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a b s t r a c t 

Emergence of technologies to replace human action is occurring in many sectors, with autonomous 

vehicles being a leading example. Autonomous vehicles do not require human interaction and in- 

stead employ various devices to perform essential operations. This paper assesses factors which 

cause autonomous vehicles to suffer crashes, using field data collected by the Californian Depart- 

ment of Motor Vehicles. Data on these highly automated vehicles (AVs) were clustered based 

on degree and direction of impact, and analyzed by coding in Excel and RStudio programming. 

A novel feature of the work is that all clustering, analysis, application of association rules, and 

determination of degrees of severity of crashes were done by RStudio programming and that the 

direction of autonomous vehicles impacts was identified based on field data. Our analysis re- 

veals that weather conditions, maneuvering, road conditions, and lighting are major factors in 

autonomous vehicles crashes. Rear-end crash and minor scratches to autonomous vehicles are 

the most frequent forms of damage, based on the available data. This study underscores the crit- 

ical need for enhanced sensor technologies and improved algorithms to better handle adverse 

weather conditions, complex maneuvers, and varying road and lighting conditions. By identify- 

ing the most frequent types of damage, such as rear-end crashes and minor scratches, this research 

provides valuable insights for manufacturers and policymakers aiming to improve the safety and 

reliability of autonomous vehicles. The findings can inform future design improvements and reg- 

ulatory measures, ultimately contributing to the reduction of crash rates and the advancement of 

autonomous vehicle technology. 

 

 

 

 

 

1. Introduction 

The concept of automated vehicles (AV) dates back to the 16th century, when Leonardo da Vinci created the first self-driving

vehicle, a modest, three-wheeled, self-propelled cart ( Bucolo M. B. A., 2020 ). It was a mechanical device, with a set of forces for engine

power, a pre-programmable control mechanism, and an automatic parking brake triggered electronically by wire ( Fuller, 2024 ). Thus,

the idea of autonomous vehicles predates the automobile itself ( Fig. 1 ). In the 20th century, scientists world-wide started creating

the prototypes for modern autonomous vehicles, which are becoming closer to reality owing to technological breakthroughs in areas

like computer vision. 
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Fig. 1. Development history of autonomous vehicles (AVs) ( Mobileye, 2023 ). 

Table 1 

Vehicle-controlling mechanisms in different development eras. 

No. Vehicle type/ year of invention Controlling system 

1. Da Vinci’s self-propelled cart, 1500. High-tension springs propelled the cart and allowed for preprogrammed steering that directed it along a 

predetermined path. 

2. Whitehead Torpedo, 1868. A torpedo that propelled itself underwater was a major changer for naval fleets worldwide. It could reach depths 

of hundreds of meters and maintained depth owing to a pressurization device (not explained). 

3. Mechanical Mike aircraft autopilot, 

1933. 

To ensure exact direction, gyroscopes tracked the plane’s heading and communicated with the controls. Today, 

autonomous technology uses gyroscopes. 

4. Teetor Cruise Control, 1945 

(applicable 1958). 

One of the earliest cruise control systems, invented by an engineer who became irritated with the rocking motion 

he experienced when driving. It employs a mechanically driven throttle to calculate the speed of the car. 

5. Stanford cart, 1961. Started with remote controlling and was later fitted with cameras and trained to recognize and follow a solid 

white line on the ground on its own. 

6. Tsukuba Mechanical Engineering, 

1977. 

Originally intended to be an autonomous passenger vehicle, it was designed to recognize traffic signs while 

accelerating beyond 20 miles per hour with the aid of two cameras mounted on the vehicle. 

7. VaMoRs, 1987. Several cameras and sixty microprocessors were installed in a car to recognize items in front of and behind the 

vehicle, with the focus on pertinent objects. 

8. General Atomics MQ-1 Predator, 

1995. 

Equipped with car-adopted technologies, such as thermal imaging sensors that enable night-time driving and 

radar that can see through smoke or clouds. 

9. Tesla Autopilot, 2015. With a single piece of software and a mix of cameras and radar, hand-free control is possible for driving on 

highways and motorways. 

 

 

 

 

 

 

 

Fig. 1 ; shows recent steps in the progression from self-propelled cart to AVs. In each era of vehicle improvements, AV monitoring

mechanisms have been updated ( Table 1 ). 

1.1. Automated vehicle crashes 

Vehicle crashes are often an outcome of complex issues, but understanding the causes can contribute to accident prevention

through different safety measures, regulations and training, to make the roads safer for everyone. A recent study proposes a new

control method for highly automated vehicles that combines trajectory tracking and obstacle avoidance ( Lin, 2020 ). This method uses

predicted obstacle trajectories, lane-change replanning, and adaptive controllers to navigate safely and avoid crashes, as demonstrated 

through simulations. However, it has been reported that the primary problem with control systems is time delays, with an emphasis

on real-time control of autonomous vehicles ( Bucolo, 2019 ). On the other hand, ( Xu, 2019 ), analyzed crash data from the California

Department of Motor Vehicles to identify key factors influencing the severity and type of crashes involving connected and autonomous

vehicles (CAVs), highlighting that driving mode, crash location, vehicle movements, and road conditions play significant roles. 
2
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Table 2 

Raw data classification categories used in Excel. 

Date No. of 

vehicles 

involved 

Accident 

details 

Type of 

injury 

Movement 

preceding 

crash 

Crash type Weather/lighting Roadway 

surface 

Roadway 

conditions 

Weight of 

damage 

Fig. 2. Flowchart of the data handling process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Motivations and target objectives 

Research is ongoing on safety concerns relating to mixed vehicle populations, particularly traffic that consists of both driverless 

and driver-operated cars ( Das, 2018 ). Even with the sophisticated on-board sensors, lidar, and radar used by manufacturing compa-

nies in current experiments, autonomous cars still have limitations. These include challenges in urban traffic situations, reliance on

weather conditions, and unexpected behavior from other drivers. Expert surveys on the significance of road infrastructure, market 

preparedness, and the degree to which particular criteria influence the execution of designated automated driving functions on public

roads have shown that the main issues for highly automated vehicles are complex urban environments, temporary work zones, and

poor visibility brought on by bad weather conditions (fog conditions lead to deteriorated traffic flow characteristics, increasing crash 

risks) ( Rahman, 2018 ; Gouda, 2021 ; Tengilimoglu, 2023 ; Fu, 2024 ). The main impacting elements are road surface conditions, road

alignment, and illumination. However, the crash risks with autonomous vehicles and the kind of problems they may introduce to the

current driving system are still unclear. 

The aim of this study was to identify factors causing AVs to suffer crashes. This issue was investigated using field data collected by

the Californian Department of Motor Vehicles (CA DMV) in field experiments (see Appendix A). Novel features of the work were that

all clustering and identification of conditions leading to Automated vehicle crashes using data collected in the field were performed

using the RStudio programming language and factors for Automated vehicle crashes are generally identified. 

2. Methods 

The CA DMV data used covered the period 2014 to August 2023 and encompassed crash type, position, place, AV type and status

of the vehicle. These data are useful in determining how popular AVs are among the general public, how they affect traffic flow and

congestion, and how safe and effective they are in various settings. The original dataset contained data on 639 crashes, but 11 of

these lacked all necessary information and were rejected. Thus, data analysis was performed on 628 crashes, which were classified

into different types in Excel spreadsheets ( Table 2 ). The classified data were then converted to RStudio for more detailed assessment.

2.1. Data collection and processing style 

The CA DMV database consists of on-the-spot (OTS) data, starting in 2014. Fig. 2 shows the data handling process used to

investigate and identify safety factors that lead to accidents and injuries in road crashes involving autonomous vehicles. 
3
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Fig. 3. Data preprocessing steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The flow of studying information in this research is methodically structured to ensure a comprehensive analysis of autonomous

vehicle crashes. The process begins with Collision Data Analysis, where the initial step involves grouping the collected data based on

various parameters such as date, time, location, weather, road conditions, lighting, and crash details. This grouping is essential for

organizing the data after it has been collected and selected for further processing. Following this, K-Medoid Clustering is applied to

cluster the data based on the degree and direction of impact, helping to identify patterns and common factors among similar crash

incidents. Next, the study moves to Data Processing for Variable Selection. This involves Association Rule Mining, which analyzes

the clustered data to uncover hidden patterns and correlations between different factors contributing to crashes. Association rules are

crucial for identifying relationships that might not be evident through simple analysis. Additionally, the frequency of certain events 

or patterns is evaluated to understand their prevalence and impact on AV crashes. 

In the Preparing and Planning Scenarios phase, benchmark scenarios are planned based on the analysis to test and evaluate

the safety performance of AVs under different conditions. Key parameters are selected for further analysis and evaluation, ensuring

that the most critical factors are considered. The Presentation of Test Objectives focuses on evaluating the safety performance of

AVs. This involves assessing how well AVs handle various conditions and identifying areas for improvement. The process includes 

a feedback loop from “Data Processing for Variable Selection ” back to “Collision Data Analysis, ” indicating an iterative approach.

This allows for continuous refinement and improvement of the analysis based on new data and insights. Finally, the study incor-

porates Simulation Outputs related to energy weight in Operational Traffic Systems (OTS), providing additional data to support 

the analysis and evaluation. By following this structured approach, the study systematically analyzes collision data, identifies key 

factors contributing to AV crashes, and evaluates the safety performance of AVs, ultimately aiming to improve their reliability and

safety. 

2.2. Data collection (exploration) 

To gather all pertinent data pieces, including crashes that fulfilled the CA DMV portfolio requirements, data query and export

tools were utilized. 

2.3. Data preprocessing 

Preprocessing to prepare the data for analysis and modeling is a crucial phase in data mining ( Fig. 3 ). Applying proper prepro-

cessing methods can prevent inaccurate findings caused by poor data quality 

The raw data collection, classification, and preprocessing involved gathering detailed records of autonomous vehicle (AV) crashes 

reported to the Californian Department of Motor Vehicles (DMV). This data included various parameters such as the date and time

of the crash, specific location details, weather conditions at the time of the crash, road conditions, visibility and lighting at the

crash site, and detailed crash information including the degree and direction of impact, type of collision, and severity of damage.

This comprehensive dataset provided on Table 2 below contributes a robust foundation for analyzing the factors contributing to AV

crashes. 

All types of intersections featured among the junction types involved in the 639 crash cases from the original OTS database. We

decided to examine the data based on vehicle involvement in an accident, which meant that the data included crashes involving AVs

either at junctions or in straight driving, and also included both conventional (human driven), and autonomous vehicles involved 

in crashes. From the compiled database, we found that the total number of vehicles involved in a crash ranged from 1 to 3, where

the single vehicle caused an accident by contact with e.g., pedestrian, property, or cyclist. As the primary goal of the study was

performance evaluation for autonomous cars, single-vehicle accidents were considered very relevant. Each sample greater or equal 

to two vehicles was connected to automated vehicles by assigning an ego and road user identity. 
4
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2.4. System of attribute selection and coding 

Since vehicle performance evaluation needs data on specific characteristics, characteristics relevant to the purpose of the study 

were selected (see Table 2 ). 

2.5. Parameters used 

The given sample size was best suited for partitioning around medoids (PAM), which was selected based on the results, and duration

of calculations. For error detection while information was transmitted, hamming distance was selected as a distance measuring tool.

Silhouette analysis was found to be best approach to investigate separation of clusters. Table 3 shows sieved parameters for assessments

of vehicle status, and conditions during accidents. 

2.6. Specifying crash scenarios 

As stated in the technical section ( Borgelt, 2012 ; Luna, 2019 ; Rashmi, 2023 ), the clusters of damage types generated were further

examined using a more powerful association rule mining system in order to identify the main factor in crashes. 

2.6.1. Association rules/front itemset mining 

This technique helps to uncover the relations between characters ( Kaur M., 2016 ). It derives from market basket analysis

( Ansari, 2019 ), which allow retailers to gain insight into commodities that are commonly purchased together, in order to opti-

mize marketing campaigns and product shelving. The best example of this is the relationship between purchases of beer and crisps,

where beer is the antecedent and crisps is the consequent. Multiple items can be included in a single itemset I. Using the association

rules nomenclature, each sample is referred to as a transaction (𝑡1 , 𝑡2 , , 𝑡𝑛 ) ∈ 𝑇 , and each characteristic is referred to as an item

(𝑖1 , 𝑖2 , , 𝑖𝑚 ) ∈ 𝐼 . An association rule may be expressed mathematically as follows: 𝑋 → 𝑌 in which 𝑋 ⊂ 𝐼 , 𝑌 ⊂ 𝐼 and 𝑋𝑌 = ∅. Each

rule is distinguished by its support and confidence values ( Yusupova, 2019 ; Taherdoost, 2022 ): 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ( 𝑋) =
|{ 𝑡 ∈ 𝑇 ; 𝑋 𝑡 } |

𝑛 
= 𝑃 ( 𝑋) (1) 

The support value for itemsets is the proportion of transactions t in the dataset that contains the itemset X . In the case of rules,

support is defined as support of all items in the rule, i.e., 𝑆𝑢𝑝𝑝 (𝑋 → 𝑌 ) = 𝑆𝑢𝑝𝑝 (𝑋 ∪ 𝑌 ) = 𝑃 (𝑋 ∧ 𝑌 ) . 

𝐶𝑜𝑛𝑓 ( 𝑋 → 𝑌 ) =
𝑆𝑢𝑝𝑝( 𝑋 ∪ 𝑌 ) 
𝑆𝑢𝑝𝑝( 𝑋) 

= 𝑃 ( 𝑌 |𝑋) (2) 

The conditional likelihood of a subsequent Y given the previous X is provided by confidence, which also assesses the strength of

the rules. According to the alternative definition, it is the percentage of transactions that contain both X and Y . Assume that two rules

with the antecedent and consequent flipped would have the same support value, in order to comprehend the differences between the

two metrics. The most widely used implementation is the priori algorithm ( Agrawal, 1993 ; Krishna, 2013 ), where locating association

rules entails two steps: 

1. Locate every item that occurs frequently and 

2. Using the itemset that is collected, create an association rule. 

A minimum confidence level and minimum support threshold are two requirements that the system must meet. An itemset is not

common if its support criteria are smaller than the minimum level. In that scenario, every subset has to be uncommon and trimmable.

Conversely, any subset of a frequent itemset has to be frequent. It is feasible to significantly reduce the number of alternative itemset

configurations by using a straightforward algorithm using this idea iteratively. Generating rules from the frequently occurring itemset 

discovered in first step comprises the second step. As usual, the minimum confidence level comes into play. All non-empty subsets

are constructed for each frequent itemset I . 

In the event that the lowest confidence for this rule is given, then generate the rules (Is ) for each non-empty subset of I . Each rule

also satisfies the minimum support as it is derived from sets of items that recur frequently. In this way, strong association rules can be

found. The algorithm may produce millions of rules, depending on the intricacy of the data and how low the minimum support and

confidence levels are set. Dedicated rule trimming and post-processing algorithms have been developed to find the most interesting

rule. Previous findings indicate that confidence measures are not very useful in assessing how dependent the consequent is on the

antecedent ( Azevedo, 2007 ; Hahsler, 2015 ; Luna, 2018 ). In this work we used the lift metric, often known as ‘interestingness’: 

𝐿𝑖𝑓 𝑡( 𝑋 → 𝑌 ) = 𝐿𝑖𝑓 𝑡( 𝑋 → 𝑌 ) =
𝑆𝑢𝑝𝑝( 𝑋 ∪ 𝑌 ) 

𝑆𝑢𝑝𝑝( 𝑋) ∗ 𝑠𝑢𝑝𝑝( 𝑌 ) 
= 𝑃 ( 𝑋 ∧ 𝑌 ) 

𝑃 ( 𝑋) 𝑃 ( 𝑌 ) 
(3) 

The incidence of X is negatively correlated with the occurrence of Y if the lift value is less than one, suggesting that the presence

of one causes the absence of the other. When the result exceeds one, it indicates a positive correlation between X and Y , implying

that the presence of one implies the presence of the other. If the lift is equal to one, then X and Y are independent ( Kumar, 2016 ;

Bao, 2021 ). Rules for interpretation can only be obtained at a minimum lift value greater than 1. 
5
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Table 3 

Status of vehicles and conditions during accidents involving autonomous vehicles. 

Crash attributes 

Category Short name Description Count Frequency 

Maximum injured MaxInjd = Driver Driver was injured by crash. 5 1 % 

MaxInjd = Injury Random injury, no specifically explained. 75 12 % 

MaxInjd = None No injuries, but vehicles were at risk. 50 8 % 

MaxInjd = Not explained The crash was not explained fully. 33 5 % 

MaxInjd = Passenger Passenger was injured in the crash. 7 1 % 

MaxInjd = Property Property was damaged due to the 

accident. 

451 72 % 

Manoeuvre Manvr = Passing other vehicles The vehicle was passing next to another 

vehicle. 

8 1 % 

Manvr = Backing The vehicle was backing (reversing). 22 4 % 

Manvr = Changing lanes The vehicle was changing lanes. 13 2 % 

Manvr = Entering traffic The vehicle was entering traffic. 5 1 % 

Manvr = Making left turn The vehicle was turning left. 37 6 % 

Manvr = Making right turn The vehicle was turning right. 41 7 % 

Manvr = Merging The vehicle was merging. 4 1 % 

Manvr = Parked The vehicle was parked. 9 1 % 

Manvr = Parking manoeuvre The vehicle was parking manoeuvre. 9 1 % 

Manvr = Proceeding straight The vehicle was going straight ahead. 162 26 % 

Manvr = Slowing/Stopping The vehicle was slowing to stop. 61 10 % 

Manvr = Stopped The vehicle was stopped. 244 39 % 

Type of crash 1stImpact = Broad side First impact was on the vehicle’s broad 

side. 

36 6 % 

1stImpact = Head-on First impact was head-on. 82 13 % 

1stImpact = Hit object First impact was on an object. 27 4 % 

1stImpact = Overturned First impact was while the vehicle 

overturned. 

4 1 % 

1stImpact = Rear end First impact was on the vehicle’s rear end. 315 50 % 

1stImpact = Side swipe First impact was while the vehicle was 

sideswiped . 

118 19 % 

1stImpact = Not explained First impact on the vehicle was not 

explained. 

20 3 % 

Roadway conditions RdCond = Construction repair zone The accident happened in a roadway 

construction/ repair zone. 

28 5 % 

RdCond = No unusual conditions When the accident happened there were 

no unusual conditions. 

594 95 % 

RdCond = Other When the accident happened, there was 

either flooded or holes, deep rut or 

obstruction on road way. 

5 1 % 

RdCond = Reduced roadway width When the accident happened, roadway 

width was reduced. 

5 1 % 

RdCond = Not explained Road conditions when the accident 

happened were not explained. 

12 2 % 

Road way surface RdSurf = Dry Dry road surface. 599 96 % 

RdSurf = Wet Wet road surface. 27 4 % 

Lighting LightCond = DarkNSL Darkness: no street lighting. 3 0 % 

LightCond = Dark Street lights Darkness: street lights lit. 167 27 % 

LightCond = Daylight Daylight present. 441 70 % 

LightCond = Dusk down Dusk was about to fall. 13 2 % 

Weather Weather = Clear At impact, weather conditions were clear. 571 91 % 

Weather = Cloudy At impact, the weather was cloudy. 31 5 % 

Weather = Fog/Visibility At impact, the weather was foggy. 5 1 % 

Weather = Raining At impact, the weather was rainy. 19 3 % 

Who involved in accident 1stInteract = Bicycle The cyclist was first interacted with 

externally. 

25 4 % 

1stInteract = None No other party involved in the impact. 378 60 % 

1stInteract = Not explained Not explained for first interaction. 135 22 % 

1stInteract = Other Other was interacted with in the impact. 67 11 % 

1stInteract = Pedestrian Pedestrian first interacted with in the 

impact. 

6 1 % 

1stInteract = Scooter Scooters first interacted with in the 

impact. 

7 1 % 

Vehicle motion status 1stVehMotion = Moving At impact, the vehicle was moving. 358 57 % 

1stVehMotion = Stopped in traffic At impact, the vehicle was stopped in 

traffic. 

268 43 % 

6
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Table 4 

Major factors in autonomous vehicle crashes and their implications. 

No. Factors in AV crash Explanation for factor 

1. Communication error AVs are increasingly being designed to communicate with each other and with infrastructure such as 

traffic lights. If there is a communication error, this could lead to autonomous vehicles making conflicting 

decisions and colliding with each other. 

2. Decision making errors Even with accurate perception and prediction, highly automated vehicles can still make mistakes in 

decision making. This can happen due to incomplete or conflicting information, or due to limitations in 

the decision-making algorithms themselves. 

3. Environmental conditions AVs can be affected by weather conditions, such as fog or rain, which make it difficult for their sensors to 

detect objects while moving. It implies that highly automated vehicles are weather conditions- dependent. 

4. Hardware failures This can be experienced in conventional vehicles too. In autonomous vehicles hardware like sensors, 

cameras, and actuators may fail because of different external pressures. If any of these components fail, it 

could cause the AV to lose control, leading to crash. 

5. Human error Highly automated vehicles are designed to be safe and smart, but human error can still contribute to 

crashes. As an example, a human driver may fail to follow the instructions of an AV, or may interfere 

with the AV’s operation. 

6. Infrastructure Highly automated vehicles can be affected by poor road conditions, physical infrastructure, and 

malfunctioning of traffic signals from digital infrastructures. 

7. Other drivers Highly automated vehicles are designed to be safe and reliable, but they are still vulnerable to crashes 

caused by other drivers. For instance, a human driver may be inattentive, speeding, or operating a vehicle 

while under the influence of drugs or alcohol. 

8. Prediction errors Highly automated vehicles need to predict the behaviour of other road users to make safe decisions. 

However, predicting human behaviour is complex and can lead to errors. For instance, an AV might 

assume a pedestrian will continue walking in a straight line when they suddenly decide to cross the road. 

9. Software errors (bugs and glitches) and 

sensor limitations 

Vehicle operation relies on complex software systems. Glitches in these can cause the AV to behave an 

unexpected way which leads to a crash. 

10. Unexpected events Even the best autonomous vehicles cannot anticipate every possible event on the road. As an example, a 

pedestrian or cyclist may step out in front of the AV suddenly. In these cases, the AV may not have 

enough time to react and avoid a crash. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.2. Statistical parameters used 

The minimum level of support and confidence is determined by the application and the intended outcome of the investigation.

Ideally, rules with a lift value greater than one, high confidence, and strong support should be obtained. The focus of this work was

on analyzing certain accident scenarios and features, which might be extremely unusual ( Montella, 2012 ; Effati, 2015 ). Following

testing with a range of values, an itemset that appears in < 1 % of the sample is rejected when a minimum support of 0.01 is chosen.

Decreasing the threshold lengthens the computation time and multiplies the rules that need to be understood. Selecting a higher

support value might lead to omission of important cluster-related information. In the literature, there are several techniques for

selecting a minimum confidence value. For example, a previous study on a powered two-wheeler (PTW) set a Conf = 0.1 threshold

( Montella, 2011 ), which is lower than usual. Nonetheless, it is preferable to create rules in this task if there is a greater than 75 %

chance of the consequent given the antecedent. Moreover, the results only take into account rules that have a lift larger than 1.25.

The following process was used to eliminate duplicate rules in order to further reduce the quality of rules that were retrieved: the

rule is deemed redundant if a more general rule with the same or higher lift already exists. In other words, a more specific rule is

redundant again if it is only marginally or even less associated than a broader rule. A rule is broader if it has the same consequence,

but one or more antecedents are eliminated. In formal terms, a rule 𝑋 → 𝑌 is redundant if for 𝑋′ ⊂ 𝑋 ∶ 𝑙𝑖𝑓 𝑡 (𝑋′ → 𝑌 ) ≥ 𝑙𝑖𝑓 𝑡 (𝑋 → 𝑌 )
( Hahsler, 2017 ) 

3. Results 

3.1. Main crash factors for vehicles 

Most vehicle crashes happen due to different causes that are undisclosed or freely known, with the main categories being infras-

tructure, human error, and environmental conditions. Table 4 lists the top 10 factors that cause highly automated vehicles to collide

and provides a short explanation of each. The subdivision into environmental factors, driver factors, and vehicle factors is based on

reports from governmental and non-governmental research organizations, such as World Health Organization (WHO), the National 

Highway Traffic Administration (NHSTA), and the Insurance Institute of Highway Safety (IIHS). 

3.1.1. Safety at road junctions 

A crash database covering the years 2003 to 2013 was examined to obtain a picture of the scenarios in European Union junction

accidents. The results showed that every third traffic-related accident involving human driven vehicles occurred at a junction, with

about 43.9 % of fatalities and 43.2 % of severe injuries happening at crossroads. These percentages were also affected by junction

type and by vehicle type. According to the OTS research by CARE ( Janny Carson, 2023 ), people riding two-wheelers are killed more

often at junctions than at any other part of the transportation systems. The most frequent crash types at signal-fitted crossroads are
7
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Fig. 4. Number of crashes with maximum injury per cluster. 

Fig. 5. Number of crashes involving maneuvering per cluster. 

Fig. 6. Number of different types of crash per cluster. 

8
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Fig. 7. Number of crashes involving weather conditions per cluster. 

Table 5 

Crash overcoming capacity of highly automated vehicles and human driven vehicles. 

Human driven vehicles Highly automated vehicles 

No. Main causes of CV crashes Explanations of causes Main causes of AV crashes Explanations of causes 

1. Distracted driving This is the leading cause of all traffic 

accidents, including crashes at junctions. 

Drivers who are distracted by their 

phones, passengers, or other factors are 

more likely to miss traffic signals or other 

vehicles. 

Cyberattacks Highly automated vehicles are vulnerable 

to cyberattacks, and a successful attack 

could potentially cause an AV to make a 

mistake, such as running a red light. 

2. Speeding Drivers who are speeding have less time 

to react to hazards, such as other vehicles 

entering the junction. 

Misinterpretation of traffic 

signals 

Autonomous vehicles may misinterpret 

traffic signals due to factors such as glare, 

dirt, or occlusion. 

3. Impaired driving Drunk or impaired drivers are more prone 

to commit errors like running a red light 

or not yielding enough space to other 

traffic. 

Difficulty navigating 

complex intersections 

Autonomous vehicles may have difficulty 

navigating complex intersections with 

multiple lanes and traffic signals. 

4. Aggressive driving This includes behaviour such as 

tailgating, cutting off other vehicles, and 

running red lights. 

Unpredictable behaviour of 

other road users 

Autonomous vehicles are designed to 

operate in a predictable environment. 

However, the unpredictable behaviour of 

other road users, such as pedestrians or 

cyclists, could potentially lead to crashes. 

5. Right of way driving 

violations 

Drivers who fail to yield to vehicles with 

right of way, such as vehicles on the main 

road or vehicles making a left run, are 

also at risk of causing crashes at junctions. 

– –

 

 

 

 

 

 

 

reported to be head-on and rear-end crashes ( Mohamed, 2017 ; Petrovi ć, 2020 ). However, other studies suggest that this also depends

on the number of lanes and traffic volume ( Abdel-Aty, 2016 ; Jashami, 2023 ). 

3.1.1.1. Difference in cause of crash at junctions for highly automated vehicles and human driven vehicles. When it comes to intersection

safety, highly automated vehicles and conventional cars may differ in certain ways. Highly automated vehicles are equipped with

sensors and software that allow them to perceive their surroundings and make decisions in a way that is not possible for human

drivers. Table 5 provides other comparisons of highly automated vehicles and human driven vehicles. 

3.1.2. Numerical investigations of crash frequency 

Damage clustering and identification of the main reasons for AVs were performed, where each cluster had different numbers of

samples. The clusters (C1-C8) were as follows: C-1 : Most damage to the rear center and rear-right side of the AV, e.g., right rear tire,

rear bumper and bumper bar, rear quarter panel, rear windshield, rear wheel and wheel wall, rear fascia, rear fender, rear passenger
9
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Fig. 8. Number of crashes involving different types of vehicle motion status per cluster. 

Fig. 9. Numerical explanations of vehicles in each cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

door, lower rear lamp, signal lamp and radar, radar mounting bracket and rear brake light. C-2 : Damage to the rear-left side of the

AV, e.g., left rear sensor, left corner sensor, left rear wheel, upper left tail lamp assembly, left rear door, vehicle left rear fascia, and

rear driver side wheel molding. C-3 : Damage to the front center and front right side of the AV, e.g., right brake assembly, front fender,

right articulating radar casing, vehicle front center bumper, vehicle front, and front right tire. C-4 : Damage to the front left side of

the AV, e.g., driver side door, front driver side quarter panel, left bumper lidar sensor, driver side fender, driver side mirror grazed,

front left wheel assembly, damage to the driver side radar assembly, and front left wheel assembly. C-5: Minor damage from front,

rear, left or right direction with another vehicle or pedestrian. C-6: Major vehicle damage from front, rear, right and left direction.

C-7 : Vehicle and other property damage from different sides. C-8: Vehicle-related scratch, scrape, contact, and scuff marks on the

AV. 

Figs. 4-8 illustrate five selected parameters considered as factors in AV crashes, i.e., maximum injury ( Fig. 4 ), maneuvering ( Fig. 5 ),

type of crash ( Fig. 6 ), weather conditions ( Fig. 7 ), and vehicle motion status ( Fig. 8 ). In each diagram, the fifth cluster (C-5) is the

largest, i.e., it covers more areas of vehicle damage, as indicated in Fig. 9 . 

Maneuvering status of the vehicle determined the position of damage. As Fig. 5 shows, a greater number of vehicle accidents

occurred while the vehicle was stopping, either at a traffic light or parking at a parking area or on asphalt road. Stopping, proceeding
10
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Table 6 

Recommended solutions for autonomous vehicle crash risks. 

No. Solutions Description of AV risk reduction at junctions 

1. Deploy updated traffic management 

systems 

Traffic management systems can be used to coordinate the movement of highly automated vehicles and 

other vehicles on the road. This can help to reduce congestion and improve traffic flow, which can lead to 

fewer crashes. 

2. Develop better human-machine interfaces Human-machine interfaces in highly automated vehicles should be designed to minimize the risk of 

human error. As an example, autonomous vehicles should have clear and concise displays that provide 

drivers with all of the information they need. 

3. Develop comprehensive safety standards 

(clear regulations) 

We need to develop comprehensive safety standards for autonomous vehicles, including standards for 

testing and certification. 

4. Developing advanced prediction and more 

sophisticated decision-making algorithms 

Future algorithms must incorporate a deeper understanding of human behavior and traffic patterns. 

Machine learning techniques can be used to train Autonomous vehicles on large datasets of real-world 

driving scenarios, while decision-making algorithms can be used to handle uncertainty and complex 

scenarios and implement failsafe mechanisms that ensure the AV takes a cautious approach when faced 

with ambiguous situations. 

5. Educate the public and drivers We need to educate the public about autonomous vehicles and how they work. This will help to reduce 

the risk of human error and improve the acceptance of highly automated vehicles. 

6. Human Oversight Even though highly automated vehicles are designed to be autonomous, they will still need some human 

oversight. This oversight could be provided by a human driver or by a remote operator. 

7. Improve AVs’ ability to handle 

environmental factors 

AVs should be equipped with sensors and software that can support them to perceive their surroundings 

and make safe decisions in a wide range of environmental conditions. 

8. Infrastructure improvement If an updated system is going to become common in society in the future, infrastructure improvements 

like better traffic signals and dedicated lanes could reduce the risk of AV crashes. 

9. Invest in research and development We need to continue to invest in research and development to improve AV technology and make it more 

reliable. 

10. Redundant systems AVs should have redundant systems in place to minimize the risk of a crash due to a software error or 

sensor failure. As an example, highly automated vehicles could have multiple cameras and radar sensors. 

11. Through testing Autonomous vehicles by nature need to be thoroughly tested in all kinds of conditions before they are 

deployed on public roads. This testing should include both simulated and real-world scenarios. 

Fig. 10. Frequency of accidents involving autonomous vehicles from different manufacturers. 

 

 

 

 

 

 

straight, slowing vehicle motion, turning, backing, changing lanes, and passing other vehicles were the main factors in accidents in

this class. 

Of the clustered data, most crashes involved cluster C-5, i.e., damage from front, rear, left or right direction with another vehicle

or pedestrian ( Fig. 9 ). The data indicates a significant variation in the number of crashes across different clusters. Cluster 5 (C-5)

stands out with a very high number of crashes (2170), which could indicate a particular area or condition that leads to frequent

accidents. This might require further investigation to understand the causes and implement safety measures. Cluster 6 (C-6), with the

lowest number of crashes (99), could be an area or condition considered relatively safe. The remaining clusters (C-1 to C-4, C-7, and
11
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Fig. 11. Types of damage (coded 001–015) and frequency of each type:001 – Contact with vehicle front sensors 002 – Contact with rear sensors 

003 – Damage to the front bumper 004 – Damage in the rear bumper and left rear sensor 005 – Front left radar damaging the sensor and its casing 

006 – Minor cosmic damage to the vehicle 007 – Minor damage to the rear side of the vehicle 008 – Minor damage to the rear bumper 009 – Minor 

scratch on the vehicle 010 – Sustained vehicle damage 011 – Sustained minor damage 012 – Sustained minor damage to vehicle left rear bumper 

013 – Sustained minor damage to vehicle rear bumper and hatch 014 – Sustained minor damage to the bumper 015 – Sustained minor damage to 

the side mirror. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C-8) have moderate crash numbers, suggesting varying degrees of safety or risk. This clustering helps in identifying patterns and areas

of focus for improving vehicle safety and reducing crashes. Further analysis would be needed to understand the factors contributing

to the high number of crashes in C-5 and the low number in C-6 

At present, there are about 42 automated vehicles testing permission holders (about 36 with driver and six driverless). Among

those, Waymo LLC holds permissions for most destinations (about 50 cities) for testing highly automated vehicles during both day

and night. Our assessment using the RStudio algorithm to detect frequencies of vehicle crashes, based on data collected from CA

DMV, showed that a greater number of accidents involved AVs operated by Waymo LLC ( Fig. 10 ). 

A review of all damage to AVs showed that minor damage, sustained damage, minor scratches, and minor damage to the rear

bumper were the most frequent types of damage incurred in accidents ( Fig. 11 ). 

4. Discussion 

Our assessment showed that highly automated vehicles are prone to contact with other vehicles, whether in autonomous or conven-

tional mode, and manufacturers should pay more attention to overcoming this problem. Table 6 provides different recommendations 

to reduce the risk of crashes involving automated vehicles. 

5. Conclusions 

This study aimed to identify the primary factors contributing to crashes involving highly automated vehicles. Using data from

the California Department of Motor Vehicle and advanced clustering techniques in RStudio, the analysis highlighted several critical 

factors influencing Automated vehicle crashes. These factors include communication errors, decision-making errors, environmental 

conditions, hardware failures, human errors, infrastructure issues, and errors in predicting other road user’ behavior. The results of this

assessment of causes of Automated vehicle crashes can help researchers and manufacturers reduce the risks. The results showed that

most of the vehicles were damaged when stopping at the time of impact, due to e.g., traffic lights or during parking. An assessment of

crash locations based on field data showed that a greater number of accidents, i.e., about 49 %, occurred on streets than at junctions,

but that Automated vehicle safety at junctions was lower than that of human driven vehicles. Most of the crashes in the dataset were

rear-end crashes, in conditions involving a dry roadway surface, daylight, and clear weather conditions. 
12
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The findings suggest that while highly automated vehicles are designed to enhance road safety, they remain susceptible to various

challenges, especially those related their interaction with the environment and other road users. Improved communication systems, 

better decision-making algorithms, and enhanced sensor technologies are crucial for mitigating these risks. Additionally, addressing 

human factors and infrastructure improvements will be vital in reducing Automated vehicle crashes. Future research should focus on

refining these areas to further enhance the safety and reliability of autonomous vehicles. 
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Appendix: A2 

library(’ggpmisc’) 
library("ggpubr") 
library(tidyverse) 
library(readr) 
library(lubridate) 
library(dplyr) 
library(tibble) 
library(scales) 
library(qpcR) 
library(stringr) 
library(data.table) 
library(ggplot2) 
Compilation1 < - read_csv("E:/Path/Folder/New folder/data.csv") 
View(data) 
knitr::kable(head(data[,1:14]), "pipe") 
str(data) 
column_types < - c( 
Vehicles = "factor", 
Number_of_vehicles_involved = "factor", 
Vehicle_motion_status = "factor", 
Manufacturer_name = "factor", 
Accident_details = "factor", 
Types_of_Injury = "factor", 
Movement_preceeding_crash = "factor", 
Crash type = "factor", 
Weather = "factor", 
Lighting = "factor", 
Roadway_surface = "factor", 
Road_way_conditions = "factor", 
Vehicle_damage_description = "factor", 
Weight_of_vehicle_damage = "factor") 
data_cleaned < - na.omit(data) 
manufacturer_counts < - data$Manufacturer_name % > % 
factor % > % 
table % > % 
data.frame( 
Company = names(.), 
Frequency = .) % > % 
mutate(Manufacturer_name = data$’Manufacturer_name’[match(Company, names(.))]) % > % 
dplyr::group_by(., Manufacturer_name) 
knitr::kable(manufacturer_counts, format = "pipe") 

References 

Abdel-Aty M, L.C., 2016. Identification of Intersections’ Crash Profiles Patterns. Final Report. University of Central Florida . 

Agrawal R, I.T., 1993. Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on

Management of data, pp. 207–216 . 

Ansari, S.Z. (2019). Market basket analysis: trend analysis of association rules in different time periods. https://run.unl.pt/handle/10362/80955 . 

Azevedo P J, J.a., 2007. Comparing rule measures for predictive association rules. In: European Conference on Machine Learning. Elsevier, pp. 510–517 . 

Bao F, M.L., 2021. An Improved Evaluation Methodology For Mining Association rules. Axioms . MDPI, p. 17 . 

Borgelt, C., 2012. Frequent item set mining. In: Wiley Interdisciplinary reviews: Data Mining and Knowledge Discovery, pp. 437–456 . 

Bucolo M, B.A., 2019. Forward action to make time-delay systems positive-real or negative-imaginary. Systems and Control letters. Elsevier . 

Bucolo M, B.A., 2020. Automation of the Leonardo da Vinci machines. Machines (MDPI) 8 (3), 53 . 

Das, P., 2018. Risk Analysis of Autonomous Vehicle and Its Safety Impact On Mixed Traffic Stream. Rowan University, Glassboro, USA . 

Effati M, S.-N.A., 2015. A semantic-based classification and regression tree approach for modelling complex spatial rules in motor vehicle crashes domain. In: Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. Wiley Online Library, pp. 181–194 . 

Fu C, L.Z., 2024. Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather. Physica A: Statistical Mechanics and Its Applications .

Fuller, J. (2024). Did da Vinci really sketch a primitive version of the car? Retrieved from howstuffworks: https://auto.howstuffworks.com/da-vinci-car1.htm . 

Gouda M, C.I.-B., 2021. Automated assessment of infrastructure preparedness for autonomous vehicles. Automation in Construction. Elsevier . 

Hahsler M, G.B., 2017. Introduction to arules-mining association rules and frequent item sets. In: SIGKDD Explor. Citeseer, pp. 1–28 . 

Hahsler, M., 2015. A Probabilistic Comparison of Commonly Used Interest Measures For Association Rules. Southern Methodist University, United States . 

Janny Carson, G.J., 2023. Reducing Road Deaths Among Powered Two Wheeler Users. European transport safety council, Brussels . 

Jashami H, A.J., 2023. Contributing factors to right-turn crash severity at signalized intersections: an application of econometric modeling. International Journal of

Transportation Science and Technology. Elsevier . 
17

http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0001
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0002
https://run.unl.pt/handle/10362/80955
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0004
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0005
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0006
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0007
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0008
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0009
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0010
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0011
https://auto.howstuffworks.com/da-vinci-car1.htm
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0013
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0014
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0015
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0016
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0017


T.K. Kurse, G. Gebresenbet, G.F. Daba et al. Multimodal Transportation 4 (2025) 100186

 

 

 

 

 

 

 

 

Kaur M, K.S., 2016. Market Basket Analysis: identify the changing trends of market data using association rule mining. Procedia Comput. Sci. 78–85 . 

Krishna K A, A.D., 2013. Mining association rules between sets of items in large databases. Int. J. Sci. Modern Eng. (IJISME) 2319–6386 . 

Kumar S, J.N., 2016. Rule power factor: a new interest measure in associative classification. In: Procedia Computer Science. Elsevier, pp. 12–18 . 

Lin F, W.K., 2020. Integrated avoid collision control of autonomous vehicle based on trajectory re-planning and V2V information interaction. In: Sensors. MDPI,

p. 1079 . 

Luna J M, F.-V.P., 2019. Frequent itemset mining: a 25 years review. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, p. e1329 . 

Luna J M, O.M., 2018. Optimization of quality measures in association rule mining: an empirical study. Int. J. Comput. Intell. Syst. 59–78 . 

Mobileye. (2023, February 27). The History of Autonomous Vehicles from Renaissance to Reality . Retrieved from https://www.mobileye.com/blog/history-autonomous- 

vehicles-renaissance-to-reality/ . 

Mohamed S A, M.K.-H., 2017. Investigating factors affecting the occurrence and severity of rear-end crashes. In: Transportation Research Procedia. Elsevier,

pp. 2098–2107 . 

Montella A, A.M., 2012. Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery. Accident Anal. Prevent. 58–72 . 

Montella, A., 2011. Identifying crash contributory factors at urban roundabouts and using association rules to explore their relationships to different crash types. In:

Accident Analysis & Prevention. Elsevier, pp. 1451–1463 . 

Petrovi ć Đ, M.R., 2020. Traffic accidents with autonomous vehicles: type of collisions, manoeuvres and errors of conventional vehicles’ drivers. In: Transportation

Research Procedia, pp. 161–168 . 

Rahman M S, A.-A.M., 2018. Understanding the highway safety benefits of different approaches of connected vehicles in reduced visibility conditions. Transp. Res.

Rec. 91–101 . 

Rashmi, K. (2023). Data Mining in E-commerce: frequent itemset mining, association rules, and Apriori algorithm explained. Retrieved from shiksha: https://www.

shiksha.com/online-courses/articles/data-mining-frequent-item-set-mining-association-rules-and-apriori-algorithm . 

Taherdoost, H., 2022. Different types of data analysis; data analysis methods and techniques in research projects. Int. J. Acad. Res. Manage. 1–9 . 

Tengilimoglu O, C.O., 2023. Implications of automated vehicles for physical road environment: a comprehensive review. Transportation Research Part E: Logistics

and Transportation Review. Elsevier . 

Xu C, D.Z., 2019. Statistical analysis of the patterns and characteristics of connected and autonomous vehicle involved crashes. J. Safety. Res. 41–47 . 

Yusupova N, S.O., 2019. Data analysis methods for support decision making at management of complex systems. In: 7th Scientific Conference on Information Tech-

nologies for Intelligent Decision Making Support (ITIDS 2019), pp. 273–278 . 
18

http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0018
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0019
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0020
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0021
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0022
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0023
https://www.mobileye.com/blog/history-autonomous-vehicles-renaissance-to-reality/
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0025
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0026
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0027
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0029
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0030
https://www.shiksha.com/online-courses/articles/data-mining-frequent-item-set-mining-association-rules-and-apriori-algorithm
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0032
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0033
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0034
http://refhub.elsevier.com/S2772-5863(24)00067-4/sbref0035

	Experimental determination of factors causing crashes involving automated vehicles
	1 Introduction
	1.1 Automated vehicle crashes
	1.2 Motivations and target objectives

	2 Methods
	2.1 Data collection and processing style
	2.2 Data collection (exploration)
	2.3 Data preprocessing
	2.4 System of attribute selection and coding
	2.5 Parameters used
	2.6 Specifying crash scenarios
	2.6.1 Association rules/front itemset mining
	2.6.2 Statistical parameters used


	3 Results
	3.1 Main crash factors for vehicles
	3.1.1 Safety at road junctions
	3.1.2 Numerical investigations of crash frequency


	4 Discussion
	5 Conclusions
	Data availability
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix: A1
	Appendix: A2
	References


