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As an effect of climate change, heatwaves pose an increasingly more
frequent and severe threat to fish populations. Yet, the physiological
mechanisms underlying thermal tolerance in fish remain unclear. One
hypothesis is that thermal tolerance may be limited by neural failure
at high temperatures. Here, we used an electrophysiological approach
to test this by assessing the relationship between brain function,
determined via recordings of visually evoked responses (VERs) on
the electroencephalogram (EEG), and cardioventilatory performance,
determined via recordings of ventilatory electromyography (EMG) and
electrocardiogram (ECG), in adult rainbow trout (Oncorhynchus mykiss)
exposed to a critical thermal maximum (CTmax) protocol. Our results show
that normal brain function is preserved at moderate to high temperatures;
however, at CTmax, the fish exhibited loss of VERs, indicating brain
dysfunction associated with insensibility. This suggests a strong link
between neural failure and upper thermal tolerance in fish. Although
heart and ventilatory rates increased with warming, heart rate significantly
declined at CTmax. Interestingly, ventilation rate remained high even at
extreme temperatures and at CTmax, indicating that neural ventilatory
drive was maintained across thermal extremes. The factors underlying
thermally induced neural failure and its implications for fish in a warming
world require further investigation.

1. Introduction
Anthropogenic warming of aquatic ecosystems and the increasing prevalence
of transient heatwaves pose serious threats to fish at individual and popu-
lation levels [1]. Indeed, ocean warming has been linked to shifts in the
spatial distribution of fishes [2,3] and correlates with species-specific thermal
tolerance limits [4,5]. Heatwaves, in particular, may exert a strong selective
force by causing mass mortality events [6–8]. However, the physiological
mechanisms that underlie thermal tolerance in fish are still not fully under-
stood.

As some fish suffer from insufficient oxygen delivery to the heart at high
temperatures, thermal tolerance in fish is often linked to compromised cardiac
function. Yet, many other physiological organs and cellular level functions are
also impaired at increased water temperature, but the role of some of these
factors in dictating the upper thermal tolerance limit remains elusive (see
reviews by [9–13]). For example, the role of neural failure in defining the acute
upper thermal tolerance limit remains poorly explored. It has been shown that
localized cerebral heating via an implanted heating coil in goldfish (Caras‐
sius auratus) induces behavioural disturbances and loss of equilibrium (LOE,
which is used as an indicator for the critical thermal maximum, CTmax) at
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temperatures comparable to whole-body warming protocols [14]. Additionally, cooling the brain by 2–6°C with a mounted
brain cooler raised the CTmax of Atlantic cod (Gadus morhua) by 0.5–0.7°C during whole-animal acute warming [15]. These
findings suggest that temperature-induced LOE may stem from central nervous system (CNS) failure. Additionally, neural
activity in locomotor brain regions and neural responses to visual stimuli in agar-embedded zebrafish larvae are significantly
suppressed at temperatures approaching CTmax [16]. However, the impacts of acute warming on brain function have not been
directly evaluated in adult fish. A promising method to assess brain function in unrestrained fish is to assess the presence or
absence of visually evoked responses (VERs) in the beta waves of the electroencephalogram (EEG). Beta waves in the EEG are
associated with wakefulness, alertness and consciousness. Within this activity, VERs represent measurable changes in brain
electrical potential triggered by visual stimuli (e.g. a flashing light), producing a distinct waveform in the EEG milliseconds after
the stimulus in conscious animals [17,18]. The absence of VERs has recently been established as a clear and objective indicator of
brain dysfunction and, consequently, loss of sensibility in various fish species [19–22] (see review by [23]). Temperature-induced
declines in neural function seem to coincide with reductions in ventilation and/or heart rate in adult fishes and other aquatic
ectothermic organisms at temperatures approaching CTmax (for reviews, see [9,13]). This may reflect that both ventilatory and
cardiovascular functions are regulated by the central and autonomic nervous systems [24,25] (see review by [26]), and thus,
cardioventilatory activity is possibly compromised by impaired neural function (likely in conjunction with other limiting factors
discussed elsewhere, e.g. see [9,13,27]). Nevertheless, the relationship between brain function, cardioventilatory function and
CTmax remains unexplored in free-swimming adult fish.

In this study, we used electrophysiological measurements to assess the effects of acute warming on brain function and
cardioventilatory performance in adult rainbow trout (Oncorhynchus mykiss). We used non-invasive techniques to determine
the presence or absence of VERs on the EEG. We also assessed cardioventilatory performance via water electrode recordings
of ventilatory electromyography (EMG) and electrocardiogram (ECG). We hypothesized that if acute warming tolerance (i.e.
CTmax) is dictated by neural failure and brain dysfunction, then neural activity in the beta wave frequency range (12−32 Hz),
associated with wakefulness, would decline, and that VERs would disappear at the point when fish lose equilibrium and
reach CTmax. Additionally, we hypothesized that this loss in brain function would align with a decline in cardioventilatory
performance.

2. Methods
(a) Study animals
Rainbow trout of mixed sexes (n = 18; body mass = 978 ± 35 g; fork length = 402 ± 5 mm; Fulton’s condition factor = 1.5 ± 0.04,
thus indicative of fish in a healthy condition; see [28]) were obtained from a local fish farm (Vänneåns Fiskodling AB, Knäred,
Sweden). Fish were held in a holding tank continuously supplied with 10°C aerated, filtered and UV-sterilized fresh water. A
photoperiod of 12 : 12 h, light : dark was maintained, and fish were fed with commercial food pellets twice weekly, but fasted for
3 days prior to experiments. All fish were acclimatized for at least three weeks to these conditions prior to the experiments.

(b) Instrumentation and experimental protocol
Individual fish were lightly anaesthetized in 10°C water containing 75 mg l−1 MS-222 (Sigma-Aldrich Inc., St Louis, Missouri,
USA) buffered with 150 mg l−1 NaHCO3. Thereafter, a silicone suction cup with integrated cutaneous electrodes to record EEG
(see details below, figure 1A) was placed on the skull above the optic lobe (see [21,22]). The fish was then transferred to an
experimental chamber (approx. 16 l, length: 535 mm, width: 198 mm, height: 148 mm) supplied with flow-through, aerated
water at 10°C, in which the fish was fully immersed and unrestrained. To shield the individual from external disturbances,
the experimental chamber was covered with a glass lid and black plastic drapes, while the room was kept dark. Recordings
of heart rate, ventilation and EEG in response to light stimuli (i.e. to determine VERs, see details below) were initiated
immediately following placement in the chamber and were maintained continuously throughout the entire experimental
protocol. These recordings allowed for verification of signal quality, correct electrode placement, recovery from anaesthesia
and the determination of physiological responses leading up to and following CTmax. Fish were allowed to recover for 30 min
prior to the thermal challenge, which consisted of increasing the water temperature at a rate of approximately 0.25 °C min−1

using a thermostat-controlled 6 kW heating element, which heated the water in an external tank connected in series with the
experimental chamber. When the temperature had reached 15, 20 or 25°C, the temperature was maintained for 20 min, allowing
for thermal equilibration of body tissues [29]. Warming increased until the fish lost equilibrium, which was visually determined
by the experimenter, and the specific temperature at which this occurred was determined as CTmax [30]. If the suction cup
was dislodged during the protocol, e.g. due to stress-induced agitation during the thermal ramping (which is reflected in
the varying sample sizes across temperatures, see figure 2), immediate re-attachment was attempted on the fish inside the
experimental chamber. Immediate re-attachment involved briefly and gently manually restraining the fish (typically for <5 s)
within the darkened experimental chamber during the intermittent light flashes to re-attach the suction cup. This intervention
did not alter the light settings or affect the VERs of the fish, as these were assessed during subsequent epochs after the fish
had been left undisturbed in the chamber. If unsuccessful, re-attachment was done immediately following CTmax. Water oxygen
levels in the experimental chamber were maintained above 92% air saturation throughout the thermal challenge. At CTmax, fish
were immediately removed from the experimental chamber and euthanized with a percussive blow to the head, after which
body mass and fork length were recorded.
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(c) Neural activity recording and analyses
All recording equipment was connected to a PowerLab (AD Instruments, Australia) and a computer running Labchart Pro
software (v. 7.3.8, ADInstruments, Australia) for data collection. EEG was recorded using the non-invasive recording technique
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Figure 1. Recordings of the visually evoked responses (VERs) in rainbow trout (Oncorhynchus mykiss). (A) A silicone suction cup with integrated electrodes was
positioned over the optic lobe to record EEG activity. (B) A representative EEG recording depicting a VER following a 10 ms light stimulus (red dashed line). VER
amplitude was calculated as the difference in the brain electrical potential following the light stimulus (Amplight) and during the dark cycle (Ampdark). VERs were
assessed by averaging the beta wave response to 120 light flashes over a 1 min period, allowing the determination of the presence or absence of a stimulus-locked
neural response.
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Figure 2. Effect of acute warming on brain function and cardioventilatory activity in rainbow trout (O. mykiss). (A) The proportion of detected VERs, with inset example
depictions of VERs across the temperature range, and (B) the relative change in VER amplitude (AMPVER). Depicted average values only include values from individual
fish in which VERs could be detected, as indicated by the sample size (n) at the bottom of the panel. (C,D) Changes in heart rate and ventilation rate, respectively,
during acute warming and at CTmax, with sample sizes (n) indicated in each panel. The results from Cochran’s Q test or the linear mixed models are depicted in each
panel. Dissimilar letters denote statistically significant (p < 0.05) differences for each variable between temperatures or CTmax.
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described in detail previously [21,22]. Briefly, silver chloride electrodes connected to 1.5 mm shielded copper wires were
mounted in a custom-made silicone suction cup fitted with a 2 mm silicone tube connected to a peristaltic pump to attach the
silicone cup on the head of the fish with negative (suction) pressure (figure 1A). The electrodes were connected to a BioAmp
(AD Instruments, Australia), and the raw EEG signal was optimized by filtering the signal within the 200 μV sensitivity range
using a 60 Hz low-pass filter, a 0.1 Hz high-pass filter and a 50 Hz notch filter. Light stimuli were generated by a custom-built
stroboscopic LED array mounted above the experimental chamber, delivering 10 ms flashes at approximately 100 lx and 2 Hz,
with each flash separated by a dark phase at or near 0 lx. The light stimuli were detected and recorded using a custom-built
light sensor connected to the PowerLab unit.

EEG recordings were subsequently processed offline using a bandpass filter (12–32 Hz) to separate out the beta wave
frequency range [22]. A 400 ms segment of beta waves was obtained after each light flash, and 120 consecutive segments (i.e.
1 min) were compiled using the Scope view function in LabChart to create an averaged response to the light stimulus at each
temperature (see [21,22]). Segments with signal amplitudes exceeding 10 μV (indicative of motion artifacts) were excluded, and
averaged responses containing <50% of total segments were considered unreliable and omitted from the analysis [22]. A VER
was defined as ‘present’ if the magnitude of change of the average EEG amplitude following the light stimulus (Amplight, 0−200
ms) was at least two times higher than the average baseline amplitude during the dark cycle (Ampdark, 200−400 ms, figure
1B). The amplitude of a VER (AmpVER) was calculated as the difference in the brain electrical potential between Amplight and
Ampdark (figure 1B) and was taken during the final minute of the thermal equilibration periods for each temperature increment
(i.e. at 10, 15 and 20°C) and at CTmax. No further analyses of spontaneous EEG features were conducted, as such signals are
highly susceptible to noise from movement and physiological artefacts, making them unreliable for assessing neural function in
unrestrained fish under these experimental conditions.

(d) Cardioventilatory recording and analyses
Bioelectrical potentials generated from the heart and ventilation (i.e. ECG and EMG) were obtained with electrodes in the water
in the experimental chamber [31,32]. The raw ECG signal from the electrodes was amplified using a BioAmp (AD Instruments,
Australia), and the signal was optimized within the 500 μV sensitivity range, and using a 5 kHz low-pass filter, a 1 kHz
high-pass filter and a 50 Hz notch filter. This signal was further filtered to separate out the R wave of the ECG (bandpass filter:
50−10 Hz), which represents the ventricle contraction and ventilatory activity (bandpass filter: 3−1 Hz). Heart and ventilation
rates were calculated by counting the R wave peaks and ventilation cycles per minute, respectively. The effects of temperature
on heart rate and ventilation were recorded during the final minute of the thermal equilibration periods for each temperature
increment (i.e. 10, 15 and 20°C) and at CTmax.

(e) Statistics
Statistical analyses were performed using IBM SPSS Statistics 28 software, and statistical significance was accepted at p ≤ 0.05.
Values are presented as mean ± s.e.m. The presence or absence of VERs across the different temperature levels (i.e. 10, 15, 20°C
and at CTmax) was determined by a Cochran’s Q test. Only fish for which VERs could be detected were included in this analysis.
Significant main effects were further evaluated with pairwise comparisons across temperatures with multiple McNemar tests
with Bonferroni corrections. Linear mixed models were performed with individual values for heart rate and ventilation rate as
the dependent variables, and temperature levels (10, 15, 20, 25°C and CTmax) as the independent repeated measures variable.
Significant main effects were further evaluated with Bonferroni-corrected pairwise comparisons across temperatures.

3. Results and discussion
In accordance with our hypothesis, VERs were lost when fish reached CTmax (25.6 ± 0.3°C), a thermal threshold consistent with
previous studies using a similar strain of rainbow trout acclimated at 10°C [11,33]. This illustrates brain dysfunction at these
extreme temperatures. While heart rate declined at CTmax, the ventilation rate remained elevated. Thus, our findings indicate
that at CTmax some brain functions (visual input processing in the visual cortex), but not all (i.e. neural ventilatory control
pathways), are impaired in rainbow trout.

In all individuals in which a reliable EEG could be recorded, VERs were present across all temperatures up to 20°C (figure
2A). At 10°C, the average AmpVERs was 1.4 ± 0.2 μV (329 ± 56% above baseline, figure 2B), which is similar to previous values
reported in rainbow trout at 10°C [21,22]. AmpVERs remained stable across temperatures at 1.8 ± 0.3 and 1.8 ± 0.2 μV (408
± 93% and 300 ± 49% above baseline) at 15 and 20°C, respectively. However, no VERs were detected at CTmax in any of the
assessed trout (n = 18; figure 2A). This provides clear evidence that brain function is severely impaired at CTmax in rainbow
trout. Our data share similarities with the findings in zebrafish larvae by Andreassen and colleagues [16], who recorded neural
activity by quantifying the frequency of calcium peaks in the medulla or the optic tectum using calcium imaging. These authors
showed that the frequency of calcium peaks, and thus the spontaneous medullary neural activity and the responsiveness to
visual stimuli in the optic tectum, declined at temperatures preceding CTmax. Thus, our findings further indicate that extreme
high temperatures induce neural dysfunction that causes loss of visual perception and locomotory control, which in the latter
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case has been indicated in other fish species [14,15]. Such dysfunction would reduce the ability of fish to escape unfavourable
thermal conditions and to behaviourally thermoregulate, potentially leading to fatal consequences during a heatwave.

The underpinnings for neural failure at high temperatures in fish remain elusive. Friedlander and colleagues [14] related
the behavioural impairments and CTmax following heating of the cerebellum in goldfish to declining interneuron activity.
Indeed, neurons are optimized to a specific thermal range [34–36], and declining neural function may be caused by increased
permeability and reduced stability of excitable neural membranes [16,27,37], and/or failing mitochondrial function in neural
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tissues at high temperatures [35]. Moreover, Andreassen et al. [16] demonstrated that a decrease or increase in water oxygen
content led to negative or positive impacts, respectively, on neural activity, responsiveness to visual stimuli and CTmax. This
indicates that the upper thermal limit of neural function is at least partially dictated by cerebral oxygen limitation in zebrafish
larvae, which rely predominately on cutaneous respiration during this life stage.

It is likely that a decline in cardiac function and thus a reduced cardiovascular oxygen transport and supply to cerebral
tissues and/or locomotory muscles contributed to neural dysfunction and the onset of CTmax, as suggested by our data and
previous work on zebrafish larvae (e.g. see [16]). Indeed, consistent with previous observations in numerous fish species
(summarized in [13]), both heart rate and ventilation rate increased with warming, from 62 ± 1 beats min−1 and 80 ± 1 breaths
min−1 at 10°C, respectively, to a maximum of 106 ± 9 beats min−1 and 105 ± 8 breaths min−1 at 25°C, respectively (figure 2C,D).
At CTmax, however, heart rate decreased to 65 ± 5 beats min−1, and this reduction is consistent with previous findings showing
that heart rate and cardiac function typically plateau or decline at critically high temperatures and is therefore considered a
crucial factor for governing CTmax in salmonids and other fish species [9,11,13,16]. The decline in heart rate is likely to some
extent to reflect the onset of cardiac arrhythmias as elevated temperatures, as seen previously in rainbow trout and other fish
species [11] (for a review see [13]), but could also reflect an impairment of neural autonomic regulation of cardiac functions,
or possibly an insensibility of the fish to stressful stimuli due to brain dysfunction. Interestingly, the ventilation rate remained
elevated at CTmax in trout (103 ± 5 breaths min−1), as also observed in our previous work in this strain [11]. Moreover, successful
continuous recordings of VERs in the minutes preceding CTmax in one individual fish indicate that brain function was sustained
2 min prior to CTmax, at which the VERs disappeared (figure 3). While both heart rate and ventilation rate declined slightly 1
min prior to CTmax, at which heart rate was undetectable due to signal disturbances, ventilation rate remained high at CTmax in
this individual. While intriguing, we caution against a generalizable interpretation of these observations stemming from a single
individual fish. Unfortunately, similar analyses for the remaining individuals were not possible due to EEG cup dislodgement
and/or heart and ventilation signal disturbances due to fish movement prior to CTmax. Collectively, our data show that neurally
mediated motor output to respiratory muscles from respiratory control centres located in the brainstem [24,25] seemingly
remained intact, even while visual input processing in the optic lobes and locomotory control of body posture failed at high
temperatures, suggesting a divergence in the thermal sensitivity of central nervous and/or efferent neural pathways in rainbow
trout.

In conclusion, our findings demonstrate that the warming tolerance of rainbow trout is linked to brain dysfunction asso-
ciated with insensibility and a reduction in heart rate at CTmax, while ventilation rate remains elevated, indicating intact
ventilatory regulation at CTmax. Further exploration of the causal factors underlying thermally induced brain dysfunction in
fish is warranted to enhance our understanding of how warming environments associated with climate change affect fish
survival.
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