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A B S T R A C T

Rangeland ecosystems have been sources for pastoral communities. However, traditional seasonal mobility 
patterns are disrupted by climate change, requiring more dynamic, data-driven plant-based rangeland assess-
ment. In this study, we propose amultiscale transformer-based network to address the challenge of automatically 
classifying rangeland plant species for livestock pasture scoring in Africa, given the complex environments and 
limited data. Accurately distinguishing similar plants with varying livestock utility is important for sustainable 
management. This study investigated Vision Transformers, known for multiscale features important for fine- 
grained visual differentiating. The initial comparative analysis of ViT, DEiT, and Swin Transformer models 
demonstrated the promise of Swin architecture. Building on this, we introduce a Multiscale Swin Transformer 
model incorporating multiscale feature fusion and weighting mechanism to enhance plant image classification. 
The model combines global and fine feature extraction, followed by fusion module. Early features capture local 
patterns (e.g., leaf), and later layers capture semantic information (e.g., general morphology). The proposed 
Multiscale approach utilizing a weighted decoder provides better performance improvements over the Swin base 
model, achieving 89.71 % accuracy compared to 88.0%, demonstrating that fusing features at different scales 
leads to better recognition. Moreover, analysis of the collected data shows class imbalance, including dominance 
of invasive species and useful herbs, sparse representation of rare unuseful (e.g., poisonous) and other sparse 
useful livestock forage species. This highlights an essential need for systematic data collection and optimization 
strategies, like synthetic image generation, to mitigate limitations and improve model generalization.

1. Introduction

Plant-based livestock feeding, using natural environments like ran-
geland ecosystems, is an important source for livestock management in 
Africa [14]. Recently, climate change has been changing the seasonal 
pattern of the composition of plants [36]. Since rangeland-based live-
stock pasture selection is highly dependent on using natural environ-
ments, information and communications technology (ICT) tools can help 
to collect data for more informative understanding and automatic 
analyzing of the environment [19]. In this context, ICT tools can provide 
an opportunity for computer vision to provide automated bulk image 
analysis from plant species images received from local communities.

Plant classification models often struggle with challenges in natural 
environments (e.g., inter-class image variations)[49]. For African spe-
cies, this is relevant considering insufficient local data and scale varia-
tion. These issues arise from difference between training data and 

real-world images, especially concerning variations in devices and dis-
tances [17]. Moreover, environmental factors all contribute to the dif-
ficulty of classifying plants in uncontrolled environments such as 
rangeland with different natural resources. Additionally, applying 
state-of-the-art computer vision and transfer learning models trained on 
public datasets with limited African data [10], and therefore lacking 
appropriate representation of African plant species presents notable 
challenges. In this work, our investigation focused on two key areas: 
data characterization and machine learning technique evaluation. 
Considering the collected data, the analysis showed a natural species 
distribution imbalance, with herbs and invasive species [28] dominating 
the majority classes. In contrast, minority classes, including rare or 
geographically isolated forage species, are underrepresented. These 
minority classes, despite their sparse distribution or challenging acces-
sibility (e.g., mountainous regions), are important for livestock health.

Based on identified data characteristics and investigation of transfer- 
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based models performance for rangeland plant species classification. 
This study first investigated a comparative analysis of well-known 
transformers for plant classification and afterward introduces a Multi-
scale Swin Transformer-based learning model to address these chal-
lenges at various stages of the proposed learning architecture. As the 
main contribution, this study takes advantage of transformer-based ar-
chitecture and multi-scale feature fusion. Strong feature extraction 
through feature fusion methods is utilized to integrate information from 
varying levels of plant image detail, enabling accurate species identifi-
cation despite inter-class diversity resulting from seasonal changes and 
different growth stages. Image fusion methods can be broadly catego-
rized into mathematical transformations in spatial or transform domains 
and deep learning-based methods [52], employing neural networks to 
learn and combine features. In this study, deep learning-based methods 
were used to fuse hierarchical layers and combine local botanical fea-
tures with global plant morphology while handling the natural imbal-
ance in plant species distribution. Within this framework, to address the 
challenge of class imbalance in our plant-based classification task, we 
implemented a weighted decoder architecture. Considering the imbal-
anced distribution of our African plant dataset, the proposed multiscale 
approach with weighted decoder achieved better performance than the 
Swin base model in terms of classification metrics. Moreover, analysis of 
model performances indicates the Multiscale Swin-B+WD demonstrates 
a balance between classification metrics (83.45 % at >0.5 threshold) 
and data preservation (73.0 %).

The rest of this paper is organized into the following sections. Section 
2 gives an overview of related works. Section 3 proposed the method-
ology. The experimental results are represented in Section 4. Finally, 
Section 5 and 6 is related to the discussion and conclusion, and future 
work.

2. Related work

The development of machine learning models and their increasing 
accuracy and efficiency have led to an increasing interest in computer 
vision-based identification of plant species since last decades [31]. 
Existing works can be classified into three main categories, including 
non-learning methods, such as domain knowledge-based and morpho-
metric methods [23], Machine learning, and Deep learning methods, 
which will be described in the rest of this section. 

- Image processing: Several automated methods have been proposed, 
aiming to turn plant image analysis problems into computer vision 
tasks. In traditional methods using image processing, researchers 
take inputs like plant features (e.g., color, texture) and define a set of 
architectures that describe the relationship between plant features 
using mathematical models. For example, color-based approaches 
[37] have been utilized to isolate specific plant parts, enabling tar-
geted analysis. However, considerable spectral overlaps exist across 
plant species and within developmental stages, making accurate 
differentiation challenging. Consequently, complementing 
color-based approaches, texture analysis, and image filtering [46] 
enable the discrimination of plant features through the analysis of 
surface textures, effectively addressing the challenges of spectral 
overlap. For example, two green leaves might have similar color 
values, but their surface textures (e.g., smooth) can be used to 
differentiate them. However, texture analyses are affected by in-
consistencies in illumination and the presence of noise, and image 
filtering methods like Gabor filters require precise parameter ad-
justments (e.g., scale, phase), making them highly sensitive to tuning 
[27]. While shape quantification algorithms [35], Fourier de-
scriptors [50], and edge detection [8] offer alternative approaches, 
the highly irregular edges common to plant leaves introduce noise 
sensitivity during contour tracing, directly impacting the accuracy of 
Fourier descriptors.

- Machine learning: Increasing accuracy has become important when 
it comes to plant analysis (i.e., monitoring plants). Machine learning 
models are able to identify complex, nonlinear patterns in data, and 
they can also adapt to new data and improve independently, so it has 
become a better option. The proposed machine learning models 
generally utilize linear algebra and probability theory to generate 
predictions from labeled (supervised) [1] or unlabeled (unsuper-
vised) [51] datasets. Support Vector Machines (SVMs) and Random 
Forests have been widely employed [1,29], leveraging handcrafted 
features like leaf shape, texture, and color of the target plant dataset. 
For example, Larese et al. [32] have used SVM to classify plant 
species based on leaf vein patterns. Random Forests have demon-
strated effectiveness in handling high-dimensional feature spaces 
derived from leaf morphology [32]. Nevertheless, both approaches 
rely heavily on accurate image feature extraction and preprocessing, 
including segmentation and feature extraction. Errors in these steps 
can propagate through the classification pipeline, consequently 
reducing accuracy. Moreover, while Random Forests, as ensemble 
learning method, handle high-dimensional data, the complexity of 
leaf morphology can lead to overfitting, mostly with limited training 
data.

- Deep learning: Deep learning models, in contrast to traditional 
machine learning, automate the process of feature extraction using 
neural networks. Additionally, deep learning-based models extract 
more reliable features when faced with large and complex datasets. 
Among deep learning-based models, Convolutional Neural Networks 
(CNNs), have advanced plant classification accuracy [33,39]. The 
methods based on CNN’s learn hierarchical features directly from 
raw image data and use CNN for feature extraction, eliminating the 
need for manual feature engineering. This capability allows them to 
capture important variations in plant morphology and texture, 
leading to better performance compared to traditional machine 
learning methods. For instance, pre-trained CNN models, such as 
ResNet [22], AlexNet [30], and Inception [41], have been utilized for 
plant species identification, achieving state-of-the-art results on large 
plant image datasets. These models can effectively handle challenges 
like variations in plant species and image quality, making them 
strong for real-world applications. Some models use stated 
pre-trained architectures, including [45] (AlexNet), [15] (VGGNet), 
and [6,39] (ResNet). There are also studies that compare their 
methodologies to these established models. As an example, Wei et al. 
[48] proposed D-Leaf, a CNN-based method for identifying plant 
species automatically, and evaluated it against pre-trained and 
fine-tuned AlexNet. Ghazi et al. [16] employed pre-trained AlexNet, 
GoogLeNet [41], and VGGNet [38] for plant species identification to 
compare the performance of pre-trained AlexNet, GoogLeNet, and 
VGGNet. The emergence of transformers, which originated from 
natural language processing, has reshaped computer vision models; 
this paradigm is followed in plant-based vision tasks.

Recently, there has been interest in the use of abstracted features like 
attention-mechanism [4] and transformers for plant-related tasks in 
recent years [26], such as ViT [11] and Swin [34], has improved their 
ability to capture global context, handle high-resolution images, and 
provide superior feature representation, making them preferred for 
automation-based tasks. For instance, Gole et al. [18] utilized ViT for 
early plant disease detection, substituting the MLP with an Inception 
module in a novel block. However, ViTs, in their basic form, divide 
images into fixed-size patches. This makes ViT-based less resilient to 
scale variations, which are common in natural plant images (e.g., leaves 
at different distances, plants of varying sizes). Swin Transformers, with 
their hierarchical structure and window-based attention, are better at 
capturing multiscale features. To this end, Swin was employed in several 
works [11,25,53]) by Guo et al. [20] to determine the type and extent of 
plant diseases. Moreover, some deep learning methods primarily extract 
abstract features using deeper layers or attention mechanisms. However, 
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obtaining detailed information across various image scales, as demon-
strated in some change detection studies, can offer different levels of 
granularity [54]. While plant species are typically studied in controlled 
environments, this study focuses on less accessible African species in a 
real-world environment. Within this framework, based on the data 
characteristics, we propose a Multiscale architecture allowing extracts 
both global and fine-grained plant features for better identification.

3. Methodology

This study started with an evaluation of three established 
transformer-based architectures: ViT (Vision Transformer) [11], DeiT 
[42] (Data-Efficient Image Transformer), and Swin [34]. These models 
were assessed on the plant classification task to provide a baseline and 
understand the strengths and weaknesses of each architecture. As dis-
cussed in Section 4.2, the Swin Transformer demonstrated promising 
performance, mostly based on its hierarchical design, which captures 
multiscale features. This observation motivated its selection as the 
foundation for our proposed model. Subsequently, the following sec-
tions explain how the dataset was collected, and then the proposed 
Multiscale model for rangeland-based plant identification will be 
described.

3.1. Data acquisition and optimization

Deep learning-based plant classification, like other image classifi-
cation tasks, typically requires vast amounts of labeled data for effective 
training. To this end, the first step is the collection of a well-annotated 
dataset [2]. The rise of internet access and smartphone technology has 
opened up possibilities for using mobile-based surveys in rangeland 
environments [43]. This approach allows for monitoring and gathering 
data (e.g., images) in natural environments that are hard to reach in 
different seasons. Furthermore, mobile sensors can capture metadata, 

including location information via GPS [2]. Building on this techno-
logical foundation, this study collected data in Kenya’s arid and 
semi-arid Marsabit County through a systematic framework designed to 
capture a diverse and representative dataset of rangeland plants. The 
data collection process began with training sessions for local photog-
raphers to ensure best practices for botanical image capture, followed by 
selection of target grazing areas through a collaborative approach 
involving local herders who identified and named plants based on their 
ecological and economic importance. This participatory method ensured 
that the dataset reflects the ecologically and economically important 
vegetation as recognized by those with local knowledge of rangeland 
management. In addition the identified species were subsequently 
validated using resources such as the [16] and “African Plants a Photo 
Guide” [3,21] to ensure scientific accuracy.

The data collection process resulted in eight rangeland plant classes 
demonstrated in Fig. 1, encompassing four useful forage species that 
serve as important food sources for livestock (Acacia, Bissar, Acacia 
reficiens, Maerua edulis, and Yabah), one less useful species (Boscia cor-
iacea), and problematic species including the invasive Prosopis juliflora 
and the poisonous Desert rose that pose significant threats to livestock 
health and productivity [47]. The selected species are referred to by 
their scientific and local names.To ensure temporal representativeness, 
the selected areas and plant species were systematically sampled and 
revisited during both dry and wet seasons.

Considering image quality directly impacts model performance, 
technical standards were implemented throughout the data collection 
process. The protocol required field photographers to focus on distinct, 
individual plants in each image, and capture the entire plant structure. 
Moreover, in the quality filter step, repetitive images, excluding non- 
plant objects such as buildings, trash, or other man-made structures 
have been removed to avoid unwanted artifacts in the training data. 
Images were captured exclusively during daylight hours under proper 
lighting conditions. Furthermore, photographs were taken from varying 

Fig. 1. Plant species collected to represent the diverse growth forms and seasonal availability of livestock fodder (e.g., shrubs, herbs) in arid and semi-arid regions. 
These plant species include both useful and unuseful (e.g., invasive) varieties, representing the plant distribution in the rangeland environment.
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distances and perspectives to align with the visual identification needs of 
local communities, ensuring that the resulting dataset would support 
practical applications in real-world rangeland management scenarios.

In this study, a total of 4275 image samples were split into a 
60–20–20 ratio to ensure sufficient data for testing. Considering the 
imbalanced distribution of the data, systematic data augmentation has 
been applied and the weighted decoder has been implemented based on 
the characteristics of the imbalanced datasets (section 3.2). The train 
dataset includes 2565 images with a naturally imbalanced distribution 
demonstrating real-world rangeland conditions, Yabah as the majority 
class with 549 samples (21.40 %), followed by Prosopis juliflora with 435 
samples (16.96 %), Boscia coriacea with 399 samples (15.56 %), Maerua 
edulis with 331 samples (12.90 %), Acacia with 313 samples (12.20 %), 
Bissar with 293 samples (11.42 %), Acacia reficienswith 168 samples 
(6.55 %), and Desert rose as the least represented with only 77 samples 
(3.00 %), resulting in a plant imbalance ratio of 1:0.14. Following sys-
tematic data augmentation, the augmented dataset of 3973 samples 
achieved improved balance, with plant distribution including Yabah 
with 699 samples (17.59 %), Bissar enhanced to 607 samples (15.28 %), 
Prosopis juliflora with 538 samples (13.54 %), Boscia coriacea reaching 
512 samples (12.89 %), Acacia expanded to 468 samples (11.78 %), 
Acacia reficiens substantially increased to 427 samples (10.75 %), 
Maerua edulis growing to 422 samples (10.62 %), and Desert rose 
augmented to 300 samples (7.55 %), resulting in improved plant 
imbalance ratio of 1:0.429, while maintaining ecological representation. 
Moreover, 581-image generalization test set, capturing diverse field 
conditions, assessed the model’s robustness in real-world scenarios 
(Section 5).

3.2. Model architecture

Both human-based and computer vision processes for plant classifi-
cation often rely on both important features like leaf shape and global 
context, including overall plant shape and structure. In the proposed 
architecture, a Swin transformer is utilized as the backbone, which is 
capable of storing hierarchical features. In order to improve the back-
bone for the extraction of plant features, we employ selective layers and 
transfer learning. In this model, fine-grained details, like leaf patterns, 
are processed along with broader features, such as the overall structure 
of the plant.

Fig. 2 illustrates the complete architecture of the model. The input 
image I ∈ RH × W × 3 is processed by a Swin Transformer encoder, which 
produces hierarchical feature representations. The encoder outputs both 

the final encoded features E ∈ R
H
32×

W
32× C and intermediate hidden states 

H = {Hi}
4
i=1, where each Hi ∈ R

H
2i+1×

W
2i+1×Ci .

3.3. Feature fusion module

The key component of our architecture is the feature fusion module, 
which creates rich, multiscale representations by integrating multiple 
levels of features from the transformer’s output. The fusion process 
begins by extracting three types of complementary features: global 
context (Fglobal), local structural information (Flocal) from the final layer, 
and fine-grained botanical details (Ffine grained) from the penultimate 
layer.

These features capture information at different levels of abstraction, 

Fig. 2. Architecture of the proposed model using adaptive multiscale feature fusion.
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and each feature stream is processed through a specialized projection 
layer [24] to enhance its representational capacity before being 
concatenated and fused: 

Ffused = F
(
⊕i∈{global,local,fine grained}Pi(Fi)

)

= F
([

Pglobal
(
Fglobal

)
, Plocal(Flocal), Pfine grained

(
Ffine grained

) ])

where ⊕ denotes the concatenation operation, Pi : Rd→Rdi are projec-
tion functions realized as multi-layer perceptrons with normalization 

and non-linear activations, and F : R
∑

i
di →Rd is the fusion function.

Moreover, in our feature fusion module, the incorporation of an 
adaptive residual connection mechanism is considered. This connection 
combines the fused representation with a weighted sum of the original 
features, creating a path for direct information flow that helps preserve 
critical botanical features during training. The multiscale feature rep-
resentation is computed as: 

Ffused = F(⊕i∈IPi(Fi)) +
∑

i∈I
σi(w)⋅Fi 

where I =
{

global, local, fine grained
}

is the set of feature types, σ(w)

stand for softmax normalization of learnable weights initialized to pri-
oritize global features.

In contrast to standard residual connections [22], enabling deep 
networks to maintain low-level image information [12,13], our 
approach employs learnable weights that determine the importance of 
each feature type and adapts during training to the specific requirements 
of the plant classification task. This adaptive weighting mechanism 
preserves feature diversity by maintaining direct paths from all 
abstraction levels. It allows the model to dynamically adjust the balance 
between global context and fine details. In addition, this mechanism 
facilitates the learning of complex relationships that span multiple 
scales. By enabling this direct path from input to output while main-
taining the benefits of deep feature transformation.

3.4. Addressing class imbalance with weighted decoder

Plant databases exhibit significant class imbalance [5], with some 
common species appearing frequently while rare or endangered species 
have limited samples. To effectively handle this challenge, we imple-
ment a Weighted Decoder, which incorporates class frequency infor-
mation directly into the loss function. The implemented Weighted 
Decoder with a class-balanced loss function, aiming to class weighting 
provides several advantages that allow the model to maintain high recall 
for rare and endangered plant species, critical for biodiversity moni-
toring applications. 

LCE = −
∑C

c=1
wc⋅yclog(pc)

Where the class weights wc are derived through a moderated loga-
rithmic transformation: 

w = ψ
(

1
f

)

Here, ψ represents our composite moderation function that applies 
logarithmic scaling and range normalization to constrain weights within 
a controlled range, ensuring minority classes receive enhanced but not 
excessive weighting while preventing training instability [40].This 
approach facilitates a balanced learning signal throughout the class 
distribution thereby ensuring the accurate classification of both preva-
lent and rare plant species. Furthermore, the decoder incorporates label 
smoothing (0.1) to mitigate overconfidence and enhance generalization, 
an essential aspect when addressing visually similar plant species 
exhibiting shared taxonomic characteristics. Finally, scaling the weights 
to sum proportionally to the number of classes maintains proper 

normalization, which mitigates training instability.

4. Experiment result

In this section, the main investigation is categorized, including 3 key 
questions we aim to address, which are as follows:

Q1: What are the defining characteristics of the rangeland plant 
species image dataset?

Q2: Considering the state-of-the-art transfer learning, which is 
adapted for diverse tasks, how is the performance of available large 
models?

Q3: Can improved Multiscale fusion enhance the performance of the 
proposed plant classification learning model?

To address question Q1, data characteristics are investigated in 
Section 4.1. For Q2 (Section 4.2), different state-of-the-art models, 
including Swin architecture, ViT, and DeiT, are investigated for our 
classification task. In addition, different configurations and their effects 
were investigated. Finally, we applied empirical analysis to Q3 (Section 
4.3) to assess different results and the effectiveness of the decoder we 
designed.

4.1. Q1: what are the defining characteristics of the rangeland plant 
species image dataset?

Fig. 3 presents a t-SNE [44] visualization of embeddings for collected 
rangeland plant species images in the collected dataset across arid en-
vironments. As shown, the t-SNE provides visualization demonstrating 
significant overlap among the plant species, indicating that 
high-dimensional features extracted from these plant images share 
considerable similarities across species. This complex distribution, 
where species like Yabah show only important distributional patterns 
insufficient for clear differentiation, highlights the challenges of plant 
species classification in arid environments and suggests that the strong 
model is required for this dataset. To address these challenges, we 
propose implementing intra-class augmentation techniques to each 
plant species’ specific characteristics, including: species-specific color 
transformations calibrated to seasonal variations, brightness and 
contrast modifications simulating diverse lighting conditions in arid 
environments, carefully constrained geometric transformations 
capturing growth stage variations while preserving key morphological 
features, and environmental effect simulations relevant to arid regions. 
However, the existence of evergreen species (e.g., Desert rose, Prosopis 
juliflora) is expected to provide more clear grouping scattered in feature 
space, however, Fig. 3 demonstrates multiple small groupings that 
reflect plants changing appearance with growth stages.

Additionally, our architectural design as stated in Section 3.2, in-
corporates weighted mechanisms to focus on distinguishing character-
istics between visually similar species and label smoothing in the cross- 
entropy loss function to mitigate model overconfidence when dealing 
with species exhibiting substantial morphological variations, all of 
which align with previous findings that phenological changes and 
environmental factors complicate plant species classification.

In collected data, Desert rose, known for its harmful effects on live-
stock based on community knowledge, exhibits a limited presence with 
fewer data points compared to other species. This is based on the less 
frequent occurrence of Desert rose in the arid environment studied, as 
evidenced by the limited number of brown points in the t-SNE visuali-
zation. However, considering the harmfulness of this species to live-
stock, accurate identification remains crucial. Therefore, despite its less 
frequent use in the dataset and underrepresentation in features, it is 
necessary to employ specialized machine learning techniques, such as 
weighted loss functions, to enhance the model’s sensitivity towards 
Desert rose. As stated in 3.2 by assigning a higher weight to Desert rose 
instances during training, the model can learn to prioritize its accurate 
classification, even with limited training examples. This approach helps 
mitigate the challenges posed by the species’ scarcity and ensures its 
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reliable identification, which is important for livestock management and 
rangeland health. In contrast, the invasive Prosopias juliflora [7] displays 
a wider spread, reflecting its adaptability to various environmental 
conditions and growth stages. This contrast highlights the importance of 
understanding species-specific, especially those related to livestock 
health when interpreting visual patterns. Furthermore, useful species 
like Acacia and Bissar show even more pronounced visual changes, likely 
due to their responses to seasonal variations. This observation specifies 
the need to consider both ecological context and phenological dynamics 
when developing the data optimization pipeline and classification 
models. Consequently, this study has employed an adaptive approach to 
consider class with underrepresentation, addressing the complex 
multi-cluster patterns observed in the feature space. The transformation 
pipeline’s diverse color adjustments, brightness/contrast modifications, 
and geometric transformations effectively simulate the visual variability 
introduced by seasonal changes.

4.2. Q2: considering the state-of-the-art transfer learning which adapted 
for diverse tasks how the performance of available large models is?

To investigate state-of-the-art transfer learning, this study has 
selected three transformer-based models to assess the transferability of 
extracted features from plant-based data. This study examines transfer 
learning performance on rangeland-based species are using by herders 
using three transformer-based models: ViT (Vision Transformer) [11], 
DeiT [42] (Data-efficient Image Transformer), and Swin [34]. Our ex-
periments were conducted using the Google Colaboratory Pro+ plat-
form, which provided computational resources including an NVIDIA 
Tesla T4 GPU with 15.0 GB of GPU memory and 51.0 GB of system RAM. 
This infrastructure enabled efficient model training and evaluation 
processes. The development environment was built on Python 3, with 
PyTorch as the primary deep learning framework for implementing and 
training our neural network architecture. The models were trained using 
a learning rate of 2e − 5, training was conducted for 6 epochs with a 
batch size of 64 per device.

Based on the comparative analysis in Table 1, the Swin Transformer 
architecture using a Balanced Decoder (BD) represents acceptable 

performance t in how vision transformer models handle varying window 
sizes and resolutions. Swin-B+BD and Swin-B+WD demonstrate better 
performance with consistently high metrics across various species cat-
egories, maintaining higher precision values as recall increases. The 
performance differences between these models are based on their 
architectural distinctions. Swin Transformer’s hierarchical design with 

Fig. 3. T-SNE visualization of extracted features from image data.

Table 1 
Comparative performance of vision transformer-based Ppant species 
classification.

Model Plant Species Prec. Rec. F1

ViT-B+BD Yabah 79.6 % 80.4 % 80.0 %
Prosopis juliflora 89.0 % 83.5 % 86.1 %
Acacia 69.7 % 73.1 % 71.4 %
Bissar 89.3 % 84.7 % 86.9 %
Desert rose 81.0 % 65.4 % 72.3 %
Boscia coriacea 75.0 % 74.4 % 74.7 %
Maerua edulis 77.3 % 77.3 % 77.3 %
Acacia reficiens 50.0 % 61.8 % 55.3 %
Average 76.3 % 75.1 % 75.5 %

Overall Model Acc. : 77.5 %
DeiT-B+BD Yabah 79.7 % 83.2 % 81.4 %

Prosopis juliflora 85.0 % 77.9 % 81.3 %
Acacia 66.4 % 72.1 % 69.1 %
Bissar 89.4 % 85.7 % 87.5 %
Desert rose 87.5 % 80.8 % 84.0 %
Boscia coriacea 72.7 % 63.9 % 68.0 %
Maerua edulis 71.8 % 80.9 % 76.1 %
Acacia reficiens 58.6 % 61.8 % 60.2 %
Average 76.4 % 75.8 % 75.9 %

Overall Model Acc. : 77.5 %
Swin-B+BD Yabah 89.0 % 91.9 % 90.4 %

Prosopis juliflora 92.4 % 92.4 % 92.4 %
Acacia 84.5 % 78.9 % 81.6 %
Bissar 91.2 % 94.9 % 93.0 %
Desert rose 96.0 % 92.3 % 94.1 %
Boscia coriacea 86.9 % 85.0 % 85.9 %
Maerua edulis 87.3 % 87.3 % 87.3 %
Acacia reficiens 73.2 % 74.6 % 73.9 %
Average 87.6 % 87.1 % 87.3 %

Overall Model Acc. : 88.0 %
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shifted windows allows for both local feature extraction and global 
context modeling while maintaining computational efficiency. This ar-
chitecture effectively addresses the standard vision transformer’s limi-
tations by introducing locality into the self-attention mechanism and 
adapting to different image scales, a critical advantage when classifying 
plants photographed from inconsistent distances in field conditions. 
Moreover, Fig. 4 demonstrates image-classification metrics. Swin-B+BD 
(4.a) demonstrates more consistent performance across all plant species 
in both the bar charts and precision-recall curves compared to ViT 
(Fig. 4.b) and DeiT (Fig. 4.c). While models like ViT compute attention 
globally and DeiT maintains similar constraints, Swin-B+BD utilizes a 
flexible local window approach that adapts during feature extraction, 
allowing for more effective feature recognition across different tree 
species. The stated result also supports t-SNE visualization in Fig. 3, not 
only demonstrating the dataset’s structure but also supporting the 
choice of the Swin Transformer as a suitable architecture using a hier-
archical shifted-window approach enabling both local and global 

attention for the image-based plant species with a range of variety.

4.3. Q3: can improved multiscale fusion enhance the performance of the 
proposed plant classification learning model?

This section aims to evaluate the proposed Multiscale approach and 
fusing features from different scales that can increase the performance of 
plant classification. Considering Table 2 and Table 1, the Swin trans-
former performs well. The base Swin-B+BD model employs a Swin 
Transformer base variant combined with the BD described in Section 
4.2.

The proposed Multiscale enhances this architecture by implementing 
the feature fusion method, which combines global features with fine- 
grained features from earlier layers, creating a stronger representation 
that captures both overall plant structure and specific details like leaf 
patterns. The Multiscale approach, using a weighted decoder, out-
performed the Swin base model, achieving a 89.71 % accuracy, 

Fig. 4. Evaluation of multi-class plant species classification models, including the classification metrics (left) and precision-recall curves (right) for perfor-
mance comparison.
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demonstrating that incorporating features at different scales helps the 
model better recognize and classify plant species by leveraging both 
local details and global context. Moreover, Fig. 5 demonstrates the 
proposed Multiscale model’s performance across all plant species, with 
Yabah, Prosopis juliflora, and Bissar achieving promising performance, 
considering Average Precision (AP) is the metric that measures the area 
under the precision-recall curve, and higher AP means the model can 
identify plant species with minimal errors in real-world practice, which 
is important for botanical surveys, invasive species monitoring, and 
ecological research where misidentification could lead to incorrect 
future tasks like pasture scoring and rangeland management. Consid-
ering class individual performance, For Desert rose, while both models 
exhibit robust results. More integrated improvements are observed for 
Boscia coriacea respectively, 89.53 % F1 and 93.23 % and Maerua edulis 
88.37 % F1 versus 87.3 % F1, indicating the Multiscale approach’s 
usefulness in these categories. Notably, the Multiscale model enhances 
the classification of challenging species like Acacia reficiens, which, the 
F1 score improves from 73.9 % to 76.64 %. These improvements suggest 
the Multiscale approach’s ability to capture both fine-grained leaf pat-
terns and broader structural context, for distinguishing these species. 
The performance improvements are in the precision-recall curves, which 
demonstrate higher precision across varying recall levels. Moreover, our 
dataset demonstrates common class imbalance patterns found in biodi-
versity collections, with sample distributions ranging from 3 % for un-
derrepresented species to over 21% samples for Yabah as majority class. 

To address this challenge, the weighted decoder employs an approach 
that transforms class frequency information through inverse frequency 
weighting, logarithmic moderation, and controlled range normalization 
to maintain weights. This approach creates differentiated learning dy-
namics where weight assignments different ranging for highly and un-
derrepresented species produce varying gradient amplification during 
backpropagation, improving minority class features while preventing 
majority class dominance. The experimental results demonstrate an 
overall accuracy of 89.71 % with an average recall of 88.58 %, indi-
cating that the weighted loss function maintains competitive classifi-
cation performance across taxonomic groups. Performance variations 
demonstrated with well-represented species achieving high classifica-
tion metrics (e.g., Yabah 93.48 %, Prosopis juliflora 91.03 %) while 
species show recall-favored profiles (e.g., Desert rose 92.31 % recall vs 
88.89 % precision), this could suggest successful gradient amplification 
for underrepresented classes. As demonstrated in the result, precision 
range of 77.98% to 97.06 % , with no species showing degraded per-
formance, demonstrate that the weight moderation approach main-
tained reasonable bounds all classes. The similar performance for 
morphologically related species (Acacia 79.81% vs Acacia reficiens 
76.64%) indicates that intra-genus classification challenges may persist 
despite frequency-based reweighting, while the consistent high recall 
rates suggest compatibility with applications requiring comprehensive 
taxonomic coverage in biodiversity assessment scenarios.

To further validate the effectiveness of the proposed transformer- 
based multiscale approach compared with CNN-Based models, we 
chose EfficientNet-B4 [55] as CNN baseline, aiming for a model com-
parable in complexity to the Swin-B architecture. The comparative 
analysis as demonstrated in Table 2, reveals the proposed Multiscale 
Swin-B+WD model outperforms the CNN-based EfficientNet approach 
throughout evaluation metrics. The Multiscale Swin model achieves an 
overall model accuracy of 89.71 % compared to EfficientNet’s 78.60 %. 
These results demonstrate that the attention-based mechanisms in 
transformer architectures, combined with the multiscale feature fusion 
approach, provide enhanced capability for capturing both local botan-
ical features and global structural patterns essential for accurate plant 
species classification.

Fig. 6 shows the Feature Attribution and Gradient-weighted Class 
Activation Mapping (GradCAM). The visualizations show that the model 
focuses on plant features like crown morphology and growth habit, 
which aligns with established botanical identification practices. These 
visualizations offer valuable insights into the spatial localization of 
influential features within a model’s input.

5. Discussion

Herders rely on rangeland ecosystems to sustain their livestock. 

Table 2 
Experimental result and comparison proposed Multiscale fusion Swin model.

Multiscale EfficientNet Multiscale Swin-B+WD

Class Prec. Rec. F1 Prec. Rec. F1

Yabah 87.13 
%

80.98 
%

83.94 
%

95.56 
%

93.48 
%

94.51 
%

Prosopis 
juliflora

85.31 
%

84.14 
%

84.72 
%

97.06 
%

91.03 
%

93.95 
%

Acacia 65.00 
%

75.00 
%

69.64 
%

77.98 
%

81.73 
%

79.81 
%

Bissar 85.05 
%

92.86 
%

88.78 
%

92.16 
%

95.92 
%

94.00 
%

Desert rose 84.62 
%

84.62 
%

84.62 
%

88.89 
%

92.31 
%

90.57 
%

Boscia 
coriacea

68.24 
%

75.94 
%

71.89 
%

86.11 
%

93.23 
%

89.53 
%

Maerua edulis 76.53 
%

68.18 
%

72.12 
%

90.48 
%

86.36 
%

88.37 
%

Acacia 
reficiens

80.95 
%

61.82 
%

70.10 
%

78.85 
%

74.55 
%

76.64 
%

Average 79.10 
%

77.94 
%

78.23 
%

88.38 
%

88.58 
%

88.42 
%

​ Overall Model Acc. : 78.60 % Overall Model Acc. : 89.71 %

Fig. 5. The performance of proposed Multiscale fusion demonstrated in (a) Confusion matrices and (b) Precision-recall curves.
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Plant-based assessing pasture quality is important for making informed 
management decisions. In this context, one of the main tasks of 
rangeland-based livestock feeding is to extract as many as possible 
useful vegetation indicators. To address this need, this paper introduced 
a novel Multiscale plant classification learning model, aiming to achieve 
a more comprehensive extraction of information for plant image anal-
ysis. Among studies on plant classification across diverse domains, CNN- 
based models have been predominantly employed, demonstrating 
promising performance, particularly in controlled environments. How-
ever, the proposed multiscale approach addresses plant classification 
within the heterogeneous natural environment of rangelands, focusing 
on broader botanical categories relevant to livestock feeding, such as 
trees, shrubs, herbs, and grasses. Given the unique characteristics of our 
self-collected dataset and the relative scarcity of research specifically 
addressing plant-based livestock feeding in such environments, we 
conducted a comparative analysis, presented in Table 1 and Table 2, 
evaluating the performance of three established transformer-based 
baseline models comparing the proposed multiscale approach. As 
demonstrated on table F1-scores, which balance precision and recall, are 
also high for different plant types comparing model results. The 
important discussion based on our findings are: 

- Data collection challenges: Several helpful interactive photo-
graphic guides have been introduced for African plant species, such 
as “African Plants a Photo Guide” [21] . These guides, while helpful 
for human identification and education, fall short of the re-
quirements for building dataset for machine learning models. Apart 
from copyright issues, they typically lack the required volume of 
images needed to train an algorithm to recognize the nuances and 
variations within a species. Furthermore, even for Fewshot learning, 
the images within these guides are often visually harmonious and 
clear, which means they might not capture the full range of 
real-world conditions an algorithm would encounter. For instance, a 
single plant species in a photo guide might be shown in perfect 
lighting and from a single angle, whereas a machine learning dataset 
would require images of that species in varying stages of growth 
under different lighting conditions. In this work, although the 
mobile-based data collection facilitates this process, it was required 
to communicate with different local researchers and stockholders 
like herders to collect data in different pastures in rangeland, which 
are less accessible.

- Non-constant appearance and Sparse rare plant species: The 
data investigation demonstrates that sparse vegetation and inter-
species variations in arid environments present considerable chal-
lenges for image-based plant identification. Considering the first 
question Section 4.1, although the existence of evergreen expected 
constant appearance to provides more structured pattern but species 
like Prosopiasjuliflora [7] displays a wider spread, reflecting its 
adaptability to various environmental conditions and growth stages. 
This contrast highlights the importance of understanding 
species-specific characteristics, especially those related to livestock 
health, when interpreting visual patterns. Furthermore, useful spe-
cies like Acacia and Bissar show even more visual changes, likely due 

to their responses to seasonal variations. This observation high-
lighted the need to consider both ecological context and phenolog-
ical dynamics when developing the data optimization pipeline and 
classification models. Furthermore, considering the natural envi-
ronment species distribution, while data investigation shows three 
herbs and invasive species are common majority classes. In contrast, 
minority classes in the dataset fall into two categories: first, rare 
species (e.g., poisonous) plants that have a sparse distribution in the 
rangeland environment, and second, species that grow in less 
accessible areas (e.g., mountains), which require more time and cost 
for collecting these species samples. Moreover, there are many 
research opportunities for filling this gap using synthetic image 
generation.

- Impact of combining the Local-Global features in plant image 
analysis: Considering Q3 4.3, as demonstrated in Table 2, the ob-
tained results on Q2 4.2 demonstrate the performance of the hier-
archical architecture, furthermore, the results show that the 
proposed model, with its ability to connect and combine information 
from different levels of detail, proves for accurate species identifi-
cation. Considering, Swin extracted features in early stages that 
capture more fine-grained, local details and texture information. 
These features of the information have a higher spatial resolution, 
allowing it to represent smaller plant details and finer details better. 
On the other side, in later stages, the spatial resolution decreases, and 
the Swin network focuses on capturing more global, semantic, and 
abstract information. To this end, by integrating features from both 
fine-grained textures (e.g., leaf and branch patterns) and broader 
structural elements (e.g., plant morphology), the model gains a more 
complete understanding of each species in our dataset, which has 
variety in growing stage and seasonal timing. This multi-scale anal-
ysis generally obtained better performance among the compared 
strategies 1, especially for similar species Fig. 6, which is beneficial 
for distinguishing challenging species like, where implicit differences 
that might be overlooked when considering only isolated features 
become clearer. The improved performance AP metric for such 
species demonstrates the advantage of this approach.

- Generalizability: In this study different machine learning models 
have been investigated, ViT, Swin, and DeiT, in general, utilize 
similar foundational datasets, which ImageNet [9] is a well-known 
diverse dataset for computer vision, the results demonstrate that 
these models trained on this public dataset, despite the fewer data 
from Africa [10] can provide acceptable performance and general 
ability on our plant-based dataset which has a natural-based imbal-
ance distribution.

Moreover, to evaluate the model’s generalization capabilities across 
more diverse field conditions, a dedicated generalization test set was 
provided. This set includes 581 plant image samples collected from 
different environments or times, demonstrating variations in back-
ground, and plant growth stages. The test set aimed to assess the model’s 
ability to maintain performance despite the heterogeneity of natural 
rangeland conditions. This independent evaluation provided a measure 
of the model’s robustness and its suitability for practical deployment in 

Fig. 6. Correct classification of Boscia coriacea (left) Prosopis juliflora (right) considering different growth stages and environments.
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real-world applications.
Table 3 presents a performance comparison of three transformer- 

based models, including our proposed Multiscale Swin-B+WD, in 
plant species classification on a generalization test set. The results 
demonstrate the promising performance of the Multiscale Swin-B using 
weighted decoder (WD) model, outperforming the other models across 
most evaluation metrics. It achieves an average accuracy evaluation 
metric of precision of 78.80 %, a recall of 73.67 %, and an F1-score of 
74.43 %. In comparison, the Swin-B+BD model achieves an average 
Recall of 72.12 % and an F1-score of 71.99 %, while the ViT-B+BD 
model shows the lowest performance. with an average metrics of 64.54 
% and an F1-score of 64.65 %. The Multiscale Swin-B+WD, in contrast 

ViT, employs both hierarchical structures with shifted windows (Swin- 
B) and multi-scale fusion, enabling it to model fine-grained details and 
long-range dependencies, important for distinguishing between visually 
similar plant species, leading to improved accuracy compared to base- 
models. For example, Fig. 6 illustrates the successful classification of 
Prosopis juliflora and Boscia coriacea across various growth stages and 
environments, highlighting the model’s focus on leaf and branch pat-
terns. However, The result demonstrate poor performance in some 
species like Acacia reficiens [21], which as demonstrated in the plant 
photo guide, there is significant morphology difference from a 
shrub-like early stage to a mature tree form presents a challenge for 
computer vision models trained predominantly on one growth phase; 
consequently, all model trained on shrub-form specimens have reduced 
performance when applied to environments where these species are 
predominantly present in their mature tree morphology due to signifi-
cant differences in visual features across life stages. Additionally, the 
results in Table 4 show differences in confidence calibration properties 
across models. Multiscale Swin-B+WD maintains higher evaluation 
metric like 74.35 % at base threshold and 83.45 % at >0.5 while pre-
serving almost 73.0 % of samples. In comparison, Swin-B+BD reaches 
91.42 % performance but retains fewer samples (58.2 %). In the context 
of herd movement, reliable results for plant identification, built upon a 
foundation of accurate and comprehensive data, act as a powerful in-
formation tool, which is essential for real-world applications in plant 
identification and monitoring where reliability is important in the 
context of decision-making systems (e.g., herd movement) and the 
empowerment of diverse user groups (e.g., local communities) in 
real-world applications.

6. Conclusions

This study evaluated the performance of transformer architectures 
for rangeland-based plant species classification, proposing a Multiscale 
model that demonstrably enhances image classification through archi-
tectural design and feature fusion. The result of this study can be un-
derstood as evidence that transformer architectures and transfer 
learning, trained on public datasets, show promising performance in 
plant species classification tasks, offering a promising solution for 
challenges posed by data scarcity and spatial sparsity, which are com-
mon in African plant data. On this basis, we conclude that the proposed 
Multiscale approach with a weighted decoder demonstrates promising 
performance, achieving 89.71 % accuracy and outperforming the Swin 

Table 3 
Performance comparison classifier using base transformer models and proposed 
model on the generalization test set. The model achieved better performance, yet 
all models exhibited limitations in classifying species with significant 
morphology difference from a shrub-like early stage to a mature tree in different 
environment (e.g., Acacia reficiens).

Model Plant 
Species

Prec. Rec. F1 Total 
Samples

ViT-B+BD Yabah 83.43 
%

71.57 
%

77.05 
%

197

Prosopis 
juliflora

63.70 
%

83.04 
%

72.09 
%

112

Acacia 62.50 
%

71.43 
%

66.67 
%

77

Bissar 69.77 
%

48.39 
%

57.14 
%

62

Desert rose 23.68 
%

75.00 
%

36.00 
%

12

Boscia 
coriacea

45.07 
%

39.51 
%

42.11 
%

81

Maerua 
edulis

66.67 
%

50.00 
%

57.14 
%

20

Acacia 
reficiens

45.45 
%

25.00 
%

32.26 
%

20

Average 66.93 
%

64.54 
%

64.65 
%

581

Swin-B+BD Yabah 83.07 
%

79.70 
%

81.35 
%

197

Prosopis 
juliflora

86.84 
%

88.39 
%

87.61 
%

112

Acacia 63.11 
%

84.42 
%

72.22 
%

77

Bissar 81.63 
%

64.52 
%

72.07 
%

62

Desert rose 37.50 
%

50.00 
%

42.86 
%

12

Boscia 
coriacea

45.68 
%

45.68 
%

45.68 
%

81

Maerua 
edulis

64.29 
%

45.00 
%

52.94 
%

20

Acacia 
reficiens

40.00 
%

30.00 
%

34.29 
%

20

Average 72.71 
%

72.12 
%

71.99 
%

581

Multiscale Swin- 
B+WD

Yabah 95.56 
%

65.48 
%

77.71 
%

197

Prosopis 
juliflora

92.66 
%

90.18 
%

91.40 
%

112

Acacia 62.16 
%

89.61 
%

73.40 
%

77

Bissar 88.14 
%

83.87 
%

85.95 
%

62

Desert rose 30.30 
%

83.33 
%

44.44 
%

12

Boscia 
coriacea

48.84 
%

51.85 
%

50.30 
%

81

Maerua 
edulis

54.29 
%

95.00 
%

69.09 
%

20

Acacia 
reficiens

46.15 
%

30.00 
%

36.36 
%

20

Average 78.80 
%

73.67 
%

74.43 
%

581

Table 4 
Performance comparison classifier results and related Confidence threshold for 
classifying the generalization test set. The Multiscale model shows an acceptable 
balance, maintaining classification metrics for a larger portion of samples, while 
the other model achieves higher performance on fewer samples.

Model Prec. Rec. F1 Conf. 
(threshold)

Retained 
Samples

ViT-B+BD 66.93 
%

64.54 
%

64.65 
%

> 0.0 581

69.43 
%

67.68 
%

67.66 
%

> 0.3 526

86.97 
%

85.87 
%

85.57 
%

> 0.5 269

Swin-B+BD 72.71 
%

72.12 
%

71.99 
%

> 0.0 581

78.74 
%

77.44 
%

77.53 
%

> 0.3 523

92.95 
%

91.42% 91.45 
%

> 0.5 338

Multiscale 
Swin-B+WD

78.84 
%

74.35 
%

74.77 
%

> 0.0 581

79.66 
%

75.97 
%

76.23 
%

> 0.3 566

86.30 
%

83.45 
%

83.33 
%

> 0.5 435

Z. Alizadehsani et al.                                                                                                                                                                                                                           Smart Agricultural Technology 12 (2025) 101183 

10 



base model’s 88.0 % accuracy. Moreover, our study suggests that while 
some herders do utilize rangeland images for personal assessment, this 
data is often fragmented and stored to their individual devices, limiting 
its broader utility and scalability. To this end, the proposed model can 
provide automated bulk rangeland species image classification, allowing 
for more precise pasture scoring, which is vital for effective and sus-
tainable grazing management when traditional seasonal patterns are 
disrupted by climate variability. This conclusion follows from the fact 
that the integration of features derived from fine-grained textural in-
formation, such as leaf and branch patterns, with broader structural 
characteristics, including plant morphology, contributes to a more 
comprehensive species representation. However, it is crucial to 
acknowledge the broader ecological context, specifically the significant 
relationship between global warming and land use systems such as 
pastoralism, which utilize rangeland ecosystems for grazing. As climate 
change impacts these ecosystems and alters species distributions, future 
research should consider the implications for plant species classification. 
Future research should be devoted to the development of expanded data 
collection and the exploration of emerging large-scale models, as well as 
the integration of ecological factors into data optimization strategies 
using image generation techniques. This integrated approach will ensure 
the adaptability and effectiveness of classification models in the face of 
evolving environmental conditions.
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