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Highlights 
Statistical machine learning (ML) methods 
applied to big data and available soft-
ware have a fundamental role in the de-
mocratization of genomic selection (GS) 
methodology. 

Principles behind genomic-enabled pre-
diction and statistical ML tools can signif-
icantly increase the efficiency of the GS 
methodology under big data. 

Deep learning (DL) models and methods 
have been implemented in the context of 
genomic predictions (GPs), emphasizing 
With growing evidence that genomic selection (GS) improves genetic gains in 
plant breeding, it is timely to review the key factors that improve its effi-
ciency. In this feature review, we focus on the statistical machine learning 
(ML) methods and software that are democratizing GS methodology. We out-
line the principles of genomic-enabled prediction and discuss how statistical 
ML tools enhance GS efficiency with big data. Additionally, we examine var-
ious statistical ML tools developed in recent years for predicting traits across 
continuous, binary, categorical, and count phenotypes. We highlight the 
unique advantages of deep learning (DL) models used in genomic prediction 
(GP). Finally, we review software developed to democratize the use of GP 
models and recent data management tools that support the adoption of GS 
methodology. 
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the power of this special type of statistical 
ML tool. 

There has been an intense and prolific 
development of software to be used for 
the GP models. We provided a brief 
overview of data management tools 
generated in recent years to promote 
the democratization of GS methodology.
Predictive plant breeding: a new frontier of genomic innovation 
The practical application of genomic tools in plant breeding has opened up a revolutionary 
era in agriculture, with fundamental changes in how we approach crop improvement. 
Today, low-cost and high-throughput genotyping technologies allow breeding programs 
to generate a vast amount of genomic data to support selection decisions and methods 
such as genome-wide association studies (GWAS) and genomic prediction (GP) (see 
Glossary)  [1] which have become routine in many breeding organizations [2]. Genotypic 
and phenotypic data characterizing germplasm under varying growing conditions have 
been accumulated over the years. Moreover, high-throughput phenotyping methods have 
augmented the number of traits considered, and the extent to which – and resolution at 
which – phenotypes are measured. With these developments, information technological 
aspects of breeding, such as data storage and the design of analytical pipelines for knowl-
edge extraction, have moved into the spotlight. Analytical tools need to be able to translate 
collected data into knowledge, breeding decisions, and ultimately increase genetic gain. A 
breeding organization’s ability to leverage information technology will be a key factor in the 
competition for the most efficient breeding pipelines. 

One of the most compelling applications of GP, especially through the integration of multi-omics 
approaches, is tackling agriculturally important traits characterized by a complex genetic archi-
tecture and low heritability, such as ‘yield per hectare’. These traits are significantly influenced
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by the genotypic–environment interaction, making traditional breeding approaches less effective 
in achieving substantial genetic gain.

Conventionally, plant breeding decisions are based on phenotypic observations, and thus often 
require several growing seasons to evaluate selection candidates before selecting them as the 
parents of a new generation. In addition, statistical methods such as linear regression models 
were commonly used due to their simplicity and reliance on well-defined, often linear relationships 
between variables. These methods, grounded in specific  data  assumptions,  were  effective  for
well-defined problems with linear relationships for traits. GP, also known as genomic selection 
(GS), marks a paradigm shift leveraging genomic information to predict the performance of indi-
viduals for specific traits with statistical machine learning (ML) methods. ML includes flexibility 
and non-linear methods that adapt well to complex datasets without strict assumptions. This 
approach accelerates the breeding process by shortening the evaluation step, allowing for the 
selection of individuals at early stages without the need for detailed phenotyping before making 
selection decisions. Provided that prediction models are predicting genetic merit at sufficient 
prediction accuracy (PA), this approach has the potential to accelerate the realized genetic 
gain per time to unprecedented levels. Research questions around predictive breeding include 
the definition of use-cases for predictions in the breeding scheme, the design, type, and updating 
of training data, the general data workflows, and the corresponding statistical methods to use. 
Deep learning (DL), a subset of ML, uses multilayer neural networks to capture intricate patterns 
in large datasets. Each method suits different data complexities and goals in GP. ML and DL terms 
are sometimes used interchangeably, especially since DL is technically a type of ML. However, they 
differ in complexity, computational demand, and suitability for various data types. In GP, choosing 
between these methods often depends on the nature of the data and predicti on goals.

When implementing predictive breeding approaches, breeding organizations cannot discuss 
which statistical ML methods to use without a conversation on the required resources for data 
curation, data management, computational power, prediction software, etc. A particular challenge 
for many breeders and scientists has been a lack of user-friendly software. Consequently, various 
software packages have surfaced in the last decade to address the diverse needs of researchers 
and breeders, reflecting the increasing importance of accessible and sophisticated solutions in this 
domain. Popular tools – such as genome association and prediction integrated tool (GAPIT) 
[3,4], trait analysis by association, evolution, and linkage (TASSEL) [5], and genome-wide 
complex trait analysis (GCTA) [6] – facilitate tasks ranging from data quality control to GWAS. 
Moreover, specialized software like Beagle [7] and BGLR [8] incorporates advanced statistical 
and ML algorithms for GP. The availability of open-source software ensures accessibility and 
collaborative development, fostering a dynamic ecosystem for genomic research in plant breeding. 

In this comprehensive review, our goal is to delve into the current landscape of applications of 
statistical ML models in plant breeding. Our objectives encompass five main facets. (i) A general over-
view of the principles underlying GP and a guide to areas under development. (ii) A discussion of sta-
tistical ML methods for non-Gaussian distributed traits, including continuous, binary, categorical, and 
count-based, and an examination of how these methods play a crucial role in optimizing the selection 
process within the GS methodology. (iii) DL models in GP: we conduct a thorough survey of DL 
models implemented in the specific context of GP, and explore the unique contributions and potential 
advantages of DL techniques in this field. (iv) Software development in  GP:  we  review  the  existing  soft-
ware developed for GP, and highlight the role of software in democratizing the GP methodology, 
making it more accessible and user-friendly. (v) Data management tools for data democratization: 
we provide a concise overview of recent advancements in data management tools, and emphasize 
the role of these tools in promoting the democratization of GS methodologies, ensuring their wider
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Glossary 
Best linear unbiased predictor 
(BLUP): a statistical method used to 
estimate random effects in linear mixed 
models. BLUP can also assess genetic 
values. 
Convergent LMM (cLMM): linear 
mixed models with convergence. 
Data democratization: a  process  
designed to enhance data accessibility 
while ensuring proper governance .
Deep learning (DL): a  category  of  
artificial intelligence (AI) that uses neural 
networks to enable computers to learn 
from d ata.
DL GS (DeepGS): deep learning 
applied to genomic selection. 
DL GWAS (DLGWAS): deep learning 
applied to genome-wide association 
studies. 
Feed forward networks (FFNs): data 
processing via forward propagation. 
GBLUP: Genomic Best Linear Unbiased 
Prediction – model for genomic prediction. 
Generalized linear mixed model 
(GLMM): extended version of linear 
mixed models: statistical models for 
normal and categorical data. 
Genome association and prediction 
integrated tool (GAPIT): R-package. 
Genome-wide complex trait 
analysis (GCTA): statistical method 
used to estimate the heritability of 
complex traits or phenotypes based on 
genetic data. 
Genomic prediction (GP): forecasting 
traits based on genomic data. 
Genomic selection (GS): precision 
breeding through genetic advancements. 
Gradient boosting machine (GBM): 
ensemble learning technique: model for 
regression. 
Item based collaborative filter 
multi-trait multi-environment (IBCF 
MTME): a method used in genomic 
prediction. 
LightGBM: Light gradient boosting 
machine, a method for efficient gradient 
boosting machine learning framework. 
Linear mixed model (LMM): statistical 
models integrating fixed and random 
effects. 
accessibility and adoption. By addressing these objectives, we offer a comprehensive and up-to-date 
perspective on the diverse applications and advancements within the intersection of statistical ML and 
genomic-enabled prediction for plant breeding. 

General principles of genomic prediction models: exploring GBLUP, rrBLUP, and 
LASSO 
The relationship between genotype and phenotype is intricate, with millions of genetic variants 
contributing to the phenotypic variation observed in plants. Statistical ML methods offer a 
systematic and data-driven approach for disentangling this complexity. ML methods are based 
on mathematical models in which a rough functional relationship between predictor variables 
and a dependent variable is set when defining the statistical model. The ‘learning’ step means 
specifying parameters that have not been fully determined in the initial model. Instead, their values 
are chosen such that the model describes training data. A training set consists of measured 
values for the predictor variables – for instance, single-nucleotide polymorphisms (SNPs) – and 
the response variable (e.g., ‘yield per hectare’). 

The relatively robust, most basic, and widely used method for GP is a linear model in which 
genomic markers are assumed to have an additive contribution to the phenotypic observation. 
The parameters that need to be specified are the marker effects that are determined by fitting 
the  phenotypic  observations  best,  subject  to  some  side  conditions.  Having  specified the re-
quired parameters, that is having ‘learned’ the genotype–phenotype relationship, phenotypes 
can be predicted from genotypic data. Techniques such as ridge regression – which is analo-
gous to the genomic best linear unbiased prediction (BLUP) (GBLUP), the B ayesian alphabet
[9,10], or the least absolute shrinkage and selection operator (LASSO) [11,12] regression – fall 
into this class of linear models, among others. Linear models and other methods, such as the 
ensemble learning random forest, and support vector machines have proved effective in handling 
high-dimensional genomic data and capturing the subtle relationships between genotypes and 
phenotypes. 

GBLUP 
The genetic architecture of agriculturally important traits can range from being monogenic (with a 
qualitative distribution given by either possessing the relevant allele or not) to highly polygenic with 
quantitative distribution. For example, think of disease resistances that may be determined by a 
single resistance gene, by contrast with the usually very quantitative trait ‘yield per hectare’.  For  traits  
of simple genetic architecture with only a few genes involved, linkage studies on specific populations 
allow the breeder to identify the underlying alleles. This information can be used to fix  the  positive  
alleles in the population, or at least to establish dedicated marker-assisted selection efforts. This 
scenario is, therefore, not a typical use case for GP. GP addresses the multigenic genetic architecture.

As mentioned earlier, the standard reference model is a linear model: 

y μ Mβ ϵ 1

Machine learning (ML): statistical and 
computational methods for genomic 
prediction. 
Maximum a posteriori threshold GP 
(MAPT): a  model  for  genomic  
prediction of ordinal da ta.
Multilayer perceptron (MLP): a  neural  
network architecture for learnin g.
Negative binomial (NB): statistical 
distribution used for count data.
In the simplest model with one phenotypic evaluation of each of the n genotypes in the training set, 
y is an nx1 vector of phenotypic records, a constant vector providing the overall mean, and 

an marker matrix providing the allelic states of the n individuals with respect to the p genetic 
loci used in the model. In the case of the use of SNPs, the states can be coded as 0, 1, and 2, 
counting a reference allele. The vector  of allele effects is the central component that needs 
to be determined in the training process of the ML method. The last vector ϵ models the 
(random) error which explains the residual missing to explain y fully. Depending on the exact

μ nx1 
M nxp 

px1  β 
nx1 
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Recurrent neural networks (RNNs): 
artificial neural networks for sequential 
data tasks. 
Reproducing kernel Hilbert space 
(RKHS): methods that transform the 
original input of the models before the 
training process. 
Restricted maximum likelihood 
(REML): a statistical method for 
variance component estimation. 
Ridge regression BLUP R package 
(rrBLUP): ridge regression using R 
statistical package. 
Super BLUP (sBLUP): a  superior  
version of BLUP .
Support vector regression (SVR): 
regression using support vector 
machines. 
TGBLUP: threshold genomic best linear 
unbiased predictor model 
Trait analysis by association, 
evolution, and linkage (TASSEL): 
methods for trait analyses. 
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data structure, users often include additional effects, such as year or location effects, genetic inter-
action (epistasis), or environmental effects or genotype–environment interaction.

This linear model of Equation 1 is the central object for several GP methods. Differences between 
the methods are often given only by the choice of the side conditions that are introduced to regu-
larize the regression. ‘Regularization’ refers to restricting the space in which the values of β are 
located or ‘likely to be located’. A regularization is required since the number of genotypes is 
usually much smaller than the number of predictor variables A standard linear ordinary least square 
regression would therefore not lead to a unique solution, and any of the possible solutions would fit 
the training data perfectly but provide only little predictive ability for new data. This circumstance is 
referred to as ‘over-fitting’, and the regularization can be considered as a mathematical restriction 

to provide a unique solution for β, but also as a statistical tool to separate ‘signal’ from ‘noise’. 

Having this in mind, Equation 1 is called ridge regression BLUP (rrBLUP) when the side condition 
penalizes the squared effect size of the marker effects β. The unique fit of the training data is then 
given by minimizing the distance of the theoretical fit  to  y with the side condition of keeping the 

sum of squared entries of β small as well. The difference between several GP methods lies then 

only in the exact definition of how to restrict β. rrBLUP and GBLUP use both a penalty on the squared 

effect size of β and are basically identical, depending on how exactly the penalty weight on β is de-
fined. The ridge regression approach can also be derived from the prior assumption of Gaussian dis-
tributed entries of β. If effects that are to be estimated are modeled as being random with a specific 
distribution, the linear model is also called a ‘mixed linear model’, to highlight that some effects are 
modeled as being fixed but unknown, and others are random and unknown. The ‘random’ nature de-
fines a restriction by giving a  priori  a statement which estimates are ‘more likely’ .

By contrast with rrBLUP, LASSO penalizes the sum of the absolute values of instead of the 
square. This leads to a tendency of estimating many markers to have an effect of zero, while 
ridge regression – due to the prior assumption – tends to generate Gaussian distributed estimates. 
The Bayesian alphabet uses different prior distributions for Moreover, LASSO may be advanta-
geous when the number of relevant loci is small and the heritability of the trait is high [13]. 

Epistasis models, which include interaction effects between loci, have often outperformed the 
additive model of Equation 1 when predicting wheat yield [14,15]. This observation may be 
related to interactions between sub-genomes [16] or simply statistical aspects such as marker 
density [17]. Overall, out of the different regularization methods for a linear model, rrBLUP/ 
GBLUP is therefore the first choice when exploring the potential of GP in a breeding program. 

Areas under development 
As highlighted, Equation 1 describes the basic model. Depending on the approach of the breeding 
program, several evaluation sites may be used for each year. Over years, valuable data are accu-
mulated, but the training data are structured by cohorts and phenotypic evaluations with year 
effects. Such data need to be merged in an appropriate way to be of optimal use for predictions. 

Additionally, the dimensions of available data are increasing. Environmental covariates can be 
included in prediction models (‘enviromic prediction’); high-throughput phenotyping data allows 
the exploration of ‘phenomic prediction’ [18–21], and available data from metabolomic profiles 
can also be included in the prediction model [22]. In addition, feature selection combined with 
data augmentation are also strategies to enhance accuracy in genomic-enabled prediction by 
minimizing differences between the training and testing populations (Box 1).

n 
p. 

β 

β. 
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Box 1. Data augmentation enhances within family genomic prediction 

The goal of predicting within a family is problematic due to Mendelian sampling variance. Recently, Montesinos-López 
et al.  [79] proposed the AB method, which combines the virtues of the adversarial validation (A) method and the Boruta 
(B) feature selection method. The AB method minimizes the disparity between training and testing distributions. The A 
method detects the presence and magnitude of the mismatch between the training and testing sets using a binary 
classifier with the original features (inputs) and its shuffled counterparts and a fictitious response variable, while the Boruta 
computes feature importance, also using the same fictitious response variables, then with the inverse of the feature impor-
tance scores the original features (markers) are weighted, and using them, a weighed genomic relationship matrix can be 
obtained. The authors reduce the weight assigned to markers that display the most significant differences between the 
training and testing sets. The AB method built a weighted genomic relationship matrix that is implemented with the 
Genomic Best Linear Unbiased Predictor (GBLUP) model. Results show that the proposed AB method outperforms the 
GBLUP by 8.6, 19.7, and 9.8% regarding Pearson´s correlation, mean square error (MSE), and normalized root mean 
square error (NRMSE), respectively. Their results support the idea that the proposed AB method is a useful tool for improv-
ing the accuracy of the prediction of a complete family. 
We will now transit to models for non-Gaussian distributions, followed by DL methods that do 
not require the specific design of additive and interaction effects of the different types of predictor 
variables. 

The importance of non-Gaussian traits in genomic prediction for plant breeding 
While much research has focused on traits that are normally distributed, such as yield and height, 
there is an increasing recognition of the critical importance of non-Gaussian traits, such as ordinal, 
Poisson, and count data, which are often tied to essential breeding targets. These non-Gaussian 
traits frequently represent categorical or discrete biological phenomena, such as disease resis-
tance, flowering time, or the number of seeds per pod, each of which profoundly impacts crop 
productivity and resilience. 

The relevance of non-Gaussian traits is that they present unique challenges and opportunities for 
breeders. Traits such as disease resistance are often measured on ordinal scales, where severity 
scores classify a plant’s susceptibility or resistance to pathogens. Similarly, many agriculturally 
important traits follow Poisson or negative binomial (NB) distributions, such as the count of dis-
ease lesions or the number of tillers per plant. Accurately modeling these traits is crucial because 
the assumption of normality, inherent in traditional linear models, is violated, potentially leading to 
biased predictions and reduced selection accuracy. 

A common approach to handle non-Gaussian traits is to apply transformations to approximate 
normality, such as using logarithmic or square root transformations. However, these transformations 
often have significant drawbacks. However, specialized models offer significant advantages by directly 
accommodating the unique distributional properties of non-Gaussian traits. For ordinal data, Bayesian 
logistic ordinal regression (BLOR) and Bayesian threshold genomic best linear unbiased predic-
tion (TGBLUP) explicitly model the ordered categorical nature of the trait, preserving the inherent 
ranking and providing more biologically meaningful interpretations. For count data, Poisson regression 
models and negative binomial models address the discrete and often over-dispersed nature of these 
traits without distorting the data structure. Poisson-lognormal models further enhance flexibility by 
modeling complex variance structures that transformations cannot handle adequately. 

Furthermore, Bayesian regularized neural networks (BRNNs) extend the capability of GP by 
accommodating nonlinear relationships and capturing interactions in complex datasets. These 
models provide robust predictions while maintaining the original scale and distributional charac-
teristics of the trait, leading to more reliable selection outcomes. 

Count data represent discrete, non-negative whole numbers, such as the number of reads mapped 
to a genomic region. Poisson regression models are commonly used to analyze count data in GP.
760 Trends in Plant Science, July 2025, Vol. 30, No. 7
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Poisson regression assumes that the counts follow a Poisson distribution, and the mean and variance 
are assumed to be the same under the Poisson distribution; for this reason, when there is the pres-
ence of over-dispersed distributions like the NB are preferred, since they do not assume that the 
mean and variance are the same [23]. In GP, a researcher can include genetic markers or other ge-
nomic features as predictor variables in a Poisson regression model. Poisson data represent count 
data but with a specific assumption of constant rate over a given time or space interval. It is often 
used when modeling events that occur randomly in a fixed time. The Poisson distribution used for 
modeling count data in the context of GP belongs to a generalized linear mixed model 
(GLMM) with a Poisson distribution for the conditional response variable given the random effects 
and with a log link function [24]. As stated before, these models can account for both fixed and ran-
dom effects while modeling the genetic contribution to the count data. 

Ordinal data consist of ordered categories, such as disease severity scores or ratings. For exam-
ple, a disease severity scale may include categories such as mild, moderate, and severe. Ordinal 
regression models, such as proportional odds models or cumulative logit models, are suitable for 
modeling ordinal data in GP. These models estimate the odds or probabilities of an individual 
falling into each category based on genetic markers or other predictors [25]. Binary data repre-
sent two categories, such as the presence or absence of a particular genetic variant or the occur-
rence of a disease. Logistic and probit regression models are commonly used to model binary 
data in GP. Logistic and probit regression models estimate the probability of an event occurring 
based on genetic markers or other predictors. By including genetic markers as predictor 
variables, one can assess their association with the binary outcome of interest [26,27]. 

The Bayesian TGBLUP model proposed by Montesinos-López et al. [28] is a Bayesian version of the 
classical probit models. It exhibits high competitiveness in terms of prediction performance, as dem-
onstrated by Montesinos-López et al.  [29] in their comparison to DL and support vector machine 
methods. However, due to its Bayesian framework utilizing Gibbs sampling, the TGBLUP model ne-
cessitates substantial computational resources, as convergence requires a significant amount of 
time, particularly when applied to large datasets. Montesinos-López et al. [30]  also  introduce  the  
maximum a  posteriori  threshold GP (MAPT) model for ordinal traits, which proves to be more ef-
ficient than TGBLUP in terms of implementation time; however, it is less efficient than the TGBLUP 
model  in  prediction  performance. Also, Montesinos-López et al. [30] proposed a statistical ML frame-
work that can be used to predict and analyze traits that exhibit an ordinal scale of measurement. While 
in the BGLR package, under a probit framework, it is possible to deal with binary and ordinal outputs 
as response variables with a very general framework based on a Bayesian perspective [8]. 

As an alternative less sensitive to outliers for analyzing ordinal data, Montesinos et al.  [31] intro-
duced a Bayesian logistic ordinal regression (BLOR) model that uses Pólya-Gamma data 
augmentation for efficient estimation and prediction through a Gibbs sampler, resembling the 
TGBLUP model as a special case. Simulations and real data confirm its effectiveness for GPs. 

The Bayesian regularized neural network (BRNN or BRNNO) proposed by Pérez-Rodríguez et al. 
[32] is a statistical ML approach specifically designed for handling ordinal data. It combines the 
flexibility of neural networks with Bayesian regularization techniques. The BRNN model is built 
upon a neural network architecture where Bayesian regularization is applied to prevent overfitting 
and improve the model’s generalization ability. Regularization techniques, such as weight decay 
or dropout, are incorporated to control the complexity of the network and avoid excessive sensi-
tivity to individual observations. Bayesian inference is used to estimate the parameters of the 
BRNN model, and it uses appropriate loss functions and activation functions in the neural network. 
Loss functions, such as the ordinal logistic loss or the proportional odds loss, are used to measure
Trends in Plant Science, July 2025, Vol. 30, No. 7 761
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the discrepancy between the predicted ordinal values and the observed values. By combining the 
power of neural networks with Bayesian regularization, the BRNN model provides a robust and 
flexible framework for modeling ordinal data. It allows for capturing complex relationships and 
patterns in the data while incorporating uncertainty through the Bayesian framework. 

As mentioned earlier, the NB distribution is preferred for modeling count data when overdispersion 
is present, and the Poisson distribution fails to account for this excess of variability. Montesinos-
López et al.  [33,34] proposed a Gibbs sampler for the NB distribution that is not computationally 
efficient, and other authors have suggested using the Poisson lognormal distribution to model 
count data and account for overdispersion [35]. In the Poisson-lognormal distribution, the Poisson 
component describes the actual number of counts observed within a single unit or sample as inte-
ger inputs or outputs. The lognormal component of the distribution describes the overdispersion in 
the Poisson rate parameter; it accounts for the clustering of certain factors, and explains how the 
average of these factors varies across the population [35]. Incorporating this lognormal component 
into the predictor of a Poisson model is highly beneficial for accounting for overdispersion since it 
allows for accommodating a general correlation structure between traits when studying more 
than one trait. Montesinos-López et al.  [36] investigated the GP accuracy of a Bayesian Poisson-
lognormal for count multi-trait and multi-environment that allows borrowing information between 
environments and between traits. These authors concluded that the proposed multi-trait multi-
environment Poisson-lognormal accounts efficiently for the overdispersion of the data and gave 
better predictions than the single trait and single environments when traits and environments are 
correlated. 

Traditional regression models, such as linear regression, are not well suited for counting data, as 
they assume normality and can lead to biased results. Montesinos-López et al.  [37] proposed a 
novel approach for predicting count data in genomic-based prediction using a Poisson deep 
neural network model, which combines the flexibility and nonlinearity of deep neural networks 
with the Poisson distribution’s ability to model count data. The model is trained on genomic 
features to predict the count outcomes accurately. The Poisson deep neural network model 
captures the complex relationships between genomic markers and count phenotypes, and it 
consists of multiple layers of interconnected neurons that learn hierarchical representations of 
the input data, allowing for the discovery of intricate patterns and associations. The authors 
compared the performance of the Poisson deep neural network model with other popular 
count regression models, showing that their proposed model outperforms the alternatives in 
terms of prediction accuracy and robustness. 

However, the models explained so far for count data have difficulties when the response variable 
exhibits an excess of zeros like some traits, such as disease resistance in plant and animal breeding. 
To address this challenge, Montesinos-López et al.  [38] introduced a zero-altered Poisson random 
forest model. Random forests are ensemble learning methods that combine multiple decision trees 
to make predictions. In this study, the random forest algorithm is modified to accommodate zero-
inflated and over-dispersed count data, which are common in GS-assisted plant breeding. The 
zero-altered Poisson random forest model incorporates two components: a binary component to 
model the presence or absence of zeros, and a count component to model the non-zero counts. 
The binary component identifies whether a given observation is more likely to be a zero or non-
zero, while the count component predicts the actual count value. The authors compared the perfor-
mance of their proposed model with other existing methods, including standard random forests and 
Poisson regression models. The results showed that the zero-altered Poisson random forest model 
outperformed the other methods in accurately predicting grain yield, particularly when dealing with 
zero-inflated and overdispersal count data.
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Genomic prediction with deep learning models 
More recently, DL tools, which play a central role in developing artificial intelligence (AI) systems, 
have gained prominence in breeding. Roughly speaking, DL models consist of several layers of 
artificial neurons which can be activated subsequently. The input data activate the first layer, 
which then activates the second layer, until the final neuron layer generates the output, which is 
the dependent variable. Given a predefined set of activation functions, the learning process deter-
mines which input activates the first layer of neurons in what way (defining weights) and how the 
information transits through the other layers. DL architectures include feed forward networks 
(FFNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs),  multi-
modal architectures, and transformers which excel at capturing intricate patterns and dependen-
cies within genomic sequences [39,40]. 

This description already points out the advantages and disadvantages of DL compared with sim-
pler models established for GPs. As a first advantage, DL is very flexible in capturing genotype– 
phenotype relations. It is not restricted to a specific class of relationships, as are, for instance, 
non-linear models. Moreover, another advantage of DL methods is that they can automatically 
identify intricate patterns – for instance, genotype-by-environment interactions – in the data 
and can extract and pronounce relevant features. By contrast, linear models require the user to 
define such relevant aspects specifically when setting up the model. This capability is very attrac-
tive since the genotype–phenotype map is inherently non-linear, and when using additional layers 
of data – such as metabolomic data, microbiome, or other intermediate traits such as multispectral 
reflectance data – the specific relevance and role of each type of data may not be clear. 

Disadvantages of the DL methods compared with simpler methods are that DL methods require, 
in general, very large datasets for obtaining good performance; they are computationally 
demanding, since a complex tuning process is required for optimal implementation [41,42], the 
(biologic) interpretability of the determined parameters is challenging, and there is a threat of 
overfitting or predicting phenotypes instead of genetic merit. As a simple example for the latter, 
imagine a model including environmental data that shows high predictive ability in cross-
validations on a given dataset including genotypic data, phenotypic data, and the environmental 
conditions under which the crop was growing. The user needs to make sure that the high predic-
tive ability is not a result of predicting the yield from the environmental conditions but that the 
genetic potential is elucidated. Despite potential challenges, DL holds the promise of uncovering 
hidden genetic features that traditional methods might overlook, thereby broadening our under-
standing of the genetic basis of traits. 

Deep learning for plant genomics 
DL focuses on training artificial neural networks with multiple layers to learn representations of 
data. These networks, known as deep neural networks, can automatically extract complex 
patterns from input data [43]. DL has demonstrated success in various domains, including 
image recognition, natural language processing, speech recognition, gene expression prediction, 
protein structure prediction, and disease risk prediction [39,44]. DL models can capture intricate 
relationships between genetic variants and phenotypic traits, leading to more accurate predic-
tions and a better understanding of underlying genetic mechanisms [45,46]. 

In a recent article by Azodi et al., the authors analyzed and compared the performance of neural 
networks versus gradient tree boosting machines using vast data across six plant species, each 
characterized by different marker densities and varying training population sizes [47]. These 
researchers assessed six linear and six non-linear algorithms. Key findings were that (i) applying 
feature selection before training neural networks became crucial when the number of markers
Trends in Plant Science, July 2025, Vol. 30, No. 7 763



Trends in Plant Science
OPEN ACCESS
exceeded the training sample size, (ii) no single algorithm consistently outperformed the others in 
all species-trait scenarios, (iii) aggregate predictions from multiple algorithms (ensemble 
algorithms) demonstrated robust and reliable performance overall, and (iv) the performance of 
nonlinear algorithms exhibited greater variability depending on the trait. The authors concluded 
that artificial neural networks did not emerge as the top-performing model, but specific  strategies  – 
such as implementing feature selection and using seeded starting weights – enhanced their accuracy, 
making them competitive with other method s.

In the context of plant genomics, DL can be applied to analyze large-scale genomic datasets and 
make predictions about complex plant traits. There is also great potential for DL to be leveraged 
for predictions using whole-genome sequencing data, which are currently difficult to handle using 
standard computational analysis tools. DL models can automatically learn relevant features from 
genomic data without explicit feature engineering. This helps to capture complex relationships 
between genetic variants and traits. DL models can analyze DNA or RNA sequences to identify 
regulatory elements, predict the functional effects of genetic variants, or classify sequences 
based on their phenotypic impact [48]. Gene expression analysis uses RNNs or attention-
based models to analyze gene expression time series data, predict gene expression levels, or 
identify gene regulatory networks [49]. This is likely to revolutionize the usage of whole-genome 
sequencing data for GP in the future. DL can be trained to predict complex traits, such as grain 
yield, disease resistance, or stress tolerance in plants, using genomic and other data inputs. As 
the resolution and scale of the data increase (e.g., sequencing and gene expression data), the 
accuracy of selection for complex traits is likely to be enhanced. This will enable breeders to 
identify promising plant lines earlier in the breeding process. 

DL approaches for plant genomics require large datasets, intense computational resources, and 
domain expertise to ensure reliable results. Additionally, the interpretation of DL models in plant 
genomics is an ongoing area of research, as understanding the underlying genetic mechanisms 
from learned representations can be challenging. Overall, the integration of GP and DL holds great 
potential to accelerate crop improvement and advance our understanding of plant biology [50,51]. 

Several researchers have observed that GS in plants has not shown a clear superiority over DL in 
terms of prediction power compared with conventional GBLUP prediction models [41,42]. How-
ever, the authors mentioned that there is evidence that DL captures nonlinear patterns more effi-
ciently than conventional genome-based methods, and that it is able to integrate data from 
different sources. Nevertheless, DL is not free of problems in its application to GP and plant geno-
mics. For example, the high chances of overfitting (that could be solved by a stronger regularization 
and by the Bayesian paradigm), the difficulty of the biological interpretation of the results, and the 
intense computing capacity required to be used by practitioners with small-capacity laptops. 

Montesinos-López et al. [41], listed the most recent advances on the use of DL (as a special form 
of ML) in GS of animal and plant breeding, including research on DL for GP of plant traits under 
multi-environment trials, and benchmarked with other ML. Authors have investigated the use of 
DL and other ML for continuous, ordinal, count, and binary traits for single as well as multiple traits 
[37,52–55]. In general, results showed that when excluding the genotype–environment interac-
tion (G×E) from the model, DL models overcome the parametric GBLUP but not otherwise. 

The training process for DL is challenging due to (i) the numerous hyper-parameters that need to be 
tuned, and (ii) imperfect tuning that can result in biased predictions. Trying to solve this problem, 
Montesinos-López et al. [56] proposed a simple method for calibrating that is computationally 
faster than the old computing calibration method. The new calibration method had a higher GP
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ability than the conventional GBLUP. The authors used multilayer perceptron (MLP) and CNN 
where the genomic information was incorporated into the MLP as a relationship matrix and to 
CNN as a genomic image. Both MLP and CNN gave very competitive results compared with 
GBLUP [57]. 

Recently, a deep neural network for GP (DNNGP) for multi-omic data based on a multilayer 
hierarchical structure was introduced and compared with its GP accuracy versus GBLUP, light 
gradient boosting machine (GBM) (LightGBM), support vector regression (SVR), DL 
GS (DeepGS) and DL GWAS (DLGWAS) [58]. The advantage of DNNGP over the other 
methods resides in its multilayer hierarchical structure allowing learning of features from the raw 
data, avoiding overfitting and enhancing the convergence rate by means of a batch normalization 
layer and early stopping and rectified linear activation function. The computation time of the 
DNNGP is competitive compared with the other methods, and for large datasets the proposed 
DNNGP is superior in prediction accuracy to all the other five models. 

Wang et al.  [58] pointed out five advantages of the DNNGP. One of these is its generality, as it can 
be applied to several omics data with a multilayer hierarchical structure that learns features from 
raw data and avoids overfitting. DNNPG can be efficiently used on small datasets with very com-
petitive results as compared with other methods, and is faster than other methods for large 
datasets. The authors remarked that, in several instances, it overcame the prediction accuracy 
of GBLUP. 

Few ML linked genomics and phenomics for GP using different approaches to link genomic and 
image data. DL neural networks have been developed to increase the GP accuracy of unobserved 
phenotypes while simultaneously accounting for the complexity of G×E. However, unlike conven-
tional GP models, DL has not been investigated for when genomics is linked with phenomics. 
Montesinos-López et al.  [59] utilized a multimodal DL method and compared its GP with those 
of GBLUP, GBM, and SVR. Multimodal DL provided better GP accuracy than the results obtained 
by the other models. However, GP accuracy obtained for other years indicated that the GBLUP 
model was slightly superior to the multimodal DL. This multimodal DL method [59] is novel and pre-
sents a strong degree of generalization, as several modules can potentially be incorporated and 
concatenated to produce an output for a multi-input data structure (Box 2). Genomic data provides 
information about an individual’s genetic makeup, while phenomics data encompasses observable 
traits or characteristics. The integration of image data can provide detailed phenotypic information, 
such as plant morphology or disease symptoms, which can further enhance GP. 

Software for GP 
One of the pioneering R packages for genome-based prediction was introduced by de los 
Campos et al. [60]. Following this, Pérez et al.  [61] introduced Bayesian linear regression (BLR), 
which allowed for the incorporation of molecular markers, pedigree information, and other covariates 
in high-dimensional linear regression models. The BLR R package offered the convenience of jointly 
analyzing markers and pedigree data, and the authors also delved into essential aspects such as 
assessing GP accuracy through random cross-validation and selecting optimal hyperparameters 
for Bayesian models. Another significant milestone was the development of the rrBLUP R package 
by Endelman [62], which facilitated ridge-regressions (whole-genome regressions) and linear 
mixed models (LMMs) with two variance components using maximum likelihood or restricted 
maximum likelihood (REML) methods. 

Pérez and de los Campos [8] extended the original BLR R-package to a more comprehensive 
and versatile package called Bayesian generalized linear regression (BGLR), further expanding
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Box 2. Multimodal deep learning 

The most applied deep learning (DL) architectures in genomic selection (GS) are the multi-perceptron and the 
convolutional neuronal networks (CNN) [37,41,42,53–56]. In DL methods, thousands of single-nucleotide polymorphisms 
(SNPs) can be used to train a model with a vast number of parameters, or the squared root matrix or the Cholesky factor of 
the genomic relations matrix can also be used. 

In plant breeding research, several statistical machine learning (ML) methods have been developed and studied for 
assessing the genomic prediction (GP) accuracy of unobserved phenotypes; only a few methods have linked genomics 
and phenomics. A DL neural network has been developed to increase the GP accuracy of unobserved phenotypes while 
simultaneously accounting for the complexity of genotype × environment interaction (G×E). As opposed to conventional 
GP models, DL has not been investigated when genomics and phenomics are linked. Montesinos-López et al.  [59] incor-
porate DL with genomics and images (as covariables) tested for several traits (Figure I). The fitted models were: genomic 
best linear unbiased prediction (GBLUP), gradient boosting machine (GBM), support vector regression (SVR), and the DL 
method. Results indicated that for 1 year, DL provided better GP accuracy than results obtained by the other models 
(Figures II and III). However, GP accuracy obtained for other years indicated that the GBLUP model was slightly superior 
to the DL. The GP of various traits for drought and irrigation in 3 years shows slight increases in GP accuracy of DL over 
GBLUP for some years but not for the 3 years under drought conditions. Results from the study of Montesinos-López et al. 
[59] show that the multimodal DL method has a robust degree of generalization with other very data-specific DL methods 
previously reported. It is also important to stress that the BGLR package is a very vigorous parametric statistical software 
for GP accuracy. The DL method used in this study is novel and presents a reasonable degree of generalization and an 
important accuracy for predicting new years. One reason is that, instead of concatenating all feature types and using them 
to feed the created network, the outputs are combined to generate the output value for each type of information and in-
dividual neuronal network. 

TrendsTrends inin PlantPlant ScienceScience 

Figure I. Multimodal deep learning model (MMDL) with three modalities (type of input). A stacked residuals 
network (RestNet) is composed of two sequence-dense layers (FCL) applied in each multilayer perceptron neuronal 
network. FCL(L2)+BN+RELU are the successive applications of a fully connected layer (FCL) with L2 regularization, 
batch normalization layer, and relu activation. The meaning for FCL(L2)+BN is similar, while DO indicates the application 
of the dropout regularization. Batch normalization (BN) also works as a regularizer to speed up the training process 
[80]. The concatenated outputs of three networks are used as an input in the output layer with one neuron, linear 
activation function, and L2 regularization for its weights: concatenate outputs of all three (multilayer perceptron deep 
neuronal network) MP Neuronal Networks+FCL+L2. Figure extracted from Montesinos-López et al. [59].

766 Trends in Plant Science, July 2025, Vol. 30, No. 7

Image of &INS id=


Trends in Plant Science
OPEN ACCESS

TrendsTrends inin PlantPlant ScienceScience 

Figure II. DS1.normalized root mean squared error of prediction (NRMSEP) for the prediction of a complete year 
using information from the other year (leave one environment out, LOO) for traits TGW (thousand grain weight) 
and YLD (grain yield) using the models fitted with Bayesian Genomic Linear Regression (BGLR; R Software) and 
with deep learning (DL) (Python Software) with the predictors Genomic Matrix (G; NDVI, Normalized Difference 
Vegetation Index; no use of NDVI), which correspond to the genomic matrix, G + NDVIs_gf, G+NDVIs_vg (vg, 
vegetative stage), and G+NDVIs_vg_gf (grain filling stage) for the NDVIs covariate in any of its two types NDVI 
Averages and Dates aligned. Figure extracted from Montesinos-López et al. [59].
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Figure III. DS1.correlation mean (Cor Mean) for the prediction of a complete year using information from the 
other year (leave one environment out, LOO) for traits TGW (thousand grain weight) and YLD (grain yield) 
using the models fitted with Bayesian Genomic Linear Regression (BGLR; R Software) and with deep 
learning (DL) (Python Software) with the predictors Genomic Matrix (G; NDVI, Normalized Difference 
Vegetation Index; no use of NDVI), which correspond to the genomic matrix, G + NDVIs_gf (grain filling 
stage), G+NDVIs_vg (vegetative stage), and G+NDVIs_vg_gf for the NDVIs covariate in any of its two 
types NDVI averages and dates aligned. Figure extracted from Montesinos-López et al. [59].
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the capabilities for GP tasks. These R-based tools have significantly contributed to the advance-
ment of genomic-enabled prediction in the field of plant breeding and genomics research. From 
this software, it is possible to democratize a wide range of genomic models and methods in a 
unified computing software for data analysis, and for this reason it became popular in dealing 
with multiple data types (e.g., genomic markers and environmental covariables). Additionally, 
the BGLR package includes various Bayesian regression models, parametric variable selection, 
shrinkage methods, and semi-parametric procedures, which also support both continuous and 
categorical response traits. The BGLR algorithm is based on a Gibbs sampler with efficient 
routines implemented in C programming language, and serves as the main framework for adapting 
more complex genomic models, such as G×E with pedigree and environmental covariates. It is 
also used for assessing marker effect × environment interaction.

Pérez-Rodríguez and de los Campos [63] extended the BGLR package to fit multi-trait models. 
The software allows researchers to fit a model with an arbitrary number of random effects and 
assign different prior distributions to marker effects (e.g., Gaussian, Spike-Slab). The software 
also incorporates routines to model variance–covariance matrices (e.g., diagonal, factor analytic, 
recursive). 

A new package for fitting multi-trait GP models is MegaLMM [64]. MegaLMM tackles the 
challenge of scaling multi-trait LMMs to hundreds or thousands of traits at once to accommodate 
phenomic data or data from METs with large numbers of trials. It is particularly useful when a set 
of genotypes is measured for many but not all possible traits (sparse data). MegaLMM is based 
on a Bayesian latent factor model to regularize estimates of among-trait covariance matrices 
caused by genetic or environmental factors in a similar way that marker effects are regularized 
in single-trait GP. 

An active area of research is the development of software for fitting LMM. The lme4 is the standard 
package for fitting linear and generalized LMMs in the R package, but it lacks the ability to define 
correlations between individuals or groups in genetic analyses. To address this, a new package 
called lme4GS has been introduced for R [65] which is focused on fitting LMMs with covariance 
structures defined by the user, bandwidth selection, and GP. The new package is focused on 
GP models used in GS and can fit LMMs using different variance–covariance matrices. Several 
examples of GS models are presented using this package as well as the analysis using real data. 

Other packages [66] important in fitting LMM are the sommer [66], capable of fitting LMM with 
multiple random effects accounting for known or unknown covariance structures, and rTASSEL 
[67]. This latter is a modern R interface for the TASSEL software [5], among the most important 
software for gene discovery by association mapping (e.g., GWAS), in which a GP plugin was 
introduced in 2015 to include supervised approaches, such as ridge regression and GBLUP. 
This software has the advantage of working directly with variant call format (VCF) files, which 
speed up the process of SNP quality control, computation of relationship matrices, and dimen-
sionality reduction techniques – for example, principal component analysis (PCA), multidimen-
sional scaling (MDS) – as well making it easier to draw linkage disequilibrium maps, explore 
phylogenetic trees, and fit LMM into a single and memory-efficient computational platform. In 
practical terms, an ML platform for GP could take advantage of this software to accommodate 
modeling approaches directly from the DNA sequence to trait variations. 

Moreover, the R package GAPIT serves as a widely adopted tool for conducting both GWAS 
and GP analyses, using a range of diverse models. In its initial version, GAPIT version 1, users 
were empowered to execute several models, including GLM (generalized linear model), LMM,
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compressed LMM (CLMM), and GBLUP [3]. In subsequent iterations like GAPIT version 2, ad-
vancements continued with the integration of enriched factored spectrally transformed LMM 
(FaST-LMM), enhanced convergent LMM (cLMM), and settlement of LMMs under progres-
sively exclusive relationship (SUPER) [4]. Recently, the most recent version of the GAPIT package 
(version 3) was released in 2021 by Wang and Zhang [68]. Notably, this version included several 
new options for GWAS application, such as the fixed and random model circulating probability 
unification (FarmCPU), Bayesian information and linkage-disequilibrium iteratively nested keyway 
(BLINK), as well as GP models such as compressed BLUP (cBLUP) and super BLUP (sBLUP). 

Recently, a new R library for GS, called BWGS, was released by Charmet and colleagues [69]. This 
R package includes most of the steps for GS application, such as missing data imputation, dimen-
sion reduction (discarding uninformative markers), model training using 15 different models: for 
example, GBLUP, EGBLUP, the Bayesian alphabet, reproducing kernel Hilbert space 
(RKHS), RF, and SVM. The package also allows us to perform a random cross-validation by 
using a set of genotyped and phenotype lines for model testing and the GEBVs estimation for a 
set of unphenotyped lines. To extend the computational capabilities to deal with multi-trait and 
multi-environment data, other initiatives have been established, including Bayesian approaches 
and DL and enviromics. One example is the R package accounting for the item based collabo-
rative filter multi-trait multi-environment (IBCF MTME): an algorithm developed by O.A. 
Montesinos-López et al.  [70]. 

The implementation of the Bayesian generalized kernel regression method in R for GP is important 
for efficiently capturing complex nonlinear patterns that conventional linear regression models can-
not handle. The software presented by A. Montesinos-López et al. [71] performed these tasks 
and is also powerful for leveraging environmental covariables, including G×E interaction prediction. 
The authors gave the bases for constructing seven kernel methods, linear, polynomial, sigmoid, 
Gaussian, exponential, Arc-cosine I, and Arc-cosine L. Furthermore, the authors provide illustrative 
examples for implementing exact kernel methods in single-environment, multi-environment, and 
multi-traits frameworks as well as the implementation of sparse kernel methods in a multi-environ-
ment framework. 

A new R-based software package called sparse kernel methods (SKM) for implementing six 
popular supervised ML algorithms (generalized boosted machines, generalized linear models, 
support vector machines, random forests, Bayesian regression models, and deep neural 
networks) was developed by Montesinos-López et al. [72]. SKM also offers the option to use 
sparse kernels. The primary focus of SKM is user simplicity, providing an easy-to-understand 
format that encompasses the most important aspects of these six algorithms. Additionally, the 
package includes a function for computing seven different kernels: linear, polynomial, sigmoid, 
Gaussian, exponential, arc-cosine I, and arc-cosine L (with L = 2, 3, etc.), along with their sparse 
versions. These kernels enable users to create kernel machines without modifying the statistical 
ML algorithm. The SKM package makes the computation of the sparse versions of the seven 
basic kernels. This functionality is crucial for reducing the computational resources required to 
implement kernel ML methods without a significant loss in prediction performance. To evaluate 
the performance of SKM, the authors experimented using a genome-based prediction frame-
work with maize and wheat datasets. Although initially designed for GP problems, the SKM 
package is not limited to such applications and can be utilized in various domains. 

A new study comparing the performance of three ML methods using multi-trait GP under 
GBLUP, partial least squares, and random forest was published by Montesinos-López et al. 
[73]. Among the three ML methods, random forest performed the best when using predictors,
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environments, genomics, and their interaction. The authors also highlighted the availability of 
these three ML methods in the SKM library, which includes various single-trait and multi-trait sta-
tistics using the SKM library. In relation to the use and properties of the SKM library, Montesinos-
López et al.  [74] recently introduced a complete guideline for using the SKM R library and ex-
plained how to implement statistical ML [74] available in this library for GP. The general guide in-
cluded details of the functions necessary to implement the various ML methods and thus 
facilitate their use by practitioners and analysts. 

A recently developed tool, known as characterization and integration of driven omics (CHiDO), 
enables the integration of diverse omics datasets in a user-friendly interface [75]. This innovative 
software is a noncoding application designed to promote the democratization of multi-omics 
selection within breeding programs. By using CHiDO, breeders can analyze and model multi-
omics data such as genomics, phenomics, and enviromics along with their interactions, thereby 
enhancing the prediction of complex traits. 

A critical step in plant breeding programs is parental selection. Finding the best parents 
for starting new breeding pipelines might be deeply challenging due to the number of traits that 
breeders take into consideration, especially if those traits often show trade-offs. A novel R 
package called IPLGP was recently generated to provide a new GP approach to identify superior 
parents by using multi-trait selection [76]. This approach is initiated by crafting a selection index 
by utilizing normalized GEBVs and incorporating subjectively assigned weights for each trait. 
Subsequently, parental selection can be performed based only on the GEBVs by choosing 
the lines with the best selection index, based only on the genetic diversity (GD) maximizing the 
D-score, or combining both GEBVs and GD. Having identified the optimal parent, a simulation 
cascade ensues, encompassing pivotal steps of the breeding pipeline such as crosses, self-
pollination, and selection. Finally, the genetic gain for each trait is estimated as the difference 
between the GEBVs of the parent and the GEBVs of the last generation. 

Selecting multiple traits becomes increasingly challenging when traits are negatively correlated or 
when some traits have missing data. To address these complexities, the multi-trait parental selec-
tion (MPS) R package has recently been introduced [77]. This package leverages Bayesian opti-
mization algorithms along with three distinct loss functions (Kullback–Leibler, energy score, and 
multivariate asymmetric loss) to identify parental candidates with optimal trait combinations. 
The application demonstrates that the MPS package is a powerful tool for selecting superior 
parents through multi-trait genomic selection, empowering breeders to make data-driven deci-
sions and achieve high-performance offspring across multiple traits. 

After selecting the parent lines, breeders across all crops face an equally challenging task: deciding 
which crosses to make. In plant breeding, this decision is particularly complex due to inherent 
trade-offs among target traits, the combining ability of each genotype, and the need to consider 
the future genetic variance of the offspring. To address this complexity, the R package PopVar pro-
vides breeders and quantitative geneticists with a powerful tool to make informed decisions [78]. It 
enables accurate predictions of key metrics, including the population mean (μ), genetic variance 
(VG), the mean performance of the top 10% of the offspring (superior progeny mean), and the 
genetic correlation across multiple traits in the predicted biparental populations. 

Advanced data management through envirotyping and graphical haplotypes 
This version highlights the advanced nature of the tools, their role in combining genomic and 
environmental data, and their relevance to precision breeding efforts. It adds a broader scope 
to capture the innovative and practical implications of these methods.
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Outstanding questions 
What challenges exist in genomic 
prediction for continuous, binary, 
ordinal, and count traits, and 
what models have been proposed? 

Despite limited progress in GS for mixed 
phenotypes (e.g., continuous, binary, 
ordinal, and count traits), challenges 
remain. For count data, statistical 
models are available but are often 
impractical in GS due to the large n 
(number of observations) and small p 
(number of parameters) setup, as well 
as high computational demands. There 
is a need for models suitable for large p 
and smaller n, such as the Bayesian 
mixed negative binomial (BMNB) 
model, which incorporates genotype-
by-environment (G×E) interactions 
using full conditional Gibbs sampling. 

What are the limitations of Bayesian 
GS models using Poisson and 
negative binomial distributions, 
particularly regarding computational 
demands and their ability to capture 
nonlinear interactions? 

Bayesian GS models employing Poisson 
and negative binomial distributions have 
been developed but face significant 
computational challenges due to the 
reliance on nonanalytical Gibbs 
samplers. Furthermore, these linear 
models often fail to effectively capture 
nonlinear interactions, which are crucial 
in complex traits. 

What are the challenges of using 
Bayesian TGBLUP for ordinal traits, 
such as disease resistance? 

Ordinal traits, such as disease resistance, 
present unique challenges. The Bayesian 
TGBLUP is a suitable approach but 
is computationally demanding due to 
its reliance on Gibbs sampling for 
parameter estimation. 
The practical haplotype graph (PHG) utilizes graph-based pangenomes to impute high-density 
SNPs and haplotypes from sparse genotyping data, making GP more accessible and cost-
effective. Implemented in species like sorghum, wheat, and cassava, PHG enables low-cost 
genotyping while maintaining or improving prediction accuracy compared with traditional 
methods. For example, sorghum studies demonstrated no accuracy loss when imputing SNPs 
via PHG, while cassava showed higher GP accuracy with PHG compared with BEAGLE. The 
R-based interface (rPHG) enhances its usability for breeding programs, allowing efficient 
genotyping and improved imputation quality. 

The EnvRtype R package integrates environmental data with genomics for GP, offering tools for 
remote sensing, environmental profiling, and kernel-based enrichment of GP models. Drawing on 
NASA POWER and SoilGrids data, it efficiently processes eco-physiological variables for crops 
such as maize, wheat, rice, and eucalyptus. Future developments aim to deliver unsupervised 
envirotyping, linking environmental markers to genomic variants and optimizing breeding trials 
using genetic algorithms (GAs). 

Advanced methods, such as environmental-to-phenotype associations (EPAs), use historical 
environmental trends to model location similarities and genotype reaction norms. These 
approaches enhance site selection and future environmental predictions, combining geno-
mic, environmental, and empirical relationships into a unified G×E kernel for predictive 
modeling. 

Concluding remarks 
In this review we outlined the principles of GP and discussed how statistical ML methods 
enhance GP efficiency as a prediction methodology. We also examined the advantages and 
disadvantages of the statistical ML tools developed in the past year for predicting continuous, 
binary, categorical, and count traits. Additionally, we focused on DL models, highlighting their 
successful applications in genomic selection while also addressing their limitations and strengths. 
Also, we explored the software developed in recent years aimed at democratizing the GP 
methodology, and we reviewed the data management tools available for the broader application 
of GS methodology (see Outstanding questions). 
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