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Seasonal variability of the rumen 
microbiome in indigenous African cattle: a 
bioinformatics approach.  

Abstract 

The Ethiopian climate causes cattle to frequently experience cycles of abundant feed 
availability during the rainy season and severe feed scarcity during the dry season. 
Using a bioinformatics-driven metagenomics approach, this study reveals how the 
rainy season favours fibre-degrading taxa and expanded methanogenic and 
biosynthetic potential. In contrast, the dry season is characterised by reduced 
metabolic diversity and an increase in opportunistic taxa. To achieve this, novel 
computational tools were developed and refined, including MUFFIN and 
PANKEGG. The results collected from extreme drought conditions provide valuable 
information to ensure that ongoing work to reduce methane emissions through 
breeding or feed additives does not negatively impact the ability of ruminants to 
adapt to drought or low-quality feed, which may threaten food security and animal 
welfare during heatwaves. The study revealed seasonal variations in microbial 
community structure and metabolic functions. During the rainy season, the 
microbiome exhibited an increase in acetoclastic methanogens and fibre-degraders. 
The dry season saw a rise in hydrogenotrophic methanogens. The latter increase 
reflects a decrease in acetate production, suggesting a decline in access to feed, as 
well as less efficient fibre breakdown. These findings bring critical insights into the 
metabolic adaptability and resilience of indigenous cattle microbiomes. The findings 
also suggest new potential targets for enhancing feed efficiency and promoting 
environmental sustainability. The microbiome harboured multiple antibiotic 
resistance genes (ARGs) throughout both seasons. The presence of ARGs exposes 
the risk of potential resistance spread to pathogens as well as broader ecological 
implications. In addition to the metagenomic study, a genomic study of Ethiopian 
cattle breeds highlighted significant genetic diversity and potential adaptive 
mechanisms to local environmental stressors. Those genetic markers open the 
possibility for future integration of host-genomic and microbiome analyses.   

Keywords: Bioinformatics, Genomics, Metagenomics, Rumen, Cattle, Ethiopia, 
Seasonal changes 



Säsongsvariation i våmmikrobiomet hos 
inhemska afrikanska nötkreatur: en 
bioinformatisk studie. 

Sammanfattning 

Skiftet från den årliga regnperioden till torrperiod innebär att boskap i Etiopien 
upplever cykler av riklig fodertillgång under regnperioden och allvarlig fodersbrist 
under torrperioden. Denna studie visar med hjälp av metagenomik hur regnperioden 
gynnar fiber-nedbrytande mikrober samt ökar den metanogena och biosyntetiska 
kapaciteten. Torrperioden kännetecknas däremot av minskad metabolisk mångfald 
och en ökning av opportunistiska arter. För att möjliggöra denna analys utvecklades 
och förfinades nya bioinformatiska verktyg. MUFFIN är ett analysflöde optimerat 
för hybridsekvenseringsdata, och PANKEGG, är ett interaktivt 
visualiseringsverktyg för studera metagenomiska data. Resultaten från extrema 
torkförhållanden ger viktig kunskap för att säkerställa att pågående arbete med att 
minska metanutsläpp via avel eller fodertillskott inte försämrar idisslares förmåga 
att anpassa sig till torka eller lågkvalitativt foder, något som annars kan hota både 
livsmedelssäkerhet och djurvälfärd under värmeböljor. Under regnperioden ökade 
förekomsten av acetoklastiska metanogener (t.ex. CADBMS01) och fiber-nedbrytare 
(t.ex. Fibrobacter). Torrperioden visade en ökning av hydrogenotrofiska 
metanogener (t.ex. Methanosphaera). Denna ökning återspeglar en minskning i 
acetatproduktion, vilket tyder på sämre tillgång till föda och mindre effektiv 
fiberomsättning. Dessa resultat ger viktiga insikter i våmmikrobiomets 
anpassningsförmåga. Fynden pekar även på nya möjliga mål för att förbättra 
fodereffektiviteten och främja hållbarhet. Mikrobiomet innehöll flera 
antibiotikaresistensgener (ARG) under båda säsongerna. Förekomsten av dessa 
gener innebär en risk för spridning av resistens till patogener samt vidare ekologiska 
effekter. Utöver metagenomstudien visade en genomisk kartläggning av etiopiska 
boskapsraser på betydande genetisk mångfald och möjliga anpassningsmekanismer 
till lokala miljöstressorer. Dessa genetiska markörer öppnar möjligheter för framtida 
integrering av värdgenomik och mikrobiomanalys. 

Keywords: Bioinformatik, Genomik, Metagenomik, Våm, boskap, Etiopien, 
Säsongsvariationer 



 
 

Variabilité saisonnière du microbiome du rumen 
chez les vaches africaines indigènes: une 
approche bioinformatique. 

Résumé 

L'Éthiopie possède plus de 70 millions de bovins, principalement des races 
indigènes. Le climat éthiopien fait subir aux bovins des cycles fréquents d'abondance 
alimentaire en saison des pluies et de pénurie sévère en saison sèche. Cette thèse 
explore les variations saisonnières du microbiome du rumen des bovins Boran 
éthiopiens grâce à une approche métagénomique pilotée par la bioinformatique. Pour 
cela, de nouveaux outils informatiques ont été développés, notamment MUFFIN, un 
pipeline optimisé pour les données de séquençage hybrides, et PANKEGG, un outil 
interactif pour visualiser les résultats de MUFFIN. L'étude révèle des variations 
saisonnières dans la structure des communautés microbiennes et leurs fonctions 
métaboliques. Durant la saison des pluies, le microbiome présente une augmentation 
des méthanogènes acétoclastes et des organismes dégradant les fibres. La saison 
sèche montre une augmentation des méthanogènes hydrogénotrophes. Cette hausse 
reflète une baisse de la production d'acétate, indiquant une diminution de l'accès à 
l'alimentation et une dégradation moins efficace des fibres. Ces résultats apportent 
des connaissances essentielles sur l'adaptabilité métabolique et la résilience des 
microbiomes des bovins indigènes. Ils suggèrent également de nouvelles cibles 
potentielles pour améliorer l'efficacité alimentaire et promouvoir une durabilité 
environnementale. Le microbiome arborait plusieurs gènes de résistance aux 
antibiotiques (ARG) durant les deux saisons. La présence d'ARG indique un risque 
potentiel de propagation de résistances vers les pathogènes ainsi que des 
conséquences écologiques plus larges. En complément de l'étude métagénomique, 
une étude génomique des races bovines éthiopiennes a révélé une diversité génétique 
significative et de potentiels mécanismes d'adaptation aux facteurs de stress 
environnementaux locaux. Ces marqueurs génétiques ouvrent la voie à une future 
intégration des analyses du génome hôte et du microbiome. 

Keywords: Bioinformatique, Génomique, Métagénomique, Rumen, Bovin, 
Ethiopie, Changement saisonnier 
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1. Introduction 

Ethiopia is home to one of Africa’s largest cattle populations, with over 60 
million head as of 2020, contributing more than 1 million tonnes of beef and 
more than 3.8 billion litres of milk annually, and accounting for roughly 45% 
of the agricultural GDP(Wakaso et al., 2025; Zewde et al., 2022). Indigenous 
breeds dominate the Ethiopian cattle sector, accounting for over 98.5% of 
the population in 2015/2016 (Sendeku et al., 2016). These animals are raised 
primarily under smallholder and pastoralist systems, often in challenging and 
variable environments. The reliance on local breeds is both a matter of 
necessity and adaptation: commercial high-yielding breeds usually cannot 
withstand the harsh climate, seasonal feed variability, and long walking 
distances required in pastoral systems. 

However, adaptation is not immunity. In 2022, one of the worst droughts 
in recent history occurred, resulting in the death of over four million 
livestock and severely impacting rural livelihoods and food availability 
(Ethiopia - Situation Report, 10 Jan 2024 | OCHA, 2024). Among the 28 
recognised Ethiopian cattle breeds, the Ethiopian Boran is particularly well-
regarded for its heat tolerance, drought resistance, and ability to cover long 
distances. It is raised primarily in southern and eastern regions, which are 
also the most drought-prone. The breed is dual-purpose (meat and milk) and 
provides an opportunity to study the environmental resilience in livestock. 

While the "core" rumen microbiome in cattle is relatively stable under 
controlled feeding and environmental conditions, evidence suggests that 
seasonality and environmental stress can induce marked changes in 
microbial diversity and functionality. In comparison, studies in temperate 
zones have found limited seasonal shifts in rumen composition under stable 
feed conditions (Noel et al., 2017). At the same time, other studies observed 
significant reductions in microbial diversity and Ruminococcus abundance 
during hot summers (Islam et al., 2021). These shifts are known to impair 
fibre digestion and reduce volatile fatty acid (VFA) production, which are 
critical for energy metabolism in ruminants. Research conducted in tropical 
Australia on grazing cattle further showed that microbial communities 
respond dynamically to feed quality and season, diverging significantly from 
those observed under higher-quality, supplemented diets (Martinez-
Fernandez et al., 2020). 
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Despite these findings, Western commercial breeds are the primary focus 
of most metagenomic studies on the rumen microbiome, often conducted in 
controlled environments. Grazing systems, particularly in low- and middle-
income countries, remain underexplored. This lack of knowledge is 
especially true for indigenous African cattle. We designed this PhD project 
to investigate the seasonal variability of the rumen microbiome in such 
animals, with an initial focus on the Ethiopian Boran. Additionally, we 
sought to investigate the potential interactions between the host genome and 
the microbiota. Although these host-microbe interactions are not the primary 
focus of this thesis, we have established the methodological groundwork to 
investigate them. 

Understanding these microbial-host-environment interactions is not just 
an academic pursuit; It has a direct potential for improving cattle resilience 
in the face of climate change. Identifying microbiome features that support 
efficient digestion under dry and hot conditions could provide traits to inform 
future breeding programs. Enhanced microbiome profiles may serve as 
indirect selection criteria for heat and drought resistance, contributing to 
more sustainable livestock systems. This importance has recently been 
highlighted in the Global Methane Genetic Initiative, where the Bezos Earth 
Fund and the Global Methane Hub are investing $ 27.4 million to breed 
ruminants with lower methane emissions. Methane emissions from over 
100,000 animals will be measured in the project, and rumen samples to study 
microbial variation will be collected from approximately 15,000 of these 
animals.  Our approach aligns with several United Nations Sustainable 
Development Goals (SDGs) (THE 17 GOALS | Sustainable Development, 
n.d.): Goal 1 (No Poverty) and Goal 12 (Responsible Consumption and 
Production). Promoting livestock systems that are better suited to their local 
environments and more productive under environmental stress also intersects 
with Goal 2 (Zero Hunger), as more resilient animals can contribute to food 
security in vulnerable regions. Moreover, this work supports the One Health 
framework by addressing food safety and antimicrobial resistance through a 
better understanding of host-microbiome interactions. 
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Given the complexity of this challenge, the development of scalable, 
transparent, robust, FAIR-compliant and reproducible analytical workflows 
was a key part of this PhD. Accordingly, the thesis includes the creation of 
two bioinformatics tools: 

• Paper I MUFFIN, a flexible pipeline for hybrid metagenomic 
assembly, binning, and functional analysis, and 

• Paper II PANKEGG, a visual integration tool that enables 
comparison of metagenome-assembled genomes (MAGs) across 
samples and studies. 

 
These tools were developed not only to support the analyses in this thesis 

but also to be reusable by others working on similar challenges. Note, they 
are not limited to rumen microbiome data; they are compatible with any 
short- and long-read metagenomic datasets. The ability to reconstruct MAGs 
and functionally annotate them gives researchers insight not only into “who 
is there,” but also into the metabolic roles of microbial community members, 
particularly the degradation of plant fibres, synthesis of short-chain fatty 
acids (such as VFAs), and the presence of antibiotic resistance genes. 

This thesis is organised to reflect the multidisciplinary nature of the work. 
It begins with a background chapter that provides readers with the necessary 
understanding of metagenomics, bioinformatics, rumen physiology, and the 
context of African cattle production. The methods chapter then details the 
experimental procedures and computational workflows used in Papers III 
and IV. After that, two chapters present the bioinformatics tools developed 
as part of this work (Papers I and II). The application chapters (Papers III 
and IV) demonstrate how these tools and methods were used to investigate 
the rumen microbiome and genome of Ethiopian cattle. The thesis concludes 
with a general discussion that integrates findings across chapters and outlines 
the future directions of this research, particularly the extension of these 
methods to new data from South African cattle and eventually Swedish 
livestock, with a focus on methane mitigation and sustainable agriculture. 
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2. Background 

2.1 Metagenomics: Concepts and Methods 
Genomics is the study of the genome of a single organism that we sequence 
and analyse. Metagenomics, on the other hand, is the study of a group of 
organisms that cannot be dissociated, which we sequence collectively and 
then attempt to discriminate and analyse individually (Riesenfeld et al., 
2004). 

Metagenomics as a field emerged from the challenge of studying 
unculturable microorganisms. A common claim suggests that over 99% of 
microorganisms cannot be cultivated in vitro (Amann et al., 1995). This 
claim is often quoted without nuance, yet it highlights a crucial truth: 
cultivation biases our understanding of microbial diversity (E. J. Stewart, 
2012). When considering all microbial environments, it’s indeed the case 
that fewer than 1% of microorganisms have been successfully cultured 
(Lloyd et al., 2018). However, much of microbiology focuses on 
anthropocentric environments, such as the human gut, wastewater, and 
livestock systems, where cultivation techniques have improved over time 
(Lagier et al., 2015, 2018; Lau et al., 2016). Although we have made progress 
in cultivating microbes from these environments, a significant fraction 
remains unexplored or unculturable (Lewis et al., 2021). 

Thus, metagenomics remains essential, not only to study what we cannot 
culture, but also because we often don’t know in advance what is present in 
a sample, how many different organisms there are, or their relative 
abundances (Nayfach et al., 2021). In this sense, metagenomics echoes 
Zeno’s Dichotomy Paradox: our goal is to describe a community 
comprehensively, yet we only make incremental progress with little certainty 
of reaching the complete truth. Metagenomics studies began with a method 
that does not involve the genomes of the organisms and instead uses a 
selected gene. Yet it is often categorised as a metagenomics method: the 
metabarcoding sequencing (16S rRNA, 18S rRNA, ITS sequencing). The 
knowledge was then extended through whole metagenome shotgun 
sequencing and further deepened using cumulative discoveries 
(Handelsman, 2004). 

Technological advances have played a significant role in this progress. 
The advent of next-generation sequencing (NGS, e.g. Illumina) enabled 
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deep, accurate short-read sequencing. Then, platforms like Oxford Nanopore 
and PacBio introduced long-read capabilities, with steadily improving 
accuracy (Almeida et al., 2019; Logsdon et al., 2020). The long-read 
technology, combined with the continued improvement of Illumina, led to 
the emergence of a new generation of sequencing, known as High-
Throughput Sequencing (HTS). These developments led to the development 
of shotgun sequencing and ultimately enabled the reconstruction of 
metagenome-assembled genomes (MAGs), allowing for genome-resolved 
analyses of microbial communities (Tully et al., 2018). 

Despite access to massive sequencing power, no method captures 
everything. DNA extraction biases, sequencing limitations, lab 
contamination (Salter et al., 2014) and uneven organism abundance all mean 
that some organisms may be missed, including those present at very low 
abundance or at a distance of two centimetres to the right of where the sample 
was collected. 

In this PhD project, we apply both short-read (Illumina) and long-read 
(Oxford Nanopore) sequencing to maximise coverage and accuracy. Our 
goal is to recover high-quality MAGs, which provide taxonomic and 
functional insights. Functional annotation of MAGs allows us to explore 
microbial metabolism, interactions within the community, and interactions 
with the host environment, such as changes in feed composition and 
seasonality. We also studied the presence of antibiotic resistance genes. 

2.2 Bioinformatics for Metagenomics 
Bioinformatics is the process of transforming raw biological data into 
meaningful biological knowledge through computational analysis (Bayat, 
2002; Marturano, 2012). This thesis primarily focuses on sequencing data, 
encompassing both genomic and metagenomic information. 
Two primary analysis workflows were followed: 

For the host’s genomic studies: Reads are quality-checked and cleaned. 
High-quality reads are mapped to a reference genome. From the alignments, 
we extract single-nucleotide polymorphisms (SNPs) that differentiate our 
sample from the reference. 

For the metagenomic studies of the rumen microbiome: Reads from each 
sample are first quality-controlled and cleaned. Initial taxonomic 
classification is conducted (e.g. via Kraken2) (Wood et al., 2019). Reads are 
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then assembled into contiguous sequences (contigs). These contigs are 
grouped into bins based on coverage and sequence characteristics. High-
quality bins are retained as MAGs. These are then taxonomically classified 
and functionally annotated (DRAM for Distilling Microbial Metabolism to 
Automate the Curation of Microbiome Function | Nucleic Acids Research | 
Oxford Academic, n.d.). 

While the general process may seem linear, numerous analytical and 
biological biases complicate interpretation. The choice of tools, parameter 
settings, reference databases, and sequencing platform all influence the 
results (Quince et al., 2017). That’s why many new tools and pipelines 
continue to emerge (Scholz et al., 2016). To address specific needs and 
improve reproducibility, we developed a pipeline (MUFFIN) and a 
visualisation tool (PANKEGG) tailored to our workflow. 

MAGs are central to this approach. They represent draft genomes 
reconstructed from metagenomic data. They often vary in completeness and 
contamination. A standard for assessing MAG quality comes from both the 
Genome Taxonomy Database (GTDB) and the MIMAG consortium, which 
specifies criteria for medium quality MAGs as follows (Bowers et al., 2017; 
GTDB - Genome Taxonomy Database, n.d.): 

• CheckM completeness > 50% 
• CheckM contamination < 10% 
• Quality score (completeness - 5 × contamination) > 50 
• 40% of marker genes present (bac120 or arc53) 
• <1000 contigs, N50 > 5 kb 
• <100,000 ambiguous bases 

The criteria use quality information provided by previously by CheckM 
(Parks et al., 2015) and now by CheckM2 (Chklovski et al., 2023). CheckM 
first version was a quality assessment of genome bin using single copy gene 
marker set. The presence of those marker set was determining the 
completeness and contamination. CheckM2 is an assessment of genome bin 
quality using universally trained machine learning models. The default mode 
is using three different models, the first is a general gradient boost model to 
estimate the completeness of organisms not well represented in Genbank 
(Clark et al., 2016) and RefSeq (Goldfarb et al., 2025). The second is a 
specific neural network model, more accurate when predicting the 
completeness of bins closely related to known organisms that have been used 
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to train the model. The third model is a model specific for the contamination 
estimation. 

As of 2024, the GTDB includes over 730,000 genomes, up from ~145,000 
in 2019. This increase reflects the rapid accumulation of MAGs and the 
growing power of comparative metagenomics (Parks et al., 2017). 

2.3 Cow Anatomy, Rumen Physiology, and Microbiome 
Cattle are ruminants, meaning they possess a multi-compartment stomach 
specialised for fermenting fibrous plant material (see Figure 1). The rumen 
is the first and largest chamber, acting as a fermentation vat where ingested 
feed is mixed with a diverse microbiota (Perez et al., 2024). These microbes 
initiate the digestion process by breaking down plant polymers such as 
cellulose and hemicellulose (Russell et al., 2009). 

The cow chews its feed and swallows it into the rumen, where microbial 
fermentation begins. It then regurgitates partially digested feed (cud) to 
rechew it, a process that increases the surface area and facilitates microbial 
action (Church, 1988). Fermentation in the rumen results in the production 
of volatile fatty acids (VFAs), primarily acetate, propionate, and butyrate, 
which are absorbed through the rumen wall and serve as the cow’s primary 
energy source (Moharrery et al., 2014; Ungerfeld, 2020). 

Rumen microbes also play a significant role in protein nutrition. Many of 
them grow and reproduce in the rumen; when they die, their biomass flows 
into the lower gastrointestinal tract, where microbial proteins are digested 
and absorbed by the cow (Application of Biotechnology to Nutrition of 
Animals in Developing Countries, n.d.). This process supports the production 
of meat and milk (Matthews et al., 2019; Owens et al., 1986). 
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Figure 1: Schema of the Cattle stomach with the four compartments, Rumen, Reticulum, 
Omasum and Abomasum. Source Wikimedia (Millardcrystal, 2021) 

The rumen is followed by the reticulum, which works in close 
coordination with the rumen to break down further and filter digesta. From 
there, the feed enters the omasum, a chamber characterised by ample folds 
that absorb water and nutrients (Church, 1988). 

Finally, the digesta reaches the abomasum, the true acidic stomach, which 
kills the remaining microorganisms and further chemically degrades the feed 
(Church, 1988).  

Then the digesta reaches the small intestine, where enzymatic digestion 
resumes and absorbs the last remaining nutrients (mostly remaining digested 
starches and amino acids) (Harmon & Swanson, 2020). 

Microbial digestion is especially critical in ruminants; whose diets consist 
primarily of fibrous material that they cannot digest enzymatically. If one 
removes the microorganisms from the rumen, cattle would not be able to 
extract sufficient energy or protein from their feed to sustain themselves 
(Hook et al., 2010; Weimer, 2015). 

2.4 Role of the Microbiome in Cattle Health and 
Productivity 

The rumen microbiome is integral to the cow’s overall health and 
productivity. An imbalanced microbial community, resulting from infection, 
stress, feed changes, heat stress, or antibiotic use, can lead to reduced feed 
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efficiency, nutrient malabsorption, and disease (Lopes et al., 2021; Monteiro 
et al., 2022). 

One primary concern is methanogenesis, the production of methane (CH₄) 
by rumen archaea, particularly methanogens such as Methanobrevibacter. 
These microbes use different bacterial byproducts to reduce CO₂ into 
methane and produce ATP. While this process helps to some degree maintain 
the fermentation balance by removing excess components, it also contributes 
to greenhouse gas emissions (Greening et al., 2019; Hook et al., 2010).  Three 
different pathways can occur.  

The first is hydrogenotrophic methanogenesis, which is represented by 
the following orders of methanogens: Methanobacteriales, Methanococcales, 
Methanomicrobiales, Methanopyrales, and Methanosarcinales. This process 
reduces CO₂ into Methane using H₂.  

The second is acetoclastic methanogenesis, which converts the acetate 
present in the environment into methane. The central clade to rely on this 
process is the Methanosarcinales. 

The third is methylotrophic methanogenesis, which uses methanol and 
methylamines as substrates. This last pathway is the least common and only 
some Methanosarcinales and at least one member of the Methanomicrobiales 
are known to use it. 

Methanogenesis also involves multiple coenzymes (B, F420, and M); 
without them, methanogenesis would not produce methane.  

Another key role of the rumen microbiome is the degradation of plant 
fibre. Fibrolytic bacteria, such as Ruminococcus, Fibrobacter, and 
Butyrivibrio, degrade plant-fibres into fermentable sugars that are then 
metabolised into VFA(Comtet-Marre et al., 2017). A reduction in these 
populations, such as under heat stress or poor feed quality, can negatively 
affect digestion and energy production (Park et al., 2022). 

The microbiota also facilitates carbohydrate fermentation, producing 
VFAs that supply up to 70% of the cow's energy requirements (Bergman, 
1990; Ungerfeld, 2020). These VFAs are absorbed and converted into 
glucose or used directly in cellular metabolism. Disruption in these pathways 
(e.g., due to dietary shifts or disease) can lead to inefficiencies or metabolic 
disorders (Ungerfeld, 2020). 

Thus, the rumen microbiome is both a productivity engine and a 
sustainability concern. To improve feed efficiency, reduce methane 
emissions, and develop more resilient livestock systems, it is essential to 
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understand the composition and function the rumen microbiome (Badhan et 
al., 2025). 

2.5 Ethiopia's system and adaptation to the environment 

2.5.1 Ethiopian cattle systems 
Ethiopia’s livestock sector is immense and predominantly rural, with around 
70 million cattle, the largest cattle population in Africa (Ethiopia - Situation 
Report, 10 Jan 2024 | OCHA, 2024). Over 98% of these cattle are indigenous 
Bos indicus (zebu) breeds, which are kept by traditional smallholders and 
pastoralists (Y. Li et al., 2023). The country harbours a rich diversity of 
indigenous cattle breeds (28 recognised breeds), reflecting its varied agro-
ecologies and long history as a gateway of cattle domestication into Africa 
(MEKURIAW & KEBEDE, 2015). These native breeds are well adapted to 
local conditions; for example, the Sheko (a rare taurine breed in southwest 
Ethiopia) is trypanotolerant (resistant to tsetse-borne disease) and noted for 
efficient milk production, while the Boran (a zebu breed of the southern 
rangelands) is renowned for drought hardiness (MEKURIAW & KEBEDE, 
2015). 
Ethiopian cattle production operates in distinct systems shaped by 
environment and culture. Smallholder farmers raise the vast majority (~78%) 
of cattle in mixed crop–livestock systems of the highlands (Y. Li et al., 
2023). These smallholders typically keep a few zebu cattle for multiple 
purposes: draft power for ploughing, milk for home consumption or sale, 
manure for fertiliser, and as a form of savings (Y. Li et al., 2023). In contrast, 
pastoral systems in the arid and semi-arid lowlands (e.g., Somali, Afar, and 
Oromia regions) manage approximately 19% of the national herd in 
extensive, mobile herds (Y. Li et al., 2023). Pastoralists rely on communal 
rangelands and herd mobility, raising larger numbers of indigenous cattle 
(along with camels and goats) under open grazing. However, pastoral 
livelihoods are highly vulnerable to climate stress. Recurrent droughts and 
shifting rainfall patterns have led to water and pasture shortages, resulting in 
herd die-offs and increased heat stress in animals (Manyike et al., 2025). For 
example, in southern Ethiopia’s Borana rangelands, the increasing frequency 
of drought has shrunk forage resources, making it difficult for large cattle 
like the Boran to maintain condition; herders have been forced to destock or 
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favour smaller livestock (goats, sheep) that cope better with prolonged dry 
conditions (Y. Li et al., 2023). Climate pressures, as well as disease and 
limited veterinary services, contribute to the low overall productivity of the 
livestock sector (Manyike et al., 2025). 
 

 
Figure 2: Cartography of  Ethiopia with the region and zones. Source Wikimedia 
(User:SUM1, 2017) 

2.5.2 Seasonal variation and adaptation strategies 
Seasonal variability in Ethiopia’s climate significantly impacts the livestock 
systems, with pronounced wet and dry seasons that create dramatic swings 
in feed and water availability. Ethiopia exhibits a diverse climatic pattern, 
but generally experiences three main seasons: the long rainy season 
(‘Kiremt’) from June to August, the dry season (‘Bega’) from October to 
February, and the short rainy season (‘Belg’) from March to May. In the 
southern lowland pastoral areas such as Borena, these patterns vary slightly, 
with the primary rainy season typically occurring from March to May and a 
short rainy period in October and November. But as the long dry season 
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progresses, pasture growth ceases and the quality of forage declines rapidly, 
leading to extended periods of feed scarcity (Duguma & Janssens, 2021). 
Cattle commonly experience poor body condition in late dry seasons, with 
markedly reduced productivity and higher susceptibility to diseases and 
parasites (Duguma & Janssens, 2021). In Janssens et al.'s study, all farmers 
reported inadequate feed during the dry season (versus ample feed during the 
wet season) and observed their animals losing weight and fertility during the 
drought months (Duguma & Janssens, 2021). Over the years, Ethiopian 
livestock keepers have developed a suite of adaptation strategies, both 
traditional and innovative, to help their animals cope with these 
environmental extremes. 

Mobility and Grazing Rotation: Pastoralists practice strategic mobility, 
migrating with their herds to track seasonal water and pasture availability. 
They often rotate grazing areas (e.g. the traditional seri system in the Somali 
Region) to prevent the overuse of any one rangeland and allow vegetation to 
recover (Kebede et al., 2024; Manyike et al., 2025). This mobility exploits 
the patchy nature of rainfall, ensuring animals can find forage even in dry 
periods by moving to better-watered zones. 

Water Harvesting: Communities employ water conservation methods, 
such as digging and maintaining birkas (traditional underground cisterns or 
ponds) to store rainwater for use during the dry season (Kebede et al., 2024). 
These stored water sources serve as critical lifelines for cattle when rivers 
and surface ponds dry up. Herders will also trek long distances to permanent 
water points during droughts, carefully rationing water to keep core breeding 
animals alive. 

Feed Conservation and Supplementation: In highland mixed farming 
systems, farmers mitigate dry-season fodder gaps by conserving crop 
residues (such as straw from teff and maize stalks) and hay from the wet 
season (Duguma & Janssens, 2021). After harvest, cereal stover and other 
residues are collected and stored as feed for livestock. Many also purchase 
additional roughage (like straw or grass) if available. In times of extreme 
scarcity, livestock are supplemented with “non-conventional” feeds, such as 
leaves from indigenous browse trees, shrub foliage, and crop by-products, to 
augment the poor grazing (Duguma & Janssens, 2021; Manyike et al., 2025). 
These practices help bridge the nutritional gap until the next rains. 

Herd Size Management: Herders commonly adjust their herd size and 
composition in response to climate forecasts and forage availability. During 
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severe droughts, destocking is used as a coping strategy; families sell off or 
slaughter weaker animals to reduce grazing pressure and generate income or 
food (Duguma & Janssens, 2021). Pastoralists may also split herds and send 
portions of the cattle to distant relatives or wetter areas, as a risk-spreading 
mechanism (Manyike et al., 2025). Additionally, many keep a mix of species 
(cattle, goats, camels) so that if pasture conditions favour one type (e.g. 
camels can browse drought-tolerant shrubs), the entire livelihood is not lost. 

Genetic and Reproductive Strategies: Over generations, Ethiopian 
herders have leveraged indigenous knowledge to select hardy breeds and 
manage breeding timing to suit the climate. Pastoral communities favour 
cattle with traits such as heat tolerance, drought resistance, and disease 
resilience, for instance, the Masai and Boran zebu strains, which can 
withstand sporadic access to water (Manyike et al., 2025). Herders also 
control mating seasons: it is a common practice to ensure cows become 
pregnant so that calving coincides with the rainy season, when pasture and 
water are sufficient for lactating mothers and newborn calves (Duguma & 
Janssens, 2021). By avoiding births in the peak of the dry season, they reduce 
calf mortality and stress on the cows. 

 
Ethiopia’s farmers demonstrate a resilient interplay between 

environment, genetics, and management. Indigenous cattle breeds and 
traditional practices have evolved to allow communities to endure cycles of 
abundance and hardship. However, with climate change intensifying drought 
frequency and feed shortages, sustaining these systems will require 
enhancing adaptation strategies, from improving feed storage and water 
infrastructure to conserving genetic diversity, so that Ethiopia’s cattle sector 
can continue to support livelihoods and food security in the coming decades 
(Duguma & Janssens, 2021). 

2.6 Cattle metagenomics: From 2000 to now 

2.6.1 First metagenomics studies in livestock 
Early explorations of the rumen microbiome (2000s) relied on 16S rRNA 
gene clone libraries and low-throughput sequencing. These studies revealed 
that rumen bacterial communities are dominated by a few major phyla, 
chiefly Firmicutes and Bacteroidetes, with Proteobacteria and others in lower 
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abundance (L. Wang et al., 2019). For example, a 2005 study constructed a 
metagenomic DNA library from a dairy cow’s rumen to screen for novel 
fibre-degrading enzymes, uncovering previously unknown hydrolases from 
the rumen microbiome (Ferrer et al., 2005). Around the same time, clone 
library surveys in cattle and yak rumen identified numerous novel 16S 
sequences, highlighting the vast diversity of rumen bacteria and archaea even 
in these early efforts (An et al., 2005). However, these pioneering studies 
were limited in scope; they often focused on a few Holstein dairy cows under 
controlled diets, reflecting primarily European/North American cattle with 
limited breed diversity. As a result, early rumen microbiome profiles lacked 
representation of the broader genetic and dietary diversity found in global 
cattle populations (Conteville et al., 2024). The emphasis then was on 
cataloguing “who’s there” in the rumen using Sanger sequencing or 454 
pyrosequencing of marker genes. These approaches established baseline 
knowledge (e.g., confirming a core set of prevalent rumen genera, such as 
Prevotella and Ruminococcus). Still, they provided little functional insight 
and were unable to capture less abundant or unculturable microbes. 

The next step was the application of the newly developed shotgun 
metagenomics to the rumen around 2009–2011. In a landmark study, Brulc 
et al. (2009) performed gene-centric metagenome sequencing of fibre-
adherent rumen microbes, uncovering numerous novel glycoside hydrolase 
genes linked to plant fibre breakdown (Brulc et al., 2009). Subsequently, 
Hess et al. (2011) performed deep sequencing of the rumen contents of a 
switchgrass-fed cow, assembling partial genomes of previously uncultured 
bacteria and identifying tens of thousands of carbohydrate-active enzymes 
(Hess et al., 2011). This Science 2011 study demonstrated the rumen’s rich 
reservoir of biomass-degrading enzymes and marked one of the first 
instances of assembling draft genomes (metagenome-assembled genomes, 
MAGs) from rumen microbes. Together, these early metagenomic works 
showed that the rumen harbours vast functional diversity (e.g., novel 
cellulases, xylanases) and hinted at specific microbial lineages (such as 
Prevotella spp. or Fibrobacter succinogenes) as key fibre degraders. Still, 
they were typically small-scale (involving single or a few animals). They 
predominantly examined high-producing dairy cattle, which constrained the 
generalizability of the findings to other breeds or management systems. The 
limitations in sequencing depth and computational methods enabled the 
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studies to detect a large number of genes. Yet the studies struggled to 
assemble complete genomes or link genes to specific microbial taxa. 

2.6.2 Rise of MAG-based studies and comparative frameworks 
High-throughput sequencing advances in the mid-2010s (Illumina HiSeq, 
etc.) enabled more comprehensive rumen metagenomic surveys and led to 
the emergence of genome-centric metagenomics in cattle. Researchers began 
assembling large numbers of metagenome-assembled genomes (MAGs) 
from rumen samples, which provided much higher taxonomic and functional 
resolution than earlier gene catalogues. A watershed project by Stewart et al. 
(2018) assembled 913 draft bacterial/archaeal genomes from rumen 
metagenomes of 43 Scottish cattle (R. D. Stewart et al., 2018). This study 
introduced the term “rumen uncultured genomes (RUGs)” for these MAGs 
and demonstrated that genome-resolved metagenomics could retrieve new 
rumen species never cultured before. An even larger effort soon followed it: 
Stewart et al. (2019) generated a compendium of 4,941 non-redundant 
MAGs from the rumen microbiomes of 283 cattle (R. D. Stewart et al., 2019). 
This extensive catalogue, often referred to as the Rumen Genome Catalog, 
was constructed by aggregating and dereplicating tens of thousands of bins, 
setting a new benchmark for rumen microbial genomics. Notably, 
incorporating these MAGs into reference databases significantly increased 
the read classification rate for rumen metagenomes from ~15% (with 
previous references) to over 50–70% (R. D. Stewart et al., 2019). In other 
words, more than half of the DNA sequences from rumen samples could now 
be assigned to a known genome or MAGs, whereas previously most 
sequences had no match (R. D. Stewart et al., 2019). This increase highlights 
how under-represented rumen microbes were in earlier databases and how 
genome-centric approaches have filled significant knowledge gaps. 

Alongside MAG collection, researchers developed comparative 
frameworks and databases to organise the deluge of new data. For example, 
the Hungate1000 project took a complementary approach by culturing and 
sequencing 410 rumen microbial isolates (reference genomes) [9]. While 
cultured isolates are high-quality genomes, adding the Hungate1000 
genomes improved rumen metagenomic read mapping by only ~10%,  
indicating that most rumen microbes remained uncultured, hence the value 
of MAGs (Seshadri et al., 2018). Large gene catalogues were also compiled. 
In 2020, Li et al. published a bovine rumen microbial gene catalogue 
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containing millions of unique genes from 77 metagenomes (J. Li et al., 
2020), enabling cross-study comparisons of functional potential. These 
resources,  MAG compendia, isolate genome libraries, and gene catalogues, 
formed a foundation for comparative analysis. Researchers can now ask 
questions like: How do rumen microbial genomes differ between dairy and 
beef cattle, or between different continents? Or how do diet or host genetics 
shape the presence/absence of specific microbial genes? 

Another emerging framework was the creation of global reference 
databases and consortia. The Global Rumen Census (2015) surveyed rumen 
microbiota from cattle worldwide (via 16S sequencing) and identified a core 
set of abundant taxa shared across herds (Global Rumen Census, 2025; 
Henderson et al., 2015). Building on this, post-2018 MAG studies started to 
include diverse breeds and geographies. For instance, a 2020 study generated 
a catalogue of 1,200 MAGs from African Boran cattle rumen, expanding 
representation beyond the European breeds (Wilkinson et al., 2020). By 
2022–2024, international efforts had assembled thousands of genomes from 
zebu cattle in Brazil (Conteville et al., 2024), as well as dairy buffalo, sheep, 
goats, and wild ruminants, underscoring a move toward pan-ruminant 
microbiome frameworks. These comparative resources enable scientists to 
benchmark new findings, such as verifying whether a MAG from one study 
is novel or already present in the database, or comparing enzyme repertoires 
between datasets. They also facilitated functional analyses; researchers can 
map metagenomic reads to the reference gene catalogue to quantify 
abundances of genes/pathways, or use the MAG genomes to study metabolic 
pathways (e.g., methanogenesis genes) across different animals. In summary, 
the late 2010s witnessed a shift in the rumen microbiome field from small-
scale descriptive studies to large-scale, data-rich resources that enable 
systematic comparisons and meta-analyses. The emphasis moved toward 
cataloguing “who is there and what they can do” on a global scale, which 
was a necessary step before tackling more profound biological questions. 

2.6.3 Metagenomics studies Until 2020 
Before 2020, most cattle metagenomics studies fell into a few significant 
themes, centred on improving livestock production and understanding rumen 
function: 

Diet and nutrition effects: A large body of work examined how different 
diets or feed additives alter the rumen microbiome. For example, high-grain 
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vs. high-forage diets were compared to see shifts in microbial populations 
and fermentation end-products. These studies often used 16S rDNA profiling 
or moderate-depth metagenomes. A consistent finding was that high-forage 
(fibre-rich) diets enrich fibre-degrading bacteria (such as Fibrobacter and 
Ruminococcus). In contrast, high-grain diets favour amylolytic and lactic 
acid-producing bacteria, which can sometimes lead to reduced diversity or 
the proliferation of microbes associated with acidosis (L. Wang et al., 2019). 
Feed additives, such as fats, oils, or plant secondary compounds, were tested 
for their ability to suppress methanogens or protozoa. For instance, adding 
lauric acid drastically reduced protozoal counts and shifted the bacterial 
community structure in cows (Hristov et al., 2012). These nutrition-oriented 
studies aimed to manipulate the microbiome to improve feed efficiency or 
animal health (e.g. preventing bloat or acidosis). Up to 2020, methods 
included amplicon sequencing for studying community shifts, as well as 
occasionally metagenomic or metatranscriptomic analyses to link diet to 
functional genes (e.g., fibre enzyme profiles). Wang et al. (2019) is an 
example, where metagenomes of cows on different forage-to-concentrate 
ratios revealed diet-dependent abundance of carbohydrate-active enzyme 
genes (CAZymes) involved in fibre breakdown (L. Wang et al., 2019). Such 
studies addressed questions like “Which microbes flourish on a high-starch 
feed?” or “Do fibre-rich diets increase cellulase gene abundance?”, linking 
microbiome composition to feed utilisation. 

Methane mitigation and host emissions: Ruminant enteric methane, 
produced by archaea in the rumen, has been a topic of significant concern 
due to its substantial climate impact; many pre-2020 studies have profiled 
rumen archaeal communities (mostly methanogens of the family 
Methanobacteriaceae) under various conditions. For example, comparisons 
of high-methane versus low-methane cattle revealed higher 
Methanobrevibacter abundance, which correlated with increased methane 
production (Wallace et al., 2015). Some other interventions (like certain 
dietary fats, 3-nitrooxypropanol additives, or even selecting low-methane 
sheep/cattle lines) were tested and their microbiomes analysed to see how 
methane production dropped. These works were typically smaller scale, 
using qPCR or 16S/ITS amplicons to quantify methanogen populations. By 
2019, several studies had combined host genetics and microbiome analysis, 
finding, for instance, that some methane emission traits are moderately 
heritable and linked to the composition of the rumen microbiome (Difford et 
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al., 2018). Overall, by 2020, it was recognised that “methanogen abundance 
and community structure are key determinants of methane output”, and that 
altering the microbiome (by diet or possibly breeding) could reduce 
emissions. The progress in the established knowledge set the stage for deeper 
metagenomic inquiries into why specific microbiomes produce less methane 
(e.g. differences in hydrogen-utilisation pathways)(Danielsson et al., 2017). 

Feed efficiency and production traits: Another focus was the link 
between the rumen microbiome and feed conversion efficiency, milk yield, 
or growth rate. Earlier efforts often characterised microbiomes of cows with 
high vs. low feed efficiency (measured by residual feed intake, RFI) using 
16S sequencing. Some consistent patterns emerged, e.g., more efficient 
animals tend to have lower overall diversity and a distinct bacterial 
community composition, although the results varied. Protein- and fat-yield 
differences in milk were also correlated to specific microbes or fermentation 
profiles in some studies. Methods included both amplicon surveys and 
metatranscriptomics; for instance, Shi et al. (2014) used metatranscriptomes 
to demonstrate in sheep that low-methane versus high-methane had different 
active microbial populations and fermentation pathways (Shi et al., 2014). 
By 2020, evidence was mounting that certain bacterial families (like 
Ruminococcaceae) and functions (like better fibre degradation) associate 
with superior feed efficiency or milk production (Monteiro et al., 2024). 
These studies aimed at identifying microbial biomarkers for feed efficiency 
that could be harnessed in selective breeding or dietary interventions. 

Microbial biogeography and core microbiome: Several studies have 
surveyed differences in microbiomes across breeds, hosts, or geographic 
regions. For instance, Henderson et al. (2015) sampled cattle from Asia, 
Europe, and North America, finding a remarkably similar core microbiome 
dominated by Prevotella, Succinivibrionaceae, and Ruminococcaceae, 
among others, despite geographical differences (Henderson et al., 2015). 
Others compared dairy breeds (Holstein vs. Jersey) under identical diets to 
determine if breed genetics influence the microbiome; the results were 
mixed, with some differences in minor taxa but largely overlapping 
communities (Roehe et al., 2016). Comparisons of rumen vs. faecal 
communities, or different gut compartments (rumen, omasum, colon), also 
began to appear, showing that while the rumen is unique in hosting fibre 
degraders, some taxa carry through the GI tract. These broad surveys built 
an understanding of which microbes are ubiquitous (e.g. Prevotella is often 



42 
 

~20–50% of sequences) and which are variable. By establishing the 
“normal” rumen microbiota structure, they provided context to interpret 
results from diet or treatment studies. 

Methodological studies: As next-generation sequencing gained 
momentum, some papers in the 2010s focused on the methodology for rumen 
metagenomics. For example, evaluating different DNA extraction protocols 
for this fibre-rich, tough sample, or benchmarking bioinformatic tools for 
assembly and binning on rumen datasets. CheckM (2015) became a standard 
for assessing MAG completeness/contamination (Parks et al., 2015), and 
pipelines for metagenomic assembly got democratised (Kieser et al., 2020; 
Tamames & Puente-Sánchez, 2019; Uritskiy et al., 2018). 

Additionally, the first attempts at rumen viromics appeared (e.g., 
sequencing rumen bacteriophages and pathogens) to catalogue viral diversity 
in the rumen (Anderson et al., 2017). Though not as numerous as diet studies, 
these methodological papers were crucial for enabling the larger studies that 
followed. 
 

In summary, up to 2020, cattle rumen microbiome research had 
transitioned from simple descriptive surveys to more hypothesis-driven 
studies targeting productivity and environmental outcomes. They employed 
increasingly complex methods, from 16S rRNA profiling to shotgun 
metagenomics and metatranscriptomics, but sample sizes were still modest 
in most cases (dozens of animals at most). The typical study might ask, “How 
does X intervention change the rumen community or gene abundance, and 
what does that imply for fermentation or animal performance?” What 
changed near 2020 was the ability to assemble genomes and integrate data 
across studies, but the full exploitation of those advances was just beginning. 

2.6.4 Metagenomics studies since 2020 
Since 2020, rumen metagenomics research in cattle has grown in scale and 
adopted new perspectives and technologies, leading to notable shifts in the 
types of studies, questions, and methods: 

Far larger and more diverse cohorts: Post-2020 studies often include 
hundreds or even thousands of samples, whereas pre-2020 works had tens. 
There has been a conscious effort to cover greater genetic and geographic 
diversity in cattle, for example, recent projects in 2021–2023 surveyed cattle 
from multiple continents (Europe, Asia, Africa, Americas) in one study, or 
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included breeds beyond Holsteins, such as Zebu (Bos indicus) cattle, 
buffaloes, and indigenous breeds, to capture how microbiomes differ with 
host genetics. The 2024 study by Conteville et al. assembled genomes from 
52 Nelore (Brazilian Zebu) cattle, specifically to address the prior 
underrepresentation of tropical breeds in rumen metagenomics (Conteville 
et al., 2024). Similarly, Scientific Data (2025) by Legrand et al. expanded 
the sampling to Australian Angus beef cattle, examining not only the rumen 
but also the oral and nasal microbiomes (Legrand et al., 2025). These broader 
surveys revealed that while core microbial phyla remain consistent 
(Firmicutes, Bacteroidota still dominate in bovines), there are significant 
differences in community composition and MAGs linked to breed, diet, and 
environment when you look across diverse herds. In short, microbiome 
research has become less focused on high production breeds and farming 
system , acknowledging that farms throughout the world have themselves a 
diversity of breeds, feed and farm system. The questions now include 
comparative analyses: e.g., “Do tropical cattle harbour unique microbial 
species or gene patterns that differ from temperate cattle?” or “How does the 
rumen microbiome of high-methane vs. low-methane cattle compare across 
different breeds?” This trend enhances the robustness of microbiome-derived 
solutions (such as probiotics or dietary recommendations) by ensuring 
they’re effective across various cattle genetics and management systems. 

Integration of multi-omics approaches: Recent studies often go beyond 
DNA sequencing alone. There’s an uptick in metatranscriptomics analyses 
(to see which genes are actively expressed in the rumen under different 
conditions) and metaproteomics or metabolomics to link microbiome 
function with fermentation end-products.  

Several studies in 2021–2022 integrated both shotgun metagenomics and 
metatranscriptomics to distinguish between genes present and those actively 
expressed in cows on different diets. For instance, Xue et al. demonstrated 
that metatranscriptomic analysis uncovered stronger associations between 
rumen microbial functions and host feed efficiency compared to 
metagenomics alone; this included CAZyme expression linked to 
carbohydrate degradation pathways active in efficient cows (Xue et al., 
2022). 

Combining microbial profiling with VFA and metabolomics 
 Other research has paired microbial sequencing (16S or shotgun) with 

the quantification of volatile fatty acids (VFAs) or broader metabolomic 
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profiling to relate microbial changes to fermentation chemistry directly. A 
study of Sanhe heifers highlighted how dietary regimes altered both 
taxonomic and functional microbial profiles alongside metabolite shifts in 
rumen fluid, connecting microbiome structure with fermentation outputs 
(Zhang et al., 2024). 

Together, these multi-omics approaches shift the focus from the mere 
presence of microbial taxa toward a more refined understanding of metabolic 
activity, identifying which microbes are expressing carbohydrate-active 
enzymes, producing metabolites such as butyrate or propionate, and 
influencing fermentation patterns that affect host performance, including 
methane production or energy harvest. 

Consequently, research questions have evolved to “Which microbial 
pathways are upregulated in more efficient animals?” or “How do 
microbiome metabolites signal to the host and influence feed utilisation or 
immunity?” These multi-omic studies are more complex but yield a systems-
level view of the rumen as an ecosystem. 

Focus on previously neglected community members: While bacteria 
have dominated past research, there has been a growing interest in rumen 
archaea, fungi, protozoa, and viruses since 2020. For example, a 2024 study 
constructed a comprehensive catalogue of 998 archaeal genomes from 
ruminant guts (including cattle), shedding light on the diversity of 
methanogens and their relatives across species (Mi et al., 2024). This work 
demonstrated that archaea exhibit variation by host breed and gut 
compartment, and even identified new archaeal strains with unusual 
metabolic genes. Rumen anaerobic fungi (Neocallimastigales) and ciliate 
protozoa, critical fibre digesters and hydrogen integrators, are notoriously 
hard to sequence due to large genomes and eukaryotic DNA. Still, recent 
efforts have applied long-read sequencing or targeted approaches to 
assemble draft genomes of these organisms (Hanafy et al., 2022). Moreover, 
the rumen virome (bacteriophages, pathogens and eukaryotes viruses) is 
being actively studied with metagenomics; for instance, in 2022–2023, 
researchers described diverse novel rumen viruses and CRISPR arrays in 
rumen bacteria, some of which may influence bacterial population dynamics 
or gene transfer. Thus, post-2020 studies pose new questions, such as “How 
do bacteriophages contribute to rumen microbial turnover or gene flow?” or 
“Can we manipulate protozoal populations to reduce methanogens 
indirectly?” The rumen microbiome is now viewed holistically as comprising 
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bacteria, archaea, eukaryotes, and viruses, rather than just bacteria/archaea. 
This broadened perspective is crucial for a genuine understanding of 
ecosystem function (e.g., protozoa synergise with methanogens, and viruses 
may carry essential genes). 

Applied and translational research: In the post‑2020 period, there has 
been a striking shift from descriptive studies to applied and translational 
research that directly targets livestock productivity and environmental 
impact. Several studies now focus on leveraging microbiome data in cattle 
selection programs, identifying rumen microbial biomarkers associated with 
high feed efficiency (often defined by residual feed intake, RFI) or low 
methane emission phenotypes alongside conventional genetic breeding 
values (Fonseca et al., 2023; Fregulia et al., 2024; Peraza et al., 2024). For 
example, Xie et al. (2022) linked specific rumen taxa and metabolic 
pathways (e.g., Prevotella, Fibrobacter succinogenes, CAZymes, and 
methanogenesis pathways) to feed-inefficient cattle, highlighting microbial 
signatures that may serve as predictive markers or targets for intervention 
(Xie et al., 2022). Adrade et al. (2022) identified amplicon sequence variants 
(ASVs) in rumen and stool samples of Brazilian Nelore bulls. They showed 
a strong association with both RFI and methane output. These results suggest 
the potential of using ASVs as biomarkers for selection or dietary modulation 
(Andrade et al., 2022). 

New multi-omics efforts (e.g., metagenomics, metatranscriptomics, and 
metabolomics) have also revealed microbial functional networks and 
metabolic markers (e.g., Selenomonas, Succinivibrionaceae, and specific 
carbohydrate metabolites) that consistently differentiate high- from low-
efficiency dairy cows, offering targets for the development of feed additives 
or precision microbiome modulation (Xue et al., 2022). 

Concurrently, dietary interventions informed by metagenomics are 
increasingly used. Researchers mine extensive rumen gene catalogues for 
fibre-degrading enzymes or secondary metabolite gene clusters that can be 
turned into feed additives, enzymes, or engineered probiotics tailored to 
boost digestive functions or suppress methanogens. Recent studies have 
demonstrated how metagenomic and metabolomic data can inform the 
development of feed additives designed to reduce methane emissions and 
enhance feed efficiency. For example, supplementation with red seaweed 
(Asparagopsis taxiformis) has shown methane reduction effects exceeding 
80%, still with an impact on rumen fermentation and animal productivity 
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despite being administered in very low dosage (Angellotti et al., 2025). Other 
interventions study the use of synthetic inhibitors targeting methanogenesis 
pathways. They achieve significant reductions in enteric methane while 
maintaining rumen function and animal performance (Krizsan et al., 2023). 
These novel approaches are increasingly supported by functional omics 
analyses, metagenomics, metatranscriptomics, and metabolomics, which 
help elucidate shifts in microbial taxa and fermentation patterns under 
additive use. These approaches integrate microbial and host response. The 
data allows researchers to assess not just methane outcomes but also broader 
sustainability impacts, such as feed conversion efficiency, nitrogen use, and 
overall productivity (Ramin et al., 2023). 

Precision livestock farming tools are also integrating microbiome data, 
with portable sequencers, methane sensors, and sensor networks now 
offering the potential for on-farm real-time monitoring of microbial activity 
or proxy measures (e.g., methane flux), enabling immediate adjustments to 
diet or management. While full implementation is still in its early stages, 
pilot studies highlight the feasibility and the beginning of decision-support 
systems informed by microbial signals. 

In summary, since 2020, the field has progressed, and the framing has 
moved decisively to: 

 “How can we manipulate or utilise the rumen microbiome to achieve a 
specific outcome (better growth, lower methane, improved feed 
efficiency)?” marking a clear shift from earlier, primarily descriptive 
ecological studies toward strategic, outcome‑driven research. 

Improved analytical tools and pipelines: Methodologically, since 2020, 
the field has adopted cutting-edge tools for analysing metagenomic data 
(elaborated in the next section). As a result, newer studies can assemble more 
complete genomes with greater confidence. It’s now common to retrieve 
near-complete (>90% complete) MAGs and even closed genomes for some 
rumen bacteria. This increase in completeness has improved functional 
annotations and the discovery of biosynthetic gene clusters, CRISPR 
elements, and other features that were missed in drafts. Quality control is 
stricter; modern studies often report only high-quality MAGs (completeness 
≥ 90%, contamination ≤ 5%) for analysis (Sáenz et al., 2025). There has also 
been an uptick in statistical rigour and the application of machine learning to 
microbiome data (discussed below), ensuring that findings (such as 
microbial biomarkers) are robust and generalizable. 
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In essence, the post-2020 period in cattle metagenomics is characterised 

by scaling up (more samples, more data types) and drilling down (previously 
under-studied microbial groups and mechanistic insights). The research has 
become more interdisciplinary, merging animal science, microbiology, data 
science, and even climate science, to tackle complex questions about host-
microbe interactions in the rumen. The ultimate vision is to precisely 
modulate the rumen microbiome to benefit both the animal (improved feed 
conversion and health) and the planet (reduced greenhouse gases), and the 
advancements made since 2020 are rapidly moving us closer to that goal. 

2.6.5 Machine learning and deep learning revolution 
Machine learning and deep learning have revolutionised the application of 
metagenomics. Along with progress in sequencing technologies like Oxford 
Nanopore Technologies (ONT), new chemistry, and PacBio Revio, these 
innovations have transformed data processing and analysis: 

Long-read sequencing (ONT/PacBio): Before 2020, nearly all rumen 
metagenomes utilised short reads (Illumina), which presented challenges in 
assembling complete genomes from complex communities. Now, long-read 
sequencers are being applied to rumen samples, sometimes even generating 
metagenomes that are long-read-only. The long reads (tens of kb in length) 
can span repetitive regions and plasmids, enabling assembly of entire 
microbial chromosomes from the rumen. In Stewart et al. (2019), the 
addition of a subset of Nanopore reads enabled the assembly of at least three 
complete, single-contig bacterial genomes from the rumen microbiome (R. 
D. Stewart et al., 2019), a feat previously impossible with short reads alone. 
Since then, specialised pipelines like NanoPhase (2021; 
https://github.com/Hydro3639/NanoPhase ) have been developed.  The new 
sequencing technologies and methods demonstrated that reference-quality 
genomes can be reconstructed using only Nanopore reads from metagenomic 
DNA (Moss et al., 2020). The impact on cattle microbiome research is huge: 
complete MAGs mean we can identify genes like virulence factors or 
antibiotic resistance elements that often reside on plasmids, and we get 
complete rRNA operons and other genomic regions that short-read 
assemblies miss. Long reads also enhance the assembly of eukaryotic 
genomes (such as those of rumen fungi and protozoa), which are too large 
and repetitive for short-read assembly. 
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Additionally, real-time sequencing with ONT opens the door to on-farm 
or on-site analysis of rumen microbes in the future. The caveat had been 
higher error rates, but steady improvements in basecalling accuracy (thanks 
to deep learning models in ONT’s basecallers) have made long reads more 
accurate and thus more widely adopted. In summary, the way we process 
reads has changed; modern studies often employ hybrid assembly (short + 
long reads) or even long-read assembly to achieve high-contiguity genomes, 
drastically improving the quality of microbiome data from cattle. 

Advanced binning algorithms (ML-powered): Binning contigs into 
MAGs previously relied on simple compositional patterns and coverage 
clustering with tools such as MetaBAT2 (Kang et al., 2019) and CONCOCT 
(Alneberg et al., 2014). Since 2020, deep learning and embedding techniques 
have revolutionised metagenomic binning. For example, VAMB 
(Variational Autoencoder for Metagenomic Binning) (Nissen et al., 2021) 
introduced an autoencoder neural network that learns latent representations 
of contigs (based on oligonucleotide frequency and coverage across samples) 
to group them more accurately than manual thresholds. Other tools, e.g. 
Semibin2 (Pan et al., 2023) or Comebin (Z. Wang et al., 2024) utilise 
contrastive learning, an approach that can better resolve complex genomes 
(e.g., differentiate strains) by generating multiple views for each contigs. 
These ML-based binning methods reduce contamination and recover more 
complete genomes, particularly for high-coverage yet complex communities, 
such as the rumen. In practice, many recent rumen studies employ a 
combination of algorithms and then refine the bins by automating what was 
previously a laborious, manual curation process. Deep learning is also used 
in taxonomic classification: instead of BLASTing each contig, models can 
classify sequences based on learned features, improving speed and 
sometimes accuracy for novel sequences. As an example, a 2022 review 
successfully applied to metagenomic binning tasks, convolutional neural 
networks and autoencoders, highlighting that these approaches capture 
sequence patterns beyond the scope of traditional methods (Elhassani et al., 
2021). The net effect is that more high-quality MAGs are recovered from a 
given dataset than was possible a few years ago, and this is particularly 
beneficial for rumen samples, where genomes of interest may be closely 
related or occur at low abundance. 

Genome quality assessment, CheckM2 (Chklovski et al., 2023): A 
significant development in computational tools is CheckM2, released in 
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2022–2023, which utilises, in part, machine learning to evaluate MAG 
quality. The original CheckM (2015) identified single-copy marker genes to 
estimate completeness and contamination of a genome bin. CheckM2 instead 
was trained on a wide range of genomes to predict completeness more 
accurately, even for novel lineages, using patterns learned via ML . It can 
adjust to new reference genomes on the fly and correct some biases (for 
instance, tiny genomes of specific symbionts or very GC-rich genomes that 
confounded CheckM1). For rumen studies, CheckM2 provides greater 
confidence in MAG quality, mainly since many rumen microbes belong to 
lineages with no close reference. In this scenario, machine learning 
predictions help avoid under- or overestimating completeness . The most 
recent cattle MAG studies report CheckM2 scores to substantiate that their 
recovered genomes are of genuinely high quality. In practical terms, this 
means downstream biological analyses (like estimating pan-genomes or 
metabolic capacities) rest on a more solid foundation of genome quality. 

Machine learning for predictive modelling: Beyond data processing, 
ML and deep learning are increasingly used to derive insights from the rumen 
microbiome. One primary application is in predicting host phenotypes from 
microbiome data. To predict traits such as feed efficiency, methane yield, or 
dairy production metrics, approaches like random forests, support vector 
machines, and deep neural networks have been applied to 16S or shotgun 
profiles. For example, Difford et al. (2018) employed statistical learning to 
predict methane emissions from rumen microbial profiles, achieving 
moderate accuracy, which suggests a microbial signature for distinguishing 
between low- and high-methane cattle (Difford et al., 2018). More recently, 
Monteiro et al. (2024) applied an ensemble of machine learning models to 
rumen metagenomic data from 454 Holstein cows and were able to predict 
feed efficiency (using Residual Feed Intake) with approximately 36% of the 
variance explained by microbiome features (Monteiro et al., 2024). They also 
identified key microbial genera (like Ruminococcus and Butyrivibrio groups) 
that were most influential in the predictions, providing biologically 
interpretable results. Likewise, deep learning models (e.g., neural networks 
with attention mechanisms) have been used to predict dairy cows’ milk yield 
or composition from the rumen microbiome, and to identify microbial 
indicators of health issues (such as subacute rumen acidosis or mastitis risk) 
through changes in gut microbiome. These models can handle high-
dimensional data and complex interactions more effectively than traditional 
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statistics. Machine Learning considers the whole community and its 
relationship with host performance. The outcome is a move toward data-
driven, deep-learning predictive understanding, rather than studying one 
microbe at a time. As these models become more interpretable (through 
techniques that highlight which microbial features are most important), they 
also generate hypotheses: for instance, if a model consistently flags 
Prevotella abundance as a top predictor of efficiency, researchers can 
investigate how Prevotella-driven fermentation might confer that benefit. 

Deep learning in functional annotation: The application of deep 
learning to functional annotation is transforming how we interpret complex 
metagenomic datasets such as those from the rumen. Modern deep learning 
architectures, including convolutional and recurrent neural networks, have 
shown promising results in predicting protein functions, such as enzyme 
classes or antibiotic resistance genes, directly from raw sequence data. In the 
context of rumen metagenomes, these models can help uncover the roles of 
previously uncharacterized genes, highlighting candidates involved in 
glycoside hydrolysis or methanogenesis. 

Deep learning has played a crucial role in identifying biosynthetic gene 
clusters from metagenome-assembled genomes (MAGs). Additionally, it 
points to novel antimicrobial compounds or metabolites with potential 
biotechnological applications. However, as noted by Mathieu et al. (2022), 
the rapid evolution of model architectures, training strategies, and reference 
datasets poses a significant challenge: models and benchmarks that were 
state-of-the-art just a few years ago may no longer be adequate today. 
Keeping the pace with these developments requires continual adaptation and 
critical evaluation of both methods and biological interpretations (Mathieu 
et al., 2022). 

In summary, machine learning and deep learning have become integral to 
state-of-the-art metagenomics in cattle. They enable researchers to handle 
the complexity and scale of modern datasets, from efficiently assembling 
genomes with long, noisy reads to robustly binning thousands of contigs, and 
making sense of how hundreds of microbial species collectively influence a 
cow’s phenotype. The revolution in computational tools since 2020 enables 
us to extract significantly more information from rumen samples than 
previously possible. A single study today might sequence a cow’s rumen, 
assemble dozens of genomes, evaluate them using ML-based quality control, 
and then utilise an ML model to predict that cow’s methane output from its 
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microbiome. These approaches are accelerating discovery and pushing 
towards practical applications, such as microbiome-assisted breeding or 
precision nutrition, which were once merely dreams a few years ago. 

2.7 Conventional Breeding vs. Microbiome-Informed 
Breeding 

2.7.1 Traditional selection traits (growth rate, milk yield, etc.) 
Cattle breeding involves selecting animals based on traits of interest such as 
growth rate, milk yield, fertility, and disease resistance, and tailored to 
specific production goals (beef or milk) and the environment (e.g. hot or 
temperate climate). Breeding aims to maximise desirable outcomes by 
evaluating phenotypic performance not only of the individual animals but 
also considering their pedigree and progeny (Pryce & Daetwyler, 2011). 

Historically, selection relied on subjective assessments, but modern 
approaches have significantly improved objectivity. Estimated Breeding 
Values (EBVs) marked the initial shift towards more systematic breeding 
practices. The aim is to quantify the genetic merit of animals for specific 
traits by considering both individual phenotypes and the performance of 
related individuals (parents and offspring). This approach separates the 
genetic effects from the environmental influences. It allows breeders to select 
based on genetic potential rather than potentially biased phenotypic 
observations (Interpreting EBVs and Indexes, n.d.; Martín et al., 2021). 

The Genomic Estimated Breeding Values (GEBVs) represent a further 
advancement. GEBVs aim to estimate the value of the animal early in its 
development. For this, it integrates direct genomic information (e.g., SNP 
markers) into the evaluation. This method relies on associating genetic 
markers with observed traits, thus enhancing accuracy as the volume of 
genetic and phenotypic data increases through ongoing research and data 
accumulation (Hayes et al., 2009; Wiggans & Carrillo, 2022). 
 

2.7.2 Emerging interest in the microbiome as a trait 
Increasing recognition of the microbiome's impact on animal productivity 
and welfare is prompting researchers to investigate its role as a potential 
breeding target. The rumen microbiome has a significant effect on host 
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productivity, methane emissions, resilience to environmental stress, and 
resistance to diseases (Wallace et al., 2019; Waters et al., 2025). These 
microbial communities influence fermentation efficiency, feed utilisation, 
and energy extraction. Thereby shaping crucial production traits and 
environmental impacts (Wallace et al., 2019). 

Furthermore, recent studies have begun exploring the interplay between 
host genetics and the microbiome, revealing potential heritable components. 
For instance, a study by Li et al. (2019) showed that the host genotype 
influences the rumen microbial composition, suggesting the feasibility of 
microbiome-informed genetic selection (F. Li et al., 2019). Wallace et al. 
(2019) highlighted evidence that specific microbial taxa in the rumen may 
be influenced by host genetics. Those taxa could thus be associated with 
traits of economic relevance. Again, underscoring the potential for 
integrating microbiome data into livestock breeding programs (Difford et al., 
2018). 

The adoption of microbiome-informed breeding approaches remains 
limited in cattle breeding practices. Recent research has proposed the concept 
of integrating microbial data into breeding evaluations, referred to as 
metagenomic/genomic Estimated Breeding Values (Meta-GEBV). Ross & 
Hayes et al. (2022) propose using the microbiome for predicting phenotypes 
(Ross & Hayes, 2022). Still, we could potentially further refine this approach 
by incorporating both genomic and microbiome data to enhance the accuracy 
of selection. However, the practical application of Meta-GEBVs is still in its 
early stages, requiring substantial validation and integration efforts before it 
can be implemented systematically. 
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3. Aims of the project 

3.1 Aim 1: Seasonal Dynamics in Indigenous Cattle 
We aimed to explore whether the microbiome composition shifts under 
seasonal stress in the rumen microbiome of Ethiopian indigenous cattle. 

We hypothesise that the dry season results in an increased abundance of 
fibre degraders (e.g., Fibrobacter and certain Bacteroidetes) as the feed is 
harder to digest and requires better degraders, accompanied by a decline in 
methanogen and other genera populations due to the lack of feed and 
competition for it. We also expect to see tetracycline and aminoglycoside 
antibiotic resistance genes (ARGs), as their use is highly spread and 
not regulated. The use is more dependent on the farmer than the veterinarian 
(Gemeda et al., 2020). 

Beyond taxonomic shifts, the long-term vision is to investigate the 
potential interactions between the host genome and microbial composition. 

Although our sample size is limited, this project is the first step toward 
identifying genomic markers associated with microbiome-driven 
phenotypes. These exploratory findings should enable more in-depth studies 
and broader population-scale research in the future. 
 

3.2 Aim 2: FAIR-Compliant Method Development 
One of the major challenges in scientific research is ensuring the 
reproducibility of results. To address this, the scientific community has 
developed the FAIR principles. The first principle is to have the research 
Findable, the data must be easily found through common databases search 
engine and with immutable identifiers. The second is to have the data 
Accessible, in addition to finding the data anyone should be able to get it. 
The third the data must be Interoperable, this means that the data must be 
able to be used by different tools, methods and people. The last is 
Reusability, any FAIR data should have enough metadata and information to 
yield results when analysed by someone. 

A key objective of this work was therefore to strictly follow the FAIR 
principles throughout every stage of the data lifecycle. However, the project 
did not stop at compliance; it actively contributed to improving existing 
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standards. To achieve this, we developed in-house bioinformatics pipelines 
and software tools specifically designed for analysing rumen metagenomic 
data. These tools are broadly applicable and can be used by other researchers 
across diverse metagenomic studies. 

Among the tools developed are the MUFFIN pipeline and the PANKEGG 
visualisation platform, both of which were built with a strong emphasis on 
transparency, reproducibility, and modularity. 
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4. Methods 

4.1 Paper III: Whole Genome Sequences of 70 
Indigenous Ethiopian Cattle 

4.1.1 Sampling and DNA Extraction 
For this study, we collected blood samples from 70 individuals across seven 
indigenous Ethiopian cattle breeds. The seven breeds were Afar, Arsi, Barka, 
Fogera, Horro, Sheko, and Begait. Animals were sampled from different 
agroecological zones to capture environmental and genetic diversity relevant 
to local adaptation. The blood was collected by jugular venipuncture into 
EDTA tubes, immediately placed on ice, and transported to the laboratory 
for storage at -20°C. 

For the DNA extraction, we use a standard phenol-chloroform protocol. 
Then, the integrity of the DNA was checked using 1% agarose gel 
electrophoresis. The purity and concentration were assessed with a Nanodrop 
spectrophotometer and Qubit fluorometry. 

4.1.2  Library Preparation and Sequencing 
Sequencing libraries were prepared using the NEBNext Ultra DNA Library 
Prep Kit following the manufacturer’s protocol. DNA was fragmented to an 
average size of 350 bp using sonication. After end-repair, A-tailing, and 
adapter ligation, libraries were purified and amplified by PCR. 

Libraries were pooled and sequenced on the Illumina NovaSeq 6000 
platform, generating paired-end reads of 150 bp. Each sample achieved a 
mean genome coverage of approximately 15x, ensuring sufficient depth for 
reliable variant detection. 

4.1.3 Data Processing and SNP Calling 
Raw reads were quality-checked using FastQC and trimmed with 
Trimmomatic to remove low-quality bases and adapter sequences. Cleaned 
reads were then aligned to the Bos taurus reference genome (ARS-UCD1.2) 
using BWA-MEM. SAMtools was used to convert, sort, and index the 
aligned reads. 
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PCR duplicates were marked and removed using Picard tools. The 
Genome Analysis Toolkit (GATK, v4.4.0.0) was used following best 
practices for variant calling. The workflow included recalibration of base 
quality scores (BQSR), indel realignment, and SNP calling using 
HaplotypeCaller in GVCF mode. 

We performed joint genotyping through all 70 samples, followed by 
variant quality filtering using thresholds based on depth, quality by depth 
(QD), mapping quality (MQ), and strand bias. The resulting SNP dataset was 
used for downstream analysis, including evaluation of population structure, 
detection of selective sweeps, and investigation of potential trait-associated 
loci (Figure 3). 

 
Figure 3: Overview of raw data quality control, sequence mapping, variant calling, and 
variant filtration pipeline. The pipeline follows GATK’s best practice protocol for 
germline short variant discovery. Source: Paper III (Ayalew, Xiaoyun, Tarekegn, 
Naboulsi, et al., 2024) 

4.1.4 Relevance to the PhD Project 
This high-quality variant dataset provided a genomic backbone for 
investigating local adaptation and environmental resilience in Ethiopian 
cattle. Although the associated phenotypic studies extended beyond the 
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scope of this thesis, the pipeline established here serves as a foundation for 
integrating host genomic markers with rumen microbiome features in future 
studies.  

Although not explicitly applied to the Ethiopian Boran breed that was 
used for the rumen metagenome study (paper IV), this dataset has been 
instrumental in advancing studies on environmental adaptation and 
production traits in Ethiopian cattle. 

4.2 Paper IV: Seasonal Dynamics of the Rumen 
Microbiota in Ethiopian Boran Cattle 

4.2.1 Sampling 
Ethiopia exhibits a diverse climatic pattern, but generally experiences three 
main seasons: the long rainy season (‘Kiremt’) from June to August, the dry 
season (‘Bega’) from October to February, and the short rainy season 
(‘Belg’) from March to May. In the southern lowland pastoral areas such as 
Borena, these patterns vary slightly, with the primary rainy season typically 
occurring from March to May and a short rainy period in October and 
November. Sample collections for this metagenomic study was conducted 
during February, aligning with the end of the dry season (Bega) and middle 
of April, aligning with the middle of the primary rainy season (Belg) in the 
Borena area to allow the time for the grass to grow and the time for the rumen 
microbiome to stabilise under the new conditions. The sampling period was 
also constrained on the availability and feasibility of the sampling due to 
external constraint rather than the scientifically ideal time. This strategic 
timing enables the capture of microbial communities under contrasting 
ecological conditions, including dry and early wet periods, which can 
influence host-microbiome interactions, water and forage availability, and 
overall microbial diversity. This seasonal context is crucial for understanding 
the observed metagenomic profiles related to environmental and ecological 
dynamics in pastoral systems. The Sample collection was carried out in 
February 2022 (dry season) and April 2022 (rainy season) at the Boran cattle 
Dida Tuyera ranch in Yabelo town, Oromia Regional State, Ethiopia. In 
February, rumen content was collected from 20 Boran cattle, with the same 
individuals re-collected in April. Due to an extreme drought in Ethiopia in 
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2022, only 7 of the initial individuals could be sampled again in April as the 
other died from the drought..  

The rumen content was obtained via oro-gastric intubation. The initial 10 
mL of rumen fluid was discarded to avoid contamination with saliva, and 
subsequent solid and liquid phases were collected in sterile 50 mL Falcon 
tubes. Samples were kept on ice during transportation to Addis Ababa 
University, where they were stored at -20°C. Later, they were shipped on dry 
ice to the Swedish University of Agricultural Sciences and stored again at -
20°C. 

All biological samples imported from Ethiopia to Sweden for this study 
were collected and transported in full compliance with the Nagoya Protocol 
on Access to Genetic Resources and the Fair and Equitable Sharing of 
Benefits Arising from Their Utilisation. Prior Informed Consent (PIC) and 
Mutually Agreed Terms (MAT) were obtained between the Institute of 
Biotechnology, Addis Ababa University, and the Swedish University of 
Agricultural Sciences through the Ethiopian Biodiversity Institute, ensuring 
that the acquisition and use of genetic resources complied with national and 
international legal frameworks. Necessary export and import permits, 
including Material Transfer Agreements (MTAs), were secured before 
shipment. The research team also fulfilled all due diligence obligations under 
EU Regulation (No. 511/2014), ensuring transparent and lawful use of the 
samples in accordance with both Ethiopian and Swedish regulations. 

The samples are denominated with the month of sampling and the cow 
ID. The cow IDs are 0199, 0350, 0407, 0428, 0446, 0476, 0667. So the 
sample for the cow 0199 in February is Feb0199, and in April is April0199. 

4.2.2  DNA Isolation, Library Preparation, and Sequencing 
DNA was extracted using the ZYMO RESEARCH Quick-DNA Faecal 
Microbe MiniPrep Kit, in combination with non-kit-based protocols to 
improve yield and reduce fragmentation. Extraction quality was assessed 
using Nanodrop, Qubit, and Tapestation. 

Two separate DNA extractions were performed for each sample, one for 
Illumina sequencing and another for Oxford Nanopore sequencing. 

Illumina Sequencing 
Library preparation and sequencing were performed at SciLifeLab using the 
TruSeq PCR-Free DNA Library Preparation Kit on 25 µL of input DNA. 
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Libraries were multiplexed and sequenced using paired-end 150 bp reads on 
a NovaSeq 6000 S4 lane. 

Nanopore Sequencing 
Before library preparation, DNA was improved using the NEB Blunt/TA 
Ligase Master Mix (M0367), NEBNext FFPE Repair Mix (M6630), 
NEBNext Ultra II End repair/dA-tailing Module (E7546), and NEBNext 
Quick Ligation Module (E6056). Libraries were prepared using the Native 
Barcoding Kit 24 V14 (SQK-NBD114.24). Sequencing was conducted on 
FLO-MIN114 flow cells (R10.4.1), with 2 to 3 samples per flow cell and run 
times of 48 hours. 

The Flowcells were subsequently washed using the Wash Kit (EXP-
WSH004). If quality and pore count were sufficient, samples were 
resequenced. Only samples 199April, 199Feb, and 667Feb were sequenced 
just once due to poor flow cell performance. 

4.2.3 Bioinformatics 

Quality Control 
Quality assessment was performed using FastQC (v0.12.1)(Andrews et al., 
2012), PycoQC (v2.5.2)(Leger, 2017/2025), and MultiQC (v1.15)(Ewels et 
al., 2016). Quality filtering was performed using fastp(v0.20.0)(Chen, 2023) 
for Illumina reads and Chopper (v0.9.0)(De Coster & Rademakers, 2023) for 
Nanopore reads, both of which were integrated through the MUFFIN 
pipeline. The reads were also mapped to the Bos taurus reference genome 
ARS-UCD2.0, using Bowtie2 (v2.5.3)(Langmead et al., 2019) for the 
Illumina reads and Minimap2 (v2.17)(H. Li, 2018) for the Oxford Nanopore 
reads. We removed the reads mapping to the reference using samtools 
(v1.21)(Danecek et al., 2021). 

Reads Classification 
Illumina and Nanopore reads were classified using Kraken2 (v2.1.3)(Wood 
et al., 2019), with the PlusPF database (release date 2024-04-09) 
[https://benlangmead.github.io/aws-indexes/k2]. The PlusPF database 
contains the RefSeq database for archaea, bacteria, viral, plasmid, human1, 
UniVec_Core, protozoa and fungi formatted for Kraken2. 
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The results were computed in an R Markdown script 
(https://github.com/RVanDamme/Boran_kraken_study). The script worked 
as follows: 

Raw Kraken2 reports from both Illumina- and Oxford Nanopore–
sequenced Ethiopian Boran samples were imported into R (R Core Team, 
2021) and merged into a single data frame, keyed by season (February or 
April), organism ID, and sequencing platform. Reads assigned to clades were 
filtered to remove low‐confidence hits (a minimum of 1,000 reads per clade 
for Illumina and 100 reads per clade for Nanopore). To reduce platform‐
specific noise, only taxa detected by Nanopore in a given sample were 
retained from the corresponding Illumina dataset (“true hits”). For each 
taxonomic rank of interest (e.g., phylum, class, order, family, genus, 
species), at the clade level, we use the read counts to calculate the relative 
abundances (number of reads for the clade divided by the total number of 
reads classified); any missing values were set to zero. The Relative‐
abundance matrices underwent centred log‐ratio (CLR) transformation to 
address compositionality. Temporal shifts between February and April were 
quantified as differences in CLR-transformed abundances (ΔCLR = April 
CLR - February CLR), with the most variable taxa highlighted by bar plots.  

All data wrangling, statistical analyses, and visualisations were 
performed in R version 4.4.1 using the following libraries: tidyverse, tidyr, 
vegan, phyloseq, reshape2, ggplot2, ape, stringr, dplyr, pheatmap, ggstream, 
patchwork, viridis and purrr.  

MUFFIN Pipeline 
The metagenome-assembled genomes reconstruction, as well as their 
functional annotation, were performed using MUFFIN, a hybrid 
metagenomics pipeline designed for modularity and high-quality genome 
recovery. MUFFIN integrates long-read and short-read sequencing, 
assembly, binning, and annotation using updated tools and configurations. 

Table 1 details the parameters and configurations applied during the 
MUFFIN pipeline run, including specific tools, modes, and justifications for 
their use. 
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Table 1: Configurations Used in the MUFFIN Pipeline 

Parameter Option Description 

-profile dardel Utilized Singularity and Nextflow 
parameters tailored for Dardel 
requirements (SLURM, etc.). 

--mode hybrid Used both Nanopore and Illumina reads 
for hybrid assembly. 

--assembler metaspades Selected SPAdes hybrid assembly with 
metagenomic option instead of Flye 
assembly. 

--modular full Executed all steps of the pipeline 
(assemble, classify, annotate). 

--bintool metabat2 Chosen as the other binning methods are 
still being integrated into MUFFIN 
version 2. 

--
skip_bad_reads_recovery 

enable Skipped recovery of unused reads due to 
resource and time constraints. 

 
For a more detailed presentation of MUFFIN, see chapter 5 (Paper I). 
We then used GTDB-TK to classify the MAGs again using the GTDB-

TK 2.4.1 with the latest database (release 226). As sourmash is accurate and 
fast, but it can sometimes lack sensitivity.  

Downstream Analysis with PANKEGG 
MAG-level annotations and comparisons were visualised and analysed using 
PANKEGG, a lightweight platform for integrating taxonomy, quality scores, 
and functional annotation. Through the visualisation, we enabled high-
resolution comparison of MAGs across individuals and time points. 
For a more detailed presentation, see chapter 6 (Paper II). 
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5. Paper I Metagenomics workflow for 
hybrid assembly, differential coverage 
binning, metatranscriptomics and 
pathway analysis (MUFFIN) 

Metagenomic analysis, especially from complex environments such as the 
rumen, presents multiple computational challenges, including managing vast 
amounts of short- and long-read sequencing data, as well as accurately 
assembling genomes and annotating their functions. MUFFIN 
(Metagenomics workflow for hybrid assembly, differential coverage 
binning, metatranscriptomics, and pathway analysis) was developed to 
provide a reproducible, modular, and scalable solution for such tasks. The 
pipeline is designed to incorporate best-in-class tools while facilitating 
integration of both short-read (Illumina) and long-read (Nanopore) 
sequencing data to improve genome assembly quality and downstream 
functional analysis. 

The MUFFIN pipeline was released in 2021 as a modular workflow for 
metagenomic data analysis, integrating hybrid assembly of short- and long-
read data, binning, and functional annotation. It was designed with 
transparency and flexibility in mind, allowing users to customise steps and 
scale up analyses across multiple datasets. MUFFIN was built using 
Nextflow and Conda environments or Docker/Singularity containers to 
ensure reproducibility. 

5.1  Initial Design and Workflow 
The original pipeline follows a five-stage structure (See Figure 4): 

I. Read Preprocessing: Short reads (typically Illumina) are quality-
trimmed with fastp, while long reads (Nanopore or PacBio) are 
filtered using chopper. 

II. Hybrid Assembly: The trimmed reads are assembled using 
metaSPAdes (both short and long reads together) or Flye (use 
only the long reads). For Flye it is followed by polishing with the 
short reads. 
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III. Binning and Refinement: Contigs are binned using a 
combination of MetaBAT2, MaxBin2, and CONCOCT. Metawrap 
refine module then integrates the binning results to yield high-
quality MAGs performing an automatic bin refinement.  

IV. Quality Assessment: CheckM is used to estimate completeness 
and contamination, and Sourmash, using the GTDB, is used for 
the taxonomic classification of the MAGs 

V. Annotation and Pathway Analysis: Functional annotation is 
performed using eggNOG-mapper, then the Quality and 
Annotation of the MAGs are parsed into PANKEGG. 

VI. Optional Transcriptomics analysis: If provided, RNA-seq data 
can be assembled using Trinity and then quantified with Salmon. 
The last part is to annotate the transcripts to see the functional 
expression at the time of sampling. 

MUFFIN proved valuable for studies that combine the precision of 
Illumina with the structural benefits of long reads, especially in complex 
environments such as the rumen. 
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Figure 4: Simplified overview of the MUFFIN workflow. All three steps (Assemble, 
Classify, Annotate) are shown from top to bottom. The RNA-Seq data for Step 3 
(Annotate) is optional. 
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5.2 MUFFIN Version 2: Responding to Changes in State 
of the Art 

Since the original publication, the field has undergone significant evolution. 
New tools have emerged, and existing tools have improved in both speed and 
accuracy. During this PhD, MUFFIN was updated to maintain adherence to 
best practices in metagenomics. The Table 2 outlines the significant 
improvements and new features introduced in MUFFIN Version 2, including 
workflow updates, preprocessing, assembly, binning, quality assessment, 
annotation, and enhancements to the user experience. 
 
Table 2: Key Changes in MUFFIN Version 2 

Category Changes/Improvements 

Workflow and 
Containerization 

Transition from conda to fully containerized Docker/Singularity 
system for better reproducibility and HPC compatibility. 
Improved container implementation compared to Version 1. 
Integration of Nextflow DSL2 modules. Addition of short-read-
only and long-read-only modes. 

Read 
Preprocessing 

Enhanced adapter removal and trimming with updated fastp. 
Replaced Chopper with Filtlong for long-read preprocessing, 
improving ONT error handling. 

Assembly Reworked Pilon and Medaka usage for polishing hybrid 
assemblies, improving consensus accuracy. 

Binning Replaced MaxBin2 and CONCOCT with more efficient tools: 
ComeBin (multi-view contrastive learning) and SemiBin (semi-
supervised binning using MAG databases). 

Quality 
Assessment 

Shifted from CheckM v1 to CheckM2, enabling faster and more 
accurate genome completeness and contamination estimation. 

Annotation and 
Visualisation 

Updated annotation with eggNOG-mapper v2 (faster, extended 
functional coverage). Export formats prepared for downstream 
analysis in PANKEGG. 

User Experience 
and Scalability 

Expanded logging and reporting with MultiQC and Nextflow 
trace reports. Enhanced support for large-scale studies with 
batched sample analysis. 
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5.3 Installation and Reproducibility 
MUFFIN supports installation via git, Nextflow or through a download. It is 
tested across multiple platforms (Linux and HPC environments), ensuring 
broad compatibility. 

Documentation and installation instructions are hosted on GitHub 
(https://github.com/RVanDamme/MUFFIN), making it easily accessible to 
the broader community. 

We recommend that users wait for the release of MUFFIN version 2, as 
the current version is under development. 

5.4 Role in This PhD 
The initial version of MUFFIN was planned for the analysis phases of Paper 
IV, providing solid hybrid assembly and annotation results for our rumen 
microbiome samples. However, due to the delays in sample delivery and the 
evolving state of metagenomics tools, a second version of MUFFIN was 
developed, which was then used for Paper IV. 

MUFFIN Version 2 made the analysis of Ethiopian cattle microbiomes 
more efficient and comprehensive. The pipeline now retrieves MAGs of 
higher completeness and lower contamination, leverages more powerful 
binning algorithms, and includes expanded options for annotation and 
pathway reconstruction. In practice, the updated pipeline improved the 
consistency and reproducibility of MAGs across individuals and seasons. 
Thereby enhances our ability to identify taxonomic and functional shifts in 
the rumen microbiota. 

Moreover, the use of containerization and the modularity of the workflow 
enable greater flexibility and adaptability, allowing other research groups to 
easily implement the pipeline in different computational environments and 
for other host-microbiome systems. This positions MUFFIN not only as a 
tool for this PhD but also as a general-purpose, community-accessible 
workflow to support microbiome research aligned with FAIR principles. 

The ongoing development of MUFFIN underscores the need for adaptive 
tools in the rapidly evolving field of metagenomics. While MUFFIN was 
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designed with cattle microbiomes in mind, its architecture and logic apply to 
a wide variety of environments and host-associated communities. 
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6. Paper II PANKEGG: Integrative 
Visualisation and Comparison of 
Metagenome-Assembled Genomes 
Annotation, Taxonomy, and Quality 

With the evolution of technology and increased sequencing depth, the 
complexity and scale of metagenomic data, particularly those derived from 
shotgun sequencing of host-associated microbiomes, have also increased. It 
is now essential to integrate taxonomy, quality assessment, and functional 
annotation into coherent and accessible formats.  

We developed PANKEGG to address this need, offering a streamlined 
and intuitive web-based application for visualising and comparing 
metagenome-assembled genomes (MAGs). PANKEGG is a two-tool 
software, the first of which parses different output information from 
metagenomic pipelines and compiles it into a central SQL database. The 
database then serves as the backbone of the PANKEGG application, enabling 
users to explore microbial diversity and functionality at the genomic level 
through a local web browser interface. 

6.1 Tool Architecture and Function 
PANKEGG is written in Python and uses a lightweight SQL database 
(SQLite) as its data store. It supports the integration of outputs from 
CheckM2 for genome quality metrics (completeness and contamination), 
GTDB-Tk or Sourmash for taxonomic classification, and eggNOG-mapper 
for KEGG ortholog annotations. 

The tool consists of two main components: 

• PANKEGG_make_db.py: This tool parses the input files and 
stores the information into a structured SQL database. The input 
is configured through a simple CSV file. 

• PANKEGG_app.py: This tool runs a local server accessible 
through a browser to visualise the database and enables real-time 
filtering, sorting, and plotting of results. 
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6.2 Key Features 
PANKEGG’s web interface provides multiple views: 

The Bin page displays the metadata for each bin, including sample ID, 
quality metrics, and classification. The table can be filtered to discard all 
bins/MAGs below the medium-quality MIMAG standard or filtered using 
the search bar for a sample name, bin name, or classification (Figure 5). 
 

 
Figure 5: Screenshot of an example of the bin page displayed by PANKEGG. 
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The Pathway page (also known as the Map page) displays the KEGG 
pathway completeness. The information can be filtered to display the 
pathways of one or more bins/MAGs or samples, enabling comparison across 
datasets. An additional search bar is available to filter pathways and search 
for specific keywords (Figure 6). 

 
Figure 6: Screenshot of an example of the map page (pathway) displayed by PANKEGG. 

The KEGG Ortholog page lists each identified KEGG ortholog, its 
associated functions, and the bins/MAGs in which they are located (Figure 
7). 
 
 

 
Figure 7: Screenshot of an example of the KEGG page displayed by PANKEGG. 

  



72 
 

The Taxonomy page summarises the taxonomic composition across all 
bins/MAGs. A selector at the top allows the user to view a specific rank 
(Figure 8). 

 

 
Figure 8: Screenshot of an example of the taxonomy page displayed by PANKEGG. 

The “Sample vs. Sample” and “Bin vs. Bin” pages enable users to 
cross-compare samples or bins/MAGs based on quality and functional 
annotation. 
On both pages, a user can select two elements to compare, and then can 
visualise different information. On the Sample vs Sample page, users can 
choose one or more pathway groups from the KEGG database to view a 
heatmap of the pathways present in each group for their sample. The colour 
is based on the completion of the pathway for that bin (Figure 9). The user 
can also see a scatterplot of the completeness vs contamination of the MAGs 
present in the samples (Figure 10). On both the “Sample vs. Sample” and 
“Bin vs. Bin” pages, the user can view a table and a plot comparing the 
number of orthologs found in the first, the second, or both elements being 
compared (Figure 11). 
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Figure 9: Screenshot of an example of the heatmap of the “Sample vs Sample” page 
displayed by PANKEGG. 

 
Figure 10: Screenshot of an example of the scatterplot of the “Sample vs Sample” page 
displayed by PANKEGG. 
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Figure 11: Screenshot of an example of the common pathways table and plot from the 
“Bin vs Bin” page displayed by PANKEGG. 
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On the PCA page, a Principal Component Analysis is performed based 
on the functional or taxonomic results, allowing the user to visualise how the 
samples or bins/MAGs cluster together or not. Beware that PCA 
interpretation is only valid with enough data, we recommend at least 40 
MAGs (Shaukat et al., 2016). 

 
Figure 12: Screenshot of an example of the PCA  page displayed by PANKEGG. The 
explained variance is detailed below the graph. 

Interactive elements such as sortable tables, linked views, and colour-
coded pathway maps enhance the user experience. Users can export filtered 
tables for downstream statistical analyses. 

6.3 Motivation and Innovation 
PANKEGG does not attempt to manage the complete metagenomics process, 
like pipelines such as Anvi’o or MAGFlow would do. Instead, it focuses on 
one of the most challenging aspects of post-assembly analysis: integration 
and interpretation. It fills a niche by enabling easy navigation across 
thousands of MAGs and their associated metadata with minimal setup. 

PANKEGG's contribution lies in KEGG pathway-centric exploration, 
which enables the assessment of metabolic capacities of MAGs, comparison 
of metabolic profiles across samples, and identification of key organisms for 
specific functional roles. 
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By organising annotations around KEGG orthologs and visualising 
completeness of pathways, PANKEGG facilitates hypothesis generation 
about community function and ecological adaptation. 

6.4 Installation and Reproducibility 
PANKEGG supports installation via pip, Conda, or pixi. It was tested across 
multiple platforms (Linux, Windows via WSL, macOS, and HPC 
environments), ensuring broad compatibility. 
It uses lightweight dependencies for Python (with Flask, Pandas, Numpy, 
SciKit-Learn, SciPy) and also uses SQLite3 (embedded, so no external 
server is required). 

Documentation and installation instructions are hosted on GitHub 
(https://github.com/RVanDamme/PANKEGG) to make it easily accessible 
to the broader community. 

PANKEGG adheres to the FAIR principles by offering transparency, 
simplicity, and long-term reproducibility for metagenomic data 
interpretation (Reusable). The databases generated are lightweight, also for 
easy storage and sharing between people (Findable, Accessible and 
Interoperable) 

6.5 Role in This PhD 
PANKEGG was crucial to the downstream analysis of Papers IV. It allowed 
for structured, interpretable visualisation of: 

• Pathway-level functional differences between samples from dry 
vs. wet seasons 

• Quality curation and validation of MAGs based on GTDB criteria 
• Detection of low-quality or potentially contaminated bins 

This tool was invaluable when evaluating the rumen samples, as 
MUFFIN generated hundreds of bins across all samples. Instead of manually 
cross-referencing quality, taxonomy, and function, PANKEGG integrated 
the information, allowing for visual confirmation of patterns in microbial 
community structure. 

PANKEGG’s flexible design ensures it can also be reused in future 
metagenomic studies, especially for microbiomes involving environmental 
gradients or host physiological changes. 



 
 

77 
 

7. Paper III. Whole genome sequences of 
70 indigenous Ethiopian cattle 

7.1 The study 
The work presented in this chapter was conducted as part of a collaborative 
effort to sequence and analyse the genomes of 70 individuals from seven 
indigenous Ethiopian cattle breeds. While not directly tied to the 
metagenomic study on Boran cattle (Paper IV), this genomic work is 
essential to the broader aims of this PhD: enabling integrative microbiome–
host interaction research in future stages. 

The study generated a high-quality dataset containing over 18 million 
high-confidence SNPs. These SNPs provide valuable insights into the 
genetic diversity, structure, and potential adaptive traits of indigenous cattle 
breeds (Abigar, Barka, Boran, Fellata, Fogera, Gojjam-Highland, and 
Horro). Population structure analyses confirmed the genetic uniqueness of 
each breed. In contrast, selection signature analyses identified genomic 
regions potentially involved in local adaptation to harsh Ethiopian 
environments, including those related to heat tolerance and resilience to feed 
scarcity. 

Although the additional studies from the obtained dataset focused on 
breeds other than Boran, it played a foundational role in the PhD project. It 
allowed the development and validation of a robust, reproducible SNP 
calling and filtering pipeline suited to African indigenous cattle, which will 
now be directly applied to Boran individuals in future work. In particular, it 
prepares the next step of the Boran study: sequencing the host genome and 
exploring correlations between host genotype and microbiome composition 
and function. 

In this way, the project bridges genomic and metagenomic 
methodologies, establishing one of the first large-scale genomic resources 
for Ethiopian Boran cattle. The approach is generalisable and will support 
future integration efforts with microbiome datasets in this PhD and beyond. 

The resulting variant dataset contained high-confidence SNPs and indels 
distributed across the autosomes and sex chromosomes. The per-individual 
mean genome coverage ranged from 9.2 to 14.7 times. After filtering, the 
final VCF contained over 18 million variants. 
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Principal Component Analysis (PCA) confirmed breed-level genetic 
clustering, validating sample selection and highlighting population structure. 
Additional downstream analyses, including signature detection for selection 
and candidate gene identification, were performed by collaborators using this 
dataset. 

7.2 Three different applied research studies 
From the initial study, in which we retrieved over 18 million variants while 
working with seven different breeds, three applied studies have emerged. Dr. 
Wondossen Ayalew led these studies as part of his doctoral research. We 
collaborated on the research and developed methods of the 3 following 
papers. Those methods can be applied in the future to our study of host 
genome–microbiome interactions, using the same cattle used for the 
metagenomic research (Paper IV). These applied studies already yielded 
valuable insights into indigenous Ethiopian cattle breeds. 

7.2.1 Abigar, Fellata, and Gojjam-Highland copy number variations 
reveal adaptation to diverse environments (Ayalew, Xiaoyun, 
Tarekegn, Tessema, et al., 2024) 

This study identified 3,893 copy number variation regions (CNVRs) 
spanning 19.15 Mb (0.71% of the cattle genome). These CNVRs, ranging 
from 1.60 kb to 488.0 kb, included 1,713 deletions, 1,929 duplications, and 
251 mixed events, with significant breed-specific differences. Validation by 
qPCR confirmed four of five randomly selected CNVRs. Key candidate 
genes associated with high-altitude adaptation (GBE1, SOD1), heat stress 
tolerance (HSPA13, DNAJC18, DNAJC8), and tick infestation resistance 
(BoLA, KRT33A) were identified. Variance stabilising transformation 
(VST) statistics underscored population-specific CNVRs, highlighting 
unique adaptive signatures in Gojjam-Highland cattle. Notably, 4.93% of 
CNVRs overlapped with quantitative trait loci (QTLs), implicating them in 
economically important traits such as growth and disease resistance. 

7.2.2 Candidate genes related to milk production discovered in Barka 
cattle (Ayalew, Wu, et al., 2024) 

The Barka cattle breed is renowned for its milk production in semi-arid 
conditions. We used three selective sweep methods (ZFST, θπ ratio, ZHp). 
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In this study, we identified three candidate genes consistently associated with 
milk production and composition traits: ACAA1, P4HTM, and SLC4A4.  

The candidate genes show roles in critical biological pathways, including 
fatty acid metabolism, mammary gland development, and milk protein 
synthesis. The candidate genes are new potential genetic targets for selective 
breeding strategies aimed at improving milk productivity in tropical dairy 
cattle. However, we must validate through genome-wide association studies 
and transcriptomic analyses for practical breeding applications. 

7.2.3 Selection signatures for local adaptation identified in Abigar 
cattle (Ayalew et al., 2023) 

The Abigar cattle are highly adapted to the hot and humid climates of 
southwestern Ethiopia, significantly contributing to local livelihoods. This 
study presented the first whole-genome sequencing analysis for Abigar 
cattle, uncovering genes associated with heat tolerance (HOXC13, 
DNAJC18, RXFP2), immune responses (IRAK3, MZB1, STING1), and 
oxidative stress management (SLC23A1).  

The genetic diversity assessments revealed high nucleotide diversity and 
heterozygosity, coupled with low inbreeding indicators. Those assessments 
demonstrate robust genetic health.  

We also identified 83 shared genes linked to environmental adaptation 
that provide crucial insights for future breeding programs aimed at enhancing 
resilience to climate challenges. These findings provide a crucial foundation 
for understanding and harnessing adaptive genetic mechanisms in tropical 
cattle breeds. 
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8. Paper IV.  Seasonal Dynamics of the 
Rumen Microbiota in Ethiopian Boran 
Cattle: a shotgun metagenomics study 

This study investigated the seasonal dynamics of the rumen microbiome in 
Ethiopian Boran cattle by comparing samples collected during the dry season 
(Bega, February) and the rainy season (Kiremt, April). Using a hybrid 
metagenomic approach combining Illumina and Oxford Nanopore 
sequencing, we performed taxonomic profiling with Kraken2 and genome-
resolved analyses through the MUFFIN pipeline to recover metagenome-
assembled genomes (MAGs) and reconstruct metabolic pathways. Our 
hypothesis was that the microbiome would shift in composition and function 
between seasons, with fibre-degrading bacteria (e.g., Fibrobacter) becoming 
more abundant during the dry season as they are the bacteria able to digest 
the drier and sturdier composition of the feed. Methanogens and other clades 
would decrease due to the lack of feed to maintain the complex populations. 
Tetracycline and aminoglycoside antibiotic resistance genes (ARGs) should 
also be high, as the use of these antibiotics is widespread and not regulated. 

8.1 Quality control 
For the Illumina reads, the mean quality score was Q36 across all samples, 
with a minimum of 150 million reads per sample. Less than 1% of the reads 
mapped to the host genome, ARS-UCD2.0, and were removed. 

For the Oxford Nanopore reads, the mean quality score was Q25 across 
all samples, with a number of reads ranging from 0.4 million to 2 million and 
an average read length between 2500 bp and 3500 bp. Around 10% of the 
reads mapped to ARS-UCD2.0 and were removed. 
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8.2 Kraken Classification Overview 
Table 3 summarises classification rates and the number of taxa detected 
before and after filtering for Illumina sequencing reads. 

 
Table 3: Illumina Reads Classification Statistics 

Metric Minimum 
(Sample) 

Maximum 
(Sample)     

Median 

Classification rate (%) 18.23 (Feb_0350) 19.56 (Feb_0428) 18.94 

Taxa detected (before 
filtering) 

23,103 
(April_0407) 

29,277 (Feb_0350) – 

Taxa detected (after 
filtering) 

2,202 
(April_0407) 

10,324 (Feb_0350) – 

 
Table 4 summarises classification rates and the number of taxa detected 

before and after filtering for Nanopore sequencing reads. 
 
Table 4: Nanopore Reads Classification Statistics 

Metric Minimum 
(Sample) 

Maximum 
(Sample)     

Median 

Classification rate (%) 72.61 (Feb_0350) 80.26 (April_0350) 76.00 

Taxa detected (before 
filtering) 

17,738 
(Feb_0667) 

20,762 (April_0350) – 

Taxa detected (after 
filtering) 

1,032 (Feb_0667) 2,944 (April_0350) – 
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Shared Taxa Between Platforms 
When considering only taxa retained by both Illumina and Nanopore 
classifications for the same sample, counts ranged from 1,028 (Feb_0667) to 
2,919 (April_0350), with a median of 1,894 taxa. 

Human DNA Contamination 
Human DNA was detected in every sample, with relative abundances 
ranging from 0.93% (April_0476) to 6.31% (Feb_0428). A minor 
contamination likely occurred during sample handling, which was removed 
for the MUFFIN analyses following the host removal protocol. 

Taxonomic Resolution and Over-Classification 
Table 5 summarises the number of taxa shared across all samples and those 
unique to each season. Notably, more genera than species are retained post-
filtering. This trend reflects a common tendency for over-classification at the 
species level, where our read-count thresholds (at least 1000 reads classified 
for Illumina and 100 reads classified for ONT) remove many low-confidence 
species calls. 
 
Table 5: Taxa shared across all samples and for each season 

Taxonomical 
Rank 

Number of taxa 
common to all 
samples 

Number of Taxa 
common to 
February 

Number of Taxa 
common to April 

All ranks 906 916 1120 

Phylum 29 29 32 

Class 49 49 56 

Order 103 103 115 

Family 186 187 219 

Genus 356 359 462 

Species 183 189 236 
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8.2.1 Genus level 
When we examine the top 10 most abundant genera between February and 
April, we see the disappearance of Butyrivibrio and Paenibacillus in favour 
of Fibrobacter and Unclassified Methanobrevibacter (Figure 13). 
 

 
Figure 13: Top 10 genera found in the February and April samples based on their mean 
relative abundance. 

This change is also reflected when we look at the genera with the highest 
variation in their centred Log-Ratio transformed relative abundance. In 
figure 14 we can see that from February to April, we gain in Fibrobacter and 
Methanobrevibacter. We lose the relative abundance in Butyrivibrio and 
human contamination and on a smaller degree we lose abundance in 
Paenibacillus, Streptomyces and Prevotella. 
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Figure 14: Top 10 phyla with the highest ΔCLR (where ΔCLR = April CLR - February 
CLR). 
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8.2.2 Species level 
At the Species level, the depth of rank makes the changes in relative 
abundance more interesting. In figure 15, we see the disappearance of 
Butyrivibrio fibrisolvens in favour of Methanobrevibacter millerae. 
 

 
Figure 15: Top 10 species found in the February and April samples based on their mean 
relative abundance. 

Figure 16 highlights the increase in Fibrobacter succinogenes and 
Methanobrevibacter sp. YE315, but also a decrease in Human 
contamination, and to a minor degree, two other Methanobrevibacter 
species. 
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Figure 16: Top 10 species with the highest ΔCLR (where ΔCLR = April CLR - February 
CLR). 

Throughout all the ranks, we see the same trend of changes, primarily the 
consequent increase of Fibrobacter and Methanobrevibacter and their higher 
classifications in the rainy season (April). Another change is the clear 
reduction of human contamination compared to the dry season (February) 
The results of the species rank should remain only an indication, as due to 
all the filtering steps, the data used for it represent only up to 45% of the total 
relative abundance calculated by the Kraken2 classification. Yet the results 
concur with what we see in higher ranks, where, after filtering, we kept 75% 
or more of the relative abundance. Two other interesting findings are the 
decrease in Butyrivibrio and Prevotella in the rainy season. 

8.3 MUFFIN Results 
Across all 14 samples, MUFFIN recovered a total of 656 MAGs: 202 from 
February and 454 from April. Of these, 14 were classified as archaea, and 
642 were classified as bacteria. Binning quality met the medium-quality 
MIMAG standard (completeness > 50%, contamination < 10%, and 
completeness − 5×contamination > 50%) (Bowers et al., 2017). Individual 
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bin completeness ranged from 50.7% to 100%, and contamination from 0% 
to 7.85%. 

8.3.1 Archaeal MAGs 
The archeal MAGs retrieved are exclusively methanogens and were not 
found in all the individuals. In Table 6, we list the archaeal MAGs identified 
in the dataset, indicating the samples and seasons where each was detected. 

 
Table 6: Archaeal MAGs Detected Across Samples and Seasons. 

Archaeal MAG Samples Detected Seasons 

Methanosarcina mazei 0199, 0667 Both seasons 

Methanoprimaticola sp. 
015063165 

0476, April0199 Both seasons 
(0476) 

Methanosphaera sp. 
016282985 

Feb0407, Feb0476 February 

Unclassified 
Methanobrevibacter 

Feb0428 February 

CADBMS01 April0199, April0350, 
April0407, April0667 

April 

 

8.3.2 Bacterial MAGs 

Unresolved to Species 
Four hundred thirty MAGs lacked species-level assignments. We therefore 
focus on genus and above. 

Family-Level Only 
Six MAGs had no genus classification. Four in the Clostridia class (order 
Christensenellales), two families: Christensenellaceae (3 MAGs) and 
Aristaeellaceae (1 bin). And one in Anaerofustaceae (Clostridia, order 
Eubacteriales) and JAIRKQ01 (Verrucomicrobia, order Opitutales). 
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Candidate and “CAG/ISDG/RGIG/RUG/UBA” Genera 
Those genera are a compendium of uncultured organisms found through 
metagenomics and belong to various classes and orders. Just for the Rumen 
Uncultured Genomes (RUG) the orders found in our samples are 
Lachnospirales, Oscillospirales, Selenomonadales, Christensenellales, 
Erysipelotrichales, Peptostreptococcales, Erysipelotrichales, Pirellulales, 
Bacteroidales, RF39, RFN20, Coriobacteriales. 

Table 7 summarises the number of MAGs associated with candidate or 
uncultured clades, including the detailed counts for specific subgroups. 
Table 7: MAGs Associated with Candidate and Uncultured Genera. 

Candidate/Uncultured 
Genera 

Number of 
MAGs 

Notes 

CAG 43 30 MAGs from CAG-791  

ISDG 19 – 

RGIG 38 15 MAGs from RGIG5612 

RUG 108 14 from RUG11783, 15 from 
RUG11977, 11 from RUG14130 

UBA 93 11 from UBA1258, 10 from 
UBA3857 

UMGS1696 9 – 

Cryptobacteroides 21 – 

Pseudobutyrivibrio 5 – 

 

Well-Characterized Genera 
Through the analysis, 10 “well-characterized” genera were found. Those 
genera are defined by cultivated organisms and scientific literature in their 
functions. 
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The distribution in Table 8 reveals the high diversity of uncultured 
candidate lineages in the rumen microbiome, as well as the presence of 
numerous well-characterised genera. This diversity will enable us to conduct 
downstream functional analyses and study host–microbe interactions. 
Table 8: Number of MAGs linked to well-known microbial genera. 

Genus Number of MAGs 

Bulleidia 29 

Prevotella 28 

Chordicoccus 16 

Ruminococcoides 14 

Nanosynococcus 11 

Fibrobacter 9 

Saccharofermentans 7 

Sodaliphilus 10 

Streptococcus 10 

Eubacterium (R, Q, G, S subclades) 10 (in total) 

 

Seasonal Differences in Genus-Level Binning 
To identify “genera unique to each season”, we required that a genus appear 
in at least three samples from that season and only that season. 

In February, only Candidatus Liminaster (3 samples) was found to 
follow those restrictions. 

 
 
 

In April we found multiple genera to be unique to the season. Table 9 
lists the microbial genera that were uniquely found in the April samples, 
along with the number of samples in which they appeared in 
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Table 9: Genera Unique to April Samples. 

Genus Number of April Samples 

Fibrobacter 7 (all April samples) 

Pseudobutyrivibrio 3 

CADBMS01 4 

G11 5 

Physcousia 3 

Porcincola 3 

RGIG7111 4 

RGIG7949 4 

RUG420 4 

RUG754 6 

UBA2834 4 

UBA2912 3 

UBA3766 3 

 

Predominant but Not Exclusive Genera 
Some genera appeared in both seasons but were far more common in one 
than the other. Table 10 shows the number of samples in April and February 
in which specific genera were detected, highlighting those that were more 
common in one season. 
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Table 10: Genera Present in Both Seasons with Skewed Prevalence. 

Genus April Samples February Samples 

Chordicoccus 6 2 

ISDG 7 1 

Ruminococcoides 6 3 

Sodaliphilus 6 1 

Streptococcus 1 7 

 
Several candidates and uncultured clades also showed seasonal bias. 

Genera more abundant in April than in February include CAG-177, 
Limivicinus, RUG14130, RUG842, SFMI01, UBA1258, UBA3857, and 
UBA7702. Conversely, GA6A1, RGIG1955, TWA4, and Ventricola were 
more common in February. 
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Equally Common Genera in Both Seasons 

Several core rumen taxa maintained similar prevalence across seasons. Table 
11 presents core rumen taxa that maintained relatively similar prevalence 
across February and April samples, as measured by the number of MAGs 
detected and the number of samples containing those MAGs. 
Table 11: Genera Equally Common in Both Seasons. 

Genus February 
(MAGs) 

February 
(Samples) 

April 
(MAGs) 

April 
(Samples) 

Prevotella 11 7 17 7 

Bulleidia 11 7 18 7 

Methanosarcina 2 2 2 2 

Saccharofermentans 3 3 4 3 

Cryptobacteroides 6 5 15 7 

Nanosynococcus 3 3 8 3 

RGIG5612 6 4 9 7 

CAG-791 11 6 19 7 

RUG11783 7 7 7 7 

RUG12372 5 5 4 4 

UBA1367 3 2 2 2 

UMGS1696 5 5 4 4 
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Notable Observation Streptococcus 
Among Among well-characterised genera, Streptococcus stood out: it 

was present in every February sample, suggesting either a widespread 
colonisation at that time. Streptococcus equinus_B was found in all the 
February samples. Feb0350 also possessed two Streptococci that were 
unclassified at the species level. 

Only one animal (April0446) continued to harbour Streptococcus 
equinus_B in the April sampling. At the time of sampling, none of the 
animals exhibited signs of disease; this suggests that the strain of 
Streptococcus equinus found is unlikely to play a significant role in the 
rumen microbiota or animal health. This strain is an interesting example of a 
seasonal contaminant possessing a risk to both animal and human health. 

. 

8.3.3 Metabolic Pathway Analysis 
Using PANKEGG, we not only classify genome MAGs but also map their 
metabolic potential. For each bin (or sample), we identify all associated 
KEGG Orthologs (KOs) and compute a pathway completion score. This 
score equals the number of KOs detected in the bin divided by the total KOs 
known for that pathway (as defined in the KEGG database). 

Across our dataset, we detected 399 distinct KEGG pathway maps. 
However, many of these are tangential or incidental. For example, pathways 
like “Morphine addiction,” “Thyroid cancer,” or “Parkinson's disease” may 
appear simply because they share one or two common KOs with more 
relevant metabolic routes. Such outliers are expected when screening the 
entire KEGG repertoire, since broad or niche pathways can overlap via 
shared orthologs. 

For clarity, we will concentrate our discussion on four key categories of 
pathways to capture the core functional shifts and ecological impacts 
revealed by our metagenomic and MAG-based analyses. The Degradation 
(breakdown of complex molecules), the Biosynthesis (production of 
essential biomolecules), the Methanogenesis (methane production pathways) 
and the Antibiotic resistance mechanisms. 

Starch and sucrose metabolism 
The completeness of the starch and sucrose metabolism pathway within 
individual samples ranged from 46.23% to 62.26%. In February, most 
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samples showed completeness levels of 50% or below, except for two 
samples (Feb0350 at 62.26% and Feb0476 at 53.77%). In contrast, all 
samples from April had completeness above 55.66%. 

No single bin contributed more than 25% to the pathway on its own. In 
February, the major contributors included Prevotella (~20%), Streptococcus 
(~20%), Ventricola (~20%), and bacteria from the Lachnospiraceae and 
Atopobiaceae families (~20%). 

In April, the main contributors remained similar, with Prevotella (~18%) 
and bacteria from the Lachnospiraceae and Atopobiaceae families (up to 
~25%), and Fibrobacter emerging as an additional significant contributor 
(~25%). 

Most essential functions within the starch and sucrose metabolism were 
consistently maintained in both seasons. Specifically, critical processes such 
as the degradation of cellulose into D-glucose and the conversion of amylose 
and dextrin into D-glucose remained active across both seasons. 

Biosynthesis of amino acids 
The amino acid biosynthesis pathway showed apparent seasonal variation. 
Pathway completeness in February ranged from 59.83% (Feb0446) to 
68.62% (Feb0350), while in April it was higher, ranging from 66.95% 
(April0428) to 74.90% (April0476). 

No single bin stood out prominently, with most MAGs, from various taxa, 
contributing evenly between 20% and 40% to the overall pathway 
completeness.  

When comparing samples with the lowest and highest completion rates, 
the primary differences observed were in the branches of lysine, tyrosine, 
and phenylalanine transformation.  
 
Phenylalanine, tyrosine and tryptophan biosynthesis: 
This biosynthesis pathway also exhibited seasonal differences. In February, 
pathway completeness ranged from 41.89% (samples Feb0446 and Feb0476) 
to 52.70% (sample Feb0199). In April, completeness was higher, ranging 
from 50.00% (April0350) to 62.16% (April0667). 

A notable finding is the consistent appearance of the metabolic branch 
involving D-Fructose-1-phosphate and D-Fructose-1,6-diphosphate 
whenever Methanosarcina mazei was present, irrespective of the season. 
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Lysine biosynthesis 
In this pathway, the variation in completeness does not follow a clear 
seasonal pattern and appears to vary significantly across samples. The lowest 
completeness observed was 41.67% (Feb0446), and the highest was 64.58% 
(April0199). 

The primary variation lies in the processing of 2-Oxoglutarate within the 
Citrate pathway, as demonstrated in samples Feb0446 and April0199. This 
branch involves the transformation of acetyl-CoA and 2-oxoglutarate into L-
lysine and Pyrrolysine. The branch is specifically populated by 
Methanosarcina mazei, Methanoprimaticola sp. 015063165, and the genus 
UBA3766 (absent from Feb0446). 

 
Valine, leucine and isoleucine biosynthesis 
This pathway showed no noticeable seasonal variation. Pathway 
completeness ranged from 63.16% (sample April0407) to 73.68% (samples 
April0199 and April0476). Additionally, eleven samples (all seven from 
February and four from April) consistently had a completeness level of 
68.42%. 

Samples April0407, April0667, and all February samples lacked the 
K00263 enzyme (leucine dehydrogenase), which was present exclusively in 
the RUG754 bin within other April samples. Consequently, samples without 
leucine dehydrogenase depended entirely on the K00826 enzyme (branched-
chain amino acid aminotransferase) to facilitate the biosynthesis reactions. 
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Arginine biosynthesis 
Pathway completeness ranged from 36.67% in sample Feb0407 to 60.00% 
in sample April0476, with April consistently showing higher completeness. 

Table 12 highlights the four enzymes identified as the main drivers of 
seasonal differences, including their functions and occurrence across 
samples. 
Table 12: Arginine biosynthesis Key Enzymes Driving Seasonal Differences. 

Enzyme (KEGG 
ID) 

Function Occurrence 
February 

Occurrence 
April 

Urease (K01427) Converts urea into 
ammonia (NH₃) and 
bicarbonate (HCO₃⁻) 

0/7 7/7  

Allophanate 
Hydrolase 
(K01457) 

Hydrolyses urea-1-
carboxylate into CO₂ 

0/7 1/7  

Glutaminase 
(K01425) 

Converts glutamine to NH₃ 2/7 7/7 

Glutamin-
(asparagin)-ase 
(K05597) 

Produces NH₃ from 
glutamine or asparagine 

1/7 7/7 
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Valine, leucine and isoleucine degradation 
Pathway completeness spanned from 26.09% (samples Feb0446 and 
Feb0667) up to 49.28% (sample April0476), revealing apparent seasonal 
variation. Table 13 lists the primary enzymes influencing metabolic 
differences, including their KEGG identifiers, EC numbers, roles, and 
occurrence patterns. 

 
Table 13: Valine, leucine and isoleucine biosynthesis Key Enzymatic Drivers Identified 
in Samples. 

Enzyme (KEGG ID; 
EC Number) 

Function Occurrence 
February 

Occurrence 
April 

2-Oxoisovalerate 
Dehydrogenase E1 
Component (K11381; 
EC 1.2.4.4) 

Catalyses the first step in 
breaking down valine, 
leucine, and isoleucine. 

5/7 7/7 

Acyl-CoA 
Dehydrogenase 
(K00249; EC 1.3.8.7) 

Functions as an alternative 
to butyryl-CoA 
dehydrogenase (EC 1.3.8.1) 
during the dehydrogenation 
step 

1/7 7/7 

Leucine 
Dehydrogenase 
(K00263; EC 1.4.1.9) 

Responsible for the 
reductive deamination of 
leucine. 

5/7 0/7 

 
Lysine degradation 
Pathway completeness ranged from just 4.08% in sample Feb0428 up to 
19.39% in sample Feb0350. In the lowest-completeness samples (Feb0428, 
Feb0476, Feb0667), the key orthologs required to convert L-β-lysine into 
acetyl-CoA were entirely missing. 

In contrast, all other samples possessed at least a partial or complete 
degradation branch. A remarkably diverse set of taxa contributed to these 
branches, including (but not limited to): 
 UBA1205, UBA3857, UBA3792, UBA1217, UBA6987, RUG754, 
Colimorpha, Cacconaster, Sodaliphilus, Lentihominibacter, Egerieousia, 
CAG-791, Limimorpha, RGIG7150, RGIG5612, RGIG7949, Hornefia, F23-
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D06, Prevotella, Alectryocaccobium, Bilifractor, HGM13006, 
Chordicoccus, Faecousia, and Alloscillospira. 
 

Fatty acid biosynthesis 
This pathway displayed variability, with completeness ranging from 35.90% 
(sample April0407) to 46.15% (samples Feb0350 and April0476).  

Table 14 lists the four enzymes identified as key factors influencing the 
observed differences in the data. 
 
Table 14: Fatty acid biosynthesis Key Enzymes Underlying Observed Differences. 

Enzyme Code 
(KEGG ID) 

Enzyme Name Occurrence 
February 

Occurrence 
April 

K00208 Enoyl-[acyl-carrier protein] 
reductase I 

6/7 5/7 

K10780 Enoyl-[acyl-carrier protein] 
reductase III 

2/7 2/7 

K15013 Long-chain-fatty-acid-CoA 
ligase 

1/7 0/7 

K18660 Malonyl-
CoA/methylmalonyl-CoA 
synthetase 

1/7 0/7 

 

Fatty acid degradation 
 
This pathway varied from a low completeness of 13.56% in sample Feb0667 
to a higher completeness of 33.90% in sample April0476. Excluding 
Feb0667, all other samples achieved at least 18.64% completeness. On 
average, April samples exhibited slightly higher completeness than 
February, likely because Fibrobacter, one of the most significant individual 
contributors, accounted for around 10% of the pathway on its own. 

In addition to Fibrobacter, several taxa played significant roles in β-
oxidation of fatty acids (converting fatty acids to acetyl-CoA) and in the 
upstream processing of fatty alcohols and aldehydes into fatty acids. Key 



100 
 

contributors include RGIG5612, Limivicinus, RUG754, Sodaliphilus, and 
Lentihominibacter. 

Methane metabolism 
Pathway completeness varied widely, from a low of 24.10% in sample 
Feb0446 to a high of 60.51% in sample April0199. As expected, the presence 
and identity of methanogenic archaea strongly influenced these differences. 

Table 15 summarises the relative contributions (in percentage) of 
different microbial taxa to pathway steps in various samples collected in 
April and February. 
 

Table 15: Relative Contribution of Microbial Taxa to Methane Metabolism Pathway 
Steps Across Samples. 

Taxa Contribution 
(%) 

Samples 
February 

Samples 
April 

Methanosarcina mazei 32–46 2/7 2/7 

Methanosphaera sp. 
016282985 

~33 2/7 0/7 

Unclassified 
Methanobrevibacter 

~21 1/7 0/7 

Methanoprimaticola sp. 
015063165 

~15 1/7 2/7 

CADBMS01 ~25 0/7 4/7 

Fibrobacter 7-10 0/7 7/7 

 
 
 

Coenzyme F₄₂₀ biosynthesis 
The methanogens (archaea) harbour the orthologs required for coenzyme F₄₂₀ 
biosynthesis, a critical cofactor in methanogenesis. A bacterium 
(Fibrobacter) provides redundancy in the two following orthologs, K11780 
and K11781. 
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Coenzyme M Biosynthesis 
The initial, third, and fourth steps of coenzyme M production were catalysed 
by Methanosphaera, Methanobrevibacter, CADBMS01, and 
Methanosarcina. The second step’s enzyme orthologs appeared not only in 
Methanosphaera and CADBMS01 but also in a diverse set of bacterial taxa, 
including UBA3857, UBA4181, RUG369, RUG695, RUG11795, 
RUG11797, CAG-791, Chordicoccus, Porcincola, Colimorpha, Aristaeella, 
Anaerobutyricum, Scatonaster, Colinaster, Bulleida, and Curtobacterium. 
 
Coenzyme B and Methanofuran Biosynthesis 

Coenzyme B (from lysine) was biosynthesised by Methanosarcina, 
Methanosphaera, Methanobrevibacter, Methanoprimaticola, and 
CADBMS01. 

Methanofuran steps were similarly handled by Methanosarcina, 
Methanosphaera, Methanobrevibacter, and CADBMS01. 
 
Acetate-Based Methanogenesis and Serine Biosynthesis 
Fibrobacter uniquely completed the acetoclastic methanogenesis reaction 
(module M00357) and was also responsible for serine biosynthesis in all 
April samples. 
 
  



102 
 

Sample-Specific Pathway Visualisations 
Below are the full methanogenesis pathway maps for the samples with the 
lowest and highest completion. 

In Feb0446, despite having the lowest completion rate, we can identify 
some of the key orthologs required for acetoclastic methanogenesis. What 
we observe is the presence of the orthologs necessary to transform acetate 
into acetyl-CoA (see Figure 17). 
 

 
Figure 17: Methane metabolism pathway. In red, the KEGG orthologs found in all MAGs 
of Feb0446 are highlighted. Feb0446 is the sample with the lowest completion rate 
(24.10%). 
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In April0199, we observed the presence of all the necessary coenzymes 
for methanogenesis, and in addition, we found the orthologs required for the 
three different types of methanogenesis. Methanosarcina mazei alone covers 
most of the orthologs for the three different methanogenesis pathways, only 
complemented by Methanoprimaticola sp. 015063165 and some unknown 
species from CADBMS01 (see Figure 18). 
 

 
Figure 18: Methane metabolism pathway. In red, the KEGG orthologs found in all MAGs 
of April0199 are highlighted. April0199 is the sample with the highest completion rate 
(60.51%). 

Antibiotics and resistance 
Streptomycin biosynthesis 
Streptomycin pathway completeness shows only a minor variation in 
April0350 with 47.62% complete where all the other samples are 52.38% 
complete 

In April0350, the sole missing ortholog is K00844 (hexokinase), which is 
present in every other sample. Notably, none of the canonical streptomycin 
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biosynthesis genes were detected. Instead, the detected reactions convert D-
glucose into scyllo-inosose and d-TDP-L-rhamnose. 
 
Monobactam biosynthesis 
Pathway completeness varied from a low of 17.86% in sample Feb0350 to a 
high of 35.71% in multiple samples (Feb0199, Feb0428, April0199, 
April0350, April0446, and April0476). 

Sample Feb0350 lacks all orthologs required to convert sulfate into 
adenylyl sulfate. In contrast, this transformation is supported by a diverse set 
of MAGs in the other samples, including Desulfovibrio, UMGS1696, Ga6A1, 
UBA4181, UBA3054, Physcousia, HGM12619, Pseudobutyrivibrio, 
Eubacterium_Q, Lentihominibacter, Porcincola, Anaerobutyricum, 
Bilifractor, RGIG8048, RUG11977, F23-D06, RUG708, RUG695, RUG369, 
W1P20-047, and an unclassified Fibrobacter in April0667. 

Additionally, samples April0350 and April0476 both possess the enzyme 
4-hydroxymandelate oxidase (K16422; EC 1.1.3.46), which is present in 
RGIG5612 for April0350 and in RUG159 and Blautia_A for April0476. 
K16422 is absent in the other datasets, including samples with higher 
completeness.  

In all samples, the pathway is missing the orthologs for synthetising 
nocardicin, monobactam, or β-lactam antibiotics. What we detect is the 
overlap with other metabolic networks. The L-aspartate to L-2,3,4,5-
tetrahydrodipicolinate transformation is a key step in lysine biosynthesis. 
The sulfate activation and 4-hydroxymandelate oxidation intersect with 
sulfur and pyruvate metabolism, respectively. This indicate that there are no 
synthetisation of antibiotics. 
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beta-Lactam resistance 
This pathway’s completeness ranged from 18.75% in Feb0428 to 25.89% in 
Feb0350. The overall pathway completion across all samples is 28.57%. 
Despite the “low” coverage, multiple resistance genes were already detected. 

Table 16 highlights the presence of key antibiotic resistance genes, their 
associated modules, and the genera or samples where they were detected. 
 

Table 16: Methicillin and Beta-Lactam Resistance Genes Detected Across Samples. 

Resistance 
module 

Gene (KEGG 
ID; EC 
Number) 

Occurrence 
February 

Occurrence 
April 

Associated genera 

Methicillin 
resistance 
(MD: 
M00625) 

mecA 
(K02545; 
penicillin-
binding protein 
2ʹ, EC 
3.4.16.4) 

1/7 2/7 Unclassified 
Christensenellaceae 

β-lactam 
resistance, 
Bla system 
(MD: 
M00627) 

blaR1 
(K02172; 
regulator 
protein BlaR1) 

4/7 7/7 RGIG7949, 
Saccharofermentans, 
RUG756, 
Anaerobutyricum 

 blaI (K02171; 
transcriptional 
regulator BlaI) 
penP (K17836; 
β-lactamase 
class A, EC 
3.5.2.6) 

7/7 6/7 streptococcus 
equinus_B, 
Anaerobutyricum, 
RGIG7949, Evtepia 
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Vancomycin resistance 
Pathway completeness ranged from 54.55% (samples Feb0667 and 
Feb0428) up to 68.18% (samples Feb0350, April0199, April0407, 
April0446, April0476, and April0667). In the lower‐completeness samples, 
several resistance operons were only partially present, whereas in the higher‐
completeness samples, most operons were intact. VanG, a less common S. 
coelicolor–type operon, and one accessory gene in the VanA cluster 
remained incomplete throughout all samples. Even so, every sample 
harboured at least seven known vancomycin‐resistance genes, and some 
carried up to eleven. 

Table 17 and Table 18 summarise the findings for different categories of 
resistance genes. 
 
Table 17: Key Resistance Determinants – D-Ala-D-Lac Type (MD:M00651). 

Gene (KEGG ID; EC 
Number) 

Occurrence 
February 

Occurrence 
April 

Host MAGs 

vanSB/S/D (K18345; EC 
2.7.13.3) 

1/7 7/7 Diverse 
MAGs 

vanY (K07260; EC 
3.4.17.14) 

7/7 7/7 Diverse 
MAGs 

vanW (K18346) 7/7 7/7 Diverse 
MAGs 

vanH (K18347; EC 1.1.1.–
) 

1/7 0/7 Colivicinus 

vanB/A/D (K15739; EC 
6.1.2.1) 

7/7 7/7 Diverse 
MAGs 

vanX (K08641; EC 
3.4.13.22) 

7/7 7/7 Diverse 
MAGs 
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Table 18: Key Resistance Determinants – D-Ala-D-Ser Type (MD:M00652). 

Gene (KEGG ID; EC 
Number) 

Occurrence 
February 

Occurrence 
April 

Host MAGs 

VanSC/E/G (K18350) 5/7 7/7 Streptococcus 
equinus_B and 
Diverse MAGs 

vanRC/E/G (K18349) 4/7 7/7 Diverse MAGs 

vanT (K18348; EC 
5.1.1.18/5.1.1.1) 

4/7 7/7 Diverse MAGs 

vanC/E/G (K18856; EC 
6.3.2.35) 

7/7 7/7 Diverse MAGs 

vanXY (K18866; EC 
3.4.13.22/3.4.17.14) 

6/7 7/7 Diverse MAGs 

 
Cationic antimicrobial peptide (CAMP) resistance 
Pathway completeness ranged from 22.22% in the lowest‐scoring samples 
(Feb0476 and Feb0667) up to 46.30% in the highest‐scoring sample 
(April0476). In February, completeness was consistently low (22.22–
27.76%), whereas April samples showed higher variability (31.48–46.30%). 

A key driver of increased completeness, and by extension, more 
resistance genes, in April was Fibrobacter. It contributed strongly to the 
Gram‐negative resistance modules. Among Gram‐positive contributors, 
Sodaliphilus, Colivivens, and UBA1258 featured prominently in several 
samples. 

Below are the different categories of CAMP resistance genes: 
 
• dltABCD Operon (MD:M00725) 

This operon mediates D-alanylation of cell‐wall teichoic acids and is found 
in every sample. Table 19 lists the genes of the dlt operon, their functions, 
occurrence patterns, and the main taxa carrying them. 
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Table 19: D-Alanylation Operon (dltABCD) Distribution Across Samples. 

Gene 
(KEGG 
ID; EC 
Number
) 

Function Occurrenc
e February 

Occurrenc
e April 

Associated Taxa 

dltA 
(K03367
; EC 
6.1.1.13) 

D-alanine–
poly(phosphoribitol
) ligase subunit 1 

7/7 7/7 Streptococcus and 
diverse MAGs 

dltB 
(K03739
) 

Membrane protein 
for D-alanine export 

4/7 7/7 Streptococcus, 
Porcincola, 
Ornithomonoglobus
, Evtepia, UBA9715, 
Faecousia, 
RGIG5952 

dltC 
(K14188
; EC 
6.1.1.13) 

D-alanine–
poly(phosphoribitol
) ligase subunit 2 

6/7 4/7 Streptococcus, 
UBA1367, 
UBA1258, AC2028, 
UBA9715, 
Porcincola, 
Ruminococcoides 

dltD 
(K03740
) 

D-alanine transfer 
protein 

7/7 2/7 Streptococcus, 
UBA9715 

 

• Lysyl-Phosphatidylglycerol Synthase MprF (MD: M00726) 
This enzyme modifies membrane lipids to repel CAMPs. mprF/fmtC 
(K14205; phosphatidylglycerol lysyltransferase, EC 2.3.2.3) was detected in 
Feb0199, Feb0428, Feb0667, April0199, April0350, April0407, April0428, 
April0476, and April0667. Hosts include Desulfovibrio, Methanosarcina, 
Chordicoccus, Ruminimicrobiellum, UBA1367, and UBA2912. 
 

• VraFG Transporter (MD: M00730) 
This ABC transporter pumps out cationic peptides. vraF (K19079; CAMP 
transport system ATP-binding protein) was only found in UBA1258 
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sp.016291405 in two April samples (April0199 and April0476). 
 

Together, these resistance modules illustrate the combined roles of key 
taxa, especially Fibrobacter in April, in bolstering CAMP resistance across 
the rumen microbiome. 

 
Multi-Drug Resistance Genes 
The multidrug efflux systems collectively illustrate a robust network of 
transporters in the rumen microbiome, capable of extruding a wide array of 
toxic compounds and antibiotics, with varying representation across seasons 
and sample types. Table 20 summarizes the key multidrug efflux systems 
(MexAB–OprM, AdeABC, AcrEF–TolC, and AbcA/BmrA) detected across 
samples, including the main components, their occurrence, and associated 
genera. 
 

Table 20: Efflux Pump Systems and Their Distribution. 

Efflux 
System 
(Modul
e) 

Gene (KEGG ID; Function) Occurr
ence 
Februa
ry 

Occurr
ence 
April 

Associated 
Taxa 

MexAB
–OprM 
(MD: 
M00718
) 

acrA/mexA/adeI/smeD/mtrC/cmeA 
(K03585) – Membrane fusion 
component 

7/7 7/7 Prevotella, 
Fibrobacter, 
Cryptobacte
roides, 
Desulfovibri
o, 
Liminaster, 
Colivivens, 
and others 

 acrB/mexB/adeJ/smeE/mtrD/cmeB 
(K18138) – Inner-membrane 
transporter 

4/7 7/7 Cryptobacte
roides, 
Fibrobacter, 
Desulfovibri
o 

 oprM/emhC/ttgC/cusC/adeK/smeF/
mtrE/cmeC/gesC (K18139) – 
Outer-membrane channel 

1/7 0/7 Desulfovibri
o sp. 
016284885 
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AdeAB
C (MD: 
M00649
) 

adeR (K18144) – OmpR-family 
response regulator 

2/7 0/7 Limivicinus, 
Hominimerd
icola 

 adeA (K18145) – Membrane fusion 
component 

0/7 1/7 Physcousia 
sp. 
902779315 

AcrEF–
TolC 
(MD: 
M00696
) 

tolC/bepC/cyaE/raxC/sapF/rsaF/ha
sF (K12340) – Outer-membrane 
channel 

7/7 7/7 Prevotella, 
Fibrobacter, 
and diverse 
MAGs 

 AcrEF–TolC homolog 0/7 1/7 Physcousia 
sp. 
902779315 

AbcA/B
mrA 
(MD: 
M00700
) 

abcA/bmrA (K18104; EC 7.6.2.2) – 
ABC-type efflux pump 

1/7 4/7 Streptococc
us, RUG754, 
RUG521, 
RUG13615 
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9. Discussions 

9.1 MUFFIN and PANKEGG 
In 2021, metagenomic studies predominantly relied on Illumina sequencing, 
which necessitated considerable sequencing depth to produce reliable results. 
MUFFIN aimed to be an alternative by supplementing short-read Illumina 
sequencing with long-read nanopore sequencing, effectively addressing the 
inherent limitations of short-read assembly while preserving high per-base 
accuracy. 

As detailed in Chapter 5 (Paper I), significant methodological 
advancements have occurred since the initial creation of MUFFIN.  

The fundamental concepts of assembly and binning have remained 
consistent. But numerous components required changes or updates to align 
with the evolution of the bioinformatics practices. Notably, outdated tools 
were replaced, and inaccuracies identified through community feedback and 
validation studies were corrected. 

The most substantial revision arose from issues associated with CheckM 
version 1, which depended on an outdated (2015) database to estimate 
genome completeness and contamination through marker genes. Although 
CheckM was initially considered a standard tool in 2020, the anticipated 
database update was delayed until 2023, with the release of CheckM version 
2. The updated version, in addition to an update to the database, also 
significantly improved marker gene sets and estimation accuracy.  

Another significant challenge involved the bin refinement step, which 
was initially implemented using the Metawrap pipeline. The idea was to 
leverage existing high-quality tools rather than creating new ones entirely. 
Unfortunately, the Metawrap refinement module became problematic due to 
its dependency on the obsolete CheckM database and the developers' 
subsequent abandonment of it. The lack of updates for over five years made 
the module unsuitable for integration in MUFFIN version 2. Consequently, 
we decided to remove bin refinement from MUFFIN altogether. Developing 
an in-house refinement module remains a possibility, but is not currently 
prioritised. 

MUFFIN version 2 is still under development, prioritising the removal of 
outdated components (e.g., bin refinement, re-assembly steps, and obsolete 
binning methods) and incorporating essential updates. The upgrades include 
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compatibility enhancements allowing MUFFIN to process nanopore-only 
and Illumina-only datasets. Thus, MUFFIN is evolving into a versatile, 
broadly applicable pipeline, beyond its initial hybrid sequencing scope. 
Despite ongoing refinement, MUFFIN version 2 is functional in one of its 
analysis paths (Hybrid mode using metabat2) and was successfully employed 
in this thesis. 

Parallel improvements were also implemented in PANKEGG. Initially, 
PANKEGG was a basic, inefficient parser generating minimalistic HTML 
outputs. The transition to MUFFIN version 2 was the spark that led to the 
overhaul of PANKEGG, transforming it into a fast and efficient parsing tool 
capable of generating portable servers for dynamic data visualisation. 
PANKEGG now facilitates easy navigation and comprehensive cross-
referencing of results generated at various MUFFIN pipeline stages. 
Recognising its broader utility, we further expanded PANKEGG into a 
standalone visualisation tool supporting standard outputs from other 
common metagenomics tools, such as gtdb-tk classification. 

Designing PANKEGG required careful consideration of user needs, 
informed by consultations with multiple researchers working in the field of 
metagenomics. It resulted in the current PANKEGG structure, which 
encompasses dedicated pages for MAGs, metabolic pathways, KEGG 
entries, taxonomic classifications, sample comparisons, and bin 
comparisons.  

The web interface was optimised to minimise the number of clicks 
required to access essential data. Any information can be accessed by three 
to five clicks from the main page, thereby facilitating efficient and user-
friendly data exploration. 

Both MUFFIN and PANKEGG illustrate critical aspects of 
bioinformatics pipeline development, including the complexity of 
automating advanced analytical workflows, maintaining compatibility with 
and up-to-date methodologies, and refining existing pipelines to incorporate 
technological innovations without compromising the original objectives. 
These tools demonstrate a robust approach to clear, insightful visualisation 
and management of extensive metagenomic datasets. 

The developments outlined in Papers I and II directly fulfil the second 
aim of this thesis, creating open-source, reproducible tools that enhance 
metagenomic analyses. 
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9.2 Genomic analysis 
Chapter 7 (Paper III) emerged from a collaborative genomic sequencing 
project. Despite originating externally, this work aligns closely with the 
objectives of our Boran cattle microbiome study. Collaboration with the 
same research partners involved in sample collection for our microbiome 
analyses facilitated method validation and refinement. Although the genomic 
sequencing of the Boran cattle was delayed and thus not included in this 
thesis (see "Future Perspectives"), the genomic methodologies developed 
through this project laid essential groundwork for future host genome-
microbiome correlation studies planned for the Boran breed. This initial 
collaboration has already inspired three applied studies exploring genetic 
adaptation and productivity traits in Ethiopian cattle breeds(Ayalew et al., 
2023; Ayalew, Wu, et al., 2024; Ayalew, Xiaoyun, Tarekegn, Tessema, et 
al., 2024). 

9.3 Metagenomic analysis 

9.3.1 Kraken2 analysis 
Using Nanopore reads to filter out the Kraken assignments helps overcome 
the low species- and strain-level specificity that arises from attempting to 
classify environmental sequences against an ever-incomplete reference 
database. Because many natural taxa aren’t represented in Kraken’s 
database, reads often “scatter” across the closest available relatives, 
especially within large and diverse clades, resulting in over-dispersed, 
low-confidence calls. By imposing read-count thresholds (1,000 reads for 
Illumina, 100 reads for Nanopore), we first collapse spurious low-support 
taxa and sharpen our classifications. Then, by retaining only those taxa seen 
by both platforms, where Nanopore’s longer reads provide independent, 
higher-resolution evidence (in terms of the number of k-mers per read), we 
further boost precision. Of course, applying these filters reduces overall 
sensitivity (we discard some true but low-abundance taxa), but it greatly 
increases our confidence in the taxa we do report. 

Notably, after filtering, the cumulative relative abundance of retained 
taxa remains high at broad ranks (Phylum through Genus). In each sample, 
after the filtering, we maintained at least 75% of the total number of 
classified reads. However, at the species level, this drops to around 40% (and 
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only 35% for sample April0667), reflecting both the inherent limitations of 
the reference database and the more stringent filtering required to achieve 
reliable species-level assignments. 

We performed all quantitative abundance analyses using the Illumina data 
because every read is the same length, which avoids length‐driven biases in 
count‐based estimates. Although we explored incorporating Nanopore reads 
into our quantitative pipeline, we were unable to identify a robust approach 
that simultaneously accounts for both read count and read length. In 
principle, a weighting scheme that integrates the number of classified reads 
with their varying lengths could work, but no satisfactory method currently 
exists. 

When comparing samples from February (the dry season) and April (the 
rainy season), several clear shifts become apparent. Notably, Fibrobacter and 
ruminococcoides, key fibre-degrading genera, appears only or majoritarly in 
April, reflecting improved (if still limited due to the drought) feed 
availability once the rains began. Methanobacteriales also increase in 
abundance during the rainy season, likely due to increased availability of 
substrate. Conversely, the Streptococcaceae decline sharply from February 
to April, revealing an asymptomatic bloom earlier in the year. 

We likewise observe a drop in human DNA contamination between 
seasons, suggesting either changes in handling protocols or simply lower 
background contamination levels in the April sampling. 

9.3.2 MUFFIN analysis 
Although our MUFFIN binning recovered 656 total MAGs, only 14 were 
archaeal versus 642 bacterial. Despite, for example, Methanobrevibacter 
ranking among the top 20 taxa by relative abundance in our read-level 
classifications (∼5% of reads) for all samples, we did not retrieve it as MAGs 
in all samples. This discrepancy suggests archaeal MAGs are being 
under-recovered. Future work should explore newer, deep–learning–based 
binning tools (e.g., SemiBin2, ComeBin) trained specifically on archaeal 
genomes. We were unable to evaluate these methods here due to resource 
and compatibility constraints; however, an in-depth comparison is 
warranted. 

Bin quality met the medium-quality MIMAG standard (completeness 
>50%, contamination <10%), but only 103 MAGs would qualify as 
high-quality (completeness >90%, contamination <5%). On a per-sample 
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basis, high-quality MAGs would number just 2 to 19 each, whereas including 
medium-quality MAGs raises that to 19 to 122 per sample.  

A fascinating finding is how different methanogenic archaea partition not 
just seasonally but also functionally, reflecting shifts in substrate availability 
and community stability. Methanosphaera sp. 016282985 was detected 
solely in February’s samples, and its MAGs encode exclusively the 
hydrogenotrophic pathway (CO₂ + H₂ → CH₄). During the dry season, when 
plant‐derived substrates may be more recalcitrant, hydrogen concentrations 
from fibre fermentation are perhaps relatively higher, while the 
concentration of acetate is lower. Methanosphaera fills a niche specialised 
for scavenging H₂. In contrast, the uncharacterized “CADBMS01” clade 
appears only in April and carries orthologs for both hydrogenotrophic and 
acetoclastic pathways (CH₃COO⁻ → CH₄ + CO₂). The ability to harness 
acetate directly likely gives CADBMS01 an advantage when wetter 
conditions boost the breakdown of complex carbohydrates into acetate, 
providing a richer pool of substrates than in February. Both these seasonally 
restricted taxa nonetheless carry the full suite of coenzyme biosynthesis 
genes necessary to drive their respective methanogenesis modules, 
underscoring their metabolic self‐sufficiency. 

By comparison, Methanosarcina mazei emerges as a “fixed” 
methanogen, detected in two samples and remaining present in the next 
season. Unlike the seasonally restricted taxa, Methanosarcina mazei encodes 
the full complement of hydrogenotrophic, acetoclastic, and methylotrophic 
(e.g., methanol‐ or methylamine‐driven) methanogenesis pathways. This 
metabolic versatility likely underpins its stability in the face of 
environmental fluctuations. When feed input and fermentation products shift 
with the rains, Methanosarcina mazei can toggle among substrates, H₂, 
acetate, or simple methylated compounds to maintain methane production. 
The flexibility may also be an advantage compared to the competition, 
enabling persistence even when other methanogens dominate specific niches. 

Together, these patterns indicate a dynamic methanogen landscape where 
specialist taxa emerge under distinct seasonal regimes, while generalists, 
such as Methanosarcina mazei, provide functional resilience. Future work 
could integrate metatranscriptomic or activity assays to quantify actual 
pathway usage in February versus April, validate which substrates drive in 
situ methane fluxes, and explore whether feed additives or management 
strategies could selectively suppress high-yield methanogens (e.g., 
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Methanosarcina mazei) or displace acetoclastic specialists, such as 
CADBMS01, to mitigate greenhouse gas emissions. 

A striking outcome of our MAG‐based study is the sheer abundance of 
genomic MAGs assigned to uncultured, candidate, or entirely novel clades. 
These lineages sit as “dark matter” on the microbial tree of life. These 
candidate groups (the CAGs, RUGs, RGIGs, UBAs, and others) lack any 
cultured representatives, meaning we cannot yet validate their actual 
physiology or ecological roles by traditional isolation and laboratory 
experiments. In many cases, their inferred metabolisms are based solely on 
in silico annotations of draft genomes, leaving open the possibility that some 
assemblies may reflect chimeric MAGs or database biases. 

Yet the repeated recovery of the same candidate clades across 
geographically and environmentally distinct rumen studies lends weight to 
their genuine existence. Even more compelling is the observation that 
specific candidate lineages, such as CAG-791, UBA3857, and RUG754, 
exhibit seasonally consistent patterns, suggesting they respond to genuine 
ecological drivers rather than random assembly artefacts. 

We stand at a tipping point, however. Current metagenomic and binning 
pipelines, regardless of their sophistication, are still subject to limitations in 
read length, assembly algorithms, and taxonomic reference gaps. As single‐
cell genomics and long‐read platforms continue to mature, we will soon be 
able to verify whether these candidate MAGs correspond to bona fide 
organisms by recovering complete genomes from individual cells, and also 
characterising their metabolic capabilities in isolation, or capturing their 
transcripts in environmental RNA studies. Until then, we should treat these 
novel clades as both a glimpse of hidden diversity and a reminder of the 
biases inherent in our methods. Their consistent detection across multiple 
studies, however, suggests that we are indeed beginning to chart the contours 
of microbial “terra incognita,” setting the stage for targeted cultivation 
efforts and functional assays that could ultimately transform our 
understanding of rumen ecology and microbial ecology more broadly. 

9.3.3  Well-characterised genera 
Well-characterised bacterial genera like Prevotella, Fibrobacter, and 
Butyrivibrio serve as internal “controls” against which we can gauge the 
fidelity of both our Kraken2 read-level classifications and our MUFFIN 
binning. A few points to draw out: 
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Prevotella was among the top taxa in Kraken2 (often >10% relative 
abundance) and yielded the most significant number of high-quality MAGs 
(28 MAGs), reinforcing that these classifications reflect real, abundant 
populations. 
Fibrobacter, which only appears in April, exhibits the same seasonal spike 
in Kraken2 counts and MUFFIN MAGs, providing excellent cross-
validation of both methods. 

Kraken2 often “splits” reads among multiple reference species within a 
genus, leading to dispersed species-level calls; yet at the genus rank, 
assignments for well-characterised clades remain robust (retaining >75% of 
reads). 

For Butyrivibrio, Kraken2 indicated it as one of the top 10 most abundant 
species in February; however, MUFFIN produced only one Butyrivibrio 
MAG. This disparity suggests some degree of limitations in what MUFFIN 
can recover. 

On the other hand, in the April samples, MUFFIN produced multiple 
Pseudobutyrivibrio. Yet, in Kraken2, Pseudobutyrivibrio xylanivorans 
represented less than 0.5% of the relative abundance in all samples and was 
the only specie identified. The gap between some of the Kraken2 findings 
and MUFFIN MAGs indicates a limitation in the capacity of Kraken2 to 
discover new species. 

By enforcing ≥1,000 Illumina-reads and ≥100 Nanopore-reads cutoffs, 
nearly all well-characterised genera stay above threshold in both datasets. In 
contrast, spurious or very low‐abundance taxa drop out, the continued 
presence of core clades after filtering highlights their genuine ecological 
importance. 

When functional pathways are mapped back to MAGs, the fact that well-
characterised clades (e.g., Prevotella in starch metabolism, Fibrobacter in 
cellulose breakdown) track neatly from Kraken2 abundance to MAG-derived 
gene content gives us extra confidence in linking taxa to function. 

9.3.4 Cross-method validation & limitations 
One of the most powerful checks on our taxonomic assignments comes from 
comparing read-level classifications (via Kraken2) to the genome-resolved 
MAGs generated by MUFFIN. As already stated, for many abundant, well-
characterised genera, including Prevotella, Fibrobacter, and Streptococcus, 
we observe concordance: high relative abundance in Kraken2 corresponds to 
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numerous high-quality MAGs, and seasonal trends (e.g., the April 
emergence of Fibrobacter) appear in both datasets. This cross-validation 
bolsters our confidence that these signals reflect true community dynamics 
rather than method-specific artefacts. Conversely, discrepancies hint at 
limitations: for example, Streptococcus’s large Kraken2 footprint in 
February yielded relatively few MAGs per sample, suggesting either that 
short Illumina reads misassign ambiguously among related reference 
genomes or that the Streptococcus population is so genetically homogenous 
that assembly and binning collapse multiple strains into one. For the under-
characterised genera, the analysis is much more challenging, as the Kraken2 
database (PlusPF) and the GTDB database employ different nomenclature, 
which prevents an accurate comparison. 

 Applying minimum-read thresholds (1,000 reads for Illumina, 100 for 
Nanopore) shrinks the long tail of low-abundance, low-confidence taxa. 
Before filtering, raw Kraken2 classifications detect tens of thousands of taxa 
per sample; after filtering, that number falls to a few thousand. The filtering 
also reduces noise from spurious hits, especially at the species level, where 
reference gaps scatter reads among many near matches, but inevitably 
sacrifices sensitivity to rare taxa. In practice, these thresholds preserve over 
75% of classified reads at broad ranks (Phylum through Genus), yet drop 
species-level coverage to ~40%. Balancing the desire for comprehensive 
community profiling against the risk of over-interpreting artefacts, for 
functional studies or ecological modelling, higher precision through 
stringent filtering would be preferable. 

 
When mapping MAG-derived KEGG Orthologs, we initially identified 

nearly 400 pathway maps, ranging from core metabolic routes to seemingly 
bizarre “disease” pathways (e.g., Parkinson’s, morphine addiction). These 
outliers arise because many KO entries are shared among diverse pathways, 
resulting in incidental hits that lack ecological relevance in the rumen. 
Without careful curation, one might misinterpret these signals as novel 
functions when they simply reflect overlapping enzyme annotations. 
Focusing on key functional categories (degradation, biosynthesis, 
methanogenesis, and antibiotic resistance) helped avoid such pitfalls; 
however, vigilance is still warranted, as incidental pathway detection 
remains a persistent caveat in large-scale annotation workflows. 
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 Several methodological constraints can skew our binning results. 
Assemblies may fragment highly repetitive or GC-rich genomes, leading to 
underrepresentation of particular taxa in the final MAGs, even if Kraken2 
detects their reads. Binning algorithms differ in their sensitivity to coverage 
variation and k-mer composition; tools not optimised for archaeal genomes 
(e.g., MetaBAT2) can under-recover methanogens despite their read-level 
abundance. Enzyme annotation pipelines likewise vary in how permissively 
they assign KO terms. Finally, uneven sequencing depth or DNA extraction 
biases (e.g., cell lysis efficiency) can distort perceived community 
composition before any computational step. 

Using hybrid reads (Illumina and ONT) circumvents some of those 
constraints. The first is that, as the assembly uses long reads, we prevent 
fragmentation of highly repetitive or GC-rich genomes. Then, the short reads 
ensure that the quality at the base level remains satisfactory. During binning 
with Metabat2, using reads from the two different sequencing methods yields 
slightly different coverage depths for the contigs due to variations in 
sequencing depth and bias. That is key to improving the binning by providing 
different coverage information for the same sample. 

 
 To mitigate these limitations further, in our planned future studies, we 
should: 

I. Benchmark multiple binning tools, especially those leveraging 
deep learning or tailored to archaeal genomes (SemiBin2, 
CoMetBin), to maximise MAG recovery across domains. 
 
 

II. Incorporate complementary data types (e.g., 
metatranscriptomes, metabolomics) to confirm which detected 
pathways are actively expressed or realised in situ. 
 
 

III. Calibrate filtering strategies using mock communities or spike-
in standards, allowing for a quantitative assessment of sensitivity 
versus precision trade-offs. 
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By systematically addressing these biases, we will sharpen both 
taxonomic and functional insights, ensuring that our interpretations are 
grounded in a robust, multi-layered foundation. 

9.3.5 Metabolic pathway analyses 
I focused on the metabolic reconstructions on four major functional 
categories: degradation, biosynthesis, methanogenesis, and antibiotic 
resistance.  

Degradation pathways 
Starch & sucrose metabolism 

Pathway completeness jumps from ~46–50% in February to ~56–62% in 
April, mirroring the rains’ boost to readily fermentable carbohydrates. 
Prevotella and Lachnospiraceae/Atopobiaceae drive most of this activity 
year-round. Still, Fibrobacter emerges in April as a new contributor, 
highlighting its role in breaking down plant polymers when fresh forage 
increases. Fibrobacter on its own explain ~25% of the pathway across the 
samples. 

No single genome bin contributes more than 25%, emphasising a 
distributed community effort rather than a single “super-degrader.” 
 
Fatty acid degradation 

Completeness edges up from ~18–29% in February to ~20–34% in April. 
Fibrobacter again stands out in April, supplying ~10% of β-oxidation 
capacity, while RGIG5612, Sodaliphilus, and Lentihominibacter round out 
the core degraders. 

The absence of key dehydrogenases (e.g., 2-Oxoisovalerate 
dehydrogenase) in low-completeness samples reveals a potential bottleneck 
that could limit energy harvesting from specific substrates. A lack of depth 
could also explain the failure to capture it. 
  



 
 

121 
 

Biosynthesis pathways 
Amino acid biosynthesis 

Overall pathway completeness rises from ~60–69% in February to ~67–
75% in April. 
The most significant seasonal delta occurs in lysine, tyrosine, and 
phenylalanine branches, likely reflecting shifts in nitrogen availability and 
microbial demand. 

No individual MAG dominates, indicating functional redundancy and 
complementarity among taxa for these core anabolic routes, as multiple taxa 
cover the identical orthologs but also complement each other. 
 
 
Branched-chain amino acid (Val/Leu/Ile) biosynthesis 

Completeness is high (~63–74%), with no discernible seasonal pattern, 
suggesting that these essential pathways are core functions that are 
maintained across environmental fluctuations. 

The absence of leucine dehydrogenase in all February samples (and two 
April samples) necessitates reliance on aminotransferases. Yet the 
completeness has only a little variation. This variation in pathways also 
implies how the different MAGs complement each other to maintain the 
functioning of the metabolic pathways in the rumen. 
Arginine biosynthesis 

Rises from ~37% in February to ~60% in April. 
April-specific Fibrobacter MAGs carry urease and allophanate hydrolase, 
enabling them to tap urea and funnel it into arginine, highlighting niche 
specialisation under wetter conditions. 

Methanogenesis 
Module completeness categories (complete, incomplete, missing) vary 

widely across samples, ranging from ~24% to ~60%. 
Methanosarcina mazei (32–46%) and Methanosphaera (33%) dominate 
hydrogenotrophic and methylotrophic steps; CADBMS01 covers ~25% when 
present. 

The acetoclastic module (M00357) is uniquely completed by Fibrobacter 
in April, revealing cross-domain cooperation between bacteria and archaea. 
Seasonal patterns track substrate availability: acetate-driven methanogenesis 
is stronger in April, while hydrogenotrophic routes persist in February. 
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Antibiotic biosynthesis & resistance 
Streptomycin & monobactam biosynthesis show only minor variation (~47–
53% completeness), but both pathways lack the canonical gene clusters. This 
lack of gene cluster suggests that the detected reactions likely reflect 
cross-pathway overlaps rather than true secondary metabolism in the rumen. 

β-Lactam and vancomycin resistance reach ~19–68% completeness, with 
core determinants (mecA, blaR1, vanA/B/C/X) found in both seasons. 

Streptococcus equinus B and Anaerobutyricum carry key β-lactamase 
genes in February, whereas RGIG7949 and Saccharofermentans dominate in 
April, indicating shifts in the taxon composition of resistance reservoirs. 

The CAMP resistance pathway increases from ~22–28% in February to 
~31–46% in April, primarily due to Fibrobacter-mediated Gram-negative 
modules. 

Multidrug efflux systems (MexAB–OprM, AcrEF–TolC, AdeABC, 
AbcA/BmrA) are ubiquitous but vary in carrier taxa, reflecting a baseline 
level of intrinsic resilience against antibiotics in the rumen microbiome. 

The detection of antibiotic resistance genes (ARGs) across all rumen 
samples is a clear red flag for animal health. Moreover, it is also a concern 
for food safety and broader economic stability, especially in a country like 
Ethiopia, where livestock underpin both subsistence and commercial 
agriculture. 

In our datasets, key resistance determinants were found in every sample, 
often carried by both well-characterised genera (e.g., Streptococcus equinus, 
Anaerobutyricum, Ruminococcoides) and uncultured candidate lineages. 
This ubiquity suggests that rumen microbiomes act as reservoirs for ARGs, 
which can transfer horizontally to potential pathogens (e.g., enteric bacteria), 
leading to treatment failures in common livestock infections (mastitis, 
respiratory or gastrointestinal diseases). 
A 2020 survey of smallholder systems found that 86.7% of pastoralists and 
24–95% of mixed-crop farmers routinely keep and use antibiotics, 
predominantly tetracyclines (36.4%), aminoglycosides (31.3%), and 
trimethoprim–sulfonamides, often under suboptimal storage conditions, with 
off-label human formulations shared between people and animals. 
MexAB–OprM and AcrEF–TolC found in our samples can directly reduce 
susceptibility to tetracycline and aminoglycosides. The use of other 
antibiotics would also be limited, as we identified β-lactamase (mecA, blaR1, 
blaI and penP) ARG and Vancomycin-resistance operons (vanSB/S/D, 
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vanY, vanW, vanH, vanB/A/D, vanX, vanSC/E/G, vanRC/E/G, vanT, 
vanC/E/G, and vanXY)(Gemeda et al., 2020). 

In Ethiopia, it is estimated that ~84% of livestock farmers administer 
antibiotics to sick animals (cattle, sheep, goats, poultry), with widespread 
self-medication and inadequate veterinary oversight(Odey et al., 2024). 

Ethiopia’s livestock sector contributes approximately 19% of the 
country's GDP and supplies a significant share of protein through meat and 
dairy products. Rising ARG prevalence threatens herd productivity by 
limiting effective treatments, increasing morbidity or mortality, and forcing 
farmers to cull more animals. 
Resistant bacteria can also enter the food chain via milk or meat, or spread 
through environmental run-off, posing zoonotic risks to handlers and 
consumers(Kumar et al., 2020; Odey et al., 2024). 

Reduced herd health directly translates into lower milk yields and weight 
gains, undermining household incomes and national export potential. With 
36% of GDP tied to agriculture (including livestock), any systemic drop in 
productivity can ripple through Ethiopia’s economy, impacting employment, 
trade balance, and food prices. 
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10. Conclusions 

Severe drought conditions in Ethiopia resulted in the death of a significant 
number of sampled animals, while COVID-19 restrictions led to a two-year 
delay in obtaining research samples. Early work in the project was therefore 
focused on developing robust tools to ensure that once data became 
available, the analyses could be performed efficiently and reproducibly. This 
proactive work included the creation of MUFFIN and PANKEGG, both of 
which have now been validated and provide value not only for this study but 
also for broader metagenomic research, aligning with FAIR data principles. 

The analysis phase also highlighted the resource-intensive and time-
sensitive nature of bioinformatics. High-performance computing (HPC) was 
critical, particularly for memory-demanding tasks such as SPAdes 
assemblies (1–1.5 TB RAM per sample). The closure of UPPMAX added 
complexity, but computational needs were successfully met through the 
NAISS Dardel HPC and the IRD Itrop HPC infrastructures. These resources 
enabled the completion of all computational tasks, but the work necessary to 
complete the analysis with these resources emphasises the need for flexible 
and well-supported HPC infrastructures to handle fluctuating bioinformatics 
workloads. 

MUFFIN is an innovative, versatile metagenomics pipeline that 
represents a valuable contribution to the scientific community, with broad 
utility, as exemplified by the research projects that utilise it. PANKEGG is a 
highly intuitive visualisation platform that significantly simplifies complex 
metagenomic data analysis. Both tools are open-source, user-friendly, and 
designed with reproducibility and accessibility in mind. I hope the tools will 
foster broader adoption and facilitate scientific discoveries. 

The genomic study of Ethiopian cattle is a robust foundation for future 
integrative research efforts aimed at enhancing the understanding and 
breeding strategies of indigenous breeds. These studies not only advance 
scientific knowledge but also hold tangible promise for improving livestock 
welfare, productivity, and resilience to climate change in Ethiopia. The 
effective outreach and knowledge dissemination derived from this work 
could have a profound benefit for local farming communities, ensuring that 
animals not only survive but also thrive under increasingly challenging 
environmental conditions. 
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Our hypothesis about the fibre degraders was incorrect; the increased 
abundance of fibre degraders (e.g., Fibrobacter, Ruminococcus) occurred 
during the rainy season. This contradiction might indicate that the lack of 
feed and the heat stress during the drought influenced greatly the 
microbiome. Our hypothesis about the decline in methanogens in the dry 
season was partially correct; we indeed saw a lower proportion of 
methanogens in February (dry) compared to April (rainy), but through the 
binning, we also noticed that some methanogens were rare (2/7 samples) but 
a “fixed” (in both season) part of the microbiota (Methanosarcina mazei). 
We also observed that hydrogenotrophic specific methanogens appeared 
during the dry season (Methanosphaera sp. 016282985), as the feed 
produced less acetate; this organism would therefore thrive over acetoclastic 
methanogens. Through the pathway analysis, we also saw an increase in all 
key degradation and biosynthesis pathways in the rainy season compared to 
the dry season, indicating a “reactivation” of the digestive function of the 
microbiome when feed became more available. 

Due to the extensive unregulated use of antibiotics in Ethiopia, we 
expected to see some ARGs for the antibiotics commonly used in Ethiopia 
(tetracycline, aminoglycosides). Unfortunately, we found a total of 31 ARGs 
showing resistance to β-lactam, Vancomycin, CAMP, and Multidrug efflux 
systems (more information is found in Chapter 8.2.3 - Antibiotics and 
Resistance). 

In this metagenomic investigation of Ethiopian Boran cattle, we observed 
pronounced seasonal shifts in rumen microbial communities and their 
functional capabilities, patterns that likely influence animal productivity, 
resilience to environmental stress, and methane emissions. While our 
relatively small cohort prevents generalisations, our findings demonstrate the 
value of examining microbiome dynamics across different grazing seasons. 
Moving forward, we plan to expand this work to larger herds and integrate 
host performance data and methane levels to further enhance our 
understanding. Ultimately, harnessing these microbial insights in breeding 
and management programs will provide a tangible path toward more 
sustainable and efficient livestock systems. 

Throughout my PhD journey, I have gained substantial expertise in both 
scientific methodologies and managing unforeseen research challenges. 
Equipped with these experiences, I feel prepared and resilient, ready to tackle 
similar obstacles in future scientific endeavours effectively. 
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11. Further perspective 

As outlined earlier in this thesis, the presented work constitutes only one 
component of a more extensive, long-term research plan. Throughout this 
project, many unexpected challenges necessitated continual adaptation and 
methodological refinements. Despite these setbacks, numerous exciting 
opportunities and future directions remain to be explored. 

At the time of writing this thesis, Ethiopian Boran cattle blood samples 
are queued for genomic sequencing. With this, we will do a detailed analysis 
of genetic variants and explore the potential interactions between these host 
genomic variants and the microbiome data. Establishing such integrative 
host-microbiome networks will significantly enhance our understanding of 
microbiome-driven traits, thereby aiding future selection strategies for 
resilience, productivity, and mitigating environmental impact. 

In parallel to the Ethiopian project, another study is underway. It involves 
60 cattle samples from three breeds (Afrikaner, Hereford, and Bonsmara) in 
South Africa, which are analysed for both rumen microbiome seasonal 
variation and their genome. This project mirrors the Ethiopian research 
design but expands its scope. The broader scope allows for a comparative 
assessment across breeds and geographic environments.  

Metagenomic sequencing for these samples has been completed, and the 
genomic sequencing is in the queue alongside the Ethiopian samples. This 
larger-scale initiative presents an opportunity to validate and extend the 
analytical frameworks and tools developed during this PhD, facilitating 
broader applicability and scientific impact. The lessons learned from this 
thesis will also reinforce the methods, such as benchmarking other binning 
methods, incorporating complementary data, and systematically addressing 
known biases. 

Looking even further ahead, we have submitted an application to the 
Swedish Farmers' Foundation for Agricultural Research (SLF) for a 
comprehensive metagenomic study involving Swedish cattle. This study 
aims to investigate the influence of the microbiome on methane emissions, 
leveraging an extensive dataset comprising 10,000 dairy cattle from farms 
equipped with methane sniffers for measuring emissions. Beyond the 
methane metrics, detailed phenotypic measurements will also be 
incorporated, allowing the integration of phenotype, genotype, and 
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metagenomic data from 500 animals, from which rumen samples will be 
sequenced.  

This effort could represent a critical step toward incorporating 
metagenomic data into the estimation of breeding values (EBVs), potentially 
revolutionising cattle breeding strategies to optimise environmental 
sustainability, productivity, and animal welfare. 

Collectively, these future projects represent a strategic progression in my 
research career, building upon the foundations laid during this PhD and 
pushing toward innovative, integrative approaches in livestock genetics and 
metagenomics. Through continued collaborations and methodological 
advancements, I look forward to contributing to a deeper scientific 
understanding and practical applications that enhance cattle productivity and 
sustainability globally. 
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12. Usage of Artificial Intelligence in 
the thesis 

Given the rapid technological advancements in artificial intelligence (AI), it 
is essential to transparently articulate its applications in scientific research, 
emphasising cautious, informed usage rather than blind reliance. Indeed, the 
concept of Maslow's Hammer, where every problem seems like a nail to 
someone equipped only with a hammer, is particularly pertinent here. While 
powerful, AI and Large Language Models (LLMs) must be applied 
judiciously, recognising their strengths and inherent limitations. 

In my work, AI and related technologies were employed thoughtfully in 
various contexts, detailed as follows: 

Machine learning and deep learning in bioinformatics: Within the 
analytical pipelines used in this thesis, particularly MUFFIN, machine 
learning (ML) and deep learning (DL) methods have become indispensable. 
These technologies have significantly advanced critical bioinformatics tasks, 
notably Oxford Nanopore sequencing basecalling, quality control, and data 
refinement processes. Moreover, ML and DL have transformed downstream 
analytical steps such as binning and classification, improving accuracy, 
efficiency, and the depth of biological insights obtained. 

LLM (ChatGPT) for code refinement: ChatGPT was employed as a 
coding assistant primarily for refining and restructuring existing code. Rather 
than generating code from scratch, ChatGPT’s utility was in optimising code 
readability, debugging assistance, and suggesting best practices. 
Nonetheless, all suggestions were carefully vetted and manually validated to 
ensure their accuracy and suitability for the project's specific context. 

LLM (ChatGPT) for writing structure and clarity: Similarly, 
ChatGPT provided valuable assistance in structuring my thesis. It served as 
an additional perspective, helping to restructure long or convoluted sentences 
and clarify logical flows. Importantly, I never directly requested ChatGPT to 
compose original text. Instead, its role resembled that of a critical reader, 
offering suggestions and improvements to pre-existing drafts, thus 
enhancing clarity and coherence without compromising originality. 

LLM (ChatGPT) as a citation manager: Attempts to use ChatGPT as a 
citation manager proved ineffective due to its tendency to produce inaccurate 
references, mixing details or entirely fabricating DOIs. Consequently, I 
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reverted to reliable and dedicated citation management software, specifically 
Zotero, to ensure accurate and reliable references. 

LLM (ChatGPT) for literature summarisation: Conversely, ChatGPT 
excelled at summarising research articles, significantly streamlining 
literature review tasks. It enabled efficient sorting through my extensive 
collections of papers accumulated over several years, quickly identifying 
relevant studies and summarising their key findings.  

DALL·E 3 for image generation: AI-based image generation via 
DALL·E 3 was utilised creatively in my thesis and associated outputs. The 
thesis cover integrates a picture I took and edited with DALL·E 3. 
Additionally, the PANKEGG logo was fully designed using DALL·E 3. 
However, based on the original design of MUFFIN, created by Tanguy 
Desmarez. Beyond these instances, DALL·E 3 was also employed to 
generate backgrounds for presentations or serve as inspiration. Notably, 
aside from the specified instances (cover and PANKEGG logo), all other 
visuals, including plots and scientific illustrations, were either personally 
created or appropriately credited if sourced externally. 
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Popular science summary 

Cattle are central to Ethiopian livelihoods, with approximately 70 million 
heads, mostly on small farms, utilising indigenous breeds that are adapted to 
the country's dramatic dry and rainy seasons. Inside each cow’s rumen lives 
a bustling community of microbes that break down grass into energy for milk 
and meat, but some of these tiny organisms also produce methane, a 
greenhouse gas. 

In this work, we tracked how the rumen microbiome shifts between the 
dry season and the lush rainy season. One standout discovery was 
Fibrobacter, a champion fibre-eater that only shows up when the rains bring 
fresh forage. Its arrival boosts the rumen’s capacity to digest starches and 
sugars, potentially helping cows gain more weight and produce more milk. 
On the other hand, we found that antibiotic-resistance genes are present, 
potentially conferring resistance to penicillin, vancomycin, cationic peptides, 
and even multidrug. Their presence raises red flags: if resistant bacteria 
spread from cows to people or contaminate meat and milk, common 
infections in livestock could become much harder to treat. 

We also saw the rumen’s metabolic “toolbox” reconfiguring with the 
seasons. During the rainy period, pathways that build amino acids and fatty 
acids run at peak efficiency, reflecting the richer diet. In the dry season, 
methane‑making routes powered by hydrogen dominate, suggesting cows 
might emit more methane per bite of feed. It also means that for the same 
amount of feed between dry and rainy seasons, more energy would be lost in 
the production of methane during the dry season. It also means that total 
emissions are higher during the rainy season, as more feed is consumed; 
however, emissions per kilogram of milk or meat produced are lower, as feed 
efficiency is higher, enabling the animals to produce more milk and build 
their bodies. 

Why does this matter? By understanding which microbes rise and fall 
with the seasons and which genes they carry, we can begin to develop more 
effective feeding and breeding strategies. Imagine designing diets that favour 
fibre-digesters without fuelling methane spikes, or monitoring antibiotic use 
to curb resistance? That’s the promise of a microbiome‑informed approach: 
healthier cows, safer food, and lower environmental impact for Ethiopia’s 
vital cattle sector. 
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Populärvetenskaplig sammanfattning 

Kor är avgörande för människors försörjning i Etiopien – landet har omkring 
70 miljoner djur, mestadels på små gårdar, där inhemska raser är anpassade 
till landets dramatiska torr- och regnperioder. I varje kos våm finns ett myller 
av mikrober som bryter ner gräs till energi för mjölk och kött, men vissa av 
dessa mikroskopiska organismer bildar också metan, en kraftig växthusgas. 

I denna studie följde vi hur våmmens mikrobiom förändras mellan 
torrperioden och den frodiga regntiden. En viktig upptäckt är att Fibrobacter, 
vilka är bakterier som ofta är specialiserade på att bryta ned fibrer, bara dyker 
upp när regnet ger färskt foder. Deras närvaro ökar våmmens förmåga att 
bryta ner stärkelse och socker, vilket kan hjälpa kor att gå upp i vikt och ge 
mer mjölk. Under både regn- och torrperiod fann vi även gener för 
antibiotikaresistens mot penicilliner, vankomycin, katjoniska peptider och 
till och med så kallade multidrug-pumpar. Detta är oroväckande: om 
resistenta bakterier sprids från kor till människor eller förorenar kött och 
mjölk kan vanliga infektioner hos djur bli mycket svårare att behandla. 

Vi såg även att våmmens metabola “verktygslåda” ställs om med 
årstiderna. Under regnperioden går processer som bygger aminosyror och 
fettsyror på högvarv, vilket speglar en näringsrikare kost. Under torrperioden 
dominerar metanbildande processer som är beroende av tillgång på väte, det 
innebär att kornas fodereffektivitet minskar under torrperioden. Under 
regnperioden producerar kor mer metangas då korna konsumerar mer foder 
men samtidigt innebär högre fodereffektivitet sannolikt att utsläppen per 
kilogram producerad mjölk eller kött blir lägre.  

Varför är detta viktigt? Genom att förstå vilka mikrober och gener som 
växlar med säsongerna kan vi utveckla smartare foderscheman och 
avelsstrategier. Tänk dig dieter som gynnar fibernedbrytare utan att driva upp 
metan, eller noggrann kontroll av antibiotikaanvändning för att bromsa 
resistens. Det är löftet med en mikrobiomstyrd strategi: friskare kor, säkrare 
mat och mindre miljöpåverkan för Etiopiens livsviktiga boskapsnäring. 
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Abstract

Metagenomics has redefined many areas of microbiology. However, metagenome-assem-

bled genomes (MAGs) are often fragmented, primarily when sequencing was performed

with short reads. Recent long-read sequencing technologies promise to improve genome

reconstruction. However, the integration of two different sequencing modalities makes

downstream analyses complex. We, therefore, developed MUFFIN, a complete metage-

nomic workflow that uses short and long reads to produce high-quality bins and their annota-

tions. The workflow is written by using Nextflow, a workflow orchestration software, to

achieve high reproducibility and fast and straightforward use. This workflow also produces

the taxonomic classification and KEGG pathways of the bins and can be further used for

quantification and annotation by providing RNA-Seq data (optionally). We tested the work-

flow using twenty biogas reactor samples and assessed the capacity of MUFFIN to process

and output relevant files needed to analyze the microbial community and their function.

MUFFIN produces functional pathway predictions and, if provided de novo metatranscript

annotations across the metagenomic sample and for each bin. MUFFIN is available on

github under GNUv3 licence: https://github.com/RVanDamme/MUFFIN.

Author summary

Determining the entire DNA of environmental samples (sequencing) is a fundamental

approach to gain deep insights into complex bacterial communities and their functions.

However, this approach produces enormous amounts of data, which makes analysis time

intense and complicated. We developed the Software “MUFFIN,” which effortlessly

untangle the complex sequencing data to reconstruct individual bacterial species and

determine their functions. Our software is performing multiple complicated steps in
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parallel, automatically allowing everyone with only basic informatics skills to analyze com-

plex microbial communities.
For this, we combine two sequencing technologies: "long-sequences" (nanopore, better

reconstruction) and "short-sequences" (Illumina, higher accuracy). After the reconstruc-

tion, we group the fragments that belong together ("binning") via multiple approaches

and refinement steps while also utilizing the information from other bacterial communi-

ties ("differential binning"). This process creates hundreds of "bins" whereas each repre-

sents a different bacterial species with a unique function. We automatically determine

their species, assess each genome’s completeness, and attribute their biological functions

and activity ("transcriptomics and pathways"). Our Software is entirely freely available to

everyone and runs on a good computer, compute cluster, or via cloud.

This is a PLOS Computational Biology Software paper.

Introduction

Metagenomics is widely used to analyze the composition, structure, and dynamics of microbial

communities, as it provides deep insights into uncultivatable organisms and their relationship to

each other [1–5]. In this context, whole metagenome sequencing is mainly performed using

short-read sequencing technologies, predominantly provided by Illumina. Not surprisingly, the

vast majority of tools and workflows for the analysis of metagenomic samples are designed around

short reads. However, long-read sequencing technologies, as provided by PacBio or Oxford Nano-

pore Technologies (ONT), retrieve genomes from metagenomic datasets with higher complete-

ness and less contamination [6]. The long-read information bridges gaps in a short-read-only

assembly that often occur due to intra- and interspecies repeats [6]. Complete viral genomes can

be already identified from environmental samples without any assembly step via nanopore-based

sequencing [7]. Combined with a reduction in cost per gigabase [8] and an increase in data out-

put, the technologies for sequencing long reads quickly became suitable for metagenomic analysis

[9–12]. In particular, with the MinION, ONT offers mobile and cost-effective sequencing device

for long reads that paves the way for the real-time analysis of metagenomic samples. Currently,

the combination of both worlds (long reads and high-precision short reads) allows the reconstruc-

tion of more complete and more accurate metagenome-assembled genomes (MAGs) [6].

One of the main challenges and bottlenecks of current metagenome sequencing studies is

the orchestration of various computational tools into stable and reproducible workflows to

analyze the data. A recent study from 2019 involving 24,490 bioinformatics software resources

showed that 26% of all these resources are not currently online accessible [13]. Among 99 ran-

domly selected tools, 49% were deemed ’difficult to install,’ and 28% ultimately failed the

installation procedure. For a large-scale metagenomics study, various tools are needed to ana-

lyze the data comprehensively. Thus, already during the installation procedure, various issues

arise related to missing system libraries, conflicting dependencies and environments, or oper-

ating system incompatibilities. Even more complicating, metagenomic workflows are comput-

ing intense and need to be compatible with high-performance compute clusters (HPCs), and

thus different workload managers such as SLURM or LSF. We combined the workflow man-

ager Nextflow [14] with virtualization software (so-called ’containers’) to generate reproduc-

ible results in various working environments and allow full parallelization of the workload to a

higher degree.
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Several workflows for metagenomic analyses have been published, including MetaWRAP

(v1.2.1) [15], Anvi’o [16], SAMSA2 [17], Humann [18], MG-Rast [19], ATLAS [20], or Sun-

beam [21]. Unlike those, MUFFIN allows for a hybrid metagenomic approach combining the

strengths of short and long reads. It ensures reproducibility through the use of a workflow

manager and reliance on either install-recipes (Conda [22]) or containers (Docker [23],

Singularity).

Design and implementation

MUFFIN integrates state-of-the-art bioinformatic tools via Conda recipes or Docker/Singular-

ity containers for the processing of metagenomic sequences in a Nextflow workflow environ-

ment (Fig 1). MUFFIN executes three steps subsequently or separately if intermediate results,

such as MAGs, are available. As a result, a more flexible workflow execution is possible. The

three steps represent common metagenomic analysis tasks and are summarized in Fig 1:

1. Assemble: Hybrid assembly and binning

2. Classify: Bin quality control and taxonomic assessment

3. Annotate: Bin annotation and KEGG pathway summary

The workflow takes paired-end Illumina reads (short reads) and nanopore-based reads

(long reads) as input for the assembly and binning and allows for additional user-provided

read sets for differential coverage binning. Differential coverage binning facilitates genome

bins with higher completeness than other currently used methods [24]. Step 2 will be executed

automatically after the assembly and binning procedure or can be executed independently by

providing MUFFIN a directory containing MAGs in FASTA format. In step 3, paired-end

RNA-Seq data can be optionally supplemented to improve the annotation of bins.

On completion, MUFFIN provides various outputs such as the MAGs, KEGG pathways,

and bin quality/annotations. Additionally, all mandatory databases are automatically down-

loaded and stored in the working directory or can be alternatively provided via an input flag.

Step 1—Assemble: Hybrid assembly and binning. The first step (Assembly and bin-

ning) uses metagenomic nanopore-based long reads and Illumina paired-end short reads to

obtain high-quality and highly complete bins. The short-read quality control is operated using

fastp (v0.20.0) [25]. Optionally, Filtlong (v0.2.0) [26] can be used to discard long reads below a

length of 1000 bp. The hybrid assembly can be performed according to two principles, which

differ substantially in the read set to begin with. The default approach starts from a short-read

assembly where contigs are bridged via the long reads using metaSPAdes (v3.13.2) [27–29].

Alternatively, MUFFIN can be executed starting from a long-read-only assembly using meta-

Flye (v2.8) [30,31] followed by polishing the assembly with the long reads using Racon

(v1.4.13) [32] and medaka (v1.0.3) [33] and finalizing the error correction by incorporating

the short reads using multiple rounds of Pilon (v1.23) [34]. Both approaches should be chosen

based on the available amount of raw read data available to users. E.g., if more short read data

is available, meta-spades should be the choice (long reads are "supplemental"). If more long-

read data is available, e.g.,> 15 Gigabases (corresponds to a full MinION or GridION flow

cell) [35] flye should be used as the assembly approach.

Binning is one of the most crucial steps during metagenomic analysis besides assembly.

Therefore, MUFFIN combines three different binning software tools, respectively CONCOCT

(v1.1.0) [36], MaxBin2 (v2.2.7) [37], and MetaBAT2 (v2.13) [38] and refine the obtained bins

via MetaWRAP (v1.3) [15]. The user can provide additional read data sets (short or long
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reads) to perform automatically differential coverage binning to assign contigs to their bins

better.

Moreover, an additional reassembly of bins has shown the capacity to increase the com-

pleteness and N50 while decreasing the contamination of some bins [15]. Therefore, MUFFIN

allows for an optional reassembly to improve the continuity of the MAGs further. This reas-

sembly is performed by retrieving the reads belonging to one bin and doing an assembly with

Unicycler (v0.4.7) [39]. As each reassembly might improve or worsen each bin, this process is

optional and therefore deactivated by default. Individual manual curation is necessary by the

user to compare each bin before and after reassembly, as described by Uritskiy et al. [15].

To support a transparent and reproducible metagenomics workflow, all reads that cannot

be mapped back to the existing high-quality bins (after the refinement) are available as an out-

put for further analysis. These "unused" reads could be further analyzed by other tools such as

Kraken2 [40], Kaiju [41], or centrifuge [42] for read classification, "What the Phage" [43] to

search for phages, mi-faser [44] for functional annotation of the reads or even use these reads

as a new input to run MUFFIN.

Step 2—Classify: Bin quality control and taxonomic assessment. In the second step

(Bin quality control and taxonomic assessment), the quality of the bins is evaluated with

CheckM (v1.1.3) [45] followed by assigning a taxonomic classification to the bins using sour-

mash (v2.0.1) [46] and the Genome Taxonomy Database (GTDB release r89) [47]. The GTDB

was chosen as it contains many unculturable bacteria and archaea–this allows for monophy-

letic species assignments, which other databases do not assure [35,48]. Moreover, the coherent

taxonomic classifications and more accurate taxonomic boundaries (e.g., for class, genus, etc.)

proposed by GTDB substantially increases the general classification accuracy [48]. The user

can also analyze other bin sets in this step regardless of their origin by providing a directory

with multiple FASTA files (bins).

Step 3—Annotate: Bin annotation and KEGG pathway summary. The last step of

MUFFIN (Bin annotation and output summary) comprises the annotation of the bins using

eggNOG-mapper (v2.0.1) [49] and the eggNOG database (v5) [50]. If RNA-Seq data of the

metagenome sample is provided (Illumina, paired-end), quality control using fastp (v0.20.0)

[25] and a de novo metatranscript assembly using Trinity (v2.9.1) [51] followed by quantifica-

tion of the metatranscripts by mapping of the RNA-seq reads using Salmon (v1.0) [52] are per-

formed. Lastly, the metatranscripts are annotated using eggNOG-mapper (v2.0.1) [49]. Again,

the annotation by eggnog-mapper provides a wide array of annotation information such as the

GO terms, the NOG terms, the BiGG reaction, CAZy, KEGG orthology, and pathways.

These gene annotations are parsed and visualized in KEGG pathways for each sample and

bin. The expression of low and high abundant genes present in the bins is shown. If only bin

sets are provided without any RNA-Seq data, the pathways of all the bins are created based on

gene presence alone. The KEGG pathway results are summarized in detail as interactive

HTML files (example snippet: Fig 2).

Like step 2, this step can be directly performed with a bin set created via another workflow.

Running MUFFIN and version control

MUFFIN (V1.0.3, 10.5281/zenodo.4296623) requires only two dependencies, which allows an

easy and user-friendly workflow execution. One of them is the workflow management system

Fig 1. Simplified overview of the MUFFIN workflow. All three steps (Assemble, Classify, Annotate) from top to bottom are shown. The RNA-Seq

data for Step 3 (Annotate) is optional. Differential reads are other read data sets that are solely used for "differential coverage binning" to improve

the overall binning performance.

https://doi.org/10.1371/journal.pcbi.1008716.g001

PLOS COMPUTATIONAL BIOLOGY Metagenomics workflow (MUFFIN)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008716 February 9, 2021 5 / 13



Fig 2. Example snippets of the sub-workflow results of step 3 (Annotate).

https://doi.org/10.1371/journal.pcbi.1008716.g002
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Nextflow [14] (version 20.07+), and the other can be either Conda 20[22] as a package manager

or Docker [23] / Singularity to use containerized tools. A detailed installation process is avail-

able on https://github.com/RVanDamme/MUFFIN. Each MUFFIN release specifies the Next-

flow version it was tested on, but any version of MUFFIN V1.0.2+ will work with nextflow

version 20.07+. A Nextflow-specific version can always be directly downloaded as an execut-

able file from https://github.com/nextflow-io/nextflow/releases, which can then be paired with

a compatible MUFFIN version via the -r flag.

Results

We chose Nextflow for the development of our metagenomic workflow because of its direct

cloud computing support (Amazon AWS, Google Life Science, Kubernetes), various ready-to-

use batch schedulers (SGE, SLURM, LSF), state-of-the-art container support (Docker, Singular-

ity), and accessibility of a widely used software package manager (Conda). Moreover, Nextflow

[14] provides a practical and straightforward intermediary file handling with process-specific

work directories and the possibility to resume failed executions where the work ceased. Addi-

tionally, the workflow code itself is separated from the ’profile’ code (which contains Docker,

Conda, or cluster related code), which allows for a convenient and fast workflow adaptation to

different computing clusters without touching or changing the actual workflow code.

The entire MUFFIN workflow was executed on 20 samples from the Bioproject

PRJEB34573 (available at ENA or NCBI) using the Cloud Life Sciences API (google cloud)

with docker containers. This metagenomic bioreactor study provides paired-end Illumina and

nanopore-based data for each sample [35]. We used five different Illumina read sets of the

same project for differential coverage binning, and the workflow runtime was less than two

days for all samples. MUFFIN was able to retrieve 1122 MAGs with genome completeness of

at least 70% and contamination of less than 10% (Fig 3). In total, MUFFIN retrieved 654

MAGs with genome completeness of over 90%, of which 456 have less than 2% contamination

out of the 20 datasets. For comparison, a recent study was using 134 publicly available datasets

from different biogas reactors and retrieved 1,635 metagenome-assembled genomes with

genome completeness of over 50% [53].

Exemplarily, we investigated the impact of additional reassembly of each bin for five sam-

ples (Fig 3). The N50 was increased by an average of 6–7 fold across all samples. Twenty-six

bins of the five samples had an N50 ranging between 1 to 3 Mbases. Reassembly of bins has

shown the capacity to increase the completeness and N50 while decreasing the contamination

of some bins [15]. This is in line with our samples as some bins benefit more from this step

than others. In general, while we observed a general increase in N50 for most bins, the genome

quality based on checkM metrics (completeness, contamination) was slightly increasing or

decreasing for individual bins.

Discussion

The analysis of metagenomic sequencing data evolved as an emerging and promising research

field to retrieve, characterize, and analyze organisms that are difficult to cultivate. There are

numerous tools available for individual metagenomics analysis tasks, but they are mainly

developed independently and are often difficult to install and run. The MUFFIN workflow

gathers the different steps of a metagenomics analysis in an easy-to-install, highly reproduc-

ible, and scalable workflow using Nextflow, which makes them easily accessible to researchers.

MUFFIN utilizes the advantages of both sequencing technologies. Short-reads provide a

better representation of low abundant species due to their higher coverage based on read

count. Long-reads are utilized to resolve repeats for better genome continuity. This aspect is
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further utilized via the final reassembly step after binning, which is an optional step due to the

additional computational burden which solely aims to improve genome continuity.

Another critical aspect is the full support of differential binning, for both long and short

reads, via a single input option. The additional coverage information from other read sets of

similar habitats allows for the generation of more concise bins with higher completeness and

less contamination because more coverage information is available for each binning tool to

decide which bin each contig belongs to.

Fig 3. Quality of meta-assembled genomes (MAGs). [A] Quality overview of 1122 MAGs by plotting size to completeness and coloring based on contamination level.

[B] N50 comparison between each bin of five selected samples from the Bioproject PRJEB34573 before and after individual bin reassembly.

https://doi.org/10.1371/journal.pcbi.1008716.g003
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With supplied RNA-Seq data, MUFFIN is capable of enhancing the pathway results present

in the metagenomic sample by incorporating this data as well as the general expression level of

the genes. Such information is essential to further analyze metagenomic data sets in-depth, for

example, to define the origin of a sample or to improve environmental parameters for produc-

tion reactors such as biogas reactors. Knowing whether an organism expresses a gene is a cru-

cial element in deciding whether more detailed analysis of that organism in the biotope where

the sample was taken is necessary or not.

MUFFIN utilizes a large number of tools to provide a comprehensive analysis of metage-

nomics samples. The associated tools were mainly chosen based on benchmark performance,

e.g., assembly [29,31,54–56], polishing [55], binning [15], annotation for pathways [49], taxo-

nomic classification [47], however stability and workflow compatibility was also an important

factor to consider. Due to the modular coding structure of nextflow DSL2 language, MUFFIN

can quickly adapt towards better tools or improved versions if necessary, in the future.

MUFFIN executes a de novo assembly of the RNA-seq reads instead of a mapping of the

reads against the MAGs to avoid bias and error during the mapping. Indeed, not all the DNA

reads were assembled or binned and present in the last step (annotation). Thus we might miss

transcripts on the sample level. In addition, for similar genes, it’s impossible to know to which

organism the reads should map to. By using metatranscripts and comparing the annotations of

the metatranscripts to the annotation of the MAGs, we avoid those issues.

Availability and future directions

MUFFIN is an ongoing workflow project that gets further improved and adjusted. The modu-

lar workflow setup of MUFFIN using Nextflow allows for fast adjustments as soon as future

developments in hybrid metagenomics arise, including the pre-configuration for other work-

load managers. MUFFIN can directly benefit from the addition of new bioinformatics software

such as for differential expression analysis and short-read assembly that can be easily plugged

into the modular system of the workflow. Another improvement is the creation of an advanced

user and wizard user configuration file, allowing experienced users to tweak the different

parameters of the different software as desired.

MUFFIN will further benefit from different improvements, in particular by graphically

comparing the generated MAGs via a phylogenetic tree. Furthermore, a convenient approach

to include negative controls is under development to allow the reliable analysis of super-low

abundant organisms in metagenomic samples.

MUFFIN is publicly available at https://github.com/RVanDamme/MUFFIN under the

GNU general public license v3.0. Detailed information about the program versions used and

additional information can be found in the GitHub repository. All tools used by MUFFIN are

listed in the S1 Table. The Docker images used in MUFFIN are prebuilt and publicly available

at https://hub.docker.com/u/nanozoo, and the GTDB formatted for sourmash (v2.0.1)[46]

usage is publicly available at https://osf.io/m5czv/. The MAGs produced by the 20 samples; the

template of the output of MUFFIN (README_output.txt); the subset data use in the test pro-

file of MUFFIN (subset_data.tar.gz); and the results of MUFFIN on the subset data with and

without RNA using both flye and spades are also available at https://osf.io/m5czv/. The Ver-

sion of MUFFIN presented in this paper is (V1.0.3, 10.5281/zenodo.4296623).

Supporting information

S1 Table. List of the MUFFIN task, the softwares and versions.

(XLSX)

PLOS COMPUTATIONAL BIOLOGY Metagenomics workflow (MUFFIN)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008716 February 9, 2021 9 / 13



Acknowledgments
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Whole genome sequences of 70 
indigenous Ethiopian cattle
Wondossen ayalew1,2,7, Wu Xiaoyun1,7, Getinet Mekuriaw Tarekegn2,3 ✉, Rakan Naboulsi4, 
tesfaye Sisay tessema2, Renaud Van Damme  5, Erik Bongcam-Rudloff  5, Min Chu1, 
Chunnian Liang1, Zewdu Edea6, Solomon Enquahone3 & Yan Ping1 ✉

Indigenous animal genetic resources play a crucial role in preserving global genetic diversity and 
supporting the livelihoods of millions of people. In Ethiopia, the majority of the cattle population 
consists of indigenous breeds. Understanding the genetic architecture of these cattle breeds is essential 
for effective management and conservation efforts. In this study, we sequenced DNA samples from 
70 animals from seven indigenous cattle breeds, generating about two terabytes of pair-end reads 
with an average coverage of 14X. The sequencing data were pre-processed and mapped to the cattle 
reference genome (ARS-UCD1.2) with an alignment rate of 99.2%. Finally, the variant calling process 
produced approximately 35 million high-quality SNPs. These data provide a deeper understanding of 
the genetic landscape, facilitate the identification of causal mutations, and enable the exploration of 
evolutionary patterns to assist cattle improvement and sustainable utilization, particularly in the face of 
unpredictable climate changes.

Background & Summary
Indigenous animal genetic resources, primarily found in developing countries, are known to contain a sig-
nificant portion of the world’s genetic diversity. Millions of people rely directly on these resources for their 
livelihoods1. Ethiopia, in particular, is considered a gateway for cattle migrations in Africa2. Presently, the cattle 
population in Ethiopia exceeds 70 million heads3, with 98.5% of them being indigenous cattle. These indigenous 
cattle are often named based on their appearance, morphological structure, the ethnic group of the herder, and 
their geographical location4,5. Over time, these cattle have developed unique adaptive traits that enable them to 
withstand challenges such as limited feed availability, high environmental temperatures, and a high prevalence 
of internal and external parasites and diseases. These adaptive features have been shaped through natural and 
human selection processes6,7.

By far, cattle production in Ethiopia is an integral part of almost all farming systems in the crop-livestock 
mixed farming systems of highlanders and mid attitudes, and the main occupation in the lowland pastoralists, 
and still promising to rally around the country’s economic development. Despite multiple functions and sig-
nificant phenotypic variations of indigenous cattle populations, little attention was paid to the livestock sector, 
which threatened the country’s cattle diversity and population size. These are mainly associated with complex 
and interrelated factors such as indiscriminate crossbreeding and interbreeding between adjacent indigenous 
breeds due to herders’ migrations and socio-cultural interactions8,9. Furthermore, recurrent drought, the prev-
alence of disease, ethnic conflicts, and the illegal cross-border market hasten the decline in cattle numbers. 
Thus, a comprehensive understanding of breed characteristics, including population size, genetic landscape, and 
geographical distribution, is crucial for effectively managing farm animal genetic resources1,10. It also serves as 
a guiding framework for breed development programs, enabling them to align with specific production needs 
in diverse environments.
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Quantitative genetic analysis has historically been characterized as a black box due to the intricate nature of 
gene action, which involves multiple loci with unknown effects and their interactions in shaping quantitative 
traits11. This complexity has posed challenges in understanding the underlying mechanisms and unraveling 
the genetic architecture of these traits. As a result, researchers have faced difficulties replicating the results of 
selective breeding across different spatial and temporal scales, making it essential to explore further and eluci-
date these complex genetic processes. Advancements in genome sequencing, SNP genotyping technologies, and 
statistical analysis tools have shifted research focus from analyzing neutral variation to exploring functional 
variation12. Notably, the advent of whole-genome sequencing (WGS) in domestic animals has revolutionized 
our understanding of their genetic makeup. It has allowed for the identification of causal variants that have 
significant implications for animal production, health, welfare, and evolutionary studies within livestock species 
and breeds13. While WGS has become a standard tool in various biological sciences, including animal breeding, 
its application for genetic characterization and routine evaluation of livestock genetic resources in developing 
countries is still limited. This study presents the whole-genome sequencing data from 70 indigenous cattle orig-
inating from seven distinct Ethiopian cattle populations sampled from various agro-ecological and climatic 
settings (Table 1; Ayalew et al.14). Thus, our WGS data will serve as a valuable resource for conducting further 
in-depth studies and investigations in tropical cattle. This sequence dataset will facilitate a deeper understanding 
of the genetic landscape, allowing for the identification and validation of causal mutations that contribute to 
essential traits and the exploration of evolutionary patterns.

Moreover, the detailed analytical procedures offer significant advantages for researchers, such as ease of 
management of similar WGS and implementation of global cattle meta-assemblies at a broader scale. The 
meta-assembly, which combines multiple genetic or genomic data assemblies into a single, comprehensive 
assembly, will enable the accurate validation of regions under selection reported by various researchers, ensuring 
the identification of actual signals while minimizing false positives and supporting future breed improvement 
and conservation efforts.

Methods
Cattle sampling and collection. We specifically selected seven indigenous cattle populations (Abigar, Barka, 
Boran, Fellata, Fogera, Gojjam-Highland, and Horro) for our study, with ten unrelated samples collected from each 
population. These cattle populations inhabit distinct agro-climatic regions, representing Ethiopia’s diverse environ-
ments (Table 1). We selected these particular populations based on their relevance to agricultural practices, pro-
viding insights into desirable production traits, environmental adaptation, and regional livestock farming systems. 
Blood samples were drawn from the jugular vein of the cattle under sterile conditions, using 10 ml EDTA tubes. 
The samples were carefully transported to the laboratory in an ice box and stored at −20 °C until DNA extraction.

Extraction and quality control of genomic DNA. The blood samples were thawed for 30 minutes at 
room temperature and underwent DNA extraction using the Tiangen genomic DNA extraction kit based on the 
manufacturer’s protocols (TIANGEN Biotech, Beijing, China). We conducted 0.8% agarose gel electrophoresis to 
assess DNA integrity and visualized the resulting DNA bands using a gel imaging apparatus. Each sample’s DNA 
concentration and quality were determined using a Nanodrop Spectrophotometer (ND-2000, Thermo Scientific, 
Massachusetts, USA) at a wavelength of A260/A280. Samples with DNA concentrations above 50 μg/μl were then 
sent to Wuhan Frasergen Bioinformatics Co. Ltd in China for whole-genome sequencing (WGS).

Sequence library preparation and sequencing. The VAHTS Universal DNA Library Prep Kit for MGI 
(Vazyme, Nanjing, China) was employed to generate sequencing libraries of each sample, targeting fragments of 
approximately 500 bp in length using one microgram of DNA as input material. Adapter sequences were ligated to 
each sample. Library size and quantification were assessed using Qubit 3.0 Fluorometers and Bioanalyzer 2100 sys-
tems (Agilent Technologies, CA, USA). Finally, the sequencing process was conducted by Frasergen Bioinformatics 
Co., Ltd. (Wuhan, China) on an MGI-SEQ 2000 platform, resulting in a 150 bp sequence length for each sample.

Sequence data pre-processing and mapping. The demultiplexed 70 individual samples (forward 
and reverse reads) were received and checked for their quality metrics using FastQC v0.11.815. The raw reads 
were subjected to initial quality control by Trimmomatic v0.39 using default settings16. After removing adapter 
sequences and low-quality reads, MultiQC v1.14 was run on the clean reads, and standard sequence quality met-
rics were confirmed for subsequent analysis. BWA-MEM 0.7.17-r118817 was employed to align individual reads 

Breeds No. of samples Geographic region Altitude Latitude Longitude Agro-Ecology

Abigar 10 Gambela 523 8.123469 34.30687 Hot, humid, and low-altitude

Barka 10 Amhara 895 14.18467 36.89087 Hot, humid, and low-altitude

Boran 10 Oromiya 1368 4.978936 38.27516 Hot, humid, and low-altitude

Felata 10 Amhara 552 12.40733 35.87573 Hot, humid, and low-altitude

Fogera 10 Amhara 1735 11.86045 37.81373 Humid and mid altitude

Gojjam-Highland 10 Amhara 3410 10.72113 37.85988 Cold, humid, and high-altitude

Horro 10 Oromiya 1722 9.672949 37.07545 Humid and mid-altitude

Table 1. Ethiopian cattle breeds and their respective sampling locations.



3Scientific Data |          (2024) 11:584  | https://doi.org/10.1038/s41597-024-03342-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

to the latest bovine reference genome ARS-UCD1.218. The aligned reads were converted to binary alignment map 
(BAM) format, sorted by coordinates, and indexed using SAMtools version 1.619. Finally, the duplicate sequences 
were marked using the MarkDuplicates function of Picard 2.27.4 (https://broadinstitute.github.io/picard/) to pro-
duce a non-duplicated bam file for variant calling.

Variant calling and filtration. High-quality variant calling and filtration are vital in genomic research. 
The Genome Analysis Toolkit best practices pipeline (https://gatk.broadinstitute.org/hc/en-us/articles/360
035535932-Germline-short-variant discovery) was employed for SNPs discoveries (Fig. 1). First, the marked 
duplicate bam files were used as input to generate Base Quality Score Recalibration (BQSR) tables using GATK 
4.3.0.0. The “Apply BQSR” argument of the same software was then employed to create recalibrated BAM files. 
The HaplotypCaller method, followed by joint genotyping of all samples and VQSR procedures for SNP recali-
brations, was performed using validated SNPs provided by the 1000 bull genome project. In the Variant Quality 
Score Recalibration (VQSR) procedure, SNP recalibrations utilized different variant annotators, including 
Quality of Depth (Q.D.), Fisher Strand Test (F.S.), Mapping Quality Score (M.Q.), Mapping Quality Rank Sum 
Test (MQRankSum), Read Position Rank Sum Test Statistic (ReadPosRankSum), and StrandOddsRatio Test 
(SOR). Subsequently, the ApplyVQSR procedure was employed to select variants with a true sensitivity of 99.0%. 
Finally, the ‘SelectVariant’ procedure from the same software was used, and the final SNPs were used for annota-
tions (refer to the Code availability section).

Data Records
The 70 Ethiopian indigenous cattle pair-end raw sequencing data (in fastq.gz format) were available at NCBI 
under Sequence Read Archive (SRA) accession numbers SRP47834820 and SRP48080321 (Supplementary file 1). 
The VCF file can be available in the European Variation Archive (EVA) with the accession number for Project 
PRJEB75238 (https://identifiers.org/ena.embl:ERP159827)22.

technical Validation
Quality control for raw reads and alignments. In next-generation sequencing (NGS) data analysis, 
quality control of raw sequence reads is a standard preliminary procedure before further analysis. This crucial 
pre-processing step enhances the overall data quality and reliability before conducting downstream analyses23. 
Some essential quality measures used to make choices for the downstream analysis are the base quality, nucleotide 

Fig. 1 Overview of raw data quality control, sequence mapping, variant calling, and variant filtration pipeline. 
The pipeline follows GATK’s best practice protocol for germline short variant discovery.
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distribution, G.C. content, and duplication rate of the raw sequences24. Sequencing of each individual yielded 
between 13.61 gigabases to 25.45 gigabases, of which 91.8–95.5% of the reads fell above Phred scaled quality score 
of 30, which proves the bases were called with 99.9% accuracy (Fig. 2). To elucidate all types of variants (includ-
ing SNVs, indels, and CNVs), a high-depth WGS (30X) is the ‘gold standard’25. Due to budget constraints, it is 
common practice to sequence fewer samples at high coverage (20 to 30X). However, this approach may result in 
a poor representation of a population’s genetic variation. The smaller dataset may not adequately capture the full 
range of genetic diversity present, leading to potential biases or incomplete insights23. Recently, Jiang et al. sug-
gested 4X as the lowest boundary and 10X as an ideal depth for achieving greater than 99% genome coverage in 
pigs26. The average estimated coverage for each of the 70 Ethiopian cattle samples was above the threshold with an 
average depth of 14X (Fig. 2). The relatively moderate depth of coverage in our study enhances the resolution and 
reliability of downstream analyses, leading to more robust findings and insights into the genetic basis of various 
traits and population dynamics26,27.

The MultiQC software28 was employed to generate a pooled sequence quality metrics report (Fig. 3). 
The MultiQC reports for 70 paired-end Ethiopian cattle sequences confirm that the mean quality scores  
and per-sequence metrics fell within the high sequence standard range for downstream analysis (Fig. 3b,c). 
Although there is no universal threshold for duplication levels in WGS data, FastQC flagged a warning for 

Fig. 2 Boxplot presentation of 70 Ethiopian cattle sequencing yield, yield Q30 and estimated sequence coverage.

Fig. 3 The quality control metrics from FastQC analysis of 70 cattle sequences. The metrics from all FASTQ 
files are consolidated using the MultiQC package.
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sequences with more than 20% duplicates15. Unlike PCR-free methods, PCR-based sequencing introduces bias 
in sequencing data by causing uneven amplification of genomic regions and generating duplicate reads, which 
can impact the accuracy of the sequencing data29. Intriguingly, we found an average duplication rate of 17% 
(Fig. 3a), and this relatively low level of duplication observed in our data can mitigate challenges in variant 
calling and uneven distribution of coverage across the genome and enhance the efficiency and speed of analysis 
pipelines30.

A uniform G.C. content among reads indicates high-quality sequencing, suggesting minimal artifacts or 
contaminants24. However, in our dataset comprising 70 forward and 70 reverse sequencing files (140 files), all 
sequenced in the same lane and on the same instrument, Fig. 3d reveals some deviations from the expected 

Annotation categories Count % of total

Downstream 2,563,798 4.51%

Exon 513,998 0.90%

Intergenic 23,537,404 41.41%

Intron 27,406,871 48.22%

Splice_site_acceptor 613 0.00%

Splice_site_donor 966 0.00%

Splice_site_region 49,852 0.09%

Transcript 551 0.00%

Upstream 2,507,622 4.41%

UTR_3_prime 176,834 0.31%

UTR_5_prime 75,531 0.13%

Table 2. Single Nucleotide Polymorphisms (SNPs) across various annotation categories.

BTA CHR Length SNP count Density/kb

1 158534110 2225913 14.04

2 136231102 1835540 13.47

3 121005158 1571987 12.99

4 120000601 1692789 14.11

5 120089316 1578815 13.15

6 117806340 1653802 14.04

7 110682743 1467141 13.26

8 113319770 1509341 13.32

9 105454467 1442407 13.68

10 103308737 1391180 13.47

11 106982474 1437389 13.44

12 87216183 1312516 15.05

13 83472345 1092309 13.09

14 82403003 1126064 13.67

15 85007780 1265285 14.88

16 81013979 1116393 13.78

17 73167244 1042961 14.25

18 65820629 874411 13.28

19 63449741 847878 13.36

20 71974595 1041114 14.47

21 69862954 968519 13.86

22 60773035 836115 13.76

23 52498615 874180 16.65

24 62317253 916025 14.70

25 42350435 605379 14.29

26 51992305 747549 14.38

27 45612108 723378 15.86

28 45940150 726207 15.81

29 51098607 803719 15.73

X 139009144 919141 6.61

Unplaced 76654434 213849 2.79

Table 3. Summary of SNPs density in each chromosome.
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distribution of G.C. content in a subset of 23 files (16.43%). These deviations may be attributed to challenges 
during library preparations15. Notably, despite deviations observed in the G.C. content distribution of some 
sequencing files, a warning message is acceptable for fewer than 30% of the reads, indicating that the overall data 
quality remains suitable for subsequent analysis15.

While the quality control for aligned reads is not routinely conducted, it is a valuable tool for gaining 
additional insights into sample quality. It can help identify problematic samples that might pass the initial 
raw data quality control checks24. In our data, 99.2% of the reads were successfully mapped to the Bos taurus 
(ARS-UCD1.2) reference genome (Supplementary file 2). It suggests that most reads were mapped correctly to 
their corresponding genomic locations.

Quality control for SNP data. After consolidating individual sample VCF files, the joint genotyping analysis 
yielded 39 million SNPs. To ensure the reliability of these variants and filter out false-positive calls for downstream 
analyses, we employed a robust machine-learning model called VQSR (https://gatk.broadinstitute.org/hc/en-us/
articles/360035531612-Variant-Quality-Score-Recalibration-VQSR). VQSR is a two-step process that involves 
training a machine learning model using a training dataset and then applying this model to recalibrate the variant 
quality scores in the primary dataset. VQSR offers several advantages, including improved accuracy, adaptability, 
comprehensive assessment, and reduced false positives compared to traditional filtering methods. By incorporat-
ing VQSR, we optimized the quality control process and enhanced the validity of our variant calls. Specifically, 
threshold values of 99% retained about 35 million true variants and excluded four million variants as poor/false 
positive calls. We also computed the transition/transversion (Ti/Tv) ratio and the heterozygosity-to-homozygosity 
(het/hom) ratio for SNPs passing the 99% threshold. The observed Ti/Tv and het/hom ratios were 2.35 and 1.17, 
respectively. These metrics are consistent with values reported for other African zebu cattle breeds31.

To investigate the genomic distribution and functional impact of genetic variants, we used the SNPeff variant 
annotation tool. A significant portion of variants (over 89%) were annotated within intronic and intragenic 
regions (Table 2). Notably, while the number of SNPs per chromosome correlated with chromosome length32, 
our study revealed varying SNP densities across chromosomes. For instance, Chromosome 23 showed the high-
est SNP density (16.65), whereas the X chromosome had the lowest (6.61). These variations are likely attributed 
to multiple factors, including differences in recombination and mutation rates, genetic drift, demographic influ-
ences, selective pressures, and population history33. Despite containing more repetitive regions, the X chro-
mosome experiences heightened selection pressure against genetic variants, driven by hemizygosity in males 
and X-chromosome inactivation in females. As a result, the X chromosome exhibits a lower SNP density than 
autosomes. These unique genetic mechanisms and evolutionary dynamics significantly shape the distinct SNP 
profiles observed between the X chromosome and autosomes34 Table 3.

Code availability
Data analyses were primarily conducted using standard bioinformatics tools on the Linux operating system. We 
provide detailed information about the versions and code parameters of the software tools used at https://github.
com/WondossenA/WGS_Ethiopian_cattle/blob/main/code_explanation.md.
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