converge to the true expected value of the distribution, or  
(32) 𝑋𝑋𝑛𝑛���� → 𝔼𝔼(𝑋𝑋) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑛𝑛 → ∞ 
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where 𝑋𝑋𝑛𝑛���� is the average of 𝑛𝑛 random samples from the random variable 𝑋𝑋. 
Stochastic programming has been used for forest planning applications 

since the 1980s (Gassmann 1989). Applications have ranged from 
considering the risk of wildfires or storms (Gassmann 1989; Boychuk & 
Martell 1996; Eyvindson et al. 2024) to considering uncertainty in growth 
(Eriksson 2006) and future wood prices (Álvarez-Miranda et al. 2019). 
Stochastic programming has also been used to produce forest management 
plans under forest information uncertainty (Eyvindson & Kangas 2014; 
Kangas et al. 2014; Eyvindson et al. 2017; Nahorna et al. 2024).  
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2. Motivation and aims 

What is striking about the uncertainty handling methods described in section 
1.4.4 is that most of them are probably rather difficult and non-intuitive to 
use, especially for non-experts. If ordinary linear programming models are a 
stretch for many to grasp and use, how could a graph-based Markov decision 
process with all its complexity ever be implemented and made available in 
an easy-to-use decision support system? That is one of the probable reasons 
why there exist very few decision support systems that have methods for 
considering uncertainty (Pasalodos-Tato et al. 2013; de Pellegrin Llorente et 
al. 2023). Even fewer, if any, specifically deal with information uncertainty. 

It is probably first when methods to consider uncertainty are available in 
decision support systems that forestry will begin to use them to any large 
extent. However, since these systems are widely used in forestry (Eriksson 
& Borges 2014; Segura et al. 2014), any implementation could potentially 
reach a large user base quickly (e.g., see the nationwide use of Heureka in 
Lämås et al. 2023). However, an implementation of a new method must 
consider the experiences and needs of end-users (Schulz 2021). Not much 
value will be added if a new uncertainty-dealing method is too difficult to 
use.  

No available decision support system lets users easily set up stochastic 
programming formulations to solve planning problems under uncertainty 
(Pasalodos-Tato et al. 2013; de Pellegrin Llorente et al. 2023). Even so, 
stochastic programming could be a viable method to consider. It may seem 
technically complicated at first, but upon examining the deterministic 
equivalent of a stochastic programming problem, it is not much different 
from a standard linear programming formulation. As long as one can 
describe the underlying uncertainty in discrete scenarios, the only necessary 
change compared to the linear programming formulation is to introduce the 
index 𝑠𝑠 for those parameters and variables that are dependent on each 
scenario (compare Eq. (24) with Eq. (10)). Stochastic programming models 
can, of course, be made as increasingly complicated as one wish them to be, 
however, even with the simplest applications (one-stage problems), the 
decisions will be made to provide the maximum or minimum expected value 
across all scenarios. Having the possibility to make such analyses would 
likely improve forest managers’ decision-making processes and increase 



44 
 

their objective fulfilment, as they would shift from deterministic ignorance 
of point values to accessing knowledge on probable distributions of results.  

2.1 Aims 
This thesis aims to examine how forest information uncertainty is addressed 
in contemporary long-term forest planning and how current practices and 
uncertainty levels impact decision makers’ objective fulfilment. 
Furthermore, the aim is to showcase a forest planning approach that 
explicitly deals with forest information uncertainty and to evaluate its 
performance, implementability, and usability in a practical context.  

These aims have been addressed in the four separate chapters (papers) of 
this thesis in the following way: 
 

• Paper I examines how forest information uncertainty is handled in 
contemporary practice. 

• Paper II analyses the combined effects of using uncertain forest 
information while having misaligned objectives throughout the 
planning process. 

• Paper III examines how the use of biased remote sensing 
information impacts the objective fulfilment of long-term forest 
planning.  

• Paper IV analyses the benefits of implementing stochastic 
programming for solving forest planning problems under forest 
information uncertainty in a state-of-the-art decision support system. 

 
The primary motivation of this thesis is to enhance decision-making in 
forestry, which is why emphasis is placed on practical relevance.  
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3. Materials and methods 

This thesis utilised a mixed-methods approach. Paper I was fully qualitative, 
with interviews as the only data collection method. Paper IV used both 
qualitative and quantitative approaches in an interdisciplinary fashion 
(Nuijten 2011). Papers II-III were fully quantitative. Refer to Table 1 for an 
overview of the methods and datasets used in the underlying papers. 

Table 1. The primary methodologies and datasets used in each paper are 
presented. 

Paper Research 
mode 

Primary methodologies  Primary datasets 

I Qualitative Semi-structured interviews with 
forest planning experts at major 
forest companies. 

Recordings and 
transcripts of 
interviews, as well as 
planning process 
maps created during 
the interviews. 

II Quantitative Monte Carlo simulation based on 
Cholesky decomposition, 
treatment programme generation 
with Heureka PlanWise, and 
mixed integer programming (area-
based). 

A stand inventory 
database, a road net-
work, and a field plot 
survey 

III Quantitative Treatment programme generation 
with Heureka PlanWise, and 
mixed integer programming 
(strata-based). 

A stand inventory 
database, a field plot 
survey, optical 
satellite predictions, 
and airborne laser 
scanning predictions. 

IV Mixed Monte Carlo simulation based on 
Cholesky decomposition, 
treatment programme generation 
with Heureka PlanWise, 
stochastic programming (area-
based), and a semi-structured 
focus group interview. 

A stand inventory 
database, a field plot 
survey, and the 
recording of focus 
group interviews.  
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3.1 Qualitative methods and data 
The qualitative methods employed in this thesis primarily involve semi-
structured interviews  (Knott et al. 2022). Paper I involved individual semi-
structured interviews, while Paper IV involved an interview with a focus 
group.  

3.1.1 Paper I 
Paper I was conducted as a qualitative study based on semi-structured 
interviews. To guide the study, four research questions were identified: 
 

1. Is the hierarchical forest planning paradigm implemented in large 
forest-owning companies? If so, how? 

2. What forest information is used by large forest-owning companies, 
and how? 

3. What level of uncertainty does this forest information have? 
4. What strategies do large forest-owning companies employ to handle 

or control the effects of forest information uncertainty? 
 

The respondents were representatives from six major forest companies in 
Sweden. They were chosen by inviting all forest companies that own or 
manage at least 200,000 hectares of productive land in Sweden, with the 
rationale that these large companies should have a formal planning process 
(Eriksson 2008). All invited companies agreed to participate in the study and 
nominated one representative each. The representatives were planning 
experts working with long-term forest planning. The six companies included 
in the study represented approximately 34% (7.8 million hectares) of 
Sweden’s total productive forest land. 

The interviews were conducted in person or online via video call (due to 
COVID-19 restrictions) during spring 2020. The interviews were recorded 
and then professionally transcribed. The length of the interviews was, on 
average, 177 minutes and 24,192 words. An interview guide aided the 
interviews. It was based on the research questions and preliminary written 
materials, such as internal documents, provided by three of the companies. 
Since the interviews were semi-structured, questions not included in the 
guide were asked if necessary. This approach fitted the exploratory scope of 
the interviews.  
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Parallel to the interview, each respondent, together with the aid of the 
interviewer, co-created a process map that covered all actions and decisions 
made, as well as all supporting systems and information used, before a forest 
stand could be harvested. Also, the quality of the information used in the 
planning was mapped. Furthermore, all actions were marked as belonging to 
either the strategic, tactical or operational planning stages.  

All qualitative data collected during the study were stored in computer-
assisted qualitative data analysis software. The analysis focused on 
identifying common patterns and differences among the participating 
companies. 

3.1.2 Paper IV 
In Paper IV, major forest companies were invited to participate in a 
workshop (focus group) to evaluate the benefits and drawbacks of 
transitioning to stochastic programming in forest planning, with the 
implementation of stochastic programming in a decision support system as 
an example. The rationale for organising the data collection as a focus group 
was the possibility of obtaining individual responses and feedback, as well 
as group consensus during the same session (Cyr 2016). 

The same sampling criterion as in Paper I was used, i.e., companies 
owning or managing more than 200,000 ha of productive forest land were 
invited. The two smallest companies declined, resulting in 7.3 million 
hectares of productive forest land being represented in the final sample. The 
representatives were nominated on the same premises as in Paper I and had 
titles such as forest planning specialist or analyst. 

During the workshop, the participants and the authors of Paper IV 
engaged in a discussion divided into two principal parts. In the first part, a 
paper-based mock-up illustrating how a forest planning problem is 
conventionally solved with deterministic optimisation in a decision support 
system was used to guide the discussions. In the second part, another, but 
similar, paper mock-up was used. The mock-up had been altered to show 
how to solve the same problem as described in the first part of the workshop, 
but with stochastic programming instead of standard deterministic 
optimisation. During the second part, discussions focused on the benefits and 
drawbacks of altering Heureka PlanWise to enable stochastic programming. 

The workshop discussions were digitally recorded to aid the analysis, 
which focused on highlighting how uncertainty affects companies’ planning 
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today, how usable the decision support system is and should be (with and 
without stochastic programming), how results are and should be presented, 
and how enabling stochastic programming will impact the value of using the 
decision support system.  

3.2 Quantitative methods and data 

3.2.1 Forest information 
Four types of forest information were used in Papers II-IV: 
 

• Forest information in stand inventory databases (Papers II and IV)  
• Field plot surveys of sampled stands (Papers II-IV) 
• Predictions of forest information based on airborne laser scanning 

(Paper III) 
• Predictions of forest information based on satellite imagery (Paper 

III) 

Information in stand inventory databases  
Operational wall-to-wall information from the stand inventory database 
belonging to the forest company Holmen Skog AB was used in Papers II and 
IV. In Paper II, the stand inventory database was related to a field plot survey 
to produce simulated errors. In the final analysis of Paper II, the stand 
inventory database information represented the true state of the forest. In 
Paper IV, the same error-generating procedure as in Paper II was used. 
However, in the analyses of Paper IV, the stand inventory database 
information represented a scenario very close to the expected value scenario, 
but not the true state. 

Field plot surveys of sampled stands 
In Papers II-IV, stand-wise field plot inventories were used as reference 
information in different ways. This reference information originated from 
two independent inventories conducted during the summer of 2010 (used in 
Paper III) and 2019 (used in Papers II-IV) to describe Holmen Skog’s forests 
(approximately one million hectares of productive forest land). The 
inventory method followed established protocols for data collection 
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developed for the predecessor of Heureka PlanWise4, the Forest 
Management Planning Package (Jonsson et al. 1993). According to this 
protocol, stands belonging to the forest holding in question should first be 
described extensively using a cheaper data collection method if no stand 
inventory database already exists. Based on this auxiliary information, a two-
phase sampling procedure should be conducted.  

The first phase is the stratified sampling of a number of representative 
stands selected randomly with the probability of selection proportional to the 
stand area. Stratification is achieved by clustering stands into classes based 
on two of the most important attributes for forest planning: standing volume 
per hectare and stand age. By doing so, the sample will, at least in theory, 
better represent the true distributions of age and volume. In 2010, 1070 
stands were sampled for field survey. The corresponding number for 2019 
was 800. The survey of the sampled stands was conducted on a systematic 
grid of circular field plots, with radii ranging from 3-10m, depending on the 
tree height of the particular stand (smaller radii for stands with low tree 
heights and vice versa). On these plots, individual tree information and stand 
properties were recorded to provide unbiased stand-level estimations 
(Lindgren 1984, 2000). For plots with average tree height >4m, all trees 
>4cm in diameter at breast height (1.3m above ground) were calipered for 
diameter, and tree species were identified. A random number of these trees 
was height-measured with a hypsometer and age-determined by counting 
annual rings on bored increment cores. Dominant tree height was also 
measured for site index estimation. On sapling-dominated plots, only the 
main stems were height-measured, and no trees were calipered. Whatever the 
average tree height, each plot underwent detailed site characterisation, 
including descriptions of vegetation, climate, soil, terrain, and natural values. 
Information about the individual trees was stored in a tree-list. The plot 
survey information was used to represent the true state of the forest in the 
error simulations in Papers II and IV. In Paper III, it acted as a reference for 
evaluating management decisions based on remote sensing predictions.  

Remote sensing information 
The remote sensing sources used in Paper III were the SLU Forest Map and 
the Forest Attribute Map from the Swedish Forest Agency. The SLU Forest 

 
 
4 Heureka PlanWise is further explained in section 3.2.3. 
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Map was based on optical satellite imagery and included predictions for 
volume, Lorey’s mean height, mean age, and proportion, presented on 25 × 
25m raster elements covering all of Sweden. The map was produced by k-
nearest neighbour imputation of national forest inventory plots to images 
from Landsat 7 Enhanced Thematic Mapper (Reese et al. 2003). The map 
covers a set of years, but only predictions for the year 2010 were used in the 
analysis. The Forest Attribute Map, produced by the Swedish Forest Agency, 
was created based on regression analyses between metrics from point clouds 
collected using airborne laser scanning in 2019 and national forest inventory 
information. The map had a resolution of 12.5 × 12.5m and included 
predictions of standing volume, Lorey’s mean height, average diameter at 
breast height (Dbh), and stand basal area. For details, see Nilsson (2017). The 
version of the airborne laser scanning-based map used in Paper III had not 
undergone any data filtering (removal of predictions for tree heights >3m), 
which is usually done with the public version.  

Additional data 
In Paper II, the stands in the stand inventory database were assigned to 
harvest areas. The harvest area allocation was defined by the shortest or most 
cost-effective terrain transport path from each stand to the roadside, over a 
cost-raster describing the relative ease of traversability for forest machines.  

3.2.2 Scenario generation 
In Papers II and IV, Monte Carlo simulation was used to generate a plausible 
discretisation of a continuous distribution describing multivariate errors in 
contemporary forest information used operationally by forest companies. In 
principle, the same method used by Sprängare (1975) was employed, where 
the relation between two types of inventory methods applied to the same 
population was mimicked in a simulated population (Figure 3). Thus, in the 
case of Papers II and IV, errors were calculated as the differences between 
what was recorded in the stand inventory database and what a field plot 
survey of the same stand showed, with the latter representing the assumed 
true unbiased state. This procedure has become standard in the field (e.g. 
Jacobsson 1986; Larsson 1994; Holmström et al. 2003; Holopainen et al. 
2010; Mäkinen et al. 2010). 
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In Papers II and IV, any covariance matrix (𝑪𝑪) between errors for the set of 
attributes was calculated as  

(33) 𝑪𝑪 =  1
𝑛𝑛−1

𝒒𝒒𝑇𝑇𝒒𝒒 , where 

(34) 𝒒𝒒 = �𝑰𝑰𝑛𝑛 −
1
𝑛𝑛

 𝟏𝟏𝑛𝑛𝟏𝟏𝑛𝑛𝑇𝑇�𝑴𝑴, and 

𝑛𝑛 was the number of rows (one per plot-surveyed stand) in the matrix 𝑴𝑴 ∈
ℝn×m consisting of errors calculated for 𝑚𝑚 attributes as differences between 
field surveys in stands and recorded data of the same attribute and stand in 
the operational stand inventory database, with one stand per row and 𝟏𝟏𝑛𝑛 ∈
ℝn was a size 𝑛𝑛 vector of 1s and 𝟏𝟏𝑛𝑛𝑇𝑇 was its transpose.  

Cholesky decomposition was then used in a Monte Carlo simulation to 
maintain a plausible covariance structure in the simulated information 
(Benoit 1924; Kroese et al. 2014). For the symmetric and positive semi-
definite covariance matrix 𝑪𝑪, the unique Cholesky decomposition as a 
lower triangular matrix 𝑳𝑳 was computed such that, 

(35) 𝑪𝑪 = 𝑳𝑳𝑳𝑳𝑇𝑇 where 

(36) 𝑳𝑳 ∈ ℝ𝑚𝑚×m 

Figure 3. The population of stands described with method 𝐴𝐴 is denoted 𝑃𝑃𝐴𝐴 
and is illustrated with the left rectangle in the figure. From 𝑃𝑃𝐴𝐴 the sample S 
is selected and described with a different method 𝐵𝐵. Thus 𝑆𝑆𝐴𝐴 is the sample 
described with method 𝐴𝐴, and 𝑆𝑆𝐵𝐵 with method 𝐵𝐵. The simulation uses the 
relationship between 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 (denoted 𝐽𝐽1) to project 𝑃𝑃𝐵𝐵 from 𝑃𝑃𝐴𝐴 (whose 
relationship is 𝐽𝐽2). From Sprängare (1975). 
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The simulation of multivariate errors for 𝑖𝑖 stands was performed by 
generating 100 independent versions of the error matrix 𝑬𝑬𝑠𝑠, one for each 
scenario in the set 𝑠𝑠 = {1, 2, … ,100} such that 

(37) 𝑬𝑬𝑠𝑠 = �𝑳𝑳𝑳𝑳1𝑗𝑗, … ,𝑳𝑳𝑳𝑳𝑖𝑖𝑖𝑖�, where 

𝑬𝑬𝑠𝑠 was a matrix of a set of 𝑖𝑖 row vectors resulting from the vector 
multiplication of 𝑳𝑳 by 𝒁𝒁𝑖𝑖𝑖𝑖. Each row 𝑖𝑖 in 𝒁𝒁𝑖𝑖𝑖𝑖 was uniformly sampled from a 
set of 𝑗𝑗 = {1, 2, … , 𝐽𝐽 = 10} vectors, each in the form of 

(38) 𝑳𝑳𝑖𝑖𝑖𝑖 = (𝑧𝑧1, … , 𝑧𝑧𝑚𝑚), where 

each 𝑧𝑧𝑚𝑚 was a normally distributed independent random variable with 𝑚𝑚 
elements, 𝑧𝑧𝑚𝑚 ~ 𝑁𝑁(0,1) , iteratively (𝑗𝑗 = {1, 2, … , 𝐽𝐽 = 10}) truncated 
between σ1𝑗𝑗 and σ2𝑗𝑗, where 𝛼𝛼 = 2 and 

(39) σ1𝑗𝑗 = −𝛼𝛼 + 2𝛼𝛼
𝐽𝐽

(𝑗𝑗 − 1) and 

(40) σ2𝑗𝑗 = −𝛼𝛼 + 2𝛼𝛼
𝐽𝐽
𝑗𝑗, 

and stored as the m:th element of 𝒁𝒁𝑖𝑖𝑖𝑖. The reason for using a standard normal 
distribution truncated between σ = ±2 and divided into 10 steps, was to 
ensure that the generated errors were not too large and that each generated 
scenario could have representations of errors for all parts of the distribution. 
The uniform sampling was taken proportionally to the probability mass 
between σ1𝑗𝑗 and σ2𝑗𝑗. 

The final set of simulated deviations 𝑹𝑹𝑠𝑠 was generated by taking the stand 
inventory database information 𝑫𝑫 of the 𝑚𝑚 attributes for 𝑖𝑖 stands and adding 
it to each of the 100 𝑬𝑬𝑠𝑠. Thus, let 
(41) 𝑹𝑹𝑠𝑠  = 𝑫𝑫 + 𝑬𝑬. 

This procedure was repeated twice for each scenario – one for absolute errors 
(above), and one for relative errors where 𝑹𝑹𝑠𝑠 was instead calculated as 

(42) 𝑹𝑹𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑫𝑫 + 𝑬𝑬𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∘ 𝑫𝑫. 

Note that ∘ is the element-wise multiplication (Hadamard product).  
The final dataset with attributes constructed from simulated errors was a 

matrix where each element was chosen from each 𝑹𝑹𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 or 𝑹𝑹𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 
based on rules from similar works (Holmström et al. 2003). Relative errors 
were chosen (depending on the original value in 𝑫𝑫) if the volume was under 



53 
 

150m3ha-1, the diameter at 1.3m was under 10cm, Lorey’s mean height was 
under 12m, the number of stems was under 1000 ha-1, the basal area was 
under 18m2ha-1, the mean age was under 50 years, and if the site index was 
under 25m.  

The finalised covariance matrices (one for absolute and one for relative 
errors) are presented in Table 2 and Table 3. 

Table 2. The relative variances and covariances between the attributes used 
to simulate deviations.  

Diameter Height Stems Basal area Age Site index 

Diameter  0.027 0.018 -0.03 0.01 0.011 0.001 

Height  
 

0.024 -0.021 0.013 0.008 0.001 

Stems  
  

0.134 0.051 -0.017 -0.003 

Basal area 
   

0.113 -0.006 0.002 

Age 
    

0.054 -0.003 

Site index 
     

0.014 

Table 3. The absolute variances and covariances between the attributes used 
to simulate deviations.  

Diameter Height Stems Basal area Age Site index 

Diameter (cm) 8.2 3.0 -684 2.4 8.2 0.34 

Height (m) 
 

3.2 -323 1.8 3.7 0.37 

Stems (ha-1) 
  

287,227 1231 -753 -63 

Basal area (m2ha-1) 
   

26 -1.7 1.2 

Age (years) 
    

331 -6.3 

Site index (m) 
     

5.9 

3.2.3 Generation of treatment programmes with Heureka PlanWise 
The decision support system Heureka PlanWise was used to project possible 
forest development trajectories for each stand and scenario/dataset in Papers 
II-IV. Heureka PlanWise includes a core of functions that project forests 
based on the initial state, while varying the timing and configurations of 
forest management activities within frames specified by the user (Lämås et 
al. 2023). Within these frames, PlanWise generates multiple alternative 
treatment programmes per stand over a user-set planning horizon. This set of 
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treatment programmes can then be used as alternatives in an optimisation 
model. The forecasts are done in five-year increments, with management 
assumed to be implemented 2.5 years into the period. Since each treatment 
programme explicitly covers the whole planning horizon, the treatment 
programme generation adheres to the Model I formulation for optimisation 
in forest planning (Johnson & Scheurman 1977).  

For Papers II and IV, a preliminary set of treatment programmes was first 
generated based on the original information in the stand inventory database. 
The generation aimed to mimic certified business-as-usual forestry, focusing 
on high yields through rotational forestry while also considering the impact 
on biodiversity. The management activities in the preliminary treatment 
programmes were then extracted and applied to each scenario for the 
corresponding stand. For Paper III, treatment programmes were generated 
for each of the three datasets independently; i.e., the field survey, the airborne 
laser scanning-based map and the satellite-based map. After selecting the 
optimal treatment programme in a set of planning problems (see section 
3.2.4), the management activities decided based on the remote sensing 
information were extracted and applied to the field survey information for 
the corresponding stand.  

3.2.4 Optimisation 
Optimisation was used in Papers II-IV. More precisely, mixed-integer 
programming was used in Papers II and III to solve the respective planning 
problems. In Paper IV, stochastic programming, with mixed-integer 
programming as a basis, was employed instead. The models in Papers II and 
IV were solved using CPLEX. The models in Paper III were solved in the 
optimisation module of Heureka PlanWise with Gurobi as solver.  

Paper II 
In Paper II, a series of planning problems was solved to mimic the 
hierarchical approach to planning in forestry. The problems were also solved 
in parallel for a set of cases and uncertainty scenarios. The cases investigated 
in Paper II were defined based on the level of objective alignment between 
strategic and tactical planning stages and the quality of the information used 
(Table 4). The uncertainty scenarios represented a discrete realisation of 
uncertain information about the initial state of the forest (see section 3.2.2). 
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Table 4. The cases investigated in Paper II. Max. is maximum, min. is 
minimum, and NPV is net present value. LQ is low-quality information, HQ 
is high-quality information, LA is low degree of objective alignment, and 
HA is high degree of objective alignment.  
Case Information 

quality 
Objective 
alignment 

Strategic objective Tactical 
objective 

1-LQ-LA Low Low Max. forest NPV Min. cost 
2-LQ-HA Low High Max. forest NPV Max. total NPV 
3-HQ-LA High Low Max. forest NPV Min. cost 
4-HQ-HA High High Max. forest NPV Max. total NPV 
Reference High Integrated Max. total NPV 

(integrated) 
Not applicable 

 
First, a strategic problem of finding the solution that provided the highest net 
present value, given a sustained yield, was solved for each case and scenario. 
The objective function for this problem was stated as: 

(43) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = ���𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

𝑎𝑎𝑖𝑖 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 −���𝑒𝑒𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 

The objective function in Eq. (43) maximises the sum of net present value 
minus the sum of penalties over the sets of scenarios (𝑆𝑆), stands (𝐼𝐼), treatment 
programmes for each stand (𝐽𝐽𝑖𝑖), periods (𝑃𝑃) , and restrictions (𝑅𝑅). 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 is a 
variable that represent the proportion of stand 𝑖𝑖, that in scenario 𝑠𝑠 should be 
assigned treatment programme 𝑗𝑗. The variable 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 is the deviation from 
restriction 𝑟𝑟 for scenario 𝑠𝑠 and period 𝑝𝑝. The parameter 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 is the net present 
value per hectare for scenario 𝑠𝑠, stand 𝑖𝑖, and treatment programme 𝑗𝑗 
calculated with the interest rate 3%; 𝑎𝑎𝑖𝑖 is the area of stand 𝑖𝑖; and 𝑒𝑒𝑟𝑟 is the 
cost of deviating one unit from restriction 𝑟𝑟 (500 SEK m-3 and 1000 SEK ha-

1). The objective function was also subject to a set of restrictions that 
described the problem in more detail and bound it to reality. An example is 
the restriction governing the sustained yield. It was stated as: 

(44) ��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖  𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 + β𝑟𝑟𝑟𝑟𝑟𝑟 ≥ ��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝−1)
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠  
∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝
∈ 𝑃𝑃 \ {𝑝𝑝0}, 
𝑟𝑟 = 𝑟𝑟′  

Eq. (44) sets the restriction that the sum of harvest from final fellings in one 
period should not decline compared to the previous period. 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the 
harvested volume from final fellings per hectare in scenario 𝑠𝑠, in stand 𝑖𝑖 with 
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treatment programme 𝑗𝑗 in period 𝑝𝑝. 𝑟𝑟′indicates that the number of that 
restriction is only relevant when presenting the full problem (see Paper II). 
𝑝𝑝0 is the first period in the set 𝑃𝑃, which is avoided to not include elements 
outside the range of 𝑃𝑃. 

The harvest levels per period, as decided in the strategic problem, were 
then independently passed on to a tactical model for each case and scenario. 
The tactical models were solved iteratively with a rolling time horizon by 
letting the model plan over a subset of the periods that increased by five 
periods after each iteration. A restriction ensured that management decisions 
for later periods were consistent with those made for earlier periods.  

For cases 1-LQ-LA and 3-HQ-LA (see Table 4); i.e., planning with a low 
level of objective alignment, the tactical objective function was 

(45) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = ����𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘𝑏𝑏
𝑘𝑘∈𝐾𝐾ℎ∈𝐻𝐻𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

+ ����𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝∈𝑃𝑃𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

+ ���𝑒𝑒𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 

The objective function in Eq. (45) minimises the undiscounted costs of forest 
management and accessing harvest areas. The first term sums up the costs of 
accessing harvest areas with harvest machines (suitable for either thinning or 
final felling). Additional sets, compared to Eq. (43), are harvest areas (𝐻𝐻) 
and harvesting machine systems (𝐾𝐾). The variable 𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘 is a binary variable 
that takes the value 1 if the machine system 𝑘𝑘 is used in scenario 𝑠𝑠, period 𝑝𝑝, 
and harvest area ℎ; otherwise it is assigned 0. 𝑏𝑏 is the accessing cost (set to 
50,000 SEK) per harvest area and period. The second term of Eq. (45) is the 
sum of forest management costs. The parameter 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the cost of all 
management done in stand 𝑖𝑖, according to treatment programme 𝑗𝑗, in 
scenario 𝑠𝑠 and period 𝑝𝑝. The third term is the same as in Eq. (43). 

For cases 2-LQ-HA and 4-HQ-HA, i.e. planning with a high level of 
objective alignment, the tactical objective function was 

(46) 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = ���𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠

𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

−����
𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘𝑏𝑏

(1 + 𝑑𝑑)5𝑝𝑝−2.5
𝑘𝑘∈𝐾𝐾ℎ∈𝐻𝐻𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

−��� er
r∈Rp∈Ps∈S

βrsp 

Eq. (46) maximises the net present value of forest management minus the 
discounted costs for accessing harvest areas. The first term sums the net 
present value. The second term sums up the discounted costs of accessing 
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harvest areas. The parameter 𝑑𝑑 is the interest rate (3%). The third term is 
the same as in Eq. (43). 

For all cases, the tactical model included various restrictions, for example, 

(47) ��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

= 𝜗𝜗𝑠𝑠𝑠𝑠 + 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝 ∈ 𝑃𝑃, 𝑟𝑟 = 𝑟𝑟′ 

Eq. (47) ensures that the harvest levels from final fellings in the tactical phase 
match the corresponding harvest levels of the strategic phase. 𝜗𝜗𝑠𝑠𝑠𝑠 is the target 
levels from the strategic phase for final fellings in scenario 𝑠𝑠 and period 𝑝𝑝. 
Note that the set of scenarios (𝑆𝑆) and periods (𝑃𝑃) varied between models and 
cases. Their configuration is presented in (Table 5). 

The decisions of 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 from the tactical phase of each case and scenario 
were transferred to the reference model, which represents an integrated case 
where stand-level management decisions and harvest levels are made 
simultaneously in one step without uncertainty. The objective function for 
the reference case is the same as Eq. (46), but it considers all periods, not just 
five at a time (Table 5). 

Table 5. The set of scenarios (𝑆𝑆) and the set of periods (𝑃𝑃) used for the 
different cases and phases used in the optimisation models in Paper II. LQ is 
low-quality information, HQ is high-quality information, LA is low degree 
of objective alignment, and HA is high degree of objective alignment. S is 
the set of scenarios.  
Case Phase 𝑺𝑺 𝑷𝑷 

1-LQ-LA 
Strategic {1..100} {0..20} 
Tactical {1..100} {0..5},{0..10},{0..15},{0..20} 

    

2-LQ-HA 
Strategic {1..100} {0..20} 
Tactical {1..100} {0..5},{0..10},{0..15},{0..20} 

    

3-HQ-LA 
Strategic {0} {0..20} 
Tactical {0} {0..5},{0..10},{0..15},{0..20} 

    

4-HQ-HA 
Strategic {0} {0..20} 

Tactical {0} {0..5},{0..10},{0..15},{0..20} 

    
Reference Integrated {0} {0..20} 
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Paper III 
In Paper III, optimisation was used to emulate the decision-making of two 
types of decision-makers as they plan their forest management for 100 years. 
The first decision-maker (denoted HARVEST) wants to maximise net 
present value from forest management while ensuring compliance with laws 
and maintaining a sustained harvest from final fellings. The second (BIO-
CARBON) wants to do the same thing but also wants to ensure that the 
forest’s total carbon stock does not decline and that various nature values do 
not decrease. A similar optimisation model to the one used in Paper II was 
used to emulate these decision-maker behaviours. However, it only 
concerned the maximum net present value and did not encompass any 
scenarios. Its objective function was defined as 

(48) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = ��𝑛𝑛𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

 

Note that Eq. (48) is defined with the same parameters and variables as in 
Eq. (43), apart from the set 𝑆𝑆 and the index 𝑠𝑠. The set of restrictions in the 
model varied depending on the decision-makers. For HARVEST, only 
restrictions connected to the production of wood were included. For BIO-
CARBON, also restrictions like 

(49) ��𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥��𝑔𝑔𝑖𝑖𝑖𝑖(𝑝𝑝−1)𝑟𝑟
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ∀𝑝𝑝 ∈ 𝑃𝑃 \ {𝑝𝑝0}, 
∀𝑟𝑟 ∈ 𝑅𝑅  

were introduced, where 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the indicator included in restriction 𝑟𝑟. The 
restrictions described in Eq. (49) ensured non-decline of the carbon stock of 
living trees per hectare, the area of forests older than 120 years in the boreal-
nemoral to nemoral zones or 140 years in the boreal zone, the area of forests 
where at least 25% of the basal area is broad-leaf and the stand is older than 
60 years in the boreal-nemoral to nemoral zones or 80 years in the boreal 
zone, and the area of forests with more than 60 large trees per hectare. 

The optimisation models in Paper III were solved in four cases with forest 
information from either satellite or airborne laser scanning predictions (Table 
6). The results from these solutions represent what a decision-maker would 
expect from using either dataset; thus, these results can be denoted as 
EXPECTATION. The same models were solved in two corresponding 
reference cases based on field-measured ground truth information for 
comparison (Table 6). These results can be denoted REFERENCE. To 
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estimate the effect of decision-making based on remote sensing information, 
the decisions regarding management, i.e., according to 𝑥𝑥𝑖𝑖𝑖𝑖 from 
EXPECTATION were transferred to the reference dataset. The resulting 
solution can be denoted REALISATION. 

Table 6. The definition of the cases in Paper III. Satellite refers to optical 
satellite imagery, ALS to airborne laser scanning, and Field to field-
measured ground truth.  
Case Information used Decision-maker 

1 Satellite HARVEST 

2 Satellite BIO-CARBON 

3 ALS HARVEST 

4 ALS BIO-CARBON 

Reference 1 Field HARVEST 

Reference 2 Field BIO-CARBON 

Paper IV 
In Paper IV, optimisation was used to demonstrate the impact of planning 
based on uncertain information about the initial state of the forest and how 
that impact could be addressed explicitly. Stochastic programming was 
employed to achieve this. The objective function was defined as  

(50) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑆𝑆𝑆𝑆 =
1

|𝑆𝑆|����𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

𝑎𝑎𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 −���𝑒𝑒𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟� 

Eq. (50) is almost identical to Eq. (43), except that 𝑥𝑥𝑖𝑖𝑖𝑖 is not defined over the 
set of 𝑆𝑆 and the whole objective function is divided by the number of 
elements in 𝑆𝑆; i.e., the number of scenarios. The first term of Eq. (50) within 
the parentheses ensures that the same decision is made for management in 
each stand across all scenarios. The second term is the second stage decision 
variable; i.e., the penalty that will result from a solution for 𝑥𝑥𝑖𝑖𝑖𝑖 and provides 
a recourse to ensure the optimal solution given the realised uncertainty in 
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠. Analogous to Eq. (44) used in Paper II, the stochastic programming 
model in Paper IV also strived for sustained yield with a restriction defined 
as 

(51) ��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 + β𝑟𝑟𝑟𝑟𝑟𝑟 ≥ ��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝−1)
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖  ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝
∈ 𝑃𝑃 \ {𝑝𝑝0}, 𝑟𝑟 = 𝑟𝑟′  
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To emulate problem-solving without consideration towards uncertainty, it is 
standard to develop what is called the expected value (EV) problem. In 
essence, the EV problem is similar to the stochastic programming problem, 
but all parameters are instead averages (i.e., the expected values) over the 
scenarios. The objective function for the EV problem was defined as   

(52) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑍𝑍𝐸𝐸𝐸𝐸 = ��
∑ 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∈𝑆𝑆

|𝑆𝑆| 𝑎𝑎𝑖𝑖
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

 𝑥𝑥𝑖𝑖𝑖𝑖 −��𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑝𝑝∈𝑃𝑃

 

Note that the variable 𝛽𝛽𝑟𝑟𝑟𝑟 lacks the index 𝑠𝑠, since it is not defined over the 
set of scenarios in the EV-problem. The objective function in Eq. (52) had 
accompanying restrictions, similar in form to those connected to Eq. (50). 
An example of such is the restriction of non-declining harvest levels from 
final fellings 

(53) 

��
∑ 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∈𝑆𝑆

|𝑆𝑆|
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 + β𝑟𝑟𝑟𝑟

≥��
∑ 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝−1)𝑠𝑠∈𝑆𝑆

|𝑆𝑆|
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖  

𝑝𝑝 ∈ 𝑃𝑃 \ {𝑝𝑝0}, 𝑟𝑟
= 𝑟𝑟′  

In principle, all parameters in the EV model are averages (i.e., expected 
values) of the corresponding parameters in the stochastic programming 
model. However, in the implementation in Paper IV, the parameters that 
were binary indicators were assigned based on the average of the attribute 
from which they were originally defined, rather than using averages of 
indicators. Thus, the indicator of old forests, for example, was defined in the 
EV problem based on the average stand age across all scenarios instead of 
the average of the indicators. After solving the EV problem, the solution for 
𝑥𝑥𝑖𝑖𝑖𝑖 was transferred to the stochastic programming model. The resulting 
calculation can be denoted as the expectation of the expected value (EEV) 
problem. EEV consists of the same objective function as the stochastic 
programming model, except that 𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝑥𝑥𝑖𝑖𝑖𝑖 from the solution to the EV 
problem. Thus, the objective function is defined as 

(54) 𝑍𝑍𝐸𝐸𝐸𝐸𝐸𝐸 =
1

|𝑆𝑆|����𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

𝑎𝑎𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖∗ −���𝑒𝑒𝑟𝑟
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4. Results 

4.1 How forestry handles forest information uncertainty 
(Paper I) 

Paper I examined the planning process at large forest companies in Sweden, 
aiming to map its structure, the use of forest information, the quality of that 
information, and the strategies employed to address uncertainty. The results 
connected to each research question in the paper are reported below and 
summarised in Figure 4 and Table 7. 

Is the hierarchical forest planning paradigm implemented in large forest-
owning companies? If so, how? 
The traditional planning paradigm, with its hierarchical subdivision of the 
planning process, remains valid, at least for large forest companies in 
Sweden. The strategic stage sets the overall objectives for the subsequent 
stages and revolves primarily around the long-term harvest levels. The 
tactical stage determines when individual stands should be harvested while 
aiming to fulfil the strategic harvest levels. Implicitly, the tactical stage 
determines the latest date for performing harvest area planning in individual 
stands. This harvest area planning is an intermediate stage between the 
tactical and operational stages, and it is difficult to categorise it in either. It 
focuses on producing detailed harvest instructions for the individual stands 
(now grouped as harvest areas). It is the last visit before the actual harvest, 
thus verifying the feasibility of the planned harvest in terms of technical 
attributes and natural values. Once the harvesting instructions are completed, 
the harvest area is available for production planners to schedule harvesting 
during the operational stage. 

What forest information is used by large forest-owning companies, and 
how? 
In long-term strategic planning, all companies in the study relied on Heureka 
PlanWise. Their information sources varied: most used the traditional strata-
based approach (a stratified field survey of sample stands), some adopted an 
area-based method (a comprehensive stand inventory database), and others 
combined both. Regardless of origin, plans were evaluated using 
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optimisation, primarily linear programming, to determine sustainable harvest 
levels. 

Beyond strategic planning, decision-support systems saw little use. 
Planners typically relied on internal tools without advanced solution 
techniques. In tactical planning, the planners “pointed and clicked” in a GIS 
application to assemble an acceptable plan. This limited uptake reflects a 
widespread mistrust of optimisation: “An optimising tool tends to optimise 
only the thing you ask for and leave the rest unanswered. To really benefit 
from an optimisation, the description of the reality needs to be sufficiently 
good”. 

The stand inventory database was the primary information source outside 
strategic planning. It pairs tabular information, such as stand volume, height, 
diameter, basal area, age, site index, and management history, with maps 
showing stand boundaries. The information had originally been collected 
through large-scale field surveys in the late 20th century and had been 
continuously updated by forest officers, harvest machine data, growth 
models, and government airborne laser scanning mapping (see Nilsson et al. 
2017 for a description of the map). The same system granted access to 
auxiliary map layers like wetness, nature values, elevation, roads, etc., which 
were used in tactical and harvest-area planning. For operational planning, 
planners use the harvest-area database (individual harvesting instructions), 
short-term weather forecasts, and industry demand. 

What level of uncertainty does this forest information have? 
Most respondents felt the planning information was of low quality but still 
usable. As one noted, “It depends on what you mean by large uncertainties. 
Suppose one discussed that with a chemist; he or she would think that all we 
have [in forestry] are large uncertainties. However, the deviations combine 
in such a way that when looking at the complete picture, it works.” 

For strategic planning, most companies preferred strata-based surveys for 
their known, unbiased precision (standard errors around 2%), while those 
using the stand inventory database typically performed extra sampling to 
gain knowledge of its accuracy. The respondents viewed the stand inventory 
database as the most central information source, but also reflected upon the 
fact that minimal effort is put into improving its quality. They did, however, 
believe that the planned updates based on airborne laser scanning methods 
would significantly improve the information quality. Notably, no automatic 
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error detection protocols are included by default in the most commonly used 
stand inventory database system. 

The biggest problems arose from missing or poor information on natural 
values (e.g., endangered species and habitats). Combined with errors in 
volumes and ages, this created serious challenges: the late discovery of high-
value conservation areas forced companies to alter or abandon parts of their 
harvest strategy, jeopardising their long-term targets. This was exemplified 
by one of the respondents: “We are currently harvesting the last remains of 
the older forests (…), and we are doing it with the support of a stand 
inventory database that contains errors (…). Proportionally, there are more 
errors in the small share of remaining semi-natural forests”.  

What strategies do large forest-owning companies employ to handle or 
control the effects of forest information uncertainty? 
Six main strategies for handling information uncertainty were identified. 
 

1. locking the future by deciding on a plan that should be followed to 
mask uncertainty from the business. 

 
By locking the future, companies commit to a fixed plan and follow it at 
almost any cost. For example, they pursue harvest levels even if information 
errors might have rendered them unsustainably high, thus prioritising 
operational stability and administrative simplicity. As one respondent put it: 
“It feels safe, and the reason is that we want […] some kind of momentary 
truth, from which we will not deviate. This is the world, this is how it looks, 
and we will manage it in this way. And then we use that truth for a couple of 
years until we realise that the world has changed compared to the models 
and that we have to create a new starting point.” 
 

2. utilising a buffer of available stands for harvest to tackle unknown 
discrepancies between the plan and reality. 

 
Companies use buffers at every planning stage to absorb unexpected 
variations and ensure wood supply targets are met. As one respondent noted: 
“If we have enough slack in the system, we can cope with quite large errors”. 
 

3. controlling or updating forest information. 
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Throughout all planning stages, companies actively verify and update their 
information. Good examples include running sensitivity analyses to test the 
robustness of long-term plans and conducting field checks during harvest-
area planning to gather fresh information. One of the respondents described 
the situation: “When talking about uncertainties, it is so fascinating that we, 
in fact, judge all the information we utilise to be of such an insufficient 
quality that we have to verify everything out in the forest. This means that 
everything we do before we’ve been to the forest to gather information in the 
harvest area planning is very much a guessing game”. 
 

4. adaptive re-planning. 
 
Adaptive planning involves replanning when the plan deviates significantly 
from reality. This happens frequently in the operational stage, where much 
uncertainty, which has not been acknowledged in earlier stages, is finally 
realised. For example, if there are significant uncertainties in the harvest area 
database, such as road quality, soil wetness, or soil bearing capacity, 
production planners will have a challenging time during wet seasons or 
thawing periods. 
 

5. planning based on previous outcomes. 
 
Strategy 5 (looking backwards) utilises knowledge about the outcome of 
earlier plans to plan ahead. A notable example is that some companies plan 
the procurement of harvesting machine resources based on earlier outcomes 
rather than the actual harvesting plan.  
 

6. ignoring the uncertainty, either intentionally or unintentionally.  
 
For many reasons, uncertainty is often ignored (strategy 6). It is not a 
mitigating strategy, per se – rather a coping strategy – as it might be good 
practice to ignore uncertainties that can be dealt with at low costs when 
realised. 
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Figure 4. A generalised and simplified example of the process maps created during 
the interviews. The colours of the boxes indicate the planning stage: dark green for 
strategic planning, brown for tactical planning, blue for harvest area planning (part 
of the operational planning), and light green for operational planning. Rounded 
boxes are activities, while those with sharp corners are data used for these 
activities. The figure and its caption were originally published in Ulvdal et al. 
(2023). 
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Table 7. A summary of the most important results from Paper I. A version of 
the table was originally published in Ulvdal et al. (2023). DSS refers to 
decision support system. 
Planning 
stage 

Strategic Tactical Harvest area 
planning  

Operational 

Problems 
addressed  

Long-term 
harvest levels 

When to harvest 
specific stands 

How specific 
harvests should 
be conducted 

Decision on 
harvesting date 
and what 
machines to use 

Time 
considered 

100 years 3–10 years One year Months 

Area 
considered 

Whole company Regional A small group 
of neighbouring 
stands 

District level 

Part of the 
organisation 

Specialists and 
managers at the 
main office 

Local planners  Local planners Local 
production 
planners 

Information 
used 

Field plot survey 
or stand 
inventory 
database 

Stand inventory 
database and road 
networks 

Stand inventory 
database, 
geographical 
information on 
natural, 
technical, and 
cultural values 

Harvest area 
database, stand 
inventory 
database, 
delivery plan 
and weather 
forecasts 

Main output Harvest levels Last date for 
harvest area 
planning in 
individual stands 

Harvest area 
database with 
harvesting 
instructions 

What stands on 
what date a 
certain machine 
group should 
harvest  

How the 
information 
is used 

Optimised 
harvest 
assessment in a 
DSS 

Manually in a 
geographical 
information 
system. 

Manually in a 
geographical 
information 
system. 

Manually in 
spreadsheet-
based systems 

Information 
quality 

Strata-based: 
high 
Area-based: 
lower, but 
sufficient 

The stand 
inventory database 
and road network 
are considered 
uncertain 

Mostly low Irrelevant due to 
the manual 
approach 

Main 
uncertainty 
strategies 

1, 2, 3, and 4 1, 2, and 6 (to 
some extent, 3 and 
4) 

2 and 3 2, 4, 5, and 6 
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4.2 The cost of using uncertain forest information in a 
hierarchical forest planning process with misaligned 
objectives (Paper II) 

 
Paper II evaluated the cost implications of using forest information of 
contemporary quality in a hierarchically subdivided planning process with 
misaligned objectives between the strategic and tactical stages. The results 
show, unsurprisingly, that using high-quality information and having aligned 
objectives yields the best performance (Table 8). Compared to the fully 
integrated reference case without uncertainty, the cases with high-quality 
information performed better than those with low-quality information. 
Furthermore, the cases with misaligned objectives performed worse than 
those with aligned objectives.  

Table 8. The relative changes in objective function values with components 
across all scenarios compared to the reference in Paper II. Reported values 
include the total objective function value (𝑍𝑍), net present value (NPV) from 
forest management (Forest NPV), and total NPV, including access costs 
(Total NPV). Disc. denotes discounted values. Area and volume penalties 
reflect constraint violations in area and harvested volume, respectively. 
Scenarios vary by information quality (LQ: low quality; HQ: high quality) 
and degree of objective alignment (LA: low alignment; HA: high alignment). 
Case 𝒁𝒁 Forest NPV Disc. accessing 

costs 
Total 
NPV 

Area penalty 

1-LQ-LA -36.6% -1.4% +0.2% -1.6% +26.0% 

2-LQ-HA -31.5% -0.1% +6.6% -0.9% +23.3% 

3-HQ-LA -13.7% -0.2% +0.3% -0.3% +23.1% 

4-HQ-HA -8.7% +1.3% +4.5% +0.9% +17.6% 
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4.3 Transitioning to using remote sensing information in 
forest planning: the problem with regression towards 
the mean (Paper III) 

Paper III evaluated the potential effects of transitioning from unbiased field 
surveys as the underlying information for long-term forest planning to 
remote sensing information, which in many cases has large random errors 
and is locally biased; i.e., affected by regression towards the mean. 

The results of Paper III indicate that the evaluated airborne laser 
scanning-based map outperformed the satellite map when used in long-term 
forest planning (Table 9). This indicates that a decision maker using remote 
sensing information that is significantly affected by regression towards the 
mean will experience larger deviations from optimal outcomes. The larger 
deviations cannot be attributed solely to regression towards the mean, as 
random errors also affect the planning results. However, many harvests 
planned according to the satellite information had to be postponed, since the 
age for these stands was predicted to be above the lowest legal final felling 
age, which was not the case according to the reference. This pattern 
highlights the significant impact of regression toward the mean on planning 
outcomes. 

When examining the specific indicators, it is evident that the carbon stock 
was substantially overestimated in the satellite map (Figure 5). The same 
figure shows a decline in realised carbon stock, even if the problem BIO-
CARBON prohibits any decline. Harvest levels were highly variable and 
diverged significantly from the reference level (Figure 6). The satellite-based 
planning varied more and had larger deviations than the airborne laser 
scanning-based planning. The development of the ecological indicators 
(Figure 7) showed deviations for both datasets. Due to regression towards 
the mean, the satellite-based information lacked almost all old forests, 
resulting in a significantly underestimated initial area of ecologically 
important forests. The implemented actions also initially lowered this area, 
contrary to what was allowed in the model. Airborne laser scanning-based 
plans deviated less from the reference compared to the satellite-based plans.  
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Table 9. The results for net present value for both remote sensing-based stand 
inventories. Disappointment is the difference between the expected and the 
realised net present value. Regret is the difference between the reference and 
realised net present value. Satellite refers to optical satellite imagery, and 
ALS to airborne laser scanning. 
Information used Decision-maker Disappointment Regret 

Satellite HARVEST -0.5% -9.1% 
Satellite BIO-CARBON +1.8% -6.7% 
ALS HARVEST +0.4% -6.7% 
ALS BIO-CARBON +0.4% -6.5% 

 

 
 
 

Figure 5. The relative differences to the reference (optimum) for the expected 
and realised carbon stock per year over the whole planning horizon for plans 
based on satellite data (left panel) and ALS-data (right panel) in the BIO-
CARBON-problem of Paper III. The black line represents 0; i.e., the 
reference.  
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Figure 7. The relative differences to the reference (optimum) for the expected 
and realised areas of ecologically important forests over the whole planning 
horizon for plans based on satellite data (left panel) and ALS-data (right 
panel) in the BIO-CARBON-problem in Paper III. The black line represents 
0; i.e., the reference. 

Figure 6. The relative differences to the reference (optimum) for the expected 
and realised harvested volume per year over the whole planning horizon for 
plans based on satellite data (left panel) and ALS-data (right panel) in the 
HARVEST-problem in Paper III. The black line represents 0; i.e., the 
reference. 



71 
 

4.4 The value of stochastic programming (Paper IV) 
Paper IV investigated how stochastic programming could be implemented in 
a decision support system to provide methods for users to deal with forest 
information uncertainty using Heureka PlanWise as an example. This 
implementation was evaluated both quantitatively through a case study and 
qualitatively with the assistance of forest planning experts from large forest 
companies. 

Case study 
When solving the stochastic programming model across all uncertainty 
scenarios in the case study, the optimal objective function value increased by 
20% compared to the expected value solution. This resulted in a 0.8% 
increase in the net present value of forest management. However, computing 
time increased by 30,454%, from 13s to 3,959s. 

The higher objective function arose from the large deviations from 
various restrictions that could not be included sufficiently when solving the 
expected value problem. Instead, these deviations affected the solution when 
the uncertainty was realised, see Eq. (52) on page 60. The modest net present 
value gain is driven by initially higher harvest levels from final fellings for 
the stochastic programming model compared to EEV. This is likely due to 
the stochastic programming model identifying harvests that can be 
performed earlier when all information is available. The initially higher 
harvest levels lead to lower levels than EEV after 35-40 years. The timing of 
the first final felling shifted only slightly with stochastic programming. For 
stands with changes, it was most common to advance the final felling by five 
years, followed by postponing it by the same amount.  

Focus group interview 
During the focus group interview, discussions were held regarding 
uncertainty in general and the usability of forest decision support systems, 
with and without uncertainty handling capabilities.  

The results from the interview show that uncertainty in forest planning is 
commonly discussed within forest companies. Apart from uncertainty in 
forest information, uncertainty connected to climate change and 
undiscovered natural values were also mentioned as important. In general, 
participants would prefer a decision support system like Heureka PlanWise 
to provide uncertainty estimates for both initial information and forecasted 
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values, rather than the current case of total ignorance. Knowing something 
about the uncertainty of results would be very beneficial for users, especially 
when communicating with non-expert decision-makers. For this reason, 
participants emphasised that a pedagogical presentation of uncertainty is 
crucial. A suggestion was made to describe results using probability 
distributions instead of point values. After being shown how a traditional 
planning problem could be solved with stochastic programming, all 
participants agreed that having such a solution technique available would 
provide much additional user value. One participant exemplified this by 
noting that there were no apparent “downsides for me as an analyst” using 
stochastic programming.  

A summary of the strengths and weaknesses of stochastic programming 
compared with standard deterministic optimisation, as perceived by the 
participants, is presented in Table 10. 

Table 10. A summary of strengths and weaknesses for standard deterministic 
optimisation versus stochastic programming (SP) from the perspective of 
users of a decision support system. A (+) indicates added benefits for the 
user, and a (-) indicates the opposite.  
 Deterministic Stochastic 

Potential to address uncertainty in information, from 
models and risk. 

- + 

Potential to visualise uncertainty in the initial 
information. 

- + 

Potential to visualise uncertainty in results. - + 

Level of model complexity. + - 

Potential to isolate what factors affect the result. + - 

Potential to acknowledge catastrophic events. - + 

Potential to achieve targets with a user-set probability. - + 

Need for pedagogical explanations and examples. + - 

Need of knowledge to use. + - 
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5. Discussion 

This thesis examines how forest information uncertainty is addressed in 
forest planning at large forest companies today and how current practices 
and uncertainty levels impact the fulfilment of objectives. In light of this, it 
suggests and evaluates a forest planning approach for explicitly dealing with 
forest information uncertainty.  

It was found that contemporary forestry employs rather rudimentary 
strategies to cope with uncertain forest information, which can lead to 
significant losses and unwanted outcomes. However, it was also found that 
employing stochastic programming to consider uncertain forest information 
explicitly is a value-adding approach in long-term forest planning.  

5.1 Today’s practice regarding information uncertainty 
The mapping of the contemporary forest planning process (Paper I) provided 
knowledge on how this process is structured in practice; i.e., as a hierarchy 
of separate planning stages. This result confirms the hierarchical forest 
planning paradigm in this context (Weintraub & Cholaky 1991; Martell et al. 
1998; Sessions & Bettinger 2001; Tittler et al. 2001; Andersson 2005; Ogden 
& Innes 2007; Eriksson 2008; Nilsson et al. 2012; Duvemo et al. 2014; 
Lämås et al. 2014; Gautam et al. 2015, 2017; Kangas et al. 2015:160). This 
mapping also revealed a significant dependency on traditional forest 
information, which was stored and continuously updated in the stand 
inventory database. Earlier studies have demonstrated the practical 
application of the stand inventory database (e.g. Nilsson et al. 2012), but we 
now understand its central role more clearly. In terms of updating the 
database, the use of (and interest in) remote sensing predictions appears to 
be increasing. 

Paper I also revealed that strategies for dealing with forest information 
uncertainty mostly rely on either coping with uncertainty (e.g., using buffers 
and adapting plans after uncertainty is realised) or, to some extent, 
controlling it (e.g., collecting new data and performing sensitivity analyses). 
This is reflected in the literature with a focus on Sweden, where most work 
has been directed towards providing planning models without concerns for 
uncertainty (e.g. Öhman et al. 2011) and improving the quality of 
information used for planning (e.g. Barth et al. 2012). No company utilised 
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any analytical approach to explicitly consider uncertainty during planning. 
A somewhat striking result was the relatively widespread non-use of and 
scepticism towards optimisation and other advanced analytical approaches 
outside strategic planning. This was unexpected, as foresters and forestry in 
Sweden are often regarded as mathematically oriented and fast adopters of 
new technology, perhaps best exemplified by the rapid computerisation of 
forest planning in the 1970s and 1980s (e.g. Sprängare 1975; Jonsson et al. 
1993; Hagner 2005; Jonung 2006). Both practice and research appear to be 
more invested in bringing in remote sensing predictions and other high-
resolution data rather than pondering how the data should be used.  

Even though these results are interesting, some limitations must be 
mentioned. For example, the qualitative enquiry described in Paper I would 
have benefited from including a wider range of respondents, both within the 
included companies and across companies in other jurisdictions. If so, the 
analysis could have highlighted differences between countries and regions 
and would have strengthened the connection between what was said to be 
done and what was actually done in practice. In line with that, it could have 
been possible to observe the work within the companies rather than just 
gathering data through interviews. Here, one should also acknowledge the 
merits of a detailed investigation in a case study. Such investigations provide 
a deep understanding of the studied system, which is likely why they are 
common in qualitative research and in the social sciences (Foreman 1948). 
Furthermore, case studies can be tested against and used to expand theory 
(Tsang 2014). So, even if the study in Paper I could have been expanded, it 
should be seen as an important addition to the knowledge about current 
forestry practices. One avenue lacking from Paper I that was instead 
investigated in Papers II-III was the evaluation of the actual, not only the 
perceived, quality of the forest information.  

5.2 The effects of not addressing information uncertainty  
From Paper I, we now know that no analytical approach that deals with forest 
information uncertainty is employed in practice (at least not in Sweden), and 
that the stand inventory database and information based on remote sensing 
are important information sources for forest companies. Thus, Paper I was 
followed by investigations into the potential loss of not addressing forest 
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information uncertainty, exemplified by stand inventory database and remote 
sensing applications.  

Paper II demonstrated that observed levels of uncertainty in stand 
inventory database information result in losses of net present value from 
forest management and discounted road opening costs, ranging from 1-2%. 
This is on par with similar studies (Duvemo & Lämås 2006). The subdivision 
of the planning process into one strategic and one tactical stage does not 
appear to significantly impact the net present value. This result also aligns 
with earlier investigations. A study focusing on decision-making in the 
planning hierarchy found that subdividing forest planning problems can 
achieve near-optimal solutions (Eyvindson et al. 2018b). However, since the 
objective of the problems tested in Paper II included minimising the 
deviations compared to some area thresholds relating to productivity 
objectives and certification, it is evident that fulfilling these restrictions may 
be difficult. Since the exact cost of deviating one hectare from a restriction 
could not be realistically determined, these costs in the models were 
somewhat subjectively estimated. The interpretation of the resulting 
suboptimality should therefore not be very strict. However, the results do 
suggest that a decision-maker who does not consider uncertainty will face 
challenges in achieving set restrictions. A side effect of the methodological 
development within the scope of Paper II is that the data (covariances) 
necessary to simulate errors that behave like real errors in a stand inventory 
database, including how they covary with each other are now available 
(Table 2 and Table 3).  

The results of Paper II also show that uncertainty affects objective 
fulfilment, but the question of how the size of the uncertainty impacts the 
fulfilment in hierarchical planning remains, at least to some extent, 
unanswered. It is, however, not unreasonable to believe that objective 
fulfilment would be worse with increasing uncertainty levels (e.g. Islam et 
al. 2009).  

The growing use of predictions of forest attributes from remote sensing 
is beneficial in many ways. However, what is clear from Paper III, is that 
satellite-derived forest information should not be used for large-scale 
decisions concerning large areas, such as long-term strategic harvest levels 
for a forested landscape, unless the predictions are modified to avoid 
systematic errors. The satellite-derived information had significant problems 
with regression towards the mean, leading to erroneous decisions for the 
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utilisation of the set of ecosystem services considered in the study. Important 
examples include the significant differences between expected and realised 
carbon stocks, as well as changes in carbon stock over time (Figure 5). 
Predictions from airborne laser scanning, on the other hand, performed 
significantly better, even if the suboptimality regarding net present value was 
not substantially less than that of the satellite-based plans. Thus, it seems 
better to avoid satellite-derived forest attribute predictions for long-term 
forest planning and scenario analyses, at least without calibration (e.g. 
Lindgren et al. 2022). Furthermore, Study III shows that it is possible, and 
probably preferable, to include value-of-information analyses when 
evaluating new information sources.  

However, it should be mentioned that a major weakness of Paper III was 
that it was not possible to compare the datasets explicitly, since the same 
stands were not measured using both remote sensing methods; instead, two 
independent, representative samples of stands were used. This could have 
been avoided if a forest landscape had been described wall-to-wall with the 
relevant inventory methods one wanted to compare. Another weakness was 
that the same set of attributes was not available from both remote sensing 
maps, creating the need for modelling secondary variables.  

5.3 Suggestion of a planning approach that 
acknowledges information uncertainty  

Based on the results from Papers I-III, it was evident that today’s practice 
requires tools to consider forest information uncertainty in the forest 
planning process. As pointed out in the introduction, various approaches 
exist; however, stochastic programming was deemed the most 
comprehensible, which is why it was tested both quantitatively and 
qualitatively in Paper IV.  

Stochastic programming was shown to be a relevant and implementable 
alternative tool for practitioners to consider information uncertainty in long-
term forest planning and harvest scheduling. Using the suggested approach 
increased the theoretical value of the solution (by 20%) and provided users 
with a basis for discussing and considering the uncertainty of both input data 
and results.  

To successfully implement stochastic programming in a forest decision 
support system, Paper IV demonstrated that a pedagogical presentation of 
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the decision-support-system settings, as well as the results, is crucial for 
improving user experience and adoption. If the process becomes too 
complex, users will shy away from the tool (Schulz 2021). However, great 
potential was shown in having stochastic programming available, as it added 
value to the planning process, according to the interviewed users. The study 
provides a road map for this implementation.  

The most important open question from Paper IV that remains 
unanswered is how to realistically represent the distribution of erroneous 
values based on some input data. Since the input data (i.e., information from 
the stand inventory database) is itself a realisation of the distribution around 
the true state, the generated forest states will be inherently different from the 
true forest state. This is a natural effect of using the original forest state as a 
mean of a distribution since the generated states will contain more extremes. 
A potential solution is to employ a Bayesian approach, where input data are 
seen as a realisation of an unknown distribution about which we can assume 
some a priori knowledge.  

The large increase (by 20%) in objective function value shows the 
potential of stochastic programming, but it should also be compared with the 
much smaller increase in net present value of approximately 1%. This big 
difference stems from how the objective is modelled (deviations from 
restrictions), which does not need to be a problem, since it is up to every 
decision-maker to formulate a good objective function. However, it is 
important for the interpretation and generalisation of the results. Stochastic 
programming will not improve all solutions by 20%, but there is potential 
for increases in many cases.  
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6. Conclusions and recommendations  

This thesis demonstrates that forestry today employs rudimentary strategies 
to cope with the effects of using uncertain forest information in the forest 
planning process. Since the information used in practice contains large 
uncertainties, forest planning based on that information risks leading to 
suboptimal decisions. Some of that suboptimality can be avoided if 
information uncertainty is considered explicitly in planning models by seeing 
data as continuous distributions instead of point estimates and solving 
planning problems using stochastic programming.  

Based on the results from the work underlying this thesis, the following 
recommendations can be made for both research and practice: 
 

1. There is an untapped potential in using advanced decision support 
tools and analytical methods in tactical and operational planning. 
Forest companies should consider employing such methods, and 
research should investigate reasons why forestry is hesitant to do so. 

2. Forest companies should adopt a strategy to explicitly address 
uncertainty in forest information in forest planning. 

3. Forest companies should improve or control the quality of 
information in the stand inventory database before using it in long-
term forest planning. 

4. If forest information from remote sensing is used for decision-
making and planning, forest companies should consider the risk of 
bias from regression towards the mean. 

5. Forest companies and policymakers should refrain from using 
uncalibrated remote sensing predictions for high-stake and/or long-
term decisions, such as deciding long-term harvest levels without 
considering potential consequences. 

6. Research on new forest inventory methods should preferably include 
cost-plus-loss or value-of-information analyses. Such knowledge 
will better inform practice as to whether it is rational to invest in new 
information acquisition technology.  

7. Forest decision support systems developers who aspire for their 
systems to consider uncertainty should see stochastic programming 
as a viable solution technique.  
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8. Research on how to generate forest information uncertainty 
scenarios while avoiding the problem of allowing a realisation of 
uncertainty to represent the true state should be prioritised.  

 
As shown in this thesis, information uncertainty is important to consider. 
However, there are probably other sources of uncertainty that impact forestry 
more, especially in the long run. For example, climate change will likely 
drastically alter conditions for forest management worldwide. This mega-
uncertainty should also be considered. 
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Popular science summary 

Forest planning is the process by which a decision‑maker (for example, a 
forest owner) decides what to do with a forest (including when and where) 
in order to best achieve their objectives. The process involves first defining 
objectives and then evaluating the various management options available. 
Ultimately, the options that best align with those objectives are chosen. The 
result can be compiled into a forest management plan. 

Forest planning is usually based on many different factors. One important 
aspect is the forest’s current state. This state is often described using various 
types of information, such as the average age, height, and diameter of the 
trees in the forest. A forest is typically divided into units, and within each 
unit, trees are supposed to be similar to one another. Consequently, the 
information about the forest is usually organised by units, or stands, as they 
can be called. 

It is common for forest stand information to contain errors. For example, 
the recorded age of a stand may differ from its true age. Such errors can have 
many causes. Often, the measurement method simply cannot capture the 
forest’s exact state. Addressing this issue; i.e., what it means to plan forestry 
using imperfect data, is the focus of this thesis. 

If the available information is assumed to be accurate and free of errors, 
the decisions based on that information risk being misguided. An example is 
when inaccurate age information leads to a decision to harvest a stand before 
it has reached the legally mandated minimum age for regeneration felling, 
according to forestry legislation. Such a decision is, of course, illegal, but 
erroneous information can also produce other undesirable outcomes. If a 
forest owner aims to maximise profit, harvesting a stand where the trees are 
not as thick as they are believed to be, the result can be lower revenues than 
expected. This is because, in some cases, a forest’s value increases as trees 
grow larger over time. Thus, incorrect information can lead directly to 
suboptimal decisions. 

The magnitude of these decision errors can be examined by comparing 
the decisions made using information containing errors with those made 
using information that does not. Decisions based on true information are 
referred to as optimal decisions (because they cannot be improved upon). 
What counts as optimal varies among forest owners, but in research, it is 
common to assume a forest owner seeks to maximise profit. Net present 
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value is a standard measure of profitability in forestry. It is calculated by 
discounting all future revenues and costs from the forest to their present‑day 
value. This is crucial in forestry because there are long time intervals 
between investments (e.g., planting) and returns (e.g., harvesting). 

This thesis comprises four separate studies, each addressing what it means 
to plan forestry with imperfect information. The first study investigated how 
large forest‑owning companies actually handle information errors when 
planning. It turned out they employ several strategies, but these are largely 
coping strategies. This means, for example, that the companies would rather 
wait to see if problems arise instead of anticipating what could happen.  

The second and third studies examined how erroneous decisions can be 
when based on the types of information that the first study showed large 
companies use in their planning. The second study focused specifically on 
the traditional information typically found in forest companies’ stand 
information databases. Using modelling, it explored how errors in this 
information affected objective achievement when planning was carried out 
in several separate steps. The result showed that net present value can drop 
by as much as around 2%. The third study examined errors in information 
collected via remote sensing, specifically satellite imagery and airborne laser 
scanning. Errors from these remote‑sensing methods tend to regress toward 
the mean, meaning they overestimate small true values and underestimate 
large ones. A large tree may therefore appear smaller in the collected 
information and vice versa compared to reality. This study found that 
satellite‑derived information contained larger errors and that decisions based 
on that information were more erroneous than those based on laser‑scanned 
information. Planning based on satellite imagery led to a reduction in net 
present value of up to 9%, whereas planning based on laser scanning resulted 
in a loss of approximately 6%. 

In the fourth and final study, it was proposed how a forest owner could 
plan forestry using a computer program that accounts for errors. Together 
with representatives from large forest companies, the program’s usability 
was tested. It was found that the new computer program was more complex 
than the old, error‑ignorant one. However, the new program provided value 
in handling information errors, provided that the user interface was clearly 
and pedagogically presented. In a practical test, the new program produced 
a management plan for a forest area that was 20% more effective, thanks to 
its ability to account for errors. 
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In summary, this thesis shows that large forest owners today do not 
adequately manage information errors and that this likely leads to poorer 
decisions than if such errors were considered. This shortcoming can be 
remedied, for example, by developing and using computer programs of the 
kind evaluated in the fourth study. 
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Populärvetenskaplig sammanfattning 

Skoglig planering är processen där en beslutsfattare (exempelvis en 
skogsägare) bestämmer sig för vad (inklusive var och när) som ska göras 
med en skog för att uppnå sina mål. Processen innebär att skogsägaren först 
identifierar sina mål och sedan utvärderar olika skötselalternativ. Det hela 
avslutas genom att välja det alternativ som bäst uppfyller målen. Resultatet 
kan sättas ihop till en skogsbruksplan.  

Planeringen kan baseras på många olika saker. Något som är viktigt är 
hur skogen ser ut idag, vilket ofta beskrivs genom någon form av 
information. Informationen kan till exempel vara uppgifter om träden i 
skogens medelålder, medelhöjd eller medeldiameter. En skog brukar delas 
in i områden där träden i varje område är lika varandra. Dessa områden kan 
kallas avdelningar. Informationen om skogen brukar därför också vara 
uppdelad per avdelning.  

Det är vanligt att informationen om skogens avdelningar innehåller 
felaktigheter. Ett exempel på fel är om skogsavdelningens ålder skiljer sig 
från den verkliga och sanna åldern. Felet kan bero på många saker, men det 
är vanligt att det sätt man mätt skogen med inte är exakt. Det är detta problem 
som den här avhandlingen handlar om, det vill säga vad effekten blir av att 
planera skogsbruk med felaktig information om skogen. 

Om skogsägaren tror att den informationen som finns om skogens 
avdelningar är sann och inte innehåller några fel riskerar besluten som fattas 
att leda till att resultatet inte blir som förväntat. Ett konkret exempel är om 
informationen om skogens ålder leder till ett beslut att avverka skogen innan 
den blivit så gammal att den uppnått lägsta ålder för föryngringsavverkning 
enligt skogsvårdslagen. Det beslutet är såklart olagligt, men det kan också 
leda till andra oönskade effekter. Om skogsägaren vill tjäna så mycket 
pengar som möjligt på sitt skogsbruk kan det felaktiga beslutet att avverka 
en skog innan träden blir tillräckligt grova leda till lägre intäkter än förväntat. 
Felaktig information kan alltså leda till felaktiga beslut.  

Hur felaktiga besluten blir kan man undersöka genom att jämföra ett 
beslut som fattats baserat på information som innehåller felaktigheter med 
ett beslut som fattats baserat på information som är närmare sanningen. 
Beslut som fattas baserat på sann information kallas för optimala beslut 
(eftersom de inte kan bli bättre). Vad som är optimalt varierar dock med 
målsättningen och är därför olika mellan olika beslutsfattare. Ett vanligt mål 
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är att vilja tjäna så mycket pengar som möjligt. Ett mått som används för att 
visa hur mycket man tjänar på skogsbruk är nettonuvärde. Det räknas ut 
genom att lägga ihop alla framtida intäkter och kostnader från skogen och 
justera detta med en ränta för att det ska motsvara dagens ekonomiska värde. 
Detta är viktigt när man räknar på skogsbruk eftersom det tar lång tid mellan 
investering (till exempel plantering) och intäkt (till exempel avverkning).  

Denna avhandling består av fyra studier som var och en behandlar frågan 
om vad det innebär att planera skogsbruk baserat på information med fel. I 
den första studien undersöktes hur större skogsägande företag i praktiken 
hanterar fel i uppgifter om skogen när de planerar. Det visade sig att de 
framförallt använder sig av så kallade hanteringsstrategier. Detta innebär att 
företagen snarare väntar och ser om några problem uppstår, än att de försöker 
förutsäga och minska problemen innan de inträffar.  

Den typ av felaktig information som den första studien visade att stora 
skogsföretag ofta använder i sin planering analyserades sedan i den andra 
och tredje studien. I dessa undersöktes hur mycket felen påverkar besluten. 
Den andra studien fokuserade specifikt på den traditionella information som 
brukar finnas i skogliga företags avdelningsregister. Med hjälp av 
modellering undersöktes hur fel som dessa påverkade måluppfyllnaden när 
planeringen genomförs i flera separata steg. Resultatet var att nettonuvärdet 
kan sjunka med upp till ca 2%.  

I den tredje studien undersöktes istället fel som förekommer i information 
som samlats in med hjälp av mätningar i satellitbilder och laserskanningar 
från flygplan. Vad som är speciellt med fel från dessa fjärranalysmätningar 
är att de drar mot mitten. Det innebär att mätningarna överskattar små sanna 
uppgifter medan de underskattar stora sanna uppgifter. Ett stort träd i 
verkligheten kommer därför se ut som att det är mindre än vad det är och 
tvärt om. Den tredje studien visade att information insamlad med 
satellitbilder hade stora fel och att beslut fattade baserade på den var mer 
felaktiga än de som istället fattats baserats laserskannad information. 
Planering baserad på satellitbilder innebar upp till 9% lägre nettonuvärde, 
medan planering baserad på laserskanning istället förlorade ca 6%.  

I den fjärde och sista studien föreslogs hur en skogsägare skulle kunna 
planera sitt skogsbruk med hjälp av ett datorprogram som tar hänsyn till fel 
i information om skogen. Tillsammans med representanter från stora 
skogsföretag testades datorprogrammets användarbarhet. Representanterna 
tyckte att det nya datorprogrammet var mer komplext än det gamla som inte 
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hanterar fel. Men de tyckte också att det var värdefullt att kunna hantera fel, 
men att det var viktigt att datorprogrammet var pedagogiskt upplagt. I ett 
praktiskt test skapade det nya datorprogrammet en plan för ett skogsområde 
som var 20% bättre tack vare att hänsyn togs till fel.  

Sammantaget visar denna avhandling att större skogsföretag idag inte 
hanterar felaktigheter kopplade till information om skogen särskilt bra och 
att detta troligtvis leder till sämre beslut än om man gjorde det. Detta kan 
avhjälpas genom att till exempel utveckla och använda datorprogram av den 
typ som utvärderades i den fjärde studien. 
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This qualitative study aimed to map what information is used in the forest planning process at large forest-
owning companies, how it is used, its level of uncertainty and currently employed strategies to handle forest
information uncertainty. An additional aim was to assess the status of the paradigm of the forest planning
hierarchy in forestry. We used data from semi-structured interviews with representatives of six large forest-
owning companies in Sweden, representing 30 per cent of the productive forest land in the country. Our results
show that the forest planning process is a hierarchical system of decisions where the information used in
the different planning stages is of varying quality and that the traditional hierarchical planning paradigm still
plays a vital role in forestry. The most central source of information in the whole forest-planning process is the
forest stand database (forest inventory). This includes uncertain information from various sources, including
subjective field measurements and aerial image interpretation. However, the use of remote sensing estimates
to feed the databases is increasing, which will probably improve the overall quality. Another important finding
is that forest companies tend not to use decision support systems or optimization models to solve planning
problems outside the scope of strategic planning; thus, most planning is done manually, e.g. in a geographic
information system (GIS) environment. Apart from the hierarchical division of the planning process itself, we
identified six main strategies that the companies use to control information uncertainty, namely locking the
future by making a decision, utilizing a surplus of available harvests, updating information before a decision is
made, replanning when the plan is found to be infeasible, planning by looking back and ignoring the uncertainty,
either intentionally or unintentionally. The results from this study increase our understanding of contemporary
forest-planning practices and will be helpful in the development of decision support systems and methods for
information collection.

Introduction
Forest planning is essential for achieving sustainability in forestry
(MacDicken et al. 2015), and the dominating paradigm of for-
est planning rests on a planning hierarchy (e.g. Weintraub and
Cholaky 1991; Martell et al. 1998; Church et al. 2000; Sessions and
Bettinger 2001; Gautam et al. 2017). According to this paradigm,
the planning hierarchy consists of three stages, namely, strategic,
tactical and operational planning. Strategic planning (the highest
stage) deals with company-wide questions such as plans for
sustainable harvest levels over more extended time periods and
areas (e.g. Gunn 2007). Operational planning (the lowest stage)
focuses on the day-to-day scheduling of harvest machines and
how to meet delivery demands (e.g. Epstein et al. 2007). Finally,
the tactical planning (intermediate stage) works as a bridge
between the other stages and mainly facilitates the scheduling
of what stands (i.e. treatment units) to harvest in what year

in order to fulfil the strategic aims (e.g. Church 2007). Tradi-
tionally, this stage also includes the planning of road main-
tenance and the detailed planning of individual harvest areas
(e.g. Church et al. 2000; Mobtaker et al. 2018). Due to the domi-
nance of the paradigm, neither the hierarchy’s implementation in
forestry nor its effectiveness has been heavily researched. This is
especially the case for large forest-owning companies, and there
are only a few publications on the forest planning process at such
organizations (Tittler et al. 2001; Eriksson 2008; Laamanen and
Kangas 2011; Nilsson et al. 2012). See Figure 1 for a graphical
summary of the current paradigm.

Planning on all hierarchical stages relies on information about
the forest resource (Nilsson et al. 2012). This forest informa-
tion is structured data about the current and future (modelled)
states and properties of forests and related management (Ackoff
1989). In the Nordic countries, forest information for operational
use is commonly stored as tabular stand mean values in forest
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stand databases (stand inventories) combined with maps show-
ing boundaries between stands (Nilsson et al. 2012). The forest
stand databases are a typical case of wall-to-wall information,
i.e. they contain information about all stands.

The information in the forest stand databases has historically
been collected in large-scale field-based forest management
inventories (FMIs, see Kangas et al. 2018 for definition) and
stand delimitation campaigns where all stands were subjected
to measurements of some kind (Maltamo et al. 2021). Both
objective and subjective (ocular) field-based inventory methods
have been used in these inventories, even if the latter has been
more common (Ståhl 1992; Koivuniemi and Korhonen 2006). In
addition, manual interpretation of aerial and satellite imagery
(Hesselman 1939; Åge 1985; Iverson et al. 1989) has aided the
field inventories during the latter half of the twentieth century.
During recent decades, however, estimates from other satellite-
based sensors (Holmgren and Thuresson 1998; Reese et al. 2002);
aerial light detection and ranging (LIDAR) (Næsset et al. 2004);
terrestrial LIDAR (Maas et al. 2008) and digital photogrammetry
(Bohlin et al. 2012) have emerged as viable alternatives to field-
based inventory methods and have been successfully imple-
mented in forestry (Næsset 2014; Nilsson et al. 2017). The main
strength of these remote sensing (RS) methods is that they
produce wall-to-wall forest resource maps for large areas at short
intervals with greater spatial and temporal detail than traditional
field-based FMI information in forest stand databases (Nilsson
et al. 2017). However, RS methods also have weaknesses, e.g.
some parameters like site index and age are difficult to estimate;
estimates for some forest types, for example, young forests, have
high uncertainty; and most estimates based on regression or
imputation tend towards the mean (Barth et al. 2012; Kangas
et al. 2018).

Depending on the underlying forest information that is used,
forest planning can be performed with either an area-based
or strata-based approach. Area-based planning (ABP) uses the
information in the entire forest stand database as the basis
for the planning process (Nelson et al. 1991; Murray 1999).
However, this approach has some limitations when applied to
strategic planning. First, the size of the planning problem for
large forest holdings typically includes more than 100 000 stands,
making planning problems complex and complicated to solve
(Liittschwager and Tcheng 1967). Second, the low or unknown
accuracy of the forest stand database information makes it less
appropriate as a basis for strategic planning (Duvemo et al. 2014).
Turning to the strata-based planning (SBP) approach reduces the
problem size by aggregating stand-level information into strata
based on properties like species, age and timber volume (Daust
and Nelson 1993; Church et al. 2000). The planning problem is
then to find the optimal area of each stratum to be harvested
at each time point. An extended version of SBP is to perform a
sample-based FMI. Here, a stratified sample of stands is selected
(with the forest stand database as the sampling frame), and
each sampled stand is surveyed with field plots (Lindgren 1984).
Each sample stand thus represents a proportion of the total
area of the forest holding. In comparison with ABP, this version
of SBP reduces the problem size and avoids uncertainty from
forest stand database information. This approach has dominated
strategic planning at large forest companies in Sweden since
the 1980s (Jonsson et al. 1993). ABP, on the other hand, has

received more attention outside Sweden (Nelson et al. 1991;
Murray 1999). Because ABP uses wall-to-wall forest information,
it can in contrast to SBP facilitate explicit spatial considerations.
These consideration are, however, of higher importance in
tactical and operational planning situations (Rönnqvist et al.
2015). These planning phases concern economic aspects like the
concentration of harvests along roads (Naderializadeh et al.
2020) as well as environmental aspects like the spatial allocation
of potential habitats for species (e.g. Öhman et al. 2011).
Ideally, spatial aspects should be considered on the strategic
stage too, but the typical long planning horizons and large
geographical areas and the consequently large problem sizes
make it cumbersome (Næsset 1997; Bouchard et al. 2017;
Mobtaker et al. 2020).

Potentially, ABP can be developed even further in parallel with
the development of RS (which nowadays provides information
with high resolution), optimization methods (which are becom-
ing more efficient) and recent increases in computation capac-
ity. For example, the dynamic-treatment-unit approach aggre-
gates elements (e.g. forest information in a 10 × 10 m2 raster)
into temporary treatment units in both time and space without
considering traditional (permanent) stand boundaries (Holmgren
and Thuresson 1997; Heinonen et al. 2007; Magaña et al. 2013;
Wilhelmsson et al. 2021). However, no matter which approach
to forest planning one chooses, the uncertainty of information
should be considered (Kangas 2010).

Perfect forest information with complete certainty is rare or
maybe even impossible, i.e. forest information will always have
some degree of uncertainty. We define uncertainty as the incom-
pleteness of the knowledge about something’s true state (Ayyub
2010). This uncertainty can be either objectively assessed as
a statistical element describing the probability distribution of
something’s true state (Tannert et al. 2007) or as some sub-
jective notion of a decision-maker, depending, for example, on
the decision-maker’s risk preferences (Pukkala and Kangas 1996;
Blennow et al. 2014; Rinaldi and Jonsson 2020). Therefore, both
the objective and subjective natures of uncertainty must be
considered when addressing the impact of uncertainty on forest
management.

Pasalodos-Tato et al. (2013) give an overview of common
sources of uncertainty in forest management, of which two
are relevant for this study: uncertainty of measurements or
estimations and uncertainty from models. Traditional field-
based measurements for central stand attributes, like stand
basal area, yield estimation errors of ∼10–20 per cent for
subjective methods and ∼2–10 per cent for objective methods
(Ståhl 1992). When using field measured ground truths as
reference data, measurement errors also affect RS estimates.
However, model uncertainty also plays a significant role in RS
because most such estimations are modelled from indirect
measurements from sensors. One of the more common RS
methods is airborne LIDAR, which can produce estimates with
errors smaller than 10–20 per cent (Hyyppä et al. 2008; White
et al. 2016). Estimates from airborne LIDAR have similar quality as
traditional field-based inventories commonly used in the Nordic
countries (Bergseng et al. 2015; Nilsson et al. 2017) or even better
(Persson et al. 2022).

There is a trade-off between the cost of lowering the
uncertainty of forest information and the increased benefit
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from better decisions based on improved or new information
(Duvemo and Lämås 2006). This trade-off can be examined
with a Cost-plus-loss analysis that minimizes the sum of the
costs of information acquisition and the losses from suboptimal
decisions based on that information. Cost-plus-loss is suitable
for evaluating information acquisition methods and the value of
information before using it in forest planning procedures (Gilabert
and McDill 2010). Finding the minimum cost solution can be
accomplished through either an analytical (Hamilton 1970; Ståhl
et al. 1994) or a simulative approach (Sprängare 1975; Larsson
1994; Eid 2000; Holmström et al. 2003; Holopainen et al. 2010;
Mäkinen et al. 2012; Duvemo et al. 2014). However, utilizing
knowledge about information uncertainties when solving actual
planning problems can also be approached with other operation
research methodologies (Pasalodos-Tato et al. 2013). There is
a steady flow of suggestions about such methods and how to
include them in a decision support system (DSS) (Eyvindson and
Kangas 2014; Eyvindson et al. 2018; Alvarez-Miranda et al. 2019;
Alonso-Ayuso et al. 2020; Rinaldi and Jonsson 2020). However,
few methods appear to be easily implemented in practice, most
likely due to the exponentially growing size of the problem and
results that perhaps are difficult to understand and interpret for
a non-expert.

The development of new methods for forest information
acquisition is a highly active field of research (White et al. 2016).
However, how information is used in practical forest planning, its
current value for decision-making and how its quality might be
improved to increase its value are also important topics. Kangas
(2010) suggested that the actual use of the collected information
should be mapped together with what decision-makers need
from such information in terms of quality. Such a mapping would
help researchers and forest practitioners to focus on the most
beneficial development of new information acquisition methods.
Unfortunately, only a few studies have examined what (and
how) forest information is used in practice in large-scale forestry
(Laamanen and Kangas 2011; Nilsson et al. 2012; Borges et al.
2014).

Sweden has an international reputation for its thriving forest
industry sector (Lindahl et al. 2017). Furthermore, the country
is heavily forested and has a high production of industrial
round wood considering its small size and boreal location (Ahti
et al. 1968; FAO 2020a, b; SLU 2020). Some reasons behind
this productivity are the focus of many actors on high forest
production through intensive even-aged forest management,
combined with a highly developed forest industry, a low
degree of regulations (Lindahl et al. 2017), a long tradition
of computer-aided planning (Stridsberg 1959; Jonsson et al.
1993) and a significant share of the forests (∼37 per cent)
owned by for-profit organizations (Swedish Forest Agency 2018).
Studying the implementation of forest planning in Sweden
should therefore provide interesting results for the international
community.

This study aimed to map the information available for the
forest planning processes at large forest-owning companies, how
it is used, its level of uncertainty and currently employed strate-
gies to handle forest information uncertainty. An additional aim
was to assess the status of the paradigm of hierarchical forest
planning, especially concerning the management of information
uncertainty. The following research questions guided our study:

• RQ1: Is the hierarchical forest planning paradigm imple-
mented in large forest-owning companies? If so, how?

• RQ2: What forest information is used by large forest-owning
companies, and how?

• RQ3: What level of uncertainty does this forest information
have?

• RQ4: What strategies do large forest-owning companies
employ to handle or control the effects of forest information
uncertainty?

RQ1 and RQ2 relate to the forest planning process, how it is
structured and how it facilitates different uses of forest informa-
tion. RQ2 and RQ3 relate to the input of information in the process
and its quality. RQ4 covers the potential strategies that forest
companies use to handle or control the effects of information
uncertainty. We argue that we cannot answer RQ4 without first
mapping the overall forest planning process with the information
used (RQ2), how it is used (RQ2), the level of information uncer-
tainty (RQ3) and how the traditional planning stages relate to
each other (RQ1).

Methods
This study employed a qualitative research methodology with
semi-structured interviews of representatives from large forest
owning companies in Sweden (Miles and Huberman 1994). The
sample consisted of six production-oriented forest companies
managing more than 200 000 ha of productive forest land (see
Figure 2 and Table 1 for a map and an overview). The total area
in the sample represented more than 30 per cent (7.8 million
ha) of the productive forest land in Sweden. The purpose of this
sampling strategy was that the larger companies would have
greater incentives for employing a formal forest planning process
(Eriksson 2008).

The sampled companies were asked who in their company
knew the most about the overall forest planning procedures,
from forming strategies to the actual harvesting of a single
stand. The suggested persons had titles such as head of forest
planning, forest management specialist and head of forest man-
agement, and these persons were chosen to be our respondents.
We interviewed the respondents in person or via an online video
conferencing system (due to covid-19 restrictions). All interviews
were recorded and transcribed into written language, averaging
177 min and 24 192 words in length. The interviews were aided
by an interview guide that was developed from our research
questions with inputs from a read-through of internal documents
provided by three of the companies (see supplementary files
online). Because the interviews were semi-structured, questions
not included in the guide were asked if needed, e.g. for clari-
fication purposes. In addition to answering the questions, the
respondent and the interviewer created a process map including
all actions and decisions that needed to be made throughout
the company’s organization before a stand could be harvested
(see Figure 3). The map included the information used for each
activity or decision, its perceived certainty and how it was used,
i.e. in what system or DSS it was used. The respondents cat-
egorized all activities and decisions as either strategic, tactical
or operational. The interviews did not cover planning related to
local timber purchases. All collected information was stored in a

64



Handling uncertainties in forest information

Figure 1 Conceptual summary of how forest planning at large forest-owning companies in the Nordic countries is described in the forest-planning
literature. After Eriksson (2008).

Table 1 An overview of the six companies in the study. The numbers indicate in what region of Sweden each company has holdings, from north to
south: (1) Norra Norrland, (2) Södra Norrland, (3) Svealand, (4) Götaland. See Figure 2 for a map. The sources of the information in this table are the
companies themselves.

Company name Productive forest land Connection to industries Ownership Geography

BillerudKorsnäs AB Manages Bergvik Skog Öst’s
forests, 295 000 ha, and its
own forests, 50 000 ha. In
total: 345000 ha

Owns multiple pulp and
paper mills

Private, primarily
institutional owners

Mainly in 3

Holmen AB 1043 000 ha Owns multiple pulp, paper
and sawmills

Private Mainly in 1 and 2. Some
in 3 and 4.

Kopparfors Skogar
AB

230 000 ha Independent. Sells felling
rights to harvesting
companies. Does not own
any industries.

Private. Private foundations
own the parent company

2, 3, and some in 4

Stora Enso AB 1139 000 ha Owns multiple pulp, paper
and, sawmills

Private, primarily
institutional owners

Mainly in 3. Some in 2
and 4

Sveaskog AB 3050 000 ha Owns 50% of Setra Group
AB, a sawmill company

100% government owned Mainly in 1 and 2. Some
in 3 and 4

Svenska Cellulosa
Aktiebolaget SCA

2000 000 ha Owns multiple pulp, paper
and, sawmills

Private, primarily
institutional owners

1 and 2

computer-assisted qualitative data analysis software that aided
the analysis, which aimed to find general trends and patterns
in the material from all companies. The process maps were
essential for the analysis, especially in searching for similar or
dissimilar practices between companies.

Results
The results are divided according to our research questions. The
most important results are summarized in Table 2. See Figure 3
for a graphical summary of the planning process based on the
collected process maps.

RQ1: Is the hierarchical forest planning paradigm
implemented in large forest-owning companies? If so,
how?
The results from our interviews show that the structure of the for-
est planning process at large forest-owning companies in Sweden

is set up as a hierarchy, adhering to the traditional paradigm, with
three distinct stages. The stages answer different questions; they
use different information (see RQ2), they are the responsibility of
different parts of the organization and the lower stages follow the
aims and boundaries set by the higher stages.

The companies themselves describe their planning processes
as consisting of three stages—strategic, tactical and operational.
In the strategic stage, the companies set up overall aims and
strategies for sustainable use of the forest resource. These strate-
gies are then transformed into sustainable harvest levels with an
optimized harvest assessment (see RQ2) conducted by the main
office. The final decision about these levels is made by executive
management or the company’s board. The harvest levels are the
only formal connection between the strategic and tactical stages
because they function as targets for the lower stages.

The tactical stage’s primary purpose is to plan when to
perform harvest activities in individual stands in order to fulfil the
harvest levels set by the strategic stage. This stage also includes
the clustering of harvest areas to road networks and road
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Table 2 A summary of the most important results.

Planning stage

Strategic Tactical Harvest area planning (part
of the operational planning)

Operational

Questions
addressed

How much can be
harvested sustainably in
the coming 100 years?

What stands should be
harvested in what year to
fulfil the strategic harvest
levels?

How should this stand be
treated?

What week/day should
this stand be harvested,
and by whom?

Time considered 100 years 3–10 years One year Months
Area considered The whole company Regional level or smaller A small group of

neighbouring stands
District level or smaller

Part of the
organization

Specialists and managers
at the main office

Planners at the regional,
district, or planning
department

Planners at the district or
planning department

Production leaders at the
district or production
department

Information used Strata-based:
sample-based FMI
Area-based: wall-to-wall
forest stand database

Forest stand database and
information about roads

Forest stand database,
public and internal GIS
layers about natural,
technical and cultural
values

Harvest area database,
forest stand database,
delivery plan and weather
forecasts

Main output Strategic plan, i.e. harvest
levels

Tactical plan, i.e. latest date
for harvest area planning in
individual stands

Harvest instructions.
Summarized in the harvest
area database

Operational plan, i.e. a list
of stands that machine
group X should harvest on
what day

How the
information is used

Optimized harvest
assessment in a DSS

Manually in a GIS aided by
either a GIS filter or an
optimization model

Manually in a GIS Manually in
spreadsheet-based
systems

Level of certainty in
the information

Strata-based: high
Area-based: low, but
sufficient

The forest stand database
is considered uncertain. The
same goes for road
information.

Mostly low Non-relevant due to the
manual approach

Main strategies to
handle information
uncertainty

(1) locking the future, (2)
buffering and (3) gathering
of new information, and to
some extent: (4) replanning

(1) locking the future, (2)
buffering, (6) ignoring the
uncertainty and to some
extent (3) gathering new
information and (4)
replanning

(2) buffering and (3)
gathering new information

(2) buffering, (4)
replanning, (5) looking
backwards and (6)
ignoring uncertainty

maintenance planning. The aims for the extent of the tactical
plan vary among the companies but range from 3 to 10 years’
worth of timber harvest volumes with a temporal detail of
individual years. At the smallest company, the planners make
sub-plans for their district (∼25 000–40 000 ha), later aggregated
to the company level. With increasing sizes of companies comes
more centralized tactical planning, with specialized personnel
making plans for larger areas.

The operational stage consists of two parts, namely harvest
area planning and operational planning. Harvest area planning
produces detailed harvest plans and instructions for individual
stands grouped into harvest areas. The organization of this work
differs among companies. The larger ones have more specialized
processes, with the harvest area planners working most of their
time with this detailed planning. When the harvest area planning
for an area is finished, the responsibility to fulfil the harvest levels

by creating the actual operational plan is transferred from one
department (often called the Planning department or District X)
to another (often called the Production department). At the same
time, there is also a subtle shift of focus from a long-term and
silvicultural planning perspective, where the aim is to maximize
the utility and production of wood, to a more short-term planning
perspective aiming to minimize costs in the production appara-
tus.

RQ2: What forest information is used by large
forest-owning companies, and how?
The companies use many different sources of information
throughout the planning process. Most forest information has
been either assessed with RS or subjectively estimated in the
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Figure 2 The approximate extent of the forest land managed by the
studied companies is shown in orange, while the approximate extent of
the additional forest land in Sweden is shown in green. Sweden’s regions
are indicated by their respective name and black outline.

field. The use of objective inventories is only standard practice in
strategic planning.

All companies use Heureka PlanWise, a DSS developed for
Swedish conditions, for the optimized harvest assessment on
the strategic level (Wikström et al. 2011). The system includes
a stand simulator with ecological, silvicultural and economic
models that produce alternative treatment programmes and
an optimization module that assigns treatment programmes
to stands. The companies use the system to calculate harvest
levels for 100 years with linear or mixed-integer programming
with a model I formulation (Johnson and Scheurman 1977) that
maximizes the net present value (Arnold 2014) of all future forest
management with mathematical restrictions that emulate real-
world limitations and aims (Kaya et al. 2016). Some examples
of these restrictions are requirements of sustainable yield, an
even flow of harvested timber volumes, an even geographical
distribution of harvest operations, and a demand for a certain
surplus of harvestable stands at any given moment in the future
(a planning reserve).

The type of information the companies use as input for
the optimized harvest assessment depends on their planning
approach, i.e. whether they use SBP or APB. For companies using
SBP, the input is a sample-based FMI with tree-level surveys in a
set of sample stands, each inventoried on ∼10 circular field plots
per stand (for further details, see Lindgren 1984). Even though
this strata-based approach is the most common, there is an
increasing interest in using the area-based approach instead. Two
companies have already implemented or plan to implement such
an approach soon. An overview of the information used in both

Figure 3 A generalized and simplified example of the process maps cre-
ated during the interviews. The colours of the boxes indicate the planning
stage: dark green for strategic planning, brown for tactical planning, blue
for harvest area planning (part of the operational planning) and light
green for operational planning. Rounded boxes are activities, while those
with sharp corners are information used for these activities.

approaches for strategic planning is found in the supplementary
files online.

Outside the strategic stage, most planning activities and deci-
sions are not supported by any DSS. The companies use sys-
tems that support the process, but no system formally qualifies
as a DSS (Vacik et al. 2015). When asked why they do not
use optimization, one company stated that the manual solution
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performs better when considering the real world. Alternatively,
as the respondent put it: ‘An optimizing tool tends to optimize
only the thing you ask for and leave the rest unanswered. To really
benefit from an optimization, the description of the reality needs
to be sufficiently good’.

According to the respondents, the forest stand database is the
most central forest information source in all planning stages. The
forest stand database generally consists of a forest map with
delineated stands and corresponding tables of information on
each stand. The information is primarily made up by traditional
forest parameters such as timber volumes, tree height, stem
diameter, stand basal area, age and site index. The database
also keeps track of previous and planned management activities.
The sources of forest information are diverse. Some are from
aerial LIDAR and some are from objective inventories, but most
are from subjective inventories and ocular estimates by indi-
vidual forest officers. Most companies have historically updated
the forest stand databases with large-scale field-based FMIs at
uneven intervals, but none have conducted any during the last
decades. Instead, the strategy is to update the database on the
go, meaning that forest officers update any information when
needed. Updates of the forest stand database with estimates
from nationwide LIDAR-based forest resource maps have also
been done (Nilsson et al. 2017).

The companies use one of two methods in their tactical plan-
ning, namely filtering or optimization. With filtering, geographic
information system (GIS) models produce subsets of stands from
the stand database available for harvest by removing all stands
younger than the lowest legal age for harvest and those newly
fertilized or thinned. With optimization, Heureka PlanWise, with
an area-based mixed-integer model, is used to distribute the
harvest levels on the stands in the database, i.e. to decide what
stands to harvest in order to fulfil the strategic harvest levels.
The settings are similar to the optimized harvest assessment at
the strategic stage, with two notable differences: the wall-to-
wall forest stand database is used as the underlying information,
and a restriction forces the solution to fulfil the harvest levels in
the strategic plan. Irrespective of the approach, planners choose
stands manually from the resulting GIS layer in order to make
up the tactical plan. Thus, a planner following an optimization
approach often disregards suggestions made by the optimization
or at least tweaks the solution. In addition, the planners can use
any other information available in the company’s GIS databases
for their decisions, e.g. aerial photos and thinning indexes. A
thinning index is a wall-to-wall raster data map modelled from
LIDAR-estimated forest density and height together with tradi-
tional thinning guidelines or growth and yield tables, i.e. for every
point in the forest, the map will show the user an estimated need
for thinning. The index is one of the most appreciated GIS layers
among planners because it is found to be much more accurate
than traditional thinning planning based on stand averages. The
planners are aided in their work by a business intelligence system
that summarizes the tactical plan in a digital dashboard as the
work progresses. The dashboard compares the current version of
the plan with the harvest levels from the strategic plan.

In the operational stage, the harvest area planning phase
consists of preplanning, a field visit, and the compilation of
harvest instructions for the machine operators. The first and
last are mainly conducted in the office, even if field-adapted
software and hardware allow it to be conducted in the field.

The harvest area planners manually choose potential stands for
field visits from the tactical plan and group them into harvest
areas. The resulting harvest instructions include information
about the harvest area, with directives for the operations, a map,
a yield forecast and instructions for environmental and cultural
considerations. There are no DSSs aiding the planners. Instead,
they have to interpret a large number of GIS layers manually. A
list of information sources used in harvest area planning is found
in the supplementary files online. Finally, the finalized harvest
instructions are sent to the harvest area database, which makes
up the primary information used later in the operational stage.

The creation of the operational plan consists mainly of produc-
tion leaders manually choosing suitable harvest areas from the
harvest area database and assigning them to machine groups on
specific dates. The resulting plan indicates what stand should be
harvested, by what machine and on what day/week. To create
the plan, production leaders need to know what volumes partic-
ular customers or internal industries demand. They also use cur-
rent geographical positions of machine groups, weather forecasts
and updated yield forecasts. Additionally, the production leaders
use the overall composition of the harvest area database in trying
to predict future scenarios.

RQ3: What level of uncertainty does this forest
information have?
Even though the respondents considered the general quality of
the information to be quite low, they did not think it was impos-
sible to work with, as exemplified by this statement: ‘It depends
on what you mean with large uncertainties. If one discussed that
with a chemist, he or she would think that all we have [in forestry]
are large uncertainties. However, the deviations combine in such a
way as when looking at the complete picture, it works.’

The sample-based FMI in the strategic stage is considered
certain by the respondents. Even when standard errors for total
timber volume estimates are as large as 2 per cent, only the fact
that the uncertainty levels are known makes them see it as cer-
tain. The harvest levels based on these FMIs are also considered
certain. On the other hand, the forest stand database is viewed
as uncertain, with the primary reason being the diversity and
sometimes unclear origin of its underlying information. Moreover,
all companies use growth models to update the information in
the database annually, resulting in higher levels of uncertainty
(see, e.g. Holopainen et al. 2010). One company stated that
the information in the database has relatively small systematic
errors because of an update with LIDAR estimates a decade
ago. However, because the forest stand database is constantly
being edited by many forest officers and continuously updated
by growth models, the company does not fully trust it for large-
scale decisions or analyses, such as the optimized harvest assess-
ment. On the other hand, small-scale decisions and analyses,
like the scheduling of harvests in the tactical plan, are heavily
dependent on information from the forest stand database. One
of the respondents reflected on the lack of maintenance of
the database and concluded that it is not surprising that there
are many errors in the database when so little focus is set on
improving it or on registering high-quality information in the first
place. Even if some planners want to improve the information,
it is often difficult to do so. For example, at one of the compa-
nies, changes regarding stand boundaries have to be made at
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the main office and cannot be made by the individual planner.
There are no plans at any of the companies to do any full-scale
field-based FMI to gather new information for all stands. Some
companies, however, plan to update their databases with new
LIDAR estimates from the second nationwide campaign. Notably,
no automatic error detection protocols are included by default in
the most commonly used forest stand database system.

A forest stand database with many errors and uncertain,
or non-existing, information on positions and quality of nature
conservation values is a challenge, especially with a shortage of
mature forests. One of the respondents summarized the chal-
lenges: ‘We are currently harvesting the last remains of the older
forests ( . . . ) and we are doing it with the support of a forest
stand database that contains errors ( . . . ). Proportionally, there are
more errors in the small share of remaining semi-natural forests.’
In summary, many of the stands the companies plan to har-
vest have erroneous information and many nature conservation
values to consider, making it challenging to fulfil the strategic
harvest levels when parts of or whole stands need to be set aside
due to legal or certification reasons.

For tactical planning, the respondents consider the thinning
index (see RQ2) much better for identifying stands in need of
thinning than the information in the forest stand database (stand
averages). One of the respondents explained the preference: ‘We
have used this [thinning index] and have had great success. We
have thinned where thinning was needed instead of where one
thought it was needed.’ While the thinning index is viewed as cer-
tain, the quality of the information on road status is low, resulting
in field visits to ensure that roads fulfil the status requirements
before sending harvest machines there.

At one of the larger companies, the harvest area planners
have more than 100 internal and external GIS layers available to
consider (for an overview, see supplementary files). The respon-
dents saw these information layers as certain, except for the
governmental database on cultural heritage sites. Its low quality
forces the planners to conduct comprehensive inventories of
every harvest area to locate unregistered sites, because they are
protected by law. The most significant problem is the database’s
incompleteness. The same goes for information about nature
conservation values. The companies do not know whether the
information they have is to be trusted or not because it can be old,
incomplete or erroneous. Nevertheless, when the information
gathered during the harvest area planning is transformed into the
harvest instructions, most companies consider it very certain—
at least in the sense that the considerations towards cultural
and natural values are precisely documented on a map and
marked in the field. The case is similar for information about
technical aspects in the instructions, such as harvest road quality,
terrain slope class and soil wetness. However, the quality of the
information on volumes of timber assortments is low. When
considering all these aspects, the general view of the quality of
the harvest area database is that it is not to be fully trusted.

RQ4: What strategies do large forest-owning companies
employ to handle or control the effects of forest
information uncertainty?
The division of the forest planning problem into a hierarchical
structure is, in itself, a strategy for controlling the effects of

forest information uncertainty. By answering specific questions
associated with the different stages, the companies use the
information that is best suited for the question and can balance
the cost of the information with its utility. When introducing a
hierarchical structure, the companies also reduce the problem
complexity making it easier to foresee the effects of uncertain
information in a more limited problem space. An example of this
is the use of information from a sample-based FMI to decide
harvest levels at the strategic stage. Of course, the companies
could use the forest stand database as a basis for that decision.
However, by calculating harvest levels based on an objective
sample of inventoried stands, the companies are more confident
that the decision is feasible. By deciding the harvest levels in this
fashion, with no explicit linkage to what actual stand should be
harvested, the companies have, in a sense, created a hierarchical
planning process.

Apart from the hierarchical division of the planning process,
we found six additional main strategies that forest companies
employ to control or handle uncertainties in forest information:
(1) locking the future by deciding on a plan that should be
followed, which means that the company can forget about the
uncertainties and pretend that the plan is certain, (2) utiliz-
ing a buffer of available stands, thus making the plan more
implementable, (3) controlling or updating forest information
that highly impacts the downstream planning process, which
can be done automatically, for example, with LIDAR-estimates,
and manually, as in the inventory by harvest area planners,
(4) replanning the actions in the immediate future to make up
for differences between the plan and the realized outcome, i.e.
the same concept as adaptive planning (Eyvindson and Kangas
2018), (5) looking backwards to decide the future, with the best
example being how the companies procure harvesting resources
by looking at the previous years’ harvest levels instead of the
contents of the tactical plan and (6) ignoring the uncertainty,
either intentionally or un intentionally.

Strategy 1 (locking the future) is used by companies when
they make decisions and create plans to handle information
uncertainty. One of the respondents exemplified this in the rea-
soning behind conducting an optimized harvest assessment and
sample-based FMIs: ‘That is how we have done it, anyway. It feels
safe, and the reason is that we want objectively measured data,
some kind of momentary truth, that we will not deviate from. This
is the world, this is how it looks, and we will manage it in this way.
And then we use that truth for a couple of years until we realize
that the world has changed compared with the models and that
we have to create a new starting point.’

Strategy 2 (using buffers) is common throughout the planning
process. The companies use the optimized harvest assessment
on the strategic stage to account for forest stand database errors
on the tactical stage by ensuring a surplus of stands available
for harvest at any given moment in the future, i.e. a planning
reserve. A respondent exemplified the reason for the reserve: ‘If
we have enough slack in the system, we can cope with quite large
errors’. The planning reserve gives the planners more stands to
choose from, thus increasing the likelihood of creating a complete
and feasible plan. Incidents not easily forecasted, such as storms
or agreements with reindeer herders, would otherwise lead to
unrealizable plans. Even though most companies implement a
planning reserve, they aim to minimize it because maintaining
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a surplus of unharvested stands restricts the total harvest and
income, especially when having a shortage of mature forests.
Tactical planning has a similar strategy. As with the planning
reserve, the tactical plan includes extra volumes to make it
easier for the harvest area planners to reach their targets on
the planned volume for harvest. At one company, this extra
volume amounts to 30 per cent of the total volume in the plan.
The reason is that the companies do not trust the forest stand
database information and cannot be entirely sure that a planned
harvest is possible to do.

Strategy 3 (controlling or updating forest information) is used
by companies when they perform controls of the information
they use or gather new information (or update it). In the strategic
stage, for example, most companies conduct sensitivity analyses
of the optimized harvest assessment by performing multiple
reruns with varied settings to assess the robustness of the orig-
inal solution. These sensitivity analyses also investigate conse-
quences for various uncertainty-related scenarios, like climate
change acceleration or increased demand for set-asides.

Harvest area planning in the operational planning stage (see
RQ2) is a great example of an activity that handles information
uncertainty, or the complete lack of information, by gathering
new information. One of the respondents described the situation:
“When talking about uncertainties, it is so fascinating that we,
in fact, judge all the information we utilize to be of such an
insufficient quality that we have to verify everything out in the
forest. This means that everything we do before we have been to
the forest to gather information in the harvest area planning is very
much a guessing game”. Moreover, because the companies are
heavily incentivized not to make any mistakes regarding natural
and cultural values due to legal and certification concerns, the
harvest area planning focuses on planning considerations for
these values. Not much time is spent on improving estimates on
standing timber volume compared with the time spent finding
cultural heritage sites or trees with high nature conservation
values. None of the companies routinely measure the tree layer,
but if they do, they use subjective methods.

Strategy 4 (replanning) has its best example in operational
planning. During the creation of the operational plan, the focus
is on minimizing costs, such as avoiding the high cost of send-
ing expensive forest machines to harvest areas that are not
harvestable. In principle, the whole forest planning process is a
strategy to prevent this from happening in the operational stage.
When the planning in the higher stages fails to acknowledge
aspects relevant to forest operations, the operational plan needs
to be adapted. For example, if there are significant uncertainties
in the information in the harvest area database, e.g. on road
quality, soil wetness or soil bearing capacity, the production
leaders face challenges in periods of thawing or heavy rain. In
addition, errors in harvestable volume estimates from yield fore-
casts affect operational planning. If volume estimates are too
high, the companies need to either increase the production pace
or reschedule planned harvests to stands that can fill the gaps
in the delivery plan. If the estimates are too low, the companies
have to handle the surplus of wood instead.

Strategy 5 (looking backwards) is used, for example, when
companies decide the levels of procurement of machine
resources and future sales of harvested volumes. Rather than
trusting their plans, the companies tend to lean more on historic

outcomes. If the companies had trusted their plans, these two
examples could have been decided by only looking at the plan.
Instead, many companies look at the outcome from previous
years and determine current levels accordingly.

Discussion
In this study, we wanted to assess the role of forest information
uncertainty in practical forest planning and how forest com-
panies try to mitigate the effects of that uncertainty. We also
investigated how the information is used and the relevance of
the theory of a planning hierarchy in this context.

According to our results, the three-level hierarchical planning
paradigm appears valid when describing practical forest plan-
ning. There could be several reasons for the persistence of hier-
archical planning, like organizational inertia (Ashok et al. 2021)
and the possibility of withholding sensitive information (Eriksson
2008). Furthermore, decision-making and planning may benefit
from dividing the problem into sub-problems, i.e. into a hier-
archy, or ‘to be departmentalized and sub-departmentalized’, in
order to increase solvability (Simon 1960). Solving forest planning
problems in this hierarchical fashion has proven to be a good
compromise when the size of the problem grows too large to
be efficiently handled as one single model, even if doing so
may lead to suboptimal or infeasible solutions (Eyvindson et al.
2017). Furthermore, the hierarchical structure helps to deal with
information uncertainty.

It is not a surprise that using an SBP approach with Heureka
PlanWise and a sample-based FMI is standard procedure for
strategic planning since this set-up has been the norm in Sweden
since the 1980s (Jacobsson and Jonsson 1991). The dominance
of SBP is probably best explained by how the predecessor of
Heureka PlanWise, the Forest Management Planning Package,
functioned (Jonsson et al. 1993). Therefore, all actors in large-
scale forestry in Sweden are familiar with how the FMI gathers
information of a certain quality, how that information can be
used in a DSS and how the results should be interpreted. However,
this dominance might change in the future.

Our results indicate a trend for large forest-owning companies
to move towards an ABP approach for their strategic planning
instead of SBP. This change opens up the development towards
a more integrated planning process where the same wall-to-wall
information and models are used to decide harvest levels in the
long term and simultaneously what stands should be harvested,
and when, in the short term (Andersson 2005; Bouchard et al.
2017). Such development can reduce the risk of suboptimality,
e.g. by including spatial concerns in forest planning (Bettinger
and Sessions 2003; Baskent and Keles 2005; Öhman and Eriksson
2010; Öhman et al. 2011; Paradis et al. 2013). Furthermore, it
might make the planning process less hierarchical or at least
remove one of the three stages, for example, by uniting strategic
and tactical planning.

Our results show that the companies use forest information
of relatively low quality in many procedures, at least according
to their own standards and perceptions. Due to this study’s
qualitative approach, we could not assess the uncertainty of the
information in a statistical sense, but our respondents were gen-
erally unhappy with the quality of the information they used. This
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knowledge is important for ongoing research for improving forest
information acquisition methods, like RS and data assimilation
(Lindgren et al. 2022).

Many RS studies report LIDAR-estimates to have objectively as
good quality as traditionally field-measured forest information
like stand basal area (Bergseng et al. 2015; Nilsson et al. 2017;
Persson et al. 2022). Therefore, we see no apparent reason not to
increase the use of RS information in forest planning. It is compre-
hensive, has a better-known error structure compared with the
commonly used subjective forest information, has relatively low
uncertainty and can be gathered with higher frequency for large
areas than traditional FMIs. However, future research is needed
on how the errors in various information sources interact when
forest information is gathered with multiple acquisition methods
at different points in time (cf. Lindgren et al. 2017).

Companies show little interest in using DSS and optimization.
One argument from our respondents was that they could not
trust an optimized solution to be truly optimal when imple-
mented in practice. The reluctance to use optimization seems
to stem from the fact that optimization models simplify real-
world problems and are based on uncertain information. We
see two possible actions to address this, namely to decrease
the uncertainty in forest information, e.g. by better information
acquisition methods and improved growth and yield models, or
to employ problem-solving techniques that address information
uncertainty, e.g. stochastic or robust optimization. The first is
currently ongoing, not only within the research community but
also in forestry, with an example being the implementation of RS
estimates in the forest stand databases. On the other hand, the
second is still primarily a topic for ongoing research (Eyvindson
and Kangas 2014; Alvarez-Miranda et al. 2019; Alonso-Ayuso
et al. 2020; Rinaldi and Jonsson 2020). Having access to both
would probably develop the planning process in many ways,
leading to better decisions and improved sustainability in forest
management. Based on our gathered material, we think of the
following areas for potential improvement when higher quality
forest information and uncertainty-handling DSSs are available:
(1) less extensive planning reserves on both the strategic and
tactical stages, resulting in increased profits, (2) less and easier
work for forest planners due to more comprehensive information,
resulting in reduced costs but improved quality of plans, (3)
automated harvest area planning, resulting in reduced costs,
(4) improved considerations towards nature conservation values
due to comprehensive information, (5) less need for short-notice
replanning, resulting in lower harvesting costs, (6) lower risk for
unsustainable harvest levels, (7) better timing for silvicultural
treatments, leading to higher production and lower costs and (8)
better adaptability towards climate change.

However, we believe that while waiting for new and imple-
mentable uncertainty-handling methods the companies might
try already available optimization tools and DSSs for problem-
solving to save some effort and money in the planning process.
There are already models available for various forestry-related
problems, like forest machine scheduling (Frisk et al. 2016; Santos
et al. 2019), optimized placement of harvest roads (Bont et al.
2018; Flisberg et al. 2021) and integration of road maintenance
and clustering in tactical planning (Flisberg et al. 2014; Mobtaker
et al. 2020), even if none of them fully address information
uncertainty.

Apart from the hierarchical division of the planning process
itself, we identified six strategies companies employ to control
or handle forest information uncertainties in forest planning. The
strategies we found were (1) locking the future by deciding on
a plan that should be followed, (2) utilizing buffers, (3) control-
ling or updating forest information, (4) replanning, (5) looking
backwards to decide the future and (6) ignoring the uncertainty.
Reports from central Europe show somewhat similar strategy
patterns (von Detten and Hanewinkel 2017), but with a broader
focus than forest information uncertainty. The strategies we
found can all be placed in the spectrum of uncertainty, from
total determinism via statistical uncertainty (strategy 3), to sce-
nario uncertainty (strategies 4 and 5) and recognized ignorance
(strategies 1, 2 and 6), to total ignorance (Walker et al. 2003). In
the future, we hope that the companies can employ a seventh
strategy, namely using formal problem-solving methods that
handle uncertainties (Pasalodos-Tato et al. 2013).

Our results are based on qualitative data from semi-structured
interviews, which is not uncommon in forest planning research
(Laamanen and Kangas 2011; Nilsson et al. 2012; Meo et al.
2013; Wurtzebach et al. 2019). With our method, we quickly gath-
ered large amounts of information that provided deep insights
into how the companies organize their work internally and their
reflections on that. The sample was small but should still be
a good representation of the case for forest planning in Nordic
countries, at least in industrial and large-scale forestry. Neverthe-
less, similar studies in other jurisdictions and climate zones are
needed to increase the generalizability of the results. Moreover,
because our analyses were limited to the perceived information
uncertainties in practical forestry, i.e. we did not estimate the
uncertainty with measurements and statistical methods, such
endeavours are also encouraged.

Conclusions
We can conclude that the forest planning process is a hierarchical
system of decisions where the information used in the different
planning stages is of varying quality. All of our data supported
that the traditional hierarchical planning paradigm still plays a
vital role in large forest-owning companies. The forest stand
database (stand inventory) is the most central source of infor-
mation in the forest planning process, but it contains uncertain
information primarily based on subjective field measurements
or other estimates with unknown errors. However, the use of
RS estimates to feed the databases is increasing, which will
probably improve the overall quality of the databases, at least
compared with the current standard of subjective and ocular
estimates. Large forest-owning companies tend not to use DSSs
or optimization models to solve planning problems outside the
scope of strategic planning; thus, planning on the tactical and
operational stages is done by hand, e.g. by manually selecting
stands on a map in a GIS. Apart from the hierarchical division
of the planning process itself, we identified six main strategies
that companies employ to control or handle uncertainties in
forest information in forest planning: (1) locking the future by
deciding on a plan that should be followed, (2) utilizing buffers,
(3) controlling or updating forest information, (4) replanning,
(5) looking backwards to decide the future and (6) ignoring the
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uncertainty. Few activities in the planning process improved the
basis for the decision, like gathering better information, with
harvest area planning as a notable exception. Furthermore, no
company used tools that formally incorporated uncertainty in
the decision-making process. We hope that the results from
this study increase the understanding of contemporary forest
planning practices and will be helpful in the development of
forest DSSs and methods for information collection.
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Abstract 
Forest planning is vital for ensuring objective fulfilment for decision-makers. Forest-
owning companies often organise their planning in a hierarchy of separate stages (i.e. 
strategic, tactical and operational planning). The objectives for the strategic stage are 
generally to maximise net present value and long-term harvest levels without threatening 
the environmental integrity of the forests. However, in the subsequent stages of the 
planning hierarchy, with a shorter-term focus, the objective is often to minimise costs due 
to budgetary constraints. These misaligned objectives introduce a dilemma, especially 
when considering that decisions are typically made using uncertain data. We examined 
the suboptimality caused by using low-quality forest data in a long-term harvesting 
planning problem and how this suboptimality is affected by misaligned objectives 
between the strategic and tactical planning stages. The low-quality forest data were 
simulated in a Monte Carlo simulation that maintained a real-world structure of errors. 
The results show that uncertainty in forest data impacts objective fulfilment more than 
the level of alignment of objectives. However, a high degree of objective alignment 
performs better than the opposite, regardless of the level of quality of data.  

Keywords 
optimisation under uncertainty; forest management; data uncertainty; Monte Carlo 
simulation; objective alignment; 
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Introduction 
Forest planning organises forest management 
activities to achieve the objectives set by a 
decision-maker, such as a forest-owning company 
(Kangas et al. 2015). In large-scale forestry, this 
planning is typically structured into a three-tiered 
hierarchy: strategic, tactical and operational 
planning (Nilsson et al. 2012).  

The first stage involves planning of strategic 
importance that impacts a company’s operations in 
the long run (Gunn 2007). Long-term assessments, 
such as optimised harvest evaluations over a full 
rotation period, are conducted to determine 
sustainable yield levels and typically to maximise 
net present value (NPV) under constraints like 
maintaining an even flow of timber from final 
fellings (Ulvdal et al. 2023) and maintaining 
specified environmental values. To solve the 
planning problem at this stage, methods based on 
linear and mixed-integer programming are 
commonly used (Rönnqvist 2003).  

Subsequent tactical and operational planning stages 
translate strategic harvest-level objectives into fine-
scale, stand-level management actions with greater 
temporal and spatial detail (Flisberg et al. 2014; 
Ulvdal et al. 2023). If these stages do not align fully 
with the strategic objectives, the planning might be 
inefficient in reaching them. Having misaligned 
objectives throughout different hierarchical levels 
of a business is not beneficial (Joshi et al. 2003). 
Misalignment occurs when employees disagree on 
what is most important for the organisation to 
succeed (Boyer and McDermott 1999) or when the 
actual actions of employees do not contribute to the 
fulfilment of the stated objectives (Robinson et al. 
1998 as cited by Joshi et al. 2003). Misalignment 
can also occur when what is measured (e.g. key 
performance indicators) does not fit the overall 
objective (Zapata Jaramillo et al. 2016).  

In practice, the tactical and operational planning 
stages tend to prioritise cost minimisation (instead 

of NPV maximisation), thus reducing expenses 
related to road maintenance (e.g. Church et al. 
2000), harvesting operations, and machinery 
logistics (e.g. Epstein et al. 2007) while fulfilling 
the strategic harvest-level objectives (e.g. Church 
2007) and additional tactical constraints such as 
maximum clear-cut areas, the availability of 
machines, and meeting delivery plans for 
assortments to industry (Mobtaker et al. 2018; 
Ahmadvand et al. 2021). This focus on cost 
reduction can lead to ‘cherry-picking’, where easily 
harvested or high-value stands are preferentially 
targeted, potentially accumulating more costly, 
challenging operations for the future (McDill 
2014). This is one example of the effect of not 
aligning objectives between the strategic and 
tactical/operational planning stages, i.e. that 
decisions made on the tactical stage are not optimal 
considering the objective on the strategic stage.  

An additional source of suboptimality arises from 
uncertainty in forest inventory data used to predict 
the future development of a forest (e.g. Pasalodos-
Tato et al. 2013; Ruotsalainen et al. 2021). The 
impact of forest data uncertainty is often analysed 
by comparing the outcome of forest management 
decisions based on erroneous data with data from 
the same forest assumed to be perfect (Duvemo and 
Lämås 2006). Such analyses frequently show that 
data uncertainty results in suboptimality losses in 
the range of 1 to 10%. In practice, forestry uses data 
from multiple sources to inform planning (Ulvdal 
et al. 2023), such as forest attribute maps (Astrup et 
al. 2019), own field inventory (Lindgren 1984) or 
subjective assessments (Ståhl 1992), and compiles 
the data about all their stands in a stand database. 
The data will also be updated with estimated 
growth between data collection instances (Haara 
and Leskinen 2009). This variation in inventory 
methods produces heterogeneous data quality, 
where the structure and size of the uncertainty differ 
from stand to stand and attribute to attribute, given 
the type of data used to describe it, thus obscuring 
the overall reliability of forest data (Ståhl 1992). 
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For example, predictions based on remote sensing 
will tend towards the mean, resulting in local bias 
that differs significantly between different sources 
(Ulvdal et al. 2025). Uncertainty in practically used 
datasets poses significant challenges for forest 
managers, especially those reliant on decision 
support systems (de Pellegrin Llorente et al. 2023).  

While previous research has extensively examined 
how data uncertainty influences economic 
outcomes in forestry (e.g. Sprängare 1975; Eid 
2000; Holmström et al. 2003; Duvemo and Lämås 
2006; Pietilä et al. 2010; Holopainen et al. 2010; 
Kangas 2010; Mäkinen et al. 2012; Duvemo et al. 
2014), the combined effects of uncertain forest data 
and misaligned hierarchical objectives in forest 
planning remain unstudied. Therefore, this study 
aims to address this gap by exploring the 
suboptimality of using low-quality forest data in a 
long-term harvesting planning problem and how 
this suboptimality is affected by misaligned 
objectives between the strategic and tactical 
planning stages. We hypothesise that combining 
uncertain data with misaligned objectives will 
perform worse than using either uncertain data or 
having misaligned objectives alone.  
Material and methods 
Optimisation framework 

We developed a two‐phase optimisation model to 
investigate the effects of uncertainty in data 
combined with misaligned planning objectives. 
Mimicking a real‐world planning process for a 
boreal industrial forest owner, the model emulated 
the strategic and tactical phases customary in forest 
planning. In the strategic phase, the model decided 
long-term harvest levels by maximising NPV over 
a 100‐year planning horizon, subject to constraints 
ensuring non‐declining harvest levels and 
compliance with legal and certification 
requirements (Eq. 1–17 in the optimisation model 
presented below). In the tactical phase of the model, 
management actions for individual stands were 

determined so that the harvest levels decided in the 
strategic phase were met. The tactical phase was 
solved using a rolling time horizon over five 20-
year periods, with decisions made iteratively, 
subject to the restriction that decisions about forest 
management in later periods were consistent with 
those already made for earlier periods. This means 
that if the model decides that a certain stand should 
be thinned in year 8 (within the first 20-year 
period), the model will also be forced to decide to 
thin the stand in year 8 when management is 
decided for the second 20-year period, even if it 
could be more optimal to something else when 40 
years of data is revealed instead of 20.  

Four distinct planning cases were constructed 
(Table 1) by varying the quality of input data (low-
quality, LQ; high-quality, HQ) and the degree of 
alignment between strategic and tactical objectives 
(low alignment, LA; high alignment, HA). These 
cases were compared to an integrated reference 
case that assumed perfect data and simultaneous 
decision-making of both harvest levels and 
management in individual stands without separate 
phases. The comparison was done by transferring 
the final tactical decisions for each case to the 
reference case model, thus calculating the objective 
function value for those decisions based on the 
reference model. The results from these evaluations 
were then compared with the solution of the 
reference case. 

The low-quality data in the LQ cases was 
represented by discrete scenarios that describe 
uncertainty in the data about the initial state of the 
forest. How these scenarios were simulated is 
presented below.  

In the strategic phases, all cases maximised NPV 
from forest management. For the tactical phases, 
objectives were either aligned with the 
corresponding strategic phase (maximising NPV, 
including discounted accessing costs) or 
misaligned (minimising total undiscounted costs 
from forest management and accessing harvest 
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areas). The cost of accessing harvest areas was the 
primary tactical component of the optimisation 
model. It represented the cost of transporting 
harvest machinery between sites and increased the 
effort required by the model to cluster harvests 
geographically. The reason for using undiscounted 
costs in the misaligned cases was to more closely 
mimic the actions of forest managers in practice, 
which tend to minimise the cost each year (i.e., with 
no discounting). Irrespective of the tactical 
objective, the tactical phase enforced adherence to 
strategic harvest targets. 

Table 1.The data and objectives used to define each 
case. The cases were constructed by varying the quality 
of input data (low-quality, LQ; high-quality, HQ) and 
the degree of alignment between strategic and tactical 
objectives (low alignment, LA; high alignment, HA). 
Max. is maximum, min. is minimum, and NPV is net 
present value. 
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1-LQ-LA Low Low Max.  forest NPV Min. total cost 

2-LQ-HA Low High Max. forest NPV Max. total NPV 

3-HQ-LA High Low Max. forest NPV Min. total cost 

4-HQ-HA High High Max. forest NPV Max. total NPV 

Reference High Integrated Max. total NPV (integrated) Not applicable 

The optimisation model is presented equation-wise 
below. Note that the exact configuration of the 
model depended on the planning phase, data 
quality, and objective considered (see Table 2). The 
configuration was decided by certain parameters 
that take values depending on which case the model 
is used for.  

 

 

 

 

 

Table 2. The value for parameters α, γ, δ, the set of 
scenarios (𝑆𝑆), and the set of periods (𝑃𝑃) used for the 
different cases and phases in the optimisation model 
(Eqs. 1-17). LQ is low-quality data, HQ is high-quality 
data, LA is low degree of objective alignment, and HA is 
high degree of objective alignment. See Table 1 for a 
description of the cases. 

Case Phase 𝜶𝜶 𝜸𝜸 𝜹𝜹 𝑺𝑺 𝑷𝑷 

1-LQ-LA Strategic 1 0 0 {1..100} {0..20} 
Tactical 0 1 1 {1..100} {0..5},{0..10},{0..15},{0..20} 

       

2-LQ-HA Strategic 1 0 0 {1..100} {0..20} 
Tactical 1 1 0 {1..100} {0..5},{0..10},{0..15},{0..20} 

       

3-HQ-LA 
Strategic 1 0 0 {0} {0..20} 
Tactical 0 1 1 {0} {0..5},{0..10},{0..15},{0..20} 

       

4-HQ-HA Strategic 1 0 0 {0} {0..20} 
Tactical 1 1 0 {0} {0..5},{0..10},{0..15},{0..20} 

       
Reference Integrated 1 1 0 {0} {0..20} 

(1) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = 𝛼𝛼���𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

− 𝛼𝛼𝛼𝛼����
𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘𝑏𝑏

(1 + 𝑑𝑑)5𝑝𝑝−2.5
𝑘𝑘∈𝐾𝐾ℎ∈𝐻𝐻𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

− 𝛾𝛾𝛾𝛾����𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘𝑏𝑏
𝑘𝑘∈𝐾𝐾ℎ∈𝐻𝐻𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

− 𝛾𝛾𝛾𝛾����𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝∈𝑃𝑃𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠∈𝑆𝑆

−���𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑝𝑝∈𝑃𝑃𝑠𝑠∈𝑆𝑆

  

Equation (Eq.) (1) is the objective function that 
maximises the NPV and/or minimises costs. The 
first term in Eq. (1) is the total NPV from forest 
management and is active in the integrated case and 
all strategic phases of the other cases. The second 
term concerns the NPV of accessing costs and is 
active in the integrated case and the tactical phases 
of the HA cases. The third term considers the 
undiscounted accessing costs and is active in the 
tactical phases of the LA cases. The fourth term 
considers the undiscounted forest management 
costs and is active in the tactical phases of the LA 
cases. The fifth term is the sum of penalties for 
deviating from restrictions. It is active in all cases 
and phases. The parameters 𝛼𝛼, 𝛾𝛾, and 𝛿𝛿 take the 
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value 1 or 0 depending on which case the model is 
supposed to be used on (Table 2). 

The sets defined in Eq. (1) are the discrete 
uncertainty scenarios (𝑆𝑆), stands (𝐼𝐼), treatment 
programmes (TPs) for each stand (𝐽𝐽𝑖𝑖), periods (𝑃𝑃), 
harvest areas (𝐻𝐻), harvesting machine systems (𝐾𝐾), 
and restrictions (𝑅𝑅). A TP is a fixed sequence of 
management activities spanning the whole 
planning horizon; thus, the model adheres to the 
model 1 formulation (Johnson and Scheurman 
1977). The set of scenarios also differs between 
cases. For cases based on low-quality data, 𝑆𝑆 
contains simulated error scenarios 1-100; for cases 
based on high-quality data, 𝑆𝑆 contains only scenario 
0. Also, the set of periods changes, but it depends 
on the phase. For strategic phases, it contains all 
periods; for tactical phases, the first iteration only 
covers the first four periods (20 years). For each 
iteration, four more periods become available, 
while the management in the earlier periods is 
locked. The set harvest machines includes two 
machine types: thinning and final felling. 

The main decision variable is 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠, i.e. the 
proportion of stand 𝑖𝑖 that in scenario 𝑠𝑠 should be 
assigned TP 𝑗𝑗. The variable 𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘 is binary and 
takes the value 1 if the machine system 𝑘𝑘 is used in 
scenario 𝑠𝑠, period 𝑝𝑝, and harvest area ℎ, otherwise 
0 (see equations 4, 7, 8, and 9 ). The variable 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 
is the deviation from restriction 𝑟𝑟 for scenario 𝑠𝑠 and 
period 𝑝𝑝.  

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 is a parameter that contains NPV for scenario 
𝑠𝑠, stand 𝑖𝑖, TP 𝑗𝑗; 𝑎𝑎𝑖𝑖 is the area of stand 𝑖𝑖; 𝑏𝑏 is the 
accessing cost (50,000 SEK) per harvest area and 
period; 𝑑𝑑 is the interest rate used for discounting; 
𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the cost of all management done in stand 
𝑖𝑖, according to TP 𝑗𝑗, in scenario 𝑠𝑠 and period 𝑝𝑝 and; 
𝑒𝑒𝑟𝑟 is the cost of deviating one unit from restriction 
𝑟𝑟. 𝑒𝑒𝑟𝑟 for 𝑟𝑟 = {2,7} is 500 SEK m-3 (approximately 
corresponding to the market price of wood in 
Sweden (Swedish Forest Agency 2025a)) and 1,000 
SEK ha-1 (subjectively set after initial testing).   

The objective function is subjected to the following 
restrictions (Eqs. 2-17). 

(2) 0 ≤ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 1 ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑖𝑖 ∈ 𝐼𝐼,∀ 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 

Eq. (2) states that 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 is a continuous variable 
between 0 and 1. 

(3) 𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘 ∈ {0,1} ∀𝑠𝑠 ∈ 𝑆𝑆,∀ 𝑝𝑝 ∈ 𝑃𝑃,∀ℎ
∈ 𝐻𝐻,∀𝑘𝑘 ∈ 𝐾𝐾 

Eq. (3) states that 𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘 is a binary variable. 

(4) 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0 ∀𝑟𝑟 ∈ 𝑅𝑅,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝 ∈ 𝑃𝑃 

Eq. (4) states that 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 is a continuous variable 
larger or equal to 0. 

(5) 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {0,1} ∀𝑠𝑠 ∈ 𝑆𝑆,∀ 𝑙𝑙 ∈ 𝐿𝐿,∀𝑝𝑝 ∈ 𝑃𝑃 

Eq. (5) states that 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 is a binary variable. 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 
helps in the calculation (see Eqs. 8-10) of the 
allowable annual harvest area decided by Swedish 
law (12 a § SFS 2014:1027 
Skogsvårdsförordningen n.d.). 𝐿𝐿 is the set of area 
classes defined by Swedish law regarding the 
proportion of the forest that is older than a 
theoretical rotation age see Eqs. 8-10). 

(6) �𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖

= 1 ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑖𝑖 ∈ 𝐼𝐼 

Eq. (6) ensures that the proportions of assigned TPs 
in each stand sum to 1.  

(7) �𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖

≥ 0.1 ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑖𝑖 ∈ 𝐼𝐼 

Eq. (7) ensures that at least 10% of the area in each 
stand is set aside, which is in line with the actual 
level of area left as set-asides in harvests in Sweden 
(Swedish Forest Agency 2025b). 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 is 1 in 
scenario 𝑠𝑠, in stand 𝑖𝑖 with TP 𝑗𝑗 if the stand is 
unmanaged in all periods, otherwise 0. 

(8) �𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑙𝑙∈𝐿𝐿

= 1 ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝 ∈ 𝑃𝑃 

Eq. (8), together with Eq. (5), makes sure that only 
one area class is used in Eqs. (9-10) by forcing the 
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sum of 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 to be equal to 1 in each period and 
scenario. 

(9) 
��𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠

𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

≤ 5�𝑚𝑚𝑠𝑠𝑜𝑜𝑙𝑙𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠�𝑎𝑎𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑙𝑙∈𝐿𝐿

 
∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝 ∈ 𝑃𝑃 \ {𝑝𝑝0} 

Eq. (9) ensures that the final felled area does not 
exceed the largest allowable area according to 
Swedish law in all periods and scenarios. 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 1 
in scenario 𝑠𝑠, in stand 𝑖𝑖 with TP 𝑗𝑗 if the stand is 
subjected to clear cut in period 𝑝𝑝, otherwise 0; 𝑚𝑚𝑠𝑠 
is an area factor from Swedish law, taking the value 
0.014 in scenario 𝑠𝑠 if the average site productivity 
of the forest holding is larger than 8 m3ha-1year-1, 
0.011 if it is between 8 and 4 m3ha-1year-1, 
otherwise 0.009; and 𝑜𝑜𝑙𝑙 is a correction factor from 
Swedish law, taking the value 1.4 for 𝑙𝑙 = 1, 1.8 for 
𝑙𝑙 = 2, 2.2 for 𝑙𝑙 = 3, 2.8 for 𝑙𝑙 = 4. Note that the 
number 5 in Eq. (9) transforms this annual value 
into a periodic total. 𝑝𝑝0 is the first period in 𝑃𝑃. 

(10) 
𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑙𝑙�𝑎𝑎𝑖𝑖

𝑖𝑖∈𝐼𝐼

≤ ��𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

+ β𝑟𝑟𝑟𝑟𝑟𝑟 

∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝 ∈ 𝑃𝑃 \
 {𝑝𝑝0},∀𝑙𝑙 ∈ 𝐿𝐿, 𝑟𝑟 = 1  

Eq. (10) calculates 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 for a given area proportion 
of forests older than a theoretical rotation age. 𝑡𝑡𝑙𝑙 is 
an area class proportion from Swedish law taking 
the value 0 for 𝑙𝑙 = 1, 0.26 for 𝑙𝑙 = 2, 0.51 for 𝑙𝑙 =
3, 0.76 for 𝑙𝑙 = 4; 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 takes the value 1 in scenario 
𝑠𝑠, in stand 𝑖𝑖 with TP 𝑗𝑗 in period 𝑝𝑝 if the mean age 
of the stand is older than a rotation age, otherwise 
0. The rotation age is 70 years if the average site 
productivity of the forest holding is larger than 8 
m3ha-1year-1, 90 years if it is between 8 and 4 m3ha-

1year-1, otherwise 110 years. 

(11) 
��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠

𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

+ β𝑟𝑟𝑟𝑟𝑟𝑟

≥��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝−1)𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

 

∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝
∈ 𝑃𝑃 \ {𝑝𝑝0} , 𝑟𝑟 = 2 

Eq. (11) enforces a non-declining harvest from final 
fellings in all periods and scenarios. 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the 

harvested volume from final fellings per hectare in 
scenario 𝑠𝑠, in stand 𝑖𝑖 with TP 𝑗𝑗 in period 𝑝𝑝. 

Eq. (12) to Eq. (14) are restrictions related to the 
FSC standard (FSC 2020). 

(12) 

��𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

≤ 0.5�𝑎𝑎𝑖𝑖
𝑖𝑖∈𝐼𝐼

+ 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 

∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝
∈ 𝑃𝑃 \ {𝑝𝑝0}, 𝑟𝑟 = 3 

Eq. (12) forces the area of forests under the age of 
20 years to be less than 50% of the total area in all 
periods and scenarios (as stipulated by Swedish 
law). 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 1 in scenario 𝑠𝑠, in stand 𝑖𝑖 with TP 𝑗𝑗 in 
period 𝑝𝑝, if the age of the stand is <20 years, 
otherwise 0. 

(13) 
��ε𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠

𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

+ β𝑟𝑟𝑟𝑟𝑟𝑟

≥ 𝜌𝜌𝑟𝑟�𝑎𝑎𝑖𝑖
𝑖𝑖∈𝐼𝐼

 

∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝
∈ 𝑃𝑃 \ {𝑝𝑝0}, 𝑟𝑟 = {4,5} 

Eq. (13) is a combined restriction that for 𝑟𝑟 = 4 
makes sure that all stands have a proportion of 
broadleaf trees higher than 10% in all periods and 
scenarios, and for 𝑟𝑟 = 5 makes sure that the area of 
old forest makes up at least 2% of the total forest 
area in all periods and scenarios. 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is 1 in 
scenario 𝑠𝑠, in stand 𝑖𝑖 with TP 𝑗𝑗 in period 𝑝𝑝 for 𝑟𝑟 =
4 if the proportion of broadleaf stems is higher than 
0.1, otherwise 0, 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is 1 in scenario 𝑠𝑠, in stand 
𝑖𝑖 with TP 𝑗𝑗 in period 𝑝𝑝 for 𝑟𝑟 = 5 if the stand is older 
than 140, otherwise 0, 𝜌𝜌𝑟𝑟 takes the value 1 for 𝑟𝑟 =
4 and 0.02 for 𝑟𝑟 = 5. 

(14) 
��σ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠

𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

+ β𝑟𝑟𝑟𝑟𝑟𝑟

≥ 0.05�𝑎𝑎𝑖𝑖φ𝑖𝑖
𝑖𝑖∈𝐼𝐼

 

∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝
∈ 𝑃𝑃 \ {𝑝𝑝0}, 𝑟𝑟 = 6 

Eq. (14) ensures that the area of broadleaf forest on 
mesic to moist soils makes up at least 5% of the 
total mesic to moist forest area. 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 1 in scenario 
𝑠𝑠, in stand 𝑖𝑖 with TP 𝑗𝑗 in period 𝑝𝑝 if the stand is 
dominated by broadleaf trees and the soil is mesic 
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to moist but not wet, otherwise 0 and 𝜑𝜑𝑖𝑖 is 1 in stand 
𝑖𝑖 if the soil in the stand is mesic to moist but not 
wet, otherwise 0.  

(15) γ��𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼ℎ

≤ 𝑀𝑀𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘 ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝 ∈ 𝑃𝑃,∀ℎ
∈ 𝐻𝐻,∀𝑘𝑘 ∈ 𝐾𝐾 

Eq. (15) ensures that 𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘 take the value 1 if any 
harvest machine 𝑘𝑘 is used in harvest area ℎ 
according to 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠. 𝐼𝐼ℎ is the set of stands belonging 
to harvest area ℎ. 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 takes the value 1 if machine 
system 𝑘𝑘 is used in stand 𝑖𝑖 according to alternative 
𝑗𝑗 in period 𝑝𝑝 and scenario 𝑠𝑠. The machine system is 
defined by whether the harvest is thinning or final 
felling. 𝑀𝑀 is an arbitrarily large number that ensures 
that 𝑧𝑧𝑠𝑠𝑠𝑠ℎ𝑘𝑘 takes the correct value. 𝛾𝛾 is only equal to 
1 if the model is in the tactical phase (see Table 2).  

(16) 
𝛾𝛾 = 1 →  

��𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

= 𝜗𝜗𝑠𝑠𝑠𝑠 + 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 
∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝 ∈ 𝑃𝑃, 
𝑟𝑟 = 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. (16) ensures that the harvest levels from final 
fellings in the tactical phase match the 
corresponding harvest levels of the strategic phase. 
It is only active if 𝛾𝛾 = 1, i.e. if the model is in its 
tactical phase. 𝜗𝜗𝑠𝑠𝑠𝑠 is the target levels from the 
strategic phase for final fellings in scenario 𝑠𝑠 and 
period 𝑝𝑝. 𝛾𝛾 is only equal to 1 if the model is in the 
tactical phase (see Table 2). 

(17) ��μ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼

= 0 + β𝑟𝑟𝑟𝑟𝑟𝑟 ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑝𝑝 ∈ 𝑃𝑃, 𝑟𝑟 = 8 

Eq. (17) ensures that illegal harvests in stands that 
have not reached the legal age limit are not 
conducted. µ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 takes the value 1 if a final felling 
is conducted in stand 𝑖𝑖 according to TP 𝑗𝑗 in scenario 
𝑠𝑠 and period 𝑝𝑝 and the age of that stand is lower 
than the lowest legal final age.  

 

  

Figure 1. Panel A: The location of the study area in northern Sweden, indicated by the yellow box. Panel B: An 
overview of the study area with the segments of road network  (black lines) adjacent to stands and harvest areas 
(coloured polygons). The orange box in panel B corresponds to the orange box in panel A. The coloured polygons 
also show the extent of the productive forests included in the study. Map projection: plate carrée; Datum: WGS84; 
Sources: Country borders © naturalearthdata.com, Road map © Lantmäteriet, Stand map © Holmen Skog AB. 
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Study area and original forest data 

The optimisation model was applied to a forest 
holding owned by an industrial forest company. The 
study area was located in northern Sweden and had 
a total area of 23,952 hectares of productive forest 
land (see Figure 1 for an overview of the holding’s 
location and spatial configuration ). We acquired a 
map and data about all 3,087 stands in the holding 
from the forest owner in the form of a forest stand 
database. The average standing volume in the forest 
was 102 m3ha-1, consisting of 56 % Pinus sylvestris 
L., 23% Picea abies (L.) H. Karst., 14 % Betula 
spp. L., and 7 % Pinus contorta Douglas ex 
Loudon. The mean stand age was 43 years. 

The data about individual stands was collected by 
the forest owner using various methods over a long 
period of time. The oldest data was from the 1960s, 
primarily from manual interpretation of aerial 
photographs. However, most stands were 
inventoried with purposive methods in the field in 
the 1990s, i.e. quick and rough ocular estimates 
based on the surveyor’s earlier experience. Since 
then, the data have been updated annually using 
simple growth models based on the forest 
management performed in each stand. After final 
felling, for example, the stand attributes were set to 
zero. In the years preceding this study, some stand 
attributes were updated with predictions made with 
airborne laser scanning. Whatever the source of a 
stand’s data, since the stand database has been in 
continuous operational use, individual forest 
officers could have made subjective changes to the 
data whenever they had a reason to do so. These 
changes were not tracked. This status of the data is 
a fair representation of similar forest stand 
databases in general (Ståhl 1992).  

Simulation of low-quality forest data as 
uncertainty scenarios 

To incorporate the effect of data uncertainty into 
our analyses, we performed a Monte Carlo 
simulation based on Cholesky-factorisation to 
produce 100 versions of our stand data representing 

100 uncertain realisations (scenarios) of the forest 
stand database. The goal of the Monte Carlo 
procedure was to re-create the real-world 
multivariate error structure in the simulated values 
(Tucker 1962; Ross 2013). This methodology has 
been used in earlier studies (e.g. Holmström et al. 
2003; Duvemo et al. 2014). 

In summary, we examined how errors between the 
data in the stand database and reference data from 
an objective field inventory for a subset of stands 
covaried for the attributes average tree diameter 
(cm), average tree height (m), number of stems (ha-

1), stand basal area (m2ha-1), stand age (years), and 
site index (m).  

The reference data were collected in 2019 as stand-
wise field plot inventories, following established 
protocols (Jonsson et al. 1993). Based on auxiliary 
data from the stand database, a two-phase sampling 
procedure was conducted. In the first phase, a 
stratified random sample of stands (541 in total) 
was selected. Stratification was achieved by 
clustering stands into classes based on standing 
volume per hectare and stand age. The survey of the 
sampled stands was conducted on a systematic grid 
of circular field plots. On these plots, individual 
tree information and stand properties were recorded 
(Lindgren 1984, 2000). For plots with average tree 
height above 4 m, all trees larger than 4 cm in 
diameter at breast height were calipered for 
diameter, and tree species were identified. A 
random number of trees was height-measured and 
age-determined by counting annual rings. On other 
plots, only main stems were height-measured. Each 
plot underwent detailed site characterisation, 
including descriptions of vegetation, climate, soil, 
terrain, and natural values. Averages for each stand 
were calculated across the plots and used to 
calculate covariances with the stand database data. 
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Figure 2. The simulated attributes (average tree diameter, average tree height, number of stems, stand basal area, 
stand age, and site index) are shown with each point representing one realised value in a stand in one scenario. 
The colours represent each of the 100 simulated scenarios. The dashed blue line shows the linear relationship 
between the original and simulated data. The black line is the 1:1 line.  

Figure 3. Panel A: Stands (delineated by thin black lines) grouped into harvest areas (coloured polygons) depending 
on the nearest road segment (thick black lines). Distance to the nearest road was calculated from the stand centroid 
over a cost raster. Panel B: The cost raster (background), where light yellow is easily traversable, and dark red is 
not as easily traversable. The shortest terrain transport distances are the grey dashed lines (from stand centroids to 
the nearest road). Map projection: plate carrée; Datum: WGS84; Sources: Road map © Lantmäteriet, Stand map © 
Holmen Skog AB. 
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With these covariances as the basis, we simulated 
new populations of errors that maintained the same 
structure, in terms of average size, spread, and 
correlation, as the original error population. The 
simulated errors for any stand can be viewed as 
independent realisations of normally distributed 
and correlated error vectors for the included 
attributes. The original forest data (scenario 0) was 
considered to represent the accurate and error-free 
state of the forest. The results of the data 
simulation, compared to the original data, are 
presented in Figure 2. For more details about the 
data simulation, refer to Appendix A.  

Assignment of stands to harvest areas by 
calculating shortest paths 

To integrate spatial transport costs into the tactical 
model (Eq. 15), each stand was allocated to a 
harvest area defined by proximity to the forest road 
network. All stands linked to one and the same road 
segment made up a specific harvest area. Road 
segments were delineated by splitting the network 
at intersections, limiting segment lengths to 
1,000 m, and excluding segments shorter than 
100 m.  

Stands were assigned to the nearest road segment. 
Since a straight line from the stand to the nearest 
road would not result in realistic harvest areas, a 
simple heuristic was created to better mimic how 
forest machines traverse through terrain. A 5 × 5 m² 
raster grid was generated based on openly available 
terrain data, where each grid cell was assigned a 
value depending on its characteristics from the 
terrain data. The values (Table 3) were assigned 
based on experiences from similar work 
(Färnstrand 2013) and initial testing to achieve 
probable terrain transportation paths. The terrain 
transportation paths were calculated using a 
shortest-path analysis with the raster grid as the cost 
raster, i.e., the shortest path from each stand to the 
nearest road that achieved the minimum total cost. 
Input datasets, including road networks, digital 
terrain models, and land-use classifications, were 

obtained from Lantmäteriet (The Swedish 
Mapping, Cadastral and Land Registration 
Authority). See Figure 1, panel B and Figure 3 for 
maps showing the aggregation of stands in harvest 
areas. 

Table 3. Relative weights representing the traversability 
of forest machines in different land-use types used in the 
cost-raster. The weights were used to calculate the 
shortest terrain transport distance.  

Land-use or characteristics Weight (cost) 

Buildings 255 
Farmland 5 
Nature conservation site 100 
Power line 50 
Railway tracks 255 
Slope, under 6○ 1 
Slope, between 6○ and 11○ 2 
Slope, between 11○ and 18○  3 
Slope, between 18○ and 27○ 25 
Slope, over 27○ 50 
Wetlands, dryer 10 
Wetlands, wetter 20 
Forest land  and roads 1 
Open water and large streams 255 
Small streams 50 

Generating treatment programs and forest 
development data for the optimisation model 

Potential TPs for each stand were generated using 
the decision support system Heureka PlanWise, 
which contains models describing growth, 
mortality and management of forest stands (Lämås 
et al. 2023). The generation assumed a certified 
commercial rotation forestry under even-aged 
management and intensive silviculture. Typically, 
final felling occurred when stands reached 65–100 
years of age, followed by replanting with 
approximately 2,500 planted seedlings per hectare 
and subsequent cleaning and thinning operations. 
The forest management NPV for each TP was 
computed using a real interest rate of 3%, 
incorporating revenues from timber sales and costs 
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from both harvest and silvicultural operations. On 
average, 13 TPs were generated per stand based on 
the original data. The treatment activities from 
these TPs were then re-applied to each simulated 
scenario, thus calculating what would happen if the 
treatments according to the original data were 
conducted on the forests described by simulated 
data. 

Data processing  

The optimisation model was solved using mixed‐
integer programming with a traditional branch and 
bound algorithm and a relative gap tolerance of 1% 
(Land and Doig 1960). All formulations and 
computations were performed with CPLEX 
Optimization Studio 22.1.1 on a workstation 
equipped with a 12‐core 3.5 GHz Intel i9-10920X 
processor and 256 GB of RAM. GIS operations 
were executed using FME and ArcGIS, while all 
further data processing and analyses were 
conducted in R (v4.4.1). 

 

 

Results 
The 4-HQ-HA case, i.e. the case with high data 
quality and high degree of objective alignment, 
achieved the highest objective function value (𝑍𝑍), 
followed by 3-HQ-LA, 2-LQ-HA, and 1-LQ-LA 
(Table 4). The ranking for area and volume 
penalties followed the same order as the ranking of 
𝑍𝑍. i.e. the 4-HQ-HA performed best followed by 3-
HQ-LA and so on. The accessing costs were, 
however, lowest for the non-aligning cases, which 
explicitly minimised costs. Both forest 
management NPV and NPV including accessing 
costs for harvest areas, were higher for 4-HQ-HA 
than the reference case. The spread of forest 
management NPV was higher in 1-LQ-LA than in 
2-LQ-HA (Figure 4). For total NPV, the order was 
the opposite, i.e. 2-LQ-HA had a larger spread.  

All cases’ final felling harvest levels were generally 
quite similar to the reference case. Differences were 
most pronounced during the first 20 years, when 
levels were higher than the reference, and during 
years 20-40, when levels were lower (Figure 5). 
During the later parts of the planning horizon, the 
harvest levels were somewhat higher in the 
uncertainty cases. 

Table 4. The objective function value (Z) and its components for all cases. Forest NPV is net present value (NPV) 
from forest management. Disc. is discounted. Total NPV is the NPV from both forest management and harvest area 
accessing costs. The area penalty is the cost of all area missing due to area-based restrictions. The volume penalty 
is the cost due to volume-based restrictions. LQ is low-quality data, HQ is high-quality data, LA is low degree of 
objective alignment, and HA is high degree of objective alignment. The percentages are relative changes compared 
to the reference. See Table 1 for a description of the cases. 

Case 𝒁𝒁 (ha-1) 
Forest NPV  
(SEK ha-1) 

Disc. accessing 
costs  

(SEK ha-1) 

Total NPV 
(SEK ha-1) 

Area penalty  
(SEK ha-1) 

Volume penalty  
(SEK m3) 

1-LQ-LA 5,640 (-36.6%) 15,522 (-1.4%) 1,721 (+0.2%) 13,801 (-1.6%) 6,463 (+26.0%) 1,698 

2-LQ-HA 6,096 (-31.5%) 15,728 (-0.1%) 1,832 (+6.6%) 13,896 (-0.9%) 6,272 (+23.3%) 1,527 

3-HQ-LA 7,675 (-13.7%) 15,713 (-0.2%) 1,723 (+0.3%) 13,990 (-0.3%) 6,315 (+23.1%) 0 

4-HQ-HA 8,125 (-8.7%) 15,952 (+1.3%) 1,796 (+4.5%) 14,156 (+0.9%) 6,031 (+17.6%) 0 

Reference 8,898  15,746  1,718  14,028  5,129  0 
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The optimisation model included constraints that 
aimed to fulfil certain area proportions of various 
forest types. An example of such a constraint was 
that all stands should have at least 10% broadleaf 
trees. In our cases, this target was almost reached in 
the reference case but not in the others (Figure 6).  

Additional figures for results for other indicators 
are presented in Appendix B. 

Discussion 
Our findings demonstrate that misaligned 
objectives and uncertainty in forest data impact the 
result of long‐term forest planning. In comparing 
the reference case to other cases, the large variation 
in the objective function value 𝑍𝑍 (Table 4) confirms 
that planning with high‐quality data and without a 
hierarchical separation of decision stages, or at least 
maintaining the same objective between planning 
stages, yields superior overall performance. 

Figure 5. The average final felling harvest levels over 
the planning horizon for the different cases. Case 1-LQ-
LA is the brown line and area on the bottom right. Case 
2-LQ-HA is purple line and area on the bottom left. Case 
3-HQ-LA is green line on the top right. Case 4-HQ-HA 
is the red line on the top left. The reference case is the 
grey line present in all panels. See Table 1 for a 
description of the cases. 

Figure 4. The relative net present value (NPV)  from 
forest management (Forest NPV) and NPV including 
accessing costs (Total NPV) for the cases 
independendtly compared to the reference case (1). The 
horizontal bars show the median. The boxes and 
whiskers show the spread of the cases with uncertainty. 
The points are extreme values. See Table 1 for a 
description of the cases. 
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Although the integrated method produced the best 
overall objective function value (𝑍𝑍), the 4‐HQ‐HA 
case achieved a higher NPV. This divergence likely 
arises from two factors. First, the inclusion of area 
and volume penalty components in the objective 
function may shift the balance in favour of NPV 
and associated access costs under certain 
conditions; the markedly lower area penalty in the 
reference case supports this interpretation. Second, 
the 1% mixed-integer programming gap tolerance 
used in our analyses had the same magnitude as the 
observed NPV differences, potentially masking 
some trade‐offs. 

Consistent with our expectations, cases that 
employed high-quality data and aligned objectives 
outperformed those using lower-quality data and 
misaligned objectives. This finding reinforces the 
broader body of evidence on the value of data in 
managing uncertainty (e.g. Duvemo et al. 2014; 

Eyvindson and Kangas 2014; Eyvindson and 
Cheng 2016; Nahorna et al. 2024). In practice, 
given that some uncertainty is inevitable in 
practically available data, ensuring alignment 
within the planning hierarchy is a critical step 
towards improving forest planning results.  

While our model incorporated aspects of road 
maintenance, machinery transport, and machine 
availability indirectly via harvest area access costs, 
future research could benefit from an explicit 
representation of these tactical elements (Church et 
al. 2000; Epstein et al. 2007; Mobtaker et al. 2018; 
Ahmadvand et al. 2021). Such an approach might 
reveal even greater impacts of misaligned 
objectives, particularly where tactical decisions 
play a significant role.  

The number of uncertainty scenarios was 100, 
which should be sufficient to describe normally 
distributed random errors for the set of attributes 
included in the study. 100 scenarios are well within 
the suggested scenario set size for similar cases 
(Eyvindson and Kangas 2016). Anyhow, 
uncertainties other than initial forest data 
uncertainty, for example, the variance of growth 
models, should be included in future studies. 

The objectives we say are misaligned could be seen 
as two sides of the same coin. Minimising costs in 
the tactical phase, given the restriction of reaching 
the harvest levels decided in the strategic phase by 
maximising NPV, could yield similar results as 
maximising NPV in the first place. Minimising 
costs and maximising NPV do not contradict each 
other as much as some other potential objectives, 
e.g. planning for considerations of biodiversity 
values. Another aspect that could make the 
misaligned objectives more different is if the scope 
of the objective were to change completely. If other 
utilities from forests, such as CO2  emissions (e.g. 
Raymer et al. 2009), biodiversity values (e.g. 
Marshalek et al. 2014) or recreational values (e.g. 
Pukkala et al. 1995), had been included in our 
objective function, the differences could have been 

Figure 6. The area proportion of stands with >10% 
broadleaf trees over the planning horizon for the 
different cases. Case 1-LQ-LA is the brown line and area 
on the bottom right. Case 2-LQ-HA is purple line and 
area on the bottom left. Case 3-HQ-LA is green line on 
the top right. Case 4-HQ-HA is the red line on the top 
left. The reference case is the grey line present in all 
panels. See Table 1 for a description of the cases. 
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even larger. For example, concerns about 
biodiversity have a strong trade-off against the 
financial value of forestry (Eggers et al. 2022). 
Thus, having financial value as the strategic 
objective and biodiversity value as the tactical 
objective would probably increase supoptimality 
drastically. 

Lastly, our analysis shows that the penalties 
associated with the area restrictions, like having 
10% broadleaf trees in all stands (Figure 6), 
comprised a significant share of the objective 
function. This shows that much of the results come 
down to the weights and costs of the objective 
function. Although the cost of missed harvested 
volume (500 SEK m-³) aligns with current market 
conditions in Sweden (Swedish Forest Agency 
2025a), the subjectively set values for missing area 
(1,000 SEK ha-¹) and harvest area access cost 
(50,000 SEK per period) likely influenced the 
results. It is reasonable to believe that different 
decision-makers with different subjective values on 
the costs of deviating from restrictions would 
assign different costs.  

Conclusions 

Ultimately, our results underscore that hierarchical 
planning procedures can incur significant losses in 
optimal objective function value and achieve non-
optimal harvest levels relative to integrated 
approaches, particularly when affected by uncertain 
data and misaligned planning objectives. Our 
recommendation to a decision-maker involved in 
real-world decisions, for whom the theoretical 
comparison of objective function values (𝑍𝑍) 
between cases might be less important than the 
confidence in the plan, is to strive towards using 
higher-quality data in planning. However, if that 
would decrease the value of information due to high 
inventory costs, it is also the case that efforts to 
align objectives are efforts well spent. 
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Appendix A – Simulation of 
uncertain data 
We generated multiple simulated populations of 
forest stands by treating errors in selected attributes 
as realisations of a multivariate random process. In 
principle, if a forest inventory is performed using 
one method and a subset of stands is re‐measured 
with a second method, the resulting paired 
estimates can be used to characterise the 
relationship between the two methods. This 
relationship is then exploited to simulate alternative 
populations described by one of the methods. Our 
approach relies on constructing a covariance matrix 
and its Cholesky decomposition. 

The covariance matrix, 𝑪𝑪, used for generating 
multivariate errors, was calculated as 

(A1) 𝑪𝑪 =  𝒒𝒒𝑇𝑇𝒒𝒒 1
𝑛𝑛−1

 , where 

(A2) 𝒒𝒒 =  𝑴𝑴− 𝟏𝟏𝑛𝑛𝟏𝟏𝑛𝑛𝑇𝑇𝑴𝑴
1
𝑛𝑛
 , and 

𝑛𝑛 was the number of rows (one per objectively 
inventoried stand, in our case 541) in the matrix 𝑴𝑴 
consisting of differences between 𝑚𝑚 (in our case 6) 
measured attributes on plots in stands and estimates 
of the same attribute and stand in the operational 
stand inventory, one stand per row, and 𝟏𝟏𝑛𝑛 is a size 
𝑛𝑛 vector of 1s. From the covariance matrix 𝑪𝑪, the 
Cholesky decomposition as a lower triangular 
matrix 𝑳𝑳 was computed such that, 

(A3) 𝑪𝑪 = 𝑳𝑳𝑳𝑳𝑇𝑇 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

𝑳𝑳𝑇𝑇 is the transpose of 𝑳𝑳. The simulation of 
multivariate errors for 𝑖𝑖 stands was performed by 
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generating 100 independent versions of the error 
matrix 𝑬𝑬𝑠𝑠, one for each scenario in the set 𝑠𝑠 =
{1, 2, … , 𝑆𝑆 = 100} such that 

(A4) 𝑬𝑬𝑠𝑠 = �𝑳𝑳𝑳𝑳1𝑗𝑗 , … ,𝑳𝑳𝑳𝑳𝑖𝑖𝑖𝑖�, where 

𝑬𝑬𝑠𝑠 was a matrix of a set of 𝑖𝑖 row vectors resulting 
from the vector multiplication of 𝑳𝑳 by 𝒁𝒁𝑖𝑖𝑖𝑖. Each 
row 𝑖𝑖 in 𝒁𝒁𝑖𝑖𝑖𝑖 was uniformly sampled from a set of 
𝑗𝑗 = {1, 2, … , 𝐽𝐽 = 10} vectors, each in the form of 

(A5) 𝒁𝒁𝑖𝑖𝑖𝑖 = (𝑧𝑧1, … , 𝑧𝑧𝑚𝑚), where 

each 𝑧𝑧𝑚𝑚 was a normally distributed independent 
random variable with 𝑚𝑚 elements, 𝑧𝑧𝑚𝑚 ~ 𝑁𝑁(0,1) , 
truncated between σ1𝑗𝑗 and σ2𝑗𝑗, where 𝛼𝛼 = 2 and 

(A6) σ1𝑗𝑗 = −𝛼𝛼 + 2𝛼𝛼
𝐽𝐽

(𝑗𝑗 − 1) and 

(A7) σ2𝑗𝑗 = −𝛼𝛼 +
2𝛼𝛼
𝐽𝐽
𝑗𝑗, 

and stored as the mth element of 𝒁𝒁𝑖𝑖𝑖𝑖. The reason for 
using a normal distribution truncated between σ =
±2 and divided into 10 steps, was to ensure that the 
simulated errors were not too large and that each 
simulated scenario could have representations of 
errors for all parts of the distribution. The uniform 
sampling was done proportionally to the probability 
mass between σ1𝑗𝑗 and σ2𝑗𝑗. 

The final set of simulated deviations 𝑹𝑹𝑠𝑠 was 
generated by taking the stand inventory data 𝑫𝑫 of 
the 𝑚𝑚 attributes for 𝑖𝑖 stands and adding it to each of 
the 100 𝑬𝑬𝑠𝑠. Thus, let 

(A8) 𝑹𝑹𝑠𝑠  = 𝑫𝑫 + 𝑬𝑬. 

This procedure was repeated twice for each 
scenario – one for absolute errors (above), and one 
for relative errors, where 𝑹𝑹𝑠𝑠 instead was calculated 
as 

(A9) 𝑹𝑹𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑫𝑫 + 𝑬𝑬𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∘ 𝑫𝑫. 

Note that ∘ is the element-wise multiplication 
(Hadamard product).  

The final dataset with attributes constructed from 
simulated errors was a matrix where each element 
was chosen from each 𝑹𝑹𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟or 𝑹𝑹𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 
based on rules from similar works (Holmström et 
al. 2003). Relative errors were chosen (depending 
on the original value in 𝑫𝑫) if the volume was under 
150 m3ha-1, the diameter at 1.3 m was under 10 cm, 
Lorey’s mean height was under 12 m, the number 
of stems was under 1,000 ha-1, the basal area was 
under 18 m2ha-1, the mean age was under 50 years, 
and if the site index was under 25 m.  

The covariance matrices used in the Monte Carlo 
simulation are presented in Table A1 and Table A2. 

Table A1. The relative covariances between the 
attributes used to simulate deviations. 
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Diameter (cm) 0.027 0.018 -0.03 0.01 0.011 0.001 

Height (m) 
 

0.024 -0.021 0.013 0.008 0.001 

Stems (ha-1) 
  

0.134 0.051 -0.017 -0.003 

Basal area (m2ha-1) 
   

0.113 -0.006 0.002 

Age (years) 
    

0.054 -0.003 

Site index (m) 
     

0.014 

Table A2. The absolute covariances between the 
attributes used to simulate deviations. 
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Diameter (cm) 8.2 3.0 -684 2.4 8.2 0.34 
Height (m)  3.2 -323 1.8 3.7 0.37 
Stems (ha-1)   287,227 1231 -753 -63 
Basal area (m2ha-1)    26 -1.7 1.2 
Age (years)     331 -6.3 
Site index (m)      5.9 
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Appendix B – Additional 
results   
Figure B1 shows the average cost from forest 
management per m3 of harvested wood. Figure B2 
shows the area share of old forests. Figure B3 
shows the average final felling age. Figure B4 
shows the standing volume. Figure B5 shows area 
share of young forests. Figure B6 shows the 
average diameter in final fellings.  

  

Figure B1. The average cost in SEK per m3 of harvested 
wood over the planning horizon for the different cases. 
Case 1-LQ-LA is the brown line and area on the bottom 
right. Case 2-LQ-HA is purple line and area on the 
bottom left. Case 3-HQ-LA is green line on the top right. 
Case 4-HQ-HA is the red line on the top left. The 
reference case is the grey line present in all panels. See 
Table 1 for a description of the cases. 

 

Figure B3. The average volume-weighted final felling 
age over the planning horizon for the different cases. 
Case 1-LQ-LA is the brown line and area on the bottom 
right. Case 2-LQ-HA is purple line and area on the 
bottom left. Case 3-HQ-LA is green line on the top right. 
Case 4-HQ-HA is the red line on the top left. The 
reference case is the grey line present in all panels. See 
Table 1 for a description of the cases. 

Figure B2. The area proportion of stands older than 140 
years over the planning horizon for the different cases. 
Case 1-LQ-LA is the brown line and area on the bottom 
right. Case 2-LQ-HA is purple line and area on the 
bottom left. Case 3-HQ-LA is green line on the top right. 
Case 4-HQ-HA is the red line on the top left. The 
reference case is the grey line present in all panels. See 
Table 1 for a description of the cases. 
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Figure B4. The average standing volume over the 
planning horizon for the different cases. Case 1-LQ-LA 
is the brown line and area on the bottom right. Case 2-
LQ-HA is purple line and area on the bottom left. Case 
3-HQ-LA is green line on the top right. Case 4-HQ-HA 
is the red line on the top left. The reference case is the 
grey line present in all panels. See Table 1 for a 
description of the cases. 

 

Figure B5. The area proportion of forests <20 years 
over the planning horizon for the different cases. Case 
1-LQ-LA is the brown line and area on the bottom right. 
Case 2-LQ-HA is purple line and area on the bottom left. 
Case 3-HQ-LA is green line on the top right. Case 4-
HQ-HA is the red line on the top left. The reference case 
is the grey line present in all panels. See Table 1 for a 
description of the cases. 

Figure B6. The average volume-weighted diameter in 
final fellings over the planning horizon for the different 
cases. Case 1 is the brown line and area on the bottom 
right. Case 1-LQ-LA is the brown line and area on the 
bottom right. Case 2-LQ-HA is purple line and area on 
the bottom left. Case 3-HQ-LA is green line on the top 
right. Case 4-HQ-HA is the red line on the top left. The 
reference case is the grey line present in all panels. See 
Table 1 for a description of the cases. 
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Accurate forest data is essential for informed decisions regarding forest policy and 

management. Traditionally collected through field surveys, this type of data has 

increasingly been produced with remote sensing (RS). RS provides comprehensive 
resource maps produced with data from sensors, including airborne laser scanning 

(ALS) and satellite imagery. However, RS predictions can include large uncertainties, 

including both random and systematic errors. The systematic errors often stem from 

the problem of regression towards the mean, whereby small true values are 
overestimated while large true values are underestimated. These errors pose challenges 

for effective forest management planning since they can lead to wrong assumptions 

about forest conditions, for example, that a forest conforms to average conditions due 
to reduced variability. In this study, we quantified the differences between expected 

and realised outcomes in forest planning informed by RS predictions, specifically 

evaluating inventories based on ALS and optical satellite imagery. The evaluation was 
made according to a business-as-usual scenario with additional concerns about 

biodiversity and carbon sink targets. The satellite-based forest inventory, more 

impacted by both general uncertainty and regression towards the mean, performed 

worse than ALS. Our results indicate that reliance on RS predictions led to 10% to 12% 
overestimated harvest levels, with notable fluctuations over time, alongside a decrease 

in net present value of -6% to -9%. Furthermore, carbon stocks were unintentionally 

reduced in the satellite-based plans, with overestimations ranging from 8% to 24%. 
Across both RS methods, achieving stable development for biologically valuable 

forests proved difficult. Our findings underscore the relevance of these issues for 

forestry and are important to ongoing policy development related to forest monitoring 

and planning. 
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INTRODUCTION 

  

Forests and their ecosystem services are critical for life on Earth (Brockerhoff et al. 2017). The 

provisioning of these services relies on the functioning of forest ecosystems (Hooper et al. 

2005). To ensure a consistent supply of goods such as wood, energy, and non-wood forest 

products, forest managers and policymakers must assess both the likely and preferred future 

trajectories of forest ecosystems. Forest scenario analysis and planning have been developed 

for this purpose, providing methodologies to simulate and schedule possible forest 

management activities while evaluating their economic, ecological, and social impacts (e.g., 

Eggers et al. 2019).  

Forest scenario analysis and planning, irrespective of their scale, depend on data representing 

the current state of forests (Eriksson and Borges 2014). This type of data enables forecasting 

based on various management regimes, including biodiversity and the provisioning of 

ecosystem services (Nilsson et al. 2012). Advances in methods and technology have resulted 

in the widespread availability of wall-to-wall remote sensing (RS) data, presented as forest 

resource maps (e.g., Reese et al. 2003, Hansen and Loveland 2012, Kotivuori et al. 2016, 

Nilsson et al. 2017, Astrup et al. 2019). These maps are used for assessments of the current 

state of forests (e.g. Schuck et al. 2003), policy development (e.g., Seebach et al. 2012), 

mapping the supply of ecosystem services (e.g., Orsi et al. 2020), and input for forest planning 

models (e.g., Flisberg et al. 2022, Wilhelmsson et al. 2022, Ulvdal et al. 2023). The creation of 

forest resource maps typically involves parametric or non-parametric regression models (e.g., 

Andersen et al. 2005, Zald et al. 2016), which link RS data, such as laser beam hits at various 

heights or pixel colour, with ground-truth measurements, such as basal area from geo-

positioned field plots. These models are applied to larger areas, producing predictions for all 

raster elements in the wall-to-wall map. However, this model-based RS inventory approach 

introduces uncertainty-related challenges. Like most inventory methods, random errors affect 

the data quality. However, perhaps more influential is the issue of regression toward the mean 

(Stigler 1997, Barnett et al. 2005). 

Regression toward the mean causes models to overestimate small true values and underestimate 

large ones, reducing the variance in predicted values compared to the true values (Ståhl et al. 

2024). When such errors also correlate with the true values rather than the predictions, they are 

classified as Berkson-type errors (Carroll et al. 2006, Kangas et al. 2023). Errors of Berkson-
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type in RS-based predictions have been shown to influence forest planning results, e.g., 

regarding the final layout of harvest areas when using spatial optimisation on erroneous data 

(Islam et al. 2012). Various methods, including calibration and imputation, have been explored 

to mitigate these errors. For instance, the landscape distribution of stem volume can be 

preserved by imputing RS-based predictions with national forest inventory plot data (Barth et 

al. 2012). Another approach is to apply histogram matching using k-nearest-neighbour 

algorithms (Gilichinsky et al. 2012). Lindgren et al. (2022) demonstrated that classical 

calibration (e.g. Tellinghuisen 2000) can effectively mitigate the effects of regression towards 

the mean. However, none of these studies have quantified the long-term impact of such errors 

on decisions or plans based on data affected by regression towards the mean. 

Numerous studies have examined the effects of uncertain data more generally. Typically, these 

studies simulate erroneous data and compare forecasts based on that data with those based on 

data considered to be true  (e.g., Holopainen et al. 2010, Islam et al. 2010, Duvemo et al. 2014, 

Ruotsalainen et al. 2021). Some of these studies address errors in RS-based resource maps, but 

the errors are often simulated, and the study areas are relatively small. Given the growing use 

of forest resource maps in forest scenario analysis and planning, further research is needed to 

understand how uncertainties, such as Berkson-type errors, affect forecasts and decision-

making (Fassnacht et al. 2023). This need is underscored by recent policy developments in the 

European Union, where suggestions for new regulations on forest monitoring and planning 

emphasise increased use of RS (Bontemps et al. 2022). 

This study aims to assess the impact of using RS data in long-term forest planning and to 

quantify the discrepancies between expected and realised provisioning of ecosystem services 

and biodiversity. We analysed data from airborne laser scanning (ALS) and optical satellite 

imagery, both subject to random errors and regression toward the mean in varying degrees. We 

evaluated their use as inputs in forest planning models, describing a business-as-usual scenario 

extended with targets for biodiversity conservation and carbon sequestration. The models were 

implemented and solved with the decision support system Heureka PlanWise (Lämås et al. 

2023). 
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MATERIAL AND METHODS 

 

Data and pre-processing 

The RS-based predictions evaluated in this study were gathered from two forest resource maps: 

the SLU Forest Map, derived from optical satellite imagery in 2010, and a similar map obtained 

from ALS in 2019. 

Satellite predictions 

The SLU Forest Map provides predictions for volume, Lorey’s mean height, mean age, and 

species proportion, presented on 25x25 m raster elements covering all of Sweden. These 

predictions were modelled using optical satellite imagery from Landsat 7 Enhanced Thematic 

Mapper and k-nearest-neighbour imputation based on national forest inventory plots (for 

details, refer to Reese et al. 2003).  

ALS predictions 

The ALS-based map from 2019 has a resolution of 12.5x12.5 m and includes attributes derived 

from regression models between ALS data and national forest inventory plot data. These 

attributes include volume, Lorey’s mean height, average diameter at breast height (Dbh), and 

stand basal area (for details, see Nilsson et al. 2017). Raster elements with a predicted tree 

height of <3 m are excluded from the public version of the ALS map due to concerns about the 

quality of the predictions, while the full data product was retained for our analyses.  

Field-surveyed reference data 

To evaluate RS-based maps, we utilised high-quality reference data gathered for long-term 

forest planning. The reference data originated from two independent inventories conducted in 

2010 and 2019 on a forest holding encompassing approximately one million hectares of 

productive forestland in Sweden. These inventories involved systematic surveys of circular 

field plots (radius: 3-10 m), wherein individual tree data and stand properties were recorded to 

provide unbiased stand-level estimations. 

Measurement protocols varied according to the average tree height on the plots. For plots with 

established trees (average height >4 m), all trees >4 cm in diameter at breast height (1.3 m 

above ground) were calipered, and tree species were identified. A subset of calipered trees was 

randomly selected for height and age measurements, with age determined through the count of 

annual rings on increment cores. Dominant trees required for site index estimation were also 
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measured for height. On plots dominated by saplings, height measurements of main stems 

replaced calipering. Each plot underwent detailed site characterisation, including descriptions 

of vegetation, climate, soil, terrain, and natural values. 

The number of plots per stand ranged from approximately 6 in smaller stands to 13 in larger 

ones, with plot radius standardised within each stand. Stands were randomly selected through 

stratified sampling, with inclusion probabilities proportional to stand area. Stratification was 

based on auxiliary data on stand age and standing volume from the forest owner’s stand 

inventory, with at least three stands sampled per stratum. Representative stand areas were 

calculated as the total stratum area divided by the number of sampled stands. 

The inventory design followed established protocols used for the decision support system 

Heureka PlanWise, a widely used tool among forest companies and researchers in Sweden (for 

details, refer to Lindgren 1984, Jonsson et al. 1993,  Lämås et al. 2023). All attributes needed 

Figure 1. The positions of the included stands shown with coloured points. Satellite indicates those 
stands surveyed in 2010 used with the satellite map. ALS indicates those stands surveyed in 2019 
used with the ALS map. ALS is airborne laser scanning. Projection: SWEREF 99 TM (EPSG:3006). 
Source of country borders and positions of cities: Natural Earth. 
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to run Heureka PlanWise were collected in the field inventory. Heureka PlanWise is described 

below.  

Standardisation of age distributions 

Only those field-surveyed stands covered by the footprint of the 2019 ALS map were included 

in the analyses, resulting in 198 of 1,070 stands from 2010 and 152 of 800 stands from 2019 

being included further (map of included stands in Figure 1). To ensure that the two inventories 

were comparable on the forest level, random values from a uniform distribution were drawn 

repeatedly and assigned as new representative areas for the remaining stands until the same age 

distribution was achieved. This process also maintained the total area represented in the 

original field inventories. After this adjustment, the inventories from both years matched the 

general age distribution of forest land owned by forest companies in Sweden.  

Finalised stand averages  

We calculated stand averages from the RS-based predictions for the corresponding field-

surveyed stands using the satellite map for stands surveyed in 2010 and the ALS map for those 

surveyed in 2019. This involved calculating the area-weighted average of each attribute across 

the raster elements intersecting each stand polygon.  

Heureka PlanWise can be used either with data on a single-tree level, i.e. tree lists, or data 

made from stand averages. When using the latter, Heureka PlanWise generates a tree list 

corresponding to the averages with models included in the system. The satellite map needed to 

be complemented with missing attributes in the form of stand averages to make it possible to 

generate tree lists for each stand with Heureka PlanWise. The complementation was done using 

regression models developed from freely available Swedish national forest inventory plot data 

from 2017-2021. For more details about the complementation, refer to Appendix A. 

Furthermore, to run Heureka PlanWise, more information than what was available from RS 

sources was needed, which is why the RS-based predictions for the included stands in both 

maps were complemented further with averages from the field survey of each stand. The 

sources of all attributes for these RS-based, but complemented, stand inventories are presented 

in Table 1. 
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Table 1. An overview of the attributes and their sources for the completed remote sensing-based 
stand inventory datasets. ALS refers to airborne laser scanning, while satellite refers to optical 
satellite imagery. Species proportion was calculated based on volume for the following species: 
Picea abies (L.) H. Karst., Pinus sylvestris L., Betula spp. (Betula pendula Roth or Betula 

pubescens Ehrh.), Pinus contorta Douglas ex Loudon, Fagus sylvatica L., Quercus spp. (Quercus 

robur L. or Quercus petraea (Matt.) Liebl.), and other deciduous species. Dbh refers to the mean 
basal area-weighted tree diameter at breast height. 

Attribute for stand 
Satellite ALS 

Volume (m3ha-1) only used for 

modelling 

not used 

Lorey’s mean height (m) satellite ALS 

Basal area (m2ha-1) modelled ALS 

Dbh (cm) modelled ALS 

Mean age (years) satellite field survey 

Number of stems (ha-1) modelled not used 

Species proportion (0-1) satellite field survey 

Soil moisture (categorical) field survey field survey 

Vegetation type (categorical) field survey field survey 

Site index  (m) field survey field survey 

Technical accessibility (categorical) field survey field survey 

Simulation of tree lists  

Tree lists were generated for the stands based on both RS-based stand inventories with Heureka 

PlanWise (v.2.21.3.0). This was not needed for the reference data since it was already at the 

individual tree level.  

Examination of data and errors  

New stand averages were calculated from the tree lists generated in Heureka PlanWise and 

were compared with the corresponding field-surveyed averages (Figure 2).  
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Figure 2 clearly shows that the RS-based predictions from both RS-based stand inventories 

regress to the mean since the slope of the least square lines is smaller than the 1:1 lines. This 

indicates that the small reference values are overestimated while the large reference values are 

underestimated. To further determine that the errors in the RS-based predictions resulted from 

regression to the mean and thus of Berkson-type, we calculated error correlations and examined 

the empirical variances of both the errors and the predictions. Furthermore, we performed a 

paired t-test grouped on three equally sized quantiles (defined individually per attribute) to 

check for local bias. 

Figure 2. The relation between field-measured reference data (x-axis) and complemented remote 
sensing predictions (y-axis) from remote sensing-based forest inventories with optical satellite 
imagery (blue) and ALS (red) for the attributes basal area, mean age, basal area weighted diameter 

at breast height, Lorey’s mean height, number of stems, and volume. Each point represents 
averages for one stand as calculated by Heureka PlanWise. The coloured lines are the least square 
linear relationships. The black line is the 1:1 relationship. Note that the values for basal area, 
diameter and stems per hectare in the satellite map were assigned according to the functions in 
Tables A1-A3 in the Appendix and that age in the ALS map is the same as the field-measured 
age. RRMSE refers to the relative root mean square error. 
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Descriptive statistics for the finalised stand inventories are presented in Table 2.  

Table 2. Descriptive statistics (area-weighted averages) for the completed RS-based stand 
inventories compared to the reference data. Dbh refers to the mean diameter at breast height. 

ALS stands for airborne laser scanning, and satellite refers to optical satellite imagery. Dbh refers 
to the mean basal area-weighted tree diameter at breast height. Field indicates that the source was 
the field-survey 

Year Source 
Volume 

Lorey’s 

mean 

height 

Basal 

area 
Dbh 

Mean 

age 

Number of 

stems 

Site 

productivity 

(m3ha-1) (m) (m2ha-1) (cm) (years) (ha-1) (m3ha-1year-1) 

2010 field 125.3 10.9 17.1 14.9 50.4 2,074 5.3 

2010 satellite 123.8 10.7 18.9 15.0 51.4 2,488 5.3 

2019 field 121.6 11.2 16.4 14.8 52.1 2,158 4.2 

2019 ALS 114.2 11.4 16.8 15.8 53.6 1,261 4.1 

The errors in the RS-based predictions correlated more with the corresponding reference data 

than with the predictions (Table 3). This relationship was true for all variables except the 

predicted number of stems in the satellite map. Moreover, the empirical variances of the 

predicted values were smaller than those of the reference data for all variables except the 

number of stems in the predictions based on satellite data (Table 4). Furthermore, the biases 

were generally positive for small reference values and negative for large reference values 

(Table 5). These results imply that the errors of the predictions in the study were generally of 

Berkson type and that the models had a regression towards the mean.  

Table 3. The correlation between errors and their corresponding field-measured values in stands 
and the correlation between errors and their corresponding stand predictions for both the 

satellite and ALS maps. Dbh is the mean basal area weighted diameter at breast height. ALS is 

airborne laser scanning. Satellite is optical satellite imagery. Dbh refers to the mean basal area-
weighted tree diameter at breast height. 

 Satellite ALS 

Attribute Errors~Field Errors~Prediction Errors~Field Errors~Prediction 

Volume 0.79 0.10 0.50 0.11 

Lorey’s mean height 0.66 0.01 0.71 0.47 

Basal area 0.74 0.02 0.53 0.08 

Dbh 0.49 -0.31 0.45 -0.02 

Mean age 0.78 -0.07 0.30 0.23 

Number of stems 0.59 -0.64 0.98 0.28 
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Table 4. The empirical variance of RS-based predictions and the field-measured values for both 
the satellite and ALS map. Dbh is the mean basal area weighted diameter at breast height. ALS is 
airborne laser scanning. Satellite is optical satellite imagery. Dbh refers to the mean basal area-
weighted tree diameter at breast height. 

 Satellite ALS 

 Field Prediction Field Prediction 

Volume (m3ha-1) 9,847 3,807 8,219 6,209 

Lorey’s mean height  (m) 23 13 25 16 

Basal area (m2ha-1) 98 45 83 60 

Dbh (cm) 42 35 48 38 

Mean age (years) 902 354 752 725 

Number of stems (ha-1) 1,425,087 1,569,503 3,785,745 179,955 

 

  



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

148 www.forestsmonitor.com  

 

Table 5. Results from a paired t-test for both RS-methods. The data for each attribute was divided 
into three equally sized parts defined by the 1/3 and 2/3 percentiles. A positive bias indicates that 
the RS-metod overestimated the reference value, and vice versa. A large p-value indicates that 
the difference is non-significant, i.e. that there is no bias. Dbh refers to the mean diameter at breast 

height.  ALS stands for airborne laser scanning, and satellite refers to optical satellite imagery. 

Method Attribute 

Part 

of 

range 

Bias p-value Number of stands 

ALS Age 1/3 +0.79 0.09 50 

ALS Age 2/3 0.00  49 

ALS Age 3/3 0.00  50 

ALS Basal area 1/3 +2.13 0.00 50 

ALS Basal area 2/3 -0.28 0.54 49 

ALS Basal area 3/3 -2.94 0.00 50 

ALS Dbh 1/3 +1.09 0.01 50 

ALS Dbh 2/3 +0.69 0.09 49 

ALS Dbh 3/3 -1.42 0.01 50 

ALS Height 1/3 +0.58 0.02 50 

ALS Height 2/3 -0.22 0.14 49 

ALS Height 3/3 -1.58 0.00 50 

ALS Stems 1/3 +51.53 0.03 50 

ALS Stems 2/3 -170.54 0.00 49 

ALS Stems 3/3 -1723.66 0.00 50 

ALS Volume 1/3 +7.22 0.00 50 

ALS Volume 2/3 -10.57 0.00 49 

ALS Volume 3/3 -33.26 0.00 50 

Satellite Age 1/3 +17.65 0.00 65 

Satellite Age 2/3 +8.64 0.00 65 

Satellite Age 3/3 -24.86 0.00 65 

Satellite Basal area 1/3 +7.45 0.00 65 

Satellite Basal area 2/3 +1.48 0.01 65 

Satellite Basal area 3/3 -5.82 0.00 65 

Satellite Dbh 1/3 +2.55 0.00 66 

Satellite Dbh 2/3 +0.93 0.06 64 

Satellite Dbh 3/3 -2.55 0.00 65 

Satellite Height 1/3 +1.68 0.00 65 

Satellite Height 2/3 -0.35 0.08 65 

Satellite Height 3/3 -3.30 0.00 65 

Satellite Stems 1/3 +388.16 0.00 65 

Satellite Stems 2/3 +91.06 0.55 65 

Satellite Stems 3/3 -496.27 0.05 65 

Satellite Volume 1/3 +49.36 0.00 65 

Satellite Volume 2/3 -1.51 0.77 65 

Satellite Volume 3/3 -76.74 0.00 65 
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SIMULATING FOREST DEVELOPMENT AND MANAGEMENT ACTIVITIES 

USING HEUREKA PLANWISE 

 

To assess the impact of relying on RS-based stand inventories for forest management planning, 

we generated long-term plans based on the forest stand inventories described above.  

Heureka PlanWise 

Heureka PlanWise is built around a simulator that generates treatment programmes at the stand 

level according to user-defined rules and an optimisation module that selects the optimal 

combination of treatment programmes for each stand based on user-stated preferences (Lämås 

et al. 2023). Thus, Heureka PlanWise is based on the model I formulation, where a treatment 

programme is an explicit sequence of forest management activities and non-management in 

one stand during the planning horizon (Johnson and Scheurman 1977). The simulator forecasts 

the tree layer based on current forest data and possible management activities (Fahlvik et al. 

2014). It includes models for various ecosystem services, such as harvested wood output (e.g. 

Flisberg et al. 2014), carbon storage (e.g. Lundmark et al. 2018), and biodiversity indicators 

(e.g., Eggers et al. 2022). The treatment programmes are divided into five-year periods. The 

user defines management strategies and rules to generate multiple alternative treatment 

programmes per stand, allowing the simulator to vary the timing and type of management 

activities. 

Management strategies  

For both RS-based stand inventories, we generated treatment programmes under seven 

management strategies: typical Nordic even-aged forestry, intensive forestry, selection 

forestry, actively promoted broad-leaves forestry, passively promoted broad-leaves forestry, 

closer-to-nature forestry, and unmanaged forestry (see Table 6). Each strategy, except for 

selection forestry and unmanaged forestry, also included a variant with extended rotation 

lengths of 50 years. The strategies were defined to reflect business-as-usual forest management 

in the Nordics as well as potential alternatives. The alternatives were defined with aims other 

than the highest financial return in mind.  
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Table 6. An overview of the management strategies used in the study. 

Strategy Min. 

rotation 

length 

Max. 

rotation 

length 

Retention Regeneration 

method 

Stand proportions 

after cleanings and 

thinnings 

Typical 

Nordic 

even-aged 

forestry 

Lowest 

legal age 

Lowest 

legal age + 

10 years 

According to 

certifications, i.e. 

10 trees and 3 

high stumps ha-1 

at final felling 

Planting of 2,500 

conifer seedlings ha-1 

90% of regeneration 

species and 

10% of broad-leaves 

Intensive 

forestry 

Lowest 

legal age 

Lowest 

legal age 

According to 

certifications, i.e. 

10 trees and 3 

high stumps ha-1 

at final felling 

Planting of 2,500 

genetically improved 

conifer seedlings ha-1. 

Pinus contorta on 

poorer sites 

95% of regeneration 

species and 

5% of other species 

Selection 

forestry  

Not 

applicable 

Not 

applicable 

Not applicable Advance growth Not applicable 

Active 

promotion 

of broad-

leaves 

Conifer 

stands: 

lowest 

legal age 

Broad-leaf 

stands: 80 

years 

Conifer 

stands: 

lowest 

legal age + 

10 years. 

Broad-leaf 

stands: 90 

years  

20 trees and 3 

high stumps ha-1 

at final felling 

Planting of 2,000 

seedlings ha-1. 

Populus tremula on 

rich sites, otherwise 

Betula pubescens. 

100% of broad-

leaves  

OR 

40% of Betula spp. 

and 

60% of regeneration 

species  

Passive 

promotion 

of broad-

leaves 

Conifer 

stands: 

lowest 

legal age 

Broad-leaf 

stands: 80 

years 

Conifer 

stands: 

lowest 

legal age + 

10 years. 

Broad-leaf 

stands: 90 

years  

20 trees and 3 

high stumps ha-1 

att final felling 

Seed trees for Pinus 

sylvestris stands on 

drier and poorer sites, 

otherwise planting of 

approximately 2,500 

conifer seedlings ha- 1 

100% of broad-

leaves  

OR 

40% of Betula spp. 

and 

60% of regeneration 

species 

Closer-to-

nature 

forestry 

Lowest 

legal age + 

25 years 

Lowest 

legal age + 

50 years 

70 trees and 3 

high stumps ha-1 

at final felling 

and 3 high 

stumps ha-1 at 

thinning 

Seed trees 100% of broad-

leaves  

OR 

40% of Betula spp. 

and 

60% of planted 

species 

Unmanaged Not 

applicable 

Not 

applicable 

Not applicable Not applicable Not applicable 

For typical even-aged forestry, we simulated the standard practices for certified Nordic 

forestry. This strategy involved mechanical soil preparation two years post-final felling, 

planting of conifer seedlings in the subsequent year, cleaning at 2-6 meters tree height, up to 

two thinnings, and a final felling. The intensive forestry strategy mirrored the even-aged 
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approach but also incorporated fertilisation and the planting of exotic tree species in appropriate 

stands. Selection forestry involved repeated selection fellings every 20 years. In the active 

promotion of broad-leaves, planting was exclusively done with Betula pubescens or Populus 

tremula (L.), with broad-leaves prioritised as future-trees during cleanings and thinnings. The 

passive promotion of broad-leaves included conifer planting, yet broad-leaves were prioritised 

as future-trees in subsequent cleanings and thinnings. Closer-to-nature forestry utilised only 

seed trees for regeneration, emphasised the leaving of broad-leaves in cleanings and thinnings, 

and maintained higher retention of trees post-treatment compared to other strategies. In 

unmanaged forestry, the forest was left without intervention. For all strategies, excluding 

unmanaged forestry, 10% of each stand’s area was designated as retention patches, not 

including retention of standing trees and high stumps. 

 

MAKING PLANS WITH THE HELP OF OPTIMISATION 

 

To identify the optimal treatment programmes for each stand, independently for each RS-based 

inventory, we formulated and solved two distinct optimisation problems that reflect varying 

decision-maker priorities. 

Optimisation models 

The HARVEST optimisation problem was designed for a decision-maker focused on 

maximising economic returns and ensuring stable or increasing harvest levels. This problem 

seeks the plan that delivers the highest net present value (NPV) while adhering to certification 

standards and legal requirements and maintaining or increasing harvest levels over time (see 

Equations 1-10). In contrast, the BIO-CARBON problem was tailored for a decision-maker 

with similar economic and regulatory objectives as HARVEST but with additional constraints 

of preserving carbon storage in living tree biomass and maintaining the area of ecologically 

significant forests (see Equations 1-14). Ecologically significant forests were defined based on 

indicators established by the Swedish Parliament’s environmental objectives (The Swedish 

Environmental Protection Agency 2024). The NPVs in both cases were calculated using a 3% 

discount rate. 
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The detailed formulation of the optimisation problems is provided in the form of a mixed 

integer programming model presented in the subsequent equations. 

(1) 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒  𝑍 =  ∑ ∑ 𝑛𝑖𝑗𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 

Subject to 

(2) 𝑥𝑖𝑗 ∈ [0,1] ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽𝑖 

(3) 𝑦𝑠𝑝 ∈ {0,1} ∀ 𝑝 ∈ 𝑃, ∀ 𝑠 ∈ 𝑆 

(4) ∑ 𝑥𝑖𝑗

𝐽𝑖

𝑗=1
= 1 ∀ 𝑖 ∈ 𝐼 

(5) ∑ 𝑦𝑠𝑝 

𝑆 

𝑠=1
= 1 ∀ 𝑝 ∈ 𝑃 

(6) ∑ ∑ 𝑏𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≤  0.5 ∑ 𝑎𝑖

𝐼

𝑖=1
 ∀ 𝑝 ∈ 𝑃 

(7) ∑ ∑ 𝑑𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≤ 5𝑒 ∑ 𝑓𝑠𝑦𝑠𝑝 ∑ 𝑎𝑖  

𝐼

𝑖=

𝑆 

𝑠=1
 ∀ 𝑝 ∈ 𝑃 

(8) 𝑦𝑠𝑝𝑔𝑠 ≤
∑ ∑ ℎ𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖
𝑗=1

𝐼
𝑖=1

∑ 𝑎𝑖  
𝐼
𝑖=1

 ∀ 𝑝 ∈ 𝑃, ∀ 𝑠 ∈ 𝑆 

(9) ∑ ∑ 𝑘𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≤  2.5𝑒 ∑ 𝑓𝑠𝑦𝑠𝑝 ∑ 𝑎𝑖  

𝐼

𝑖=

𝑆 

𝑠=1
 ∀ 𝑝 ∈ 𝑃 

(10) ∑ ∑ 𝑣𝑖𝑗𝑝+1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥ ∑ ∑ 𝑣𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

(11) ∑ ∑ 𝑐𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥  ∑ ∑ 𝑐𝑖𝑗𝑝−1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

(12) ∑ ∑ 𝑙𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥  ∑ ∑ 𝑙𝑖𝑗𝑝−1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

(13) ∑ ∑ 𝑚𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥  ∑ ∑ 𝑚𝑖𝑗𝑝−1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

(14) ∑ ∑ 𝑜𝑖𝑗𝑝𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
≥  ∑ ∑ 𝑜𝑖𝑗𝑝−1𝑎𝑖𝑥𝑖𝑗

𝐽𝑖

𝑗=1

𝐼

𝑖=1
 ∀𝑝 ∈ 𝑃 

Where, 

𝑍 is the objective function given the set of restrictions, 

𝑥𝑖𝑗 is the proportion of stand 𝑖 assigned to the treatment programme 𝑗,  

𝑦𝑠𝑝 is a binary variable that helps in the calculation of the allowable annual harvest area decided by 

Swedish law, 

𝐼 is the set of stands, 

𝐽𝑖 is the set of treatment programmes for stand 𝑖, 

𝑃 is the set of periods, 

𝑆 is the set of area classes defined by Swedish law regarding allowable annual harvest area, 

𝑛𝑖𝑗  is the NPV per hectare from forest management in stand 𝑖 according to treatment programme 𝑗, 

𝑎𝑖 is the representative area of stand 𝑖, 

𝑏𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the age of the stand is lower than 20 

years, otherwise 0, 

𝑑𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 if the stand is subjected to clear cut in period 𝑝, 

otherwise 0, 
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𝑒 is an area factor from Swedish law, taking the value 0.014 if the average site productivity of the 

forest holding is larger than 8 m3ha-1year-1, 0.011 if it is between 8 and 4 m3ha-1year-1, otherwise 

0.009, 

𝑓𝑠 is a correction factor from Swedish law taking the value 1.4 for 𝑠 = 1, 1.8 for 𝑠 = 2, 2.2 for 𝑠 = 3, 

2.8 for 𝑠 = 4, 

𝑔𝑠 is an area class proportion from Swedish law taking the value 0 for 𝑠 = 1, 0.26 for 𝑠 = 2, 0.51 for 

𝑠 = 3, 0.76 for 𝑠 = 4, 

ℎ𝑖𝑗𝑝 takes the value 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the mean age of the stand 

is older than a rotation age, otherwise 0. The rotation age is 70 years if the average site productivity of 

the forest holding is larger than 8 m3ha-1year-1, 90 years if it is between 8 and 4 m3ha-1year-1, otherwise 

110 years, 

𝑘𝑖𝑗𝑝 takes the value 1 for s stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the stand is subjected to 

fertilisation, otherwise 0, 

𝑣𝑖𝑗𝑝 is the harvested volume per hectare in stand 𝑖 with treatment programme 𝑗 in period 𝑝, 

𝑐𝑖𝑗𝑝  is the carbon stock of living trees per hectare in stand 𝑖 with treatment programme 𝑗 in period 𝑝, 

𝑙𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the stand is older than 120 years in 

boreal-nemoral and nemoral forests or 140 years in boreal forests, otherwise 0, 

𝑚𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if at least 25% of the basal area is broad-

leaf and the stand is older than 60 years in boreal-nemoral and nemoral forests or 80 years in boreal 

forests, otherwise 0, and 

𝑜𝑖𝑗𝑝 is 1 for stand 𝑖 with treatment programme 𝑗 in period 𝑝 if the stand has more than 60 large trees 

per hectare, otherwise 0. A conifer is considered large if the Dbh is wider than 45 cm; the 

corresponding value for broad-leaves is 35 cm. 

Equation (1) defines the objective of maximising the NPV across all stands in the forest. Eq. 

(2) states that 𝑥𝑖𝑗 is a continuous variable between 0 and 1, while Eq. (3) states that 𝑦𝑠𝑝 is a 

binary variable. Eq. (4) sets the maximum area constraint, ensuring that the proportions of 

assigned treatment programmes in each stand sum to 1. Eq. (5), together with Eq. (3), ensures 

that only one area class is used by forcing the sum of 𝑦𝑠𝑝 to be equal to 1 in each period. In line 

with Swedish law, Eq. (6) ensures that the area of forests younger than 20 years remains below 

50% of the total area in all periods. Eq. (7) limits the harvested area so that it does not exceed 

the allowable harvest area, which is calculated using Eq. (8). Notably, the factor 5 adjusts the 

annual value to a periodic one. Eq. (9) restricts the area subject to fertilisation to less than half 

of the allowable harvest area. Eq. (10) enforces a non-declining harvest, while Eq. (11) 

mandates non-declining carbon storage in living tree biomass. Eq. (12) preserves a non-

declining area of old-growth forests, Eq. (13) maintains the area of mature forests rich in broad-

leaf trees, and Eq. (14) ensures a non-declining area of forest with large trees. Note that Eqs. 

(11 - 14) are specific to the BIO-CARBON optimisation problem. 
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Outcomes from the optimisation  

The two optimisation problems were solved independently using treatment programmes 

generated from each RS-based forest inventory to produce management plans. The 

optimsiation module in Heureka PlanWise was used to build the problem in Zimpl. The 

problem was then passed on to Gurobi 10 for solving, employing a traditional branch and bound 

algorithm with a relative gap tolerance of 1% (Land & Doig 1960). 

The outcomes, measured in terms of NPV, harvest volumes, carbon storage, and the area of 

ecologically significant forests, represent what decision-makers might expect when following 

these plans, assuming the RS-based predictions are accurate. These expected outcomes are 

referred to as EXPECTATION. 

To evaluate what would happen in real forests if decisions on future management were made 

using RS-based stand inventories, we simulated the implementation of these management 

decisions using field-surveyed reference data as input. Heureka PlanWise forecasted the 

outcomes for stand development, as well as indicators of ecosystem services and biodiversity, 

following the same sequences of management determined from using the corresponding RS-

based stand inventories of matching stands. The resulting outcomes are referred to as 

REALISATION. 

As a reference, we also solved the two optimisation problems using treatment programmes 

generated solely from the field data as input. The outcomes for the resulting plans are denoted 

REFERENCE, as they represent the optimal plans assuming perfect information.  

To aid in digesting the results, we highlight two key comparisons. The first is the difference 

between REALISATION and EXPECTATION; a negative difference in this comparison 

indicates that the actual outcomes fell short of the expected ones, signalling an over-optimistic 

expectation. The second important comparison is between REALISATION and REFERENCE; 

a negative difference here suggests suboptimality, revealing that decisions based on RS data 

were less optimal than those derived from field data. This kind of suboptimality is often denoted 

regret (Bell 1982; Kangas et al. 2015). In the same tradition, an overestimation of the optimal 

value, i.e. EXPECTATION vs. REFERENCE, can be denoted disappointment (Bell 1985).   
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RESULTS 

 

Net present value 

Our findings indicate a potential risk of overestimating NPV when relying on RS-based stand 

inventories (Table 7). The discrepancy between the expected and realised NPV was more 

pronounced for satellite-based plans than ALS-based plans. A similar trend was observed for 

suboptimality, i.e. the difference between the realised and reference NPV.  

Table 7. The results for the net present value for both remote sensing-based stand inventories 
and each problem. Loss is the difference between the expected and the realised net present value. 
Suboptimality is the difference between the reference and realised net present value. Satellite 
refers to optical satellite imagery, and ALS to airborne laser scanning. 

Data used Problem REALISATION EXPECTATION REFERENCE Loss Suboptimality 

  SEK ha-1 SEK ha-1 SEK ha-1   

Satellite HARVEST 51,469 56,345 56,626 -8.7% -9.1% 

Satellite 
BIO-

CARBON 
51,515 56,202 55,214 -8.3% -6.7% 

ALS HARVEST 49,318 53,056 52,842 -7.0% -6.7% 

ALS 
BIO-

CARBON 
48,430 52,032 51,822 -6.9% -6.5% 

 

Harvest levels 

The RS-based plans lead to uneven harvest levels during the planning horizon in 

REALISATION (Figure 3). A common pattern emerged where the initial expected harvest 

levels were lower than those realised during the first 10–15 years but generally surpassed them 

in later years, with brief exceptions. In these cases, realised harvest levels also exceeded those 

in REFERENCE, suggesting unsustainable over-harvesting. Over the 100-year period, the total 

suboptimality in harvested volume in REALISATION relative to REFERENCE was somewhat 

larger for ALS-based plans than for satellite-based plans (Table 8). Both the satellite-based and 

ALS-based plans got lower (EXPECTATION compared to REALISATION) harvest levels by 

10-12%. EXPECTATION projected higher harvests than for both data sets, indicating an 

overestimation. 
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Table 8. The results for the average harvest level per hectare for both remote sensing-based stand 
inventories. Loss is the difference between the expected and the realised average harvest level. 
Suboptimality is the difference between the reference and realised average harvest level. Satellite 
refers to optical satellite imagery, and ALS to airborne laser scanning. 

Data used Problems REALISATION EXPECTATION REFERENCE Loss Suboptimality 

  m3ha-1year-1 m3ha-1year-1 m3ha-1year-1   

Satellite Both 4.4 5.0 4.8 -12% -8.3% 

ALS Both 3.9 4.4 4.3 -10% -8.7% 

 

  

Figure 3. The average harvested volume per hectare and year according to the three outcomes 
REFERENCE, EXCPECTATION, and REALISATION and the problems HARVEST and 
BIO-CARBON. Satellite refers to optical satellite imagery, and ALS to airborne laser scanning. 
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Carbon stock 

Figure 4 illustrates that satellite-based plans overestimated carbon stocks in EXPECTATION 

compared to REALISATION during the first 50 years, with differences ranging from 8% to 

24%. In contrast, the ALS-based plans showed smaller deviations, from -3% to 7.5%. Despite 

the BIO-CARBON problem prohibiting any reduction in carbon stock, both ALS and satellite-

based plans resulted in a realised carbon stock reduction of approximately 5% compared to the 

initial value after several years. 

 

  

Figure 4. The average carbon stock per hectare according to the three outcomes REFERENCE, 
EXCPECTATION, and REALISATION and the problems HARVEST and BIO-CARBON. 
Satellite refers to optical satellite imagery, and ALS to airborne laser scanning. 



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

158 www.forestsmonitor.com  

 

Ecologically important forests  

Figure 5 shows the development of the area proportion of forests that fulfilled any of the 

following criteria: it was older than 120 years in the south or 140 years in the north, had at least 

60 large trees per hectare or had many mature broad-leaf trees. Satellite-based plans were less 

effective in identifying these ecologically valuable forests than ALS-based plans, causing 

EXPECTATION to be significantly lower than REALISATION early in the planning horizon, 

which contributed to an unintended decline in BIO-CARBON. In contrast, the ALS-based 

plans showed more alignment between REALISATION, EXPECTATION, and REFERENCE, 

though EXPECTATION was often equal to or lower than REALISATION over many periods. 

Figures for the individual indicators are presented in Appendix B. 

  

Figure 5. The area proportion of forest where any of the ecological indicators old forest, mature 
broad-leaf forests or forests with large trees were true according to the three outcomes 
REFERENCE, EXCPECTATION, and REALISATION and the problems HARVEST and 
BIO-CARBON. Satellite refers to optical satellite imagery, and ALS to airborne laser scanning. 
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Differences during the first 10 years  

The first 10 years in a planning horizon are often considered most important, as it is very 

common to make a new long-term plan when that time has passed (Ulvdal et al. 2023). The 

relative changes for harvest levels, carbon stock, and the area of ecologically important forests 

compared to the reference during the first 10 years for the HARVEST-problem also show large 

deviations for this initial time (Table 9). Notably, harvest levels were almost 20% lower than 

what they should have been when planning with satellite data, even though the expectation was 

higher than the reference. Carbon stocks were overestimated, most significantly for the satellite 

data. Also, the area of ecologically important forests shows significant deviations from the 

reference levels.  

Table 9. The relative changes for harvest levels, carbon stock, and the area of ecologically 
important forests compared to the reference during the first 10 years for the HARVEST-
problem. 

Method Outcome Harvest level Carbon 

Ecologically 

important 

forests 

ALS EXPECTATION +0.10% +0.52% -4.22% 

ALS REALISATION +5.92% -0.30% +3.51% 

Satellite EXPECTATION +1.05% +11.88% -99.11% 

Satellite REALISATION -18.18% -1.28% 55.72% 
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DISCUSSION 

 

Our study reveals that forest management planning based on data from RS-based forest 

inventories can lead to unexpected or undesirable outcomes. The realised results for ecosystem 

services and biodiversity indicators often diverged significantly from initial expectations. 

Notably, deviations were more pronounced in plans based on predictions from satellite data 

than those relying on predictions from ALS. This was expected since the satellite predictions 

generally had larger random errors and a more profound influence of regression toward the 

mean (Figure 2). 

Across all indicators, i.e. NPV, harvest volume, carbon stock, and ecologically important forest 

area, the realised outcomes deviated from expectations. Note that absolute values from the 

evaluation of the two RS-based stand inventories should not be directly compared across 

inventories, as they represent slightly differing forests, despite efforts to standardise them. 

Rather, the focus should be on relative differences, such as the gap between expected and 

realised outcomes. 

NPV, used as an overall measure of optimality, indicated that decision-making informed by 

RS could result in suboptimality, with reductions in NPV of at least -7% to -9%. The 

suboptimality was more pronounced in the satellite-based plans than those based on ALS 

predictions (Table 7), likely due to larger random errors and effects from regression towards 

the mean in satellite-derived predictions (Figure 2). The suboptimalities we report are likely 

conservative, as they reflect only the direct costs associated with mistimed or suboptimal 

treatments and their silvicultural consequences. For example, too early harvesting would result 

in lower timber volumes or smaller logs, both of which yield lower market prices and incur 

higher operational costs. The suboptimalities exclude indirect costs, such as those stemming 

from failures to meet industrial supply contracts. Additionally, some attributes in the RS-based 

inventories were gathered in the field, thus providing an unfair comparison to the reference 

data in favour of the RS-based inventories. However, the suboptimalities we report are 

consistent with or exceed those reported in other studies examining the impact of data quality 

on planning efficiency (e.g. Duvemo et al. 2014; Ruotsalainen et al. 2021).  

While NPV is a useful metric for overall objective fulfilment, harvest levels are often more 

critical for forest companies and national scenario analyses (Hynynen et al. 2015; Ulvdal et al. 

2023). Our findings demonstrate substantial fluctuations in realised harvest levels when 
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planning is based on RS-based stand inventories (Figure 3). These levels were generally lower 

than both optimal and expected values, which poses potential challenges (Table 8). For 

example, the financial value of forest companies may depend on their projected harvest levels 

(Chudy & Cubbage 2020). Also, lower-than-expected harvests may hinder efforts to replace 

fossil fuels with wood-based materials, a key strategy for mitigating climate change (e.g. 

Gustavsson et al. 2017).  

The sudden decrease in harvest levels after the first period for the satellite-based plans can be 

explained by the fact that some stands with harvests planned according to the predictions from 

satellite data had not reached the lowest allowable age for harvests according to the reference 

data (see Figure 6). These harvests were postponed to the earliest time points when they were 

allowed, resulting in lower harvests. This result is most likely an effect of regression towards 

the mean since relatively young forests, i.e. approximately 50 years, according to the reference 

data, were predicted to be older, i.e. approx. 75 years (Figure 6). This effect from regression 

towards the mean also led to cyclic patterns in harvest levels, which is an expected result of 

planning based on data with reduced variability of initial conditions, i.e. data that describe a 

too large portion of the forest as conforming to average conditions. 

 

Figure 6. The stand ages according to both the reference data and predictions from satellite data, 
at year 0 in stands with planned harvests in the second period (year 5-10) of the problem 
HARVEST where decisions were based on the satellite-based predictions. The planned harvests 
are coloured depending on if the harvest in each stand was legal or not (depending on the age). 
The green-blue stands had not come to age and were therefore postponed. None indicates that 
no harvest were planned in either case in that period.  
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Keeping forests from becoming carbon sources is also a possible climate change mitigation 

strategy (Kirschbaum 2003), where short-term reduction is the key (Skytt et al. 2021). Our 

results indicate that forest management decisions informed by RS-based stand inventories may 

lead to reductions in carbon stocks despite intentions to increase them (Figure 4). Furthermore, 

the satellite-based plans substantially overestimated initial carbon storage levels, which raises 

concerns for carbon monitoring programs that rely on predictions based on satellite data. 

Planning for ecological considerations with RS-based stand inventories as input also presents 

challenges. Satellite-based plans tended to underestimate the area of ecologically important 

forests (Figure 5), likely due to old forests missing from the dataset, which is explained by 

regression towards the mean. A correct assessment of old forests appeared to be very influential 

for the overall results for all three ecological indicators (see individual indicators in Appendix 

B).  

In contrast, ALS-based plans yielded more accurate results, as forest age in this dataset was not 

predicted using RS (Table 1). Although methods for predicting forest age using a combination 

of ALS and satellite data exist, they remain uncertain, with relative root mean squared errors 

ranging from 16% to 50% (Schumacher et al. 2020). Nonetheless, advances in bi-temporal 

ALS suggest that it may become possible to improve age predictions in the future (Appiah 

Mensah et al. 2023). Including predicted ages instead of using the field-measured ages would 

probably negatively influence the results of the ALS-based plans. 

Given the growing reliance on remotely sensed forest inventories (Fassnacht et al. 2023), we 

concur with calls for increased evaluation of these datasets. A persistent issue is the frequent 

presentation of forest resource maps without accompanying quality metrics, which may lead 

forestry professionals and policymakers to overlook the inherent uncertainties (Kangas et al. 

2023). The need for such evaluations is underscored by the increasing emphasis on large-scale 

RS-based forest monitoring programs for policy development (Probeck et al. 2014; Linser et 

al. 2023). A recent European example illustrates the risks of basing policy on RS-derived data. 

Ceccherini et al. (2020) claimed that, from analysing satellite data, there was a rapid increase 

in harvested areas across Europe, particularly in the Nordic region. However, these findings 

were later contested both methodologically and with additional analyses of national field-based 

forest inventories (Palahí et al. 2021; Picard et al. 2021; Breidenbach et al. 2022). The 

questioned conclusions by Ceccherini et al. (2020) are not strictly related to random errors or 
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biases in RS predictions but point to the uncertainties that may arise when RS-derived data are 

used to inform policy (European Commission 2024). 

Our findings highlight potential risks when using RS data for forest scenario analysis and 

planning, particularly due to differences between expected and realised outcomes. There is, 

however, more to do in this field. For example, this study only acknowledged three indicators 

for ecologically important forests due to the lack of other models – which is a common problem 

(Hunault-Fontbonne & Eyvindson 2023). Another drawback was that we only included carbon 

stock in living trees when soil carbon, in reality, makes up a significant part of the total stock 

(Bradshaw & Warkentin 2015). The decision not to model soil carbon was based on the current 

uncertainties of the models implemented in Heureka PlanWise (Ortiz et al. 2013). Moreover, 

although the field survey data used for reference was of as high quality as practically possible, 

it may have included measurement and sampling errors (Lindgren 2000), contributing to some 

extent to the differences between field data and predictions based on remotely sensed data. The 

same is true regarding the generation of tree lists in Heureka PlanWise. These potential 

differences should, however, be rather negligible and should not impact the results in any 

significant way.  

Future studies should consider the adaptive nature of forest planning, which incorporates 

periodic re-planning and data updates since this is how forestry operates (Ulvdal et al. 2023). 

Moreover, the lack of uncertainty-handling methods in our optimisation models reflects current 

practice, as forest companies in Sweden typically do not employ such techniques (de Pellegrin 

Llorente et al. 2023). Employing stochastic programming or similar methods could likely 

improve planning outcomes (Pasalodos-Tato et al. 2013). Likewise, this would also probably 

be the case for calibration techniques such as histogram matching (Gilichinsky et al. 2012).  

Moreover, future studies should try to isolate the effect of regression towards the mean, as this 

is probably one major driver in some of the negative effects of using RS-derived data in forest 

planning. To do this, it is probably necessary to conduct some simulation of errors, where their 

characteristics could be controlled. Such a study would probably be challenging to design with 

similar real-world data as in this study. Regression towards the mean is no new problem in 

forest inventory and planning. Many inventory methods, especially those that, to some extent, 

are subjective, are affected in the same way (Ståhl 1992). Also, models that aim to describe 

forest growth and development over time are generally affected by the same problem. 

Nevertheless, the availability and periodicity of new RS-based predictions about forests, i.e. 
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forest resource maps, is drastically increasing, and many users probably do not reflect much 

about their uncertainty. This highlights the need to address the issue at hand. 

 

CONCLUSIONS 

 

Reliable data on forest resources is essential for informing future forest policy and 

management. Our findings indicate a suboptimality in NPV of -7% to -9% when using RS-

based stand inventories influenced by regression towards the mean and other errors. Other 

indicators also showed substantial differences between expected and realised outcomes in plans 

based on predictions from RS. Harvest levels fluctuated significantly over time, occasionally 

exceeding sustainable harvest thresholds, while carbon stocks were unintentionally reduced. 

Notably, satellite-based plans significantly overestimated carbon stocks, while the degree of 

overestimation was less pronounced in plans based on ALS predictions. Achieving stable 

outcomes for biodiversity indicators proved challenging for all RS-based stand inventories, 

though ALS-based plans performed markedly better than the satellite-based plans. 

Our results highlight the impact of uncertainties inherent in RS predictions, including the issue 

of regression towards the mean when such data is used in scenario analyses and planning 

models. These findings have important implications for ongoing policy development and 

potential regulations concerning large-scale forest monitoring and planning. While RS-based 

predictions remain a valuable tool for forest planning and policy, it is crucial to acknowledge 

their limitations. We recommend that decisions regarding forest management be supported by 

high-quality data or, at the very least, data with well-characterised uncertainties. 

 

AVAILABILITY OF DATA AND MATERIAL 
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The satellite map is freely available from the Swedish University of Agricultural Sciences’ 

webpage: https://www.slu.se/en/environment/statistics-and-environmental-data/search-for-

open-environmental-data/slu-forest-map/. 
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webpage: https://www.skogsstyrelsen.se/skogligagrunddata. The version used in this study is 

available for researchers upon reasonable request. 

 

CODE AVAILABILITY 

 

Data processing scripts in R and the Heureka PlanWise Project file are available from the 

corresponding author upon reasonable request.  

 

CONFLICTS OF INTEREST 

 

During the work with this study, Patrik Ulvdal were affiliated part-time with Holmen Skog AB, 

the company that provided data. Holmen also funded part of the study in the form of parts of 

the salary for Patrik Ulvdal. The other authors declare no competing interests. 

 

ACKNOWLEDGEMENTS 

 

We thank Holmen Skog AB for providing the forest data and Dr. Tomas Lämås for his work 

in acquiring funding for this study. We also thank Dr. Peder Wikström for providing the 

formulation of restrictions that implement the Swedish regulation of maximum allowable 

harvest area in our optimisation model. Finally, we thank the anonymous reviewers for their 

valuable comments that have improved our manuscript.   

 

FUNDING 

 

This research was supported by the Kempe Foundations (SLUID: srh 2018-207-1), Holmen 

Skog AB (SLUID: srh 2018-214-1), the Swedish Foundation for Strategic Environmental 

Research (DIA 2017/14 #6), and the Swedish University of Agricultural Sciences (SLUID: srh 

2018-207-1). 



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

166 www.forestsmonitor.com  

 

REFERENCES 

 

Andersen H-E, McGaughey RJ, Reutebuch SE. 2005. Estimating forest canopy fuel parameters using LIDAR 

data. Remote Sens Environ 94(4):441-449. https://doi.org/10.1016/j.rse.2004.10.013 

Appiah Mensah A, Jonzén J, Nyström K, Wallerman J, Nilsson M. 2023. Mapping site index in coniferous forests 

using bi-temporal airborne laser scanning data and field data from the Swedish national forest inventory. For Ecol 

Manage 547:121395. https://doi.org/10.1016/j.foreco.2023.121395 

Astrup R, Rahlf J, Bjørkelo K, Debella-Gilo M, Gjertsen A-K, Breidenbach J. 2019. Forest information at multiple 

scales: development, evaluation and application of the Norwegian forest resources map SR16. Scand J For Res 

34(6):484-496. https://doi.org/10.1080/02827581.2019.1588989 

Barnett AG, van der Pols JC, Dobson AJ. 2005. Regression to the mean: what it is and how to deal with it. Int J 

Epidemiol 34(1):215-220. https://doi.org/10.1093/ije/dyh299 

Barth A, Lind T, Ståhl G. 2012. Restricted imputation for improving spatial consistency in landscape level data 

for forest scenario analysis. For Ecol Manage 272:61-68. https://doi.org/10.1016/j.foreco.2011.07.009 

Bell DE. 1982. Regret in decision making under uncertainty. Oper Res 30(5):961-981. 

https://doi.org/10.1287/opre.30.5.961 

Bell DE. 1985. Disappointment in decision making under uncertainty. Oper Res 33(1):1-27. 

https://doi.org/10.1287/opre.33.1.1 

Bontemps J-D, Bouriaud O, Vega C, Bouriaud L. 2022. Offering the appetite for the monitoring of European 

forests a diversified diet. Ann For Sci 79(1):19. https://doi.org/10.1186/s13595-022-01139-7 

Bradshaw CJA, Warkentin IG. 2015. Global estimates of boreal forest carbon stocks and flux. Glob Planet Change 

128:24-30. https://doi.org/10.1016/j.gloplacha.2015.02.004 

Breidenbach J, Ellison D, Petersson H, Korhonen KT, Henttonen HM, Wallerman J, Fridman J, Gobakken T, 

Astrup R, Næsset E. 2022. Harvested area did not increase abruptly-how advancements in satellite-based mapping 

led to erroneous conclusions. Ann For Sci 79(1):2. https://doi.org/10.1186/s13595-022-01120-4 

Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver PO, 

Meurisse N, Oxbrough A, Taki H, Thompson ID, van der Plas F, Jactel H. 2017. Forest biodiversity, ecosystem 

functioning and the provision of ecosystem services. Biodivers Conserv 26(13):3005-3035. 

https://doi.org/10.1007/s10531-017-1453-2 

Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. 2006. Measurement error in nonlinear models: a modern 

perspective. 2nd ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781420010138 

Ceccherini G, Duveiller G, Grassi G, Lemoine G, Avitabile V, Pilli R, Cescatti A. 2020. Abrupt increase in 

harvested forest area over Europe after 2015. Nature 583(7814):72-77.  

https://doi.org/10.1038/s41586-020-2438-y 



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

167 www.forestsmonitor.com  

 

Chudy RP, Cubbage FW. 2020. Research trends: Forest investments as a financial asset class. Forest Policy and 

Economics 119:102273. https://doi.org/10.1016/j.forpol.2020.102273 

Duvemo K, Lämås T, Eriksson LO, Wikström P. 2014. Introducing cost-plus-loss analysis into a hierarchical 

forestry planning environment. Annals of Operations Research 219(1):415-431.  

https://doi.org/10.1007/s10479-012-1139-9 

Eggers J, Holmgren S, Nordström E-M, Lämås T, Lind T, Öhman K. 2019. Balancing different forest values: 

Evaluation of forest management scenarios in a multi-criteria decision analysis framework. Forest Policy and 

Economics 103:55-69. https://doi.org/10.1016/j.forpol.2017.07.002 

Eggers J, Lundström J, Snäll T, Öhman K. 2022. Balancing wood production and biodiversity in intensively 

managed boreal forest. Scandinavian Journal of Forest Research 37(3):213-225. 

https://doi.org/10.1080/02827581.2022.2066170 

Eriksson LO, Borges JG. 2014. Computerized decision support tools to address forest management planning 

problems: history and approach for assessing the state of art world-wide. In: Borges JG, Nordström EM, Garcia-

Gonzalo J, Hujala T, Trasobares A, editors. Computer-Based Tools for Supporting Forest Management: The 

Experience and the Expertise World-wide. p. 3-25. https://pub.epsilon.slu.se/11417/7/borges_jg_etal_140825.pdf 

European Commission. 2024. Part 3 - Accompanying the document: Communication from the commission to the 

European Parliament, the council, the European Economic and Social Committee and the Committee of the 

Regions - Securing our future - Europe's 2040 climate target and path to climate neutrality by 2050, building a 

sustainable, just and prosperous society. (Commission staff working document - impact assessment report). 

Fahlvik N, Elfving B, Wikström P. 2014. Evaluation of growth functions used in the Swedish Forest Planning 

System Heureka. Silva Fennica 48(2). https://doi.org/10.14214/sf.1013 

Fassnacht FE, White JC, Wulder MA, Næsset E. 2023. Remote sensing in forestry: current challenges, 

considerations and directions. Forestry: An International Journal of Forest Research cpad024. 

https://doi.org/10.1093/forestry/cpad024 

Flisberg P, Frisk M, Rönnqvist M. 2014. Integrated harvest and logistic planning including road upgrading. 

Scandinavian Journal of Forest Research 29(sup1):195-209. https://doi.org/10.1080/02827581.2014.929733 

Flisberg P, Rönnqvist M, Willén E, Forsmark V, Davidsson A. 2022. Optimized locations of landings in forest 

operations. Canadian Journal of Forest Research 52(1):59-69. https://doi.org/10.1139/cjfr-2021-0032 

Gilichinsky M, Heiskanen J, Barth A, Wallerman J, Egberth M, Nilsson M. 2012. Histogram matching for the 

calibration of kNN stem volume estimates. International Journal of Remote Sensing 33(22):7117-7131. 

https://doi.org/10.1080/01431161.2012.700134 

Gustavsson L, Haus S, Lundblad M, Lundström A, Ortiz CA, Sathre R, Truong NL, Wikberg P-E. 2017. Climate 

change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renewable and 

Sustainable Energy Reviews 67:612-624. https://doi.org/10.1016/j.rser.2016.09.056 



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

168 www.forestsmonitor.com  

 

Hansen MC, Loveland TR. 2012. A review of large area monitoring of land cover change using Landsat data. 

Remote Sensing of Environment 122:66-74. https://doi.org/10.1016/j.rse.2011.08.024 

Holopainen M, Mäkinen A, Rasinmäki J, Hyytiäinen K, Bayazidi S, Pietilä I. 2010. Comparison of various sources 

of uncertainty in stand-level net present value estimates. Forest Policy and Economics 12(5):377-386. 

https://doi.org/10.1016/j.forpol.2010.02.009 

Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem 

S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem 

functioning: a consensus of current knowledge. Ecological Monographs 75(1):3-35.  

https://doi.org/10.1890/04-0922 

Hunault-Fontbonne J, Eyvindson K. 2023. Bridging the gap between forest planning and ecology in biodiversity 

forecasts: a review. Ecological Indicators 154:110620. https://doi.org/10.1016/j.ecolind.2023.110620 

Hynynen J, Salminen H, Ahtikoski A, Huuskonen S, Ojansuu R, Siipilehto J, Lehtonen M, Eerikäinen K. 2015. 

Long-term impacts of forest management on biomass supply and forest resource development: a scenario analysis 

for Finland. European Journal of Forest Research 134(3):415-431. https://doi.org/10.1007/s10342-014-0860-0 

Islam MdN, Kurttila M, Mehtätalo L, Pukkala T. 2010. Inoptimality losses in forest management decisions caused 

by errors in an inventory based on airborne laser scanning and aerial photographs. Canadian Journal of Forest 

Research 40(12):2427-2438. https://doi.org/10.1139/X10-185 

Islam MdN, Pukkala T, Kurttila M, Mehtätalo L, Heinonen T. 2012. Effects of forest inventory errors on the area 

and spatial layout of harvest blocks. European Journal of Forest Research 131(6):1943-1955. 

https://doi.org/10.1007/s10342-012-0645-2 

Johnson KN, Scheurman HL. 1977. Techniques for prescribing optimal timber harvest and investment under 

different objectives-discussion and synthesis [monograph]. Forest Science 23(Suppl. 1.1):S1-S31. 

Jonsson B, Jacobsson J, Kallur H. 1993. The forest management planning package. Theory and application. Studia 

Forestalia Suecica (189). 

Kangas A, Kurttila M, Hujala T, Eyvindson K, Kangas J. 2015. Decision support for forest management. 2nd ed. 

Springer International Publishing. https://doi.org/10.1007/978-3-319-23522-6 

Kangas A, Myllymäki M, Mehtätalo L. 2023. Understanding uncertainty in forest resources maps. Silva Fennica 

57(2). https://doi.org/10.14214/sf.22026 

Kirschbaum MUF. 2003. To sink or burn? A discussion of the potential contributions of forests to greenhouse gas 

balances through storing carbon or providing biofuels. Biomass and Bioenergy 24(4):297-310. 

https://doi.org/10.1016/S0961-9534(02)00171-X 

Kotivuori E, Korhonen L, Packalen P. 2016. Nationwide airborne laser scanning based models for volume, 

biomass and dominant height in Finland. Silva Fennica 50(4). https://doi.org/10.14214/sf.1567 



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

169 www.forestsmonitor.com  

 

Lämås T, Sängstuvall L, Öhman K, Lundström J, Årevall J, Holmström H, Nilsson L, Nordström EM, Wikberg 

PE, Wikström P, Eggers J. 2023. The multi-faceted Swedish Heureka forest decision support system: context, 

functionality, design, and ten years experiences of its use. Frontiers in Forests and Global Change 6. 

https://doi.org/10.3389/ffgc.2023.1163105 

Land AH, Doig AG. 1960. An automatic method of solving discrete programming problems. Econometrica 

28(3):497-520. https://doi.org/10.2307/1910129 

Lindgren N, Nyström K, Saarela S, Olsson H, Ståhl G. 2022. Importance of calibration for improving the 

efficiency of data assimilation for predicting forest characteristics. Remote Sensing 14(18):4627. 

https://doi.org/10.3390/rs14184627 

Lindgren O. 1984. A study on circular plot sampling of Swedish forest compartments. PhD thesis. Swedish 

University of Agricultural Sciences. 

Lindgren O. 2000. Quality control of measurements made on fixed-area sample plots. In: Hansen M, Burk T, 

editors. 2000. https://www.fs.usda.gov/treesearch/pubs/15877 

Linser S, Lier M, Bastrup-Birk A. 2023. Key information for forest policy decision-making-Does current reporting 

on forests and forestry reflect forest discourses? iForest - Biogeosciences and Forestry 16(6):325. 

https://doi.org/10.3832/ifor4457-016 

Lundmark T, Poudel BC, Stål G, Nordin A, Sonesson J. 2018. Carbon balance in production forestry in relation 

to rotation length. Canadian Journal of Forest Research 48(6):672-678. https://doi.org/10.1139/cjfr-2017-0410 

Nilsson M, Nordkvist K, Jonzén J, Lindgren N, Axensten P, Wallerman J, Egberth M, Larsson S, Nilsson L, 

Eriksson J, Olsson H. 2017. A nationwide forest attribute map of Sweden predicted using airborne laser scanning 

data and field data from the National Forest Inventory. Remote Sensing of Environment 194:447-454. 

https://doi.org/10.1016/j.rse.2016.10.022 

Nilsson M, Wasterlund DS, Wahlberg O, Eriksson LO. 2012. Forest planning in a Swedish company-a knowledge 

management analysis of forest information. Silva Fennica 46(5):717-731. https://doi.org/10.14214/sf.922 

Orsi F, Ciolli M, Primmer E, Varumo L, Geneletti D. 2020. Mapping hotspots and bundles of forest ecosystem 

services across the European Union. Land Use Policy 99:104840. 

https://doi.org/10.1016/j.landusepol.2020.104840 

Ortiz CA, Liski J, Gärdenäs AI, Lehtonen A, Lundblad M, Stendahl J, Ågren GI, Karltun E. 2013. Soil organic 

carbon stock changes in Swedish forest soils-A comparison of uncertainties and their sources through a national 

inventory and two simulation models. Ecological Modelling 251:221-231. 

https://doi.org/10.1016/j.ecolmodel.2012.12.017 

Palahí M, Valbuena R, Senf C, Acil N, Pugh TAM, Sadler J, Seidl R, Potapov P, Gardiner B, Hetemäki L, Chirici 

G, Francini S, Hlásny T, Lerink BJW, Olsson H, González Olabarria JR, Ascoli D, Asikainen A, Bauhus J, 

Berndes G, Donis J, Fridman J, Hanewinkel M, Jactel H, Lindner M, Marchetti M, Marušák R, Sheil D, Tomé M, 



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

170 www.forestsmonitor.com  

 

Trasobares A, Verkerk PJ, Korhonen M, Nabuurs G-J. 2021. Concerns about reported harvests in European 

forests. Nature 592(7856):E15-E17. https://doi.org/10.1038/s41586-021-03292-x 

Pasalodos-Tato M, Mäkinen A, Garcia-Gonzalo J, Borges JG, Lämås T, Eriksson LO. 2013. Assessing uncertainty 

and risk in forest planning and decision support systems: review of classical methods and introduction of new 

approaches. Forest Systems 22(2):282-303. https://doi.org/10.5424/fs/2013222-03063 

de Pellegrin Llorente I, Eyvindson K, Mazziotta A, Lämås T, Eggers J, Öhman K. 2023. Perceptions of uncertainty 

in forest planning: contrasting forest professionals' perspectives with the latest research. Canadian Journal of 

Forest Research 53(6):391-406. https://doi.org/10.1139/cjfr-2022-0193 

Picard N, Leban J-M, Guehl J-M, Dreyer E, Bouriaud O, Bontemps J-D, Landmann G, Colin A, Peyron J-L, 

Marty P. 2021. Recent increase in European forest harvests as based on area estimates (Ceccherini et al. 2020a) 

not confirmed in the French case. Annals of Forest Science 78(1):1-5.  

https://doi.org/10.1007/s13595-021-01030-x 

Probeck M, Ramminger G, Herrmann D, Gomez S, Häusler T. 2014. European forest monitoring approaches. In: 

Manakos I, Braun M, editors. Land Use and Land Cover Mapping in Europe: Practices & Trends. Springer 

Netherlands. p. 89-114. https://doi.org/10.1007/978-94-007-7969-3_7 

Reese H, Nilsson M, Pahlén TG, Hagner O, Joyce S, Tingelöf U, Egberth M, Olsson H. 2003. Countrywide 

estimates of forest variables using satellite data and field data from the National Forest Inventory. AMBIO: A 

Journal of the Human Environment 32(8):542-548. https://doi.org/10.1579/0044-7447-32.8.542 

Ruotsalainen R, Pukkala T, Kangas A, Packalen P. 2021. Effects of errors in basal area and mean diameter on the 

optimality of forest management prescriptions. Annals of Forest Science 78(1):18. 

https://doi.org/10.1007/s13595-021-01037-4 

Schuck A, Päivinen R, Häme T, Van Brusselen J, Kennedy P, Folving S. 2003. Compilation of a European forest 

map from Portugal to the Ural mountains based on earth observation data and forest statistics. Forest Policy and 

Economics 5(2):187-202. https://doi.org/10.1016/S1389-9341(03)00024-8 

Schumacher J, Hauglin M, Astrup R, Breidenbach J. 2020. Mapping forest age using National Forest Inventory, 

airborne laser scanning, and Sentinel-2 data. Forest Ecosystems 7(1):60.  

https://doi.org/10.1186/s40663-020-00274-9 

Seebach L, McCallum I, Fritz S, Kindermann G, Leduc S, Böttcher H, Fuss S. 2012. Choice of forest map has 

implications for policy analysis: a case study on the EU biofuel target. Environmental Science & Policy 22:13-

24. https://doi.org/10.1016/j.envsci.2012.04.010 

Skytt T, Englund G, Jonsson B-G. 2021. Climate mitigation forestry-temporal trade-offs. Environmental Research 

Letters 16(11):114037. https://doi.org/10.1088/1748-9326/ac30fa 

Ståhl G. 1992. A study on the quality of compartmentwise forest data acquired by subjective inventory methods. 

Report No. 24. Department of Biometry and Forest Management, Swedish University of Agricultural Sciences. 



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

171 www.forestsmonitor.com  

 

Ståhl G, Gobakken T, Saarela S, Persson HJ, Ekström M, Healey SP, Yang Z, Holmgren J, Lindberg E, Nyström 

K, Papucci E, Ulvdal P, Ørka HO, Næsset E, Hou Z, Olsson H, McRoberts RE. 2024. Why ecosystem 

characteristics predicted from remotely sensed data are unbiased and biased at the same time - and how this affects 

applications. Forest Ecosystems 11:100164. https://doi.org/10.1016/j.fecs.2023.100164 

Stigler SM. 1997. Regression towards the mean, historically considered. Statistical Methods in Medical Research 

6(2):103-114. https://doi.org/10.1177/096228029700600202 

Tellinghuisen J. 2000. Inverse vs. classical calibration for small data sets. Fresenius' Journal of Analytical 

Chemistry 368(6):585-588. https://doi.org/10.1007/s002160000556 

The Swedish Environmental Protection Agency. 2024. Levande skogar - Sveriges miljömål. The environmental 

objectives system. https://sverigesmiljomal.se/miljomalen/levande-skogar/ [Accessed 2024-03-07] 

Ulvdal P, Öhman K, Eriksson LO, Wästerlund DS, Lämås T. 2023. Handling uncertainties in forest information: 

the hierarchical forest planning process and its use of information at large forest companies. Forestry: An 

International Journal of Forest Research 96(1):62-75. https://doi.org/10.1093/forestry/cpac028 

Wilhelmsson P, Lämås T, Wallerman J, Eggers J, Öhman K. 2022. Improving dynamic treatment unit forest 

planning with cellular automata heuristics. European Journal of Forest Research 141(5):887-900. 

https://doi.org/10.1007/s10342-022-01479-z 

Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC. 2016. Integrating Landsat 

pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass 

in Saskatchewan, Canada. Remote Sensing of Environment 176:188-201. 

https://doi.org/10.1016/j.rse.2016.01.015 

  

  



Ulvdal et al. (2025)                                                                             Forests Monitor 2(1), 138-175, 2025 

 

172 www.forestsmonitor.com  

 

APPENDIX A 

 

The satellite map needed to be complemented with missing attributes in the form of stand 

averages to make it possible to generate tree lists for each stand with Heureka PlanWise. The 

complementation was done by employing simple regression models developed from freely 

available Swedish national forest inventory plot data from 2017-2021 (Tables A1-A3). The 

predictive variables in the models were selected by conducting bidirectional step-wise 

regression analyses for each response variable. Logarithmic, quadratic, cubic, square root, 

raising to the power 10, raising to the power-e or reciprocal transformations of the predictive 

variables were allowed if all variables for the same response had the same transformation. Only 

stand averages from available predictions were used as input in the models to calculate the 

complementary attributes. The number of stems was only calculated for stands with height <7 

m since stands of this height need that attribute in Heureka PlanWise, but others do not.  

Table A1. The linear models (𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑧 + 𝑑𝑞) for assigning the number of stems per 

hectare in stands with heights <7 m based on the satellite map. Separate models based on 

dominant tree species group. 𝑦 is the number of stems per hectare (ha
-1
), 𝑎 is a constant, 𝑥 is the 

height (m), 𝑧 is the volume (m
3
ha

-1
), and 𝑞 is the stand age (years). * indicates significance at the 

0.001 level. The dominant species group is the species group encompassing more than 50 % of 
the total stand volume. 

Dominant species 

group  

in element 

a b c d R
2
 

Number of 

observations 

Coniferous (>50%) 5059.7* -713.7* 52.1* -0.85 0.45 3746 

Deciduous (>50%) 5181.8* -528.1* 83.4* -22.00* 0.49 1776 

 

Table A2. The power models (𝑦 = 𝑒𝑎𝑥𝑏𝑧𝑐) for assigning basal area weighted diameter at breast 
height (Dbh) in stands with heights >7 m based on the satellite map. Separate models based on 

dominant tree species group. 𝑦 is the Dbh (cm), 𝑥 is the height (m), and 𝑧 is the mean age (years). 

All exponents had significance at the 0.001 level. The dominant species group is the species 
group encompassing more than 50 % of the total stand volume. 

Dominant species group  

in element 
a b c R

2
 Number of observations 

Coniferous (>50%) 0.0836 0.807 0.179 0.76 16662 

Deciduous (>50%) -0.354 0.916 0.220 0.70 2953 
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Table A3. The linear models (𝑦 = 𝑎 + 𝑏𝑥) for assigning the basal area per hectare in stands with 
heights >7 m from the satellite map. Separate models based on dominant tree species or species 

group. 𝑦 is the basal area (m
2
ha

-1
), 𝑎 is a constant, and 𝑥 is the quota volume/height (m

2
ha

-1
). An 

asterisk (*) indicates significance at the 0.001 level. Dominant species is the species with more 
than 60% of the volume. If no species makes up more than 60%, the same rule is applied to 
species groups, i.e. coniferous and deciduous species. If no group is larger than 60%, the stand 
is considered to be mixed. 

Dominant species in element a b R2 Number of observations 

Pinus sylvestris (>60%) -0.795* 2.17* 0.98 8011 

Picea abies (>60%) -0.350* 2.13* 0.97 5029 

Betula spp. (>60%) -0.139 2.23* 0.96 1192 

Pinus contorta (>60%) -0.456* 1.95* 1.00 287 

Quercus spp. (>60%) -0.334* 2.31* 1.00 163 

Fagus sylvatica (>60%) -0.894* 2.45* 1.00 71 

Coniferous (>60%) -0.853* 2.17* 0.98 2061 

Deciduous (>60%) 0.00811 2.26* 0.97 360 

Unknown deciduous (>60%) 0.0778 2.25* 0.96 380 

Mixed (i.e. none of the above) -0.481* 2.19* 0.98 1162 
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APPENDIX B 

Figures showing the development of the individual ecological indicators in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure B1. The area proportion of forests with more than 60 large trees per hectare according to 
the three outcomes (REFERENCE, EXCPECTATION, and REALISATION) and the two 

problems (HARVEST and BIO-CARBON). Satellite refers to optical satellite imagery, and ALS 
to airborne laser scanning. 

Figure B2. The area proportion of old forests according to the three outcomes (REFERENCE, 
EXCPECTATION, and REALISATION) and the two problems (HARVEST and BIO-
CARBON). Satellite refers to optical satellite imagery, and ALS to airborne laser scanning. 
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Figure B3. The area proportion of mature broad-leaf forests according to the three outcomes 
(REFERENCE, EXCPECTATION, and REALISATION) and the two problems (HARVEST 
and BIO-CARBON). Satellite refers to optical satellite imagery, and ALS to airborne laser 
scanning. 
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